
BROAD: Diversified Keyword Search in Databases

Feng Zhao #, Xiaolong Zhang ∗, Anthony K. H. Tung #, Gang Chen ∗

#School of Computing, National University of Singapore, Singapore
{zhaofeng,atung}@comp.nus.edu.sg

∗College of Computer Science, Zhejiang University, China
{xiaolongzhang,cg}@cs.zju.edu.cn

ABSTRACT

Keyword search in databases has received a lot of attention
in the database community as it is an effective approach for
querying a database without knowing its underlying schema.
However, keyword search queries often return too many re-
sults. One standard solution is to rank results such that the
“best” results appear first. Still, this approach can suffer
from redundancy problem where many high ranking results
are in fact coming from the same part of the database and
results in other parts of the database are missed completely.

In this demo, we propose the BROAD system which allows
users to perform diverse, hierarchical browsing on keyword
search results. Our system partitions the answer trees in the
keyword search results by selecting k diverse representatives
from the trees, separating the answer trees into k groups
based on their similarity to the representatives and then
recursively applying the partitioning for each group. By
constructing summarized result for the answer trees in each
of the k groups, we provide a way for users to quickly locate
the results that they desire.

1. INTRODUCTION
With increasing amount of textual data being stored in

relational databases, keyword search is well recognized as a
convenient and effective approach to retrieve results with-
out knowing the underlying schema or learning a query lan-
guage [4]. The result of keyword query is often modeled as
a compact substructure, such as a tree or a graph, which
connects keyword tuples to include all the keywords. Poten-
tially, a user could discover underlying relationships and the
semantics based on structural answers.

However, keyword search queries can often return too
many answers, because the tuples that keywords are located
in might come from different tables and connect with each
other in many ways. Exploring and understanding keyword
search results can be time consuming and not user-friendly.
To illustrate, we describe an example on CiteSeerX1 dataset.

1http://citeseerx.ist.psu.edu/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

Example 1. Consider a keyword query on “skyline” and
“rank” over the CiteSeerX dataset. There are 78 tuples con-
taining the keyword “skyline”, and 729 tuples containing the
keyword “rank”. A snapshot of keyword tuples are presented
in Table 1, and part of the answers related to these tuples
are shown in Figure 1. For clear illustration, we use “a” to
denote an author and “p” to denote a paper. It can be seen
that the relationship between them varies a lot even for fixed
keyword tuples. Presenting and exploring the results of this
keyword query will be difficult.

Table 1: The Snapshot of Keyword Tuples.
ID Content Excerpt

kn1 The [Skyline] Operator
kn2 [Skyline] with Presorting
kn3 An Optimal and Progressive Algorithm for [Skyline] Queries
kn4 Merging [Ranks] from Heterogeneous Internet Sources
kn5 Why [Rank]-Based Allocation of Reproductive Trials is Best
kn6 The PageRank Citation [Rank]ing

A typical solution to large number of keyword search re-
sults is to return top-k answers according to relevant score [4].
Without knowing the schema, however, it is hard for a user
to explicitly express the preference. For instance, the query
{skyline, rank} aims to discover the relationship between
them, but it is difficult to indicate which keyword is more
important or what types of path connections are meaning-
ful before a user realizes what can be found in the dataset.
Even if it is possible to estimate users’ preference, the top-
k results usually include many overlapped answers that are
redundant to present. This can be seen in Example 1 with
an extreme case that T2 and T4 share two keyword nodes
and even an identical answer structure.

T2 T6T1 T3

p

p

p kn1 p

p

p

p

p

kn1

p

p

kn4

p

p

p
p

kn4 kn4 kn6
T4

p

p

p kn1

kn4

T5

a

p

p kn3

kn5

kn2kn1

Figure 1: Search Result Examples.

To tackle this problem, result diversification has been well
studied in information retrieval community [3]. They try
to put documents with broad information and different se-
mantics in the first page of search interface. We aim to
adapt this idea in database area and propose the keyword

search diversification problem: discover a set of k an-
swer trees S from the whole answer set T which maximize

1355

min{dist(Ta, Tb)}, Ta, Tb ∈ S . To make this possible, three
new challenges must be overcome. The first is to define a
meaningful distance measure dist(·, ·) between answer tree
results tailored for keyword search in databases. Second,
due to the NP hardness of result diversification [3], it is thus
necessary to develop an efficient scheme to produce diversi-
fied results. Third, to support user friendly result browsing,
we need to effectively summarize distinct features from rich
structures and contents in diversified results.

In this demo, we develop a novel system for browsing
and diversified keyword searching in databases, i.e. BROAD
(BROAD is an acronym for BROwsing And Diversified key-
word searching). Our contributions towards diversified key-
word search in databases are as follows:

• We have devised an effective kernel distance to mea-
sure the diversity of keyword search result. This metric
integrates both the textual difference and the struc-
tural distinction in the answer trees.

• We have developed an efficient algorithm to find di-
verse answers based on cover tree index. Our solution
can separate answer trees into groups and allow us to
browse results hirarchically.

• By coupling our solution with summarization tech-
niques, we enable users to efficiently locate desired re-
sults by drilling down the hierarchy incrementally.

2. SYSTEM ARCHITECTURE
The BROAD system architecture is presented in Figure 2.

We try to use a pipelined framework to overcome the chal-
lenges we discussed earlier. When a user inputs one l-
keyword query in the browsing interface, it will be sent to
keyword search engine generating candidate answer tree set
T . Here we rely on the standard keyword search engine in
graph databases, which discovers answer trees from the data
graph of a relational database [4]. BROAD system builds on
top of the keyword search engine. Based on the Cover Tree
Indexer, we find diverse results S and let users browse and
refine them hierarchically in the Result Browsing Interface.
The detailed descriptions will be shown in the following sec-
tions.

Hierarchical

Browsing Operator

Relational Database

Result Browsing Interface

Diverse Result

Generator

Keyword Search Engine

Keyword

query

Result trees

Data graph

Schema graph

Cover Tree Indexer
Kernel

Calculator

B

R

O

A

D

Figure 2: BROAD System Architecture.

3. METHODOLOGY
In this section, we propose a novel diversity measure with

a cover tree based algorithm to effectively solve the keyword
search diversification problem. Moreover, we provide sum-
marization techniques to visualize the diverse results.

3.1 Kernel Based Diversity Measure
The core of diversity problem is the need to measure the

pairwise dissimilarity between answer trees, i.e. dist(·, ·).
We propose the Answer Tree Kernel to capture both the
structural and the textual information, which is adapted
from the subtree kernel [5]. The basic idea is to express a
kernel on a discrete object by a sum of kernels of its con-
stituent parts, i.e. proper subtrees of the input tree T . A
proper subtree fi comprises node ni along with all of its
descendants. Two proper subtrees are identical if and only
if they have the same tree structure and the corresponding
nodes are from the same table. Figure 3 depicts all of T1’s
and T5’s proper subtrees respectively. Both answer trees
contain four different proper subtrees and they share three
of them, namely, f1, f2, f3.

T5

a

p

p

kn5

kn3

T1

kn1

p

p

kn4 1

2

1

1

2

33

4 5
f1 f2 f3 f4 f1 f2 f3 f5

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

a

Figure 3: Kernel Example.

Originally, the subtree kernel is designed to compare only
tree structures without taking node contents into consider-
ation. In our case, the comparison between answer trees
needs to consider node contents as well. The idea is to take
a fuzzy match between proper subtrees. Since answer trees
contain textual information, we could compare the content
similarity of two proper subtrees from two answer trees that
have the same structure. Let fa

i and fb

i be proper subtrees in
Ta and Tb respectively that share the proper subtree fi. We
merge the textual content in the nodes of fa

i and fb

i into da

i

and db
i and refer to them as documents. Next, we represent

each document as v = (w1, w2, . . . , wt) with each dimension
corresponding to a separate term. Applying TF-IDF weight-
ing, we obtain the document kernel κD(da

i , db

i) = 〈va

i , vb

i 〉
where va

i and vb

i are the weighted term vectors of da

i and
db

i respectively. Furthermore, the keyword query q provides
another source of semantic information. Intuitively, fa

i and
fb

i contribute more to the overall kernel if they share more
keywords. Thus, we introduce a weight setting wab =

√

s/l
where s indicates the number of shared keywords and l rep-
resents the number of input keywords, yielding:

Definition 3.1. (Answer Tree Kernel)
Given two trees Ta and Tb, the Answer Tree Kernel is:

κA(Ta, Tb) =
∑

na∈N(Ta)

∑

nb∈N(Tb)

wab∆(na, nb)

where ∆(na, nb) =
∑|F|

i=1 Ii(na)Ii(nb)κD(da

i , db

i), and where
Ii(n) is an indicator function which determines whether the
proper subtree fi is rooted at node n.

The answer tree kernel serves as an effective method to
map original answer trees to a kernel space. However, larger

1356

trees have higher chances to share many common features
with any small tree in the answer tree kernel. To overcome
this drawback, we compute the normalized kernel, i.e.

κ(Ta, Tb) = κA(Ta, Tb)/
√

κA(Ta, Ta) · κA(Tb, Tb) (1)

Based on the normalized kernel, we define the answer tree
distance as dist(Ta, Tb) =

√

1 − κ(Ta, Tb). This diversity
measure is a metric and can be efficiently computed in lin-
ear time. Differently, one alternative solution [2] decom-
poses answer trees into a set of nodes and utilizes Jaccards
distance to measure answer tree difference. This method
is efficient but sacrifices the result quality. First, it only
considers the exact match of nodes, but ignores the tex-
tual similarity between them. Second, it fails to measure
the structural connections due to decomposition. Readers
are referred to our technical report [6] for a comprehensive
introduction on kernel based measure.

3.2 Cover Tree Based Diversification
We next describe a cover tree approach to solve the key-

word search diversification. Cover tree [1] is a metric tree
to index data and perform nearest neighbor search in metric
spaces. It is a leveled tree where each level is a “cover” for
the level beneath it. Assume that we use the cover tree CT
to index answer set T based on the answer tree distance.
For instance, a cover tree in Figure 4 indexes fifteen results
of Example 1. Cover tree index has one important property,
i.e., for all trees Ta, Tb ∈ Ci, the distance from Ta to Tb is
greater than 1/2i. Ci indicates answer trees in T associated
with the nodes at level i.

T6

T3T6

T9 T6 T5

T4

T3T4

T9 T7 T6T8 T10T5 T1 T4T2 T3 T12T11

T13

T15

T15

T13 T14 T15

C0

C1

C2

C3

Figure 4: Cover Tree Example.

The separation property of cover tree suggests that nodes
at higher level are more diverse. Therefore, instead of dis-
covering k diverse results from the whole answer set, we
choose them from the highest possible level in cover tree to
reduce the number of distance computations. The algorithm
accesses cover tree from top to bottom, and stops at the
first level including at least k nodes, denoted as the working
level Ci. If |Ci| = k, all the answer trees in this level are
returned as diverse results. Otherwise, Ci−1 is selected as
the partial results due to the separation property. Next, we
heuristically expand the farthest node in the working level
until |S| = k. Let k = 3 for example in Figure 4. Level 0
of cover tree only contains the root node, so the algorithm
continues to the next level with four nodes. The number
of nodes is larger than k, so this level becomes the working
level and T6 from the above level is selected as the partial
result. Next, T3 and T15 are included by means of farthest
expanding. Finally, we discover {T6, T3, T15} as diverse re-
sults. The detail algorithm and experiments can be found
in our technical report [6].

Due to the tree-like structure, cover tree index can ele-
gantly support hierarchical browsing. We proceed as fol-
lows. First, we separate answer trees in the working level
into k answer tree groups based on their kernel similarities

to the k diverse results. A user then selects a subset H of
interest. Second, we fetch all nodes in next level covered by
H, and treat them as nodes in a new working level. Thus,
we can perform cover tree based diversification again to ob-
tain a new set of diverse results. This procedure iteratively
proceeds until reaches the intended answer tree/s. For in-
stance, T6, T3 and T15 in Figure 4 are diverse results found
previously. We first assign T4 to T3 due to the kernel similar-
ity and these four answer trees form three groups. Assume
that users are interested in the group {T3, T4}, so we drill
down to next level with answer tree set {T3, T4, T5}. They
are directly selected as new diverse answers because the size
of this level equals to three.

3.3 Result Summarization
To support hierarchical browsing, we develop a circular

view to summarize both structures and contents of a group
of answer tree. As such, users can quickly browse and select
preferred answer trees from the whole answer set. The basic
idea is derived from the Circos project2 and we adapt it for
the answer trees’ summarization. In the following, we take
answer tree T5 to show the approach of mapping one answer
tree into a circle. Figure 5a depicts T5 and it is transformed
to the red part in Figure 5b. The root node and keyword
nodes are mapped to segments, and pathes between nodes
are mapped to ribbons. The detailed connections between
the root node and keyword nodes are illustrated in focused
view, which will be discussed later in Section 4. For a group
of answer trees, the shared nodes among answer trees are
presented just once to save space. For instance, Figure 5b
only contains two “skyline” nodes and three “rank” nodes
for eight answer trees. As a result, the circular view for a
group of answer trees salvages large spaces compared to the
original layout. Furthermore, we utilize different colors to
distinguish answer trees so that users can quickly capture
how many answer trees are covered in a group. In general,
this view is suitable for keyword search, because k is usually
much less than one hundred in real keyword search use cases.

Figure 5: Answer Tree Mapping.

Aside from structural summarization, representative words
are attached to the related segments in order to distinguish
the circles that are on the same level of the hierarchy. Given
any segment s, let the node it represents be n. The ribbons
that connect s to other segments in the circle actually rep-
resent paths in the answer trees that connect n to other
nodes in the answer trees. For each segment, candidate
words are selected from these pathes. For each candidate
word, we compute a TF-IDF like score, and select top can-
didates as representative words. The detailed algorithm can
2http://mkweb.bcgsc.ca/circos/

1357

Figure 6: BROAD Interface.

be found in our technical report [6]. As such, we sketch out
distinct contents of answer trees. The number of representa-
tive words selected depends on the width of a segment. Take
the highlighted root segment in the focused view of Figure 6
as an example. We select six representative words attached
to the segment because their scores are the highest. To fur-
ther emphasize the word distinctions within a segment, we
present the selected words in different font sizes, according
to their term frequencies in one segment. The words “pro-
gressive” and “trial” are highlighted with the biggest font
size since their term frequencies are the largest in the seg-
ment.

4. DEMONSTRATION
In demonstration, we develop a web based browsing inter-

face3 to support interactive diversified keyword search. As
shown in Figure 6, the interface consists of a search input
area and a result display area. Search input area on the top
of the interface contains a keyword input field, zoom in/out
buttons and setting fields for user-specified parameters (k
and n). Therefore, we enable users to search by keyword
query as well as perform hierarchical browsing using zoom
in/out buttons.

Result display area on the bottom is composed of three
views from left to right: thumbnail view, focused view and
answer tree view. The thumbnail view displays k circles to
summarize k answer tree groups as a list of thumbnail im-
ages. Consequently, users can click the desired circle and
enlarge it in the focused view, which allows users to focus
on certain segments or ribbons. The chosen element is high-
lighted with color, while other elements become transpar-
ent. We also utilize a tooltip above a ribbon to describe the
structure of related path. Furthermore, the corresponding
answer tree is represented as a tree layout in the answer
tree view. Node labels in this view correspond to the an-
swer tree structure and tooltips correspond to the answer
tree content.

3http://db128gb-b.ddns.comp.nus.edu.sg:8080/broad/

Take the keyword query {skyline,rank} as an example in
Figure 6. A user sets k = 3 and n = 15 to discover three di-
verse answers from fifteen candidates. The thumbnail view
shows a preview of three circles, so the user can browse the
overview through a scroll bar and select the desired one to
display in the focused view. For example, the top circle in
the thumbnail view is selected with the detailed information
in the center. Besides, T5 is highlighted with red color be-
cause the user clicks on the root segment of T5. Moreover,
when mouse hovers over on the ribbon between the root node
and the “skyline” keyword node, a tooltip “author→paper”
shows the structure information. Correspondingly, the tree
layout in the answer tree view visualizes the structure and
the content of T5. If the user ticks the top checkbox in the
thumbnail view and then presses the zoom in button, the
system can drill down to next level and present a set of new
circles.

In summary, our BROAD system provides a user friendly
interface that helps users search and explore diversified key-
word search results. To the best of our knowledge, our work
is the first attempt to support interactive hierarchical brows-
ing on keyword search in databases.

5. REFERENCES
[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for

nearest neighbor. In ICML, pages 97–104, 2006.
[2] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. DivQ:

diversification for keyword search over structured databases.
In SIGIR, pages 331–338, 2010.

[3] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, pages 381–390, 2009.

[4] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In VLDB, pages
505–516, 2005.

[5] S. Vishwanathan and A. Smola. Fast kernels for string and
tree matching. Kernel methods in computational biology,
pages 113–130, 2004.

[6] F. Zhao, X. Zhang, Anthony K.H. Tung, and G. Chen.
BROAD:Diversified Keyword Search in Databases. Technical
report, TRD3/11, School of Computing, NUS.

1358

