
RAMP: A System for Capturing and Tracing Provenance in
MapReduce Workflows∗

Hyunjung Park, Robert Ikeda, and Jennifer Widom
Stanford University

{hyunjung,rmikeda,widom}@cs.stanford.edu

ABSTRACT
RAMP (Reduce And Map Provenance) is an extension to Hadoop
that supports provenance capture and tracing for workflows of
MapReduce jobs. RAMP uses a wrapper-based approach, requir-
ing little if any user intervention in most cases, while retaining
Hadoop’s parallel execution and fault tolerance. We demonstrate
RAMP on a real-world MapReduce workflow generated from a Pig
script that performs sentiment analysis over Twitter data. We show
how RAMP’s automatic provenance capture and tracing capabili-
ties provide a convenient and efficient means of drilling-down and
verifying output elements.

1. INTRODUCTION
MapReduce [3] has become a very popular framework for large-

scale data processing. Some data-processing tasks are too complex
for a single MapReduce job, so individual jobs may be composed in
acyclic graphs to form MapReduce workflows. In addition to work-
flows constructed by hand, MapReduce workflows are the target of
higher-level platforms built on top of Hadoop [2], such as Pig [5],
Hive [7], and Jaql [1].

Debugging MapReduce workflows can be a difficult task: their
execution is batch-oriented and, once completed, leaves only the
data sets themselves to help in the debugging process. Data prove-
nance, which captures how data elements are processed through
the workflow, can aid in debugging by enabling backward trac-
ing: finding the input subsets that contributed to a given output el-
ement. For example, erroneous input elements or processing func-
tions may be discovered by backward-tracing suspicious output el-
ements. Provenance and backward tracing also can be useful for
drilling-down to learn more about interesting or unusual output el-
ements.

We propose to demonstrate RAMP (Reduce And Map Prove-
nance), an extension to Hadoop that captures and traces prove-
nance in any MapReduce workflow. RAMP uses a wrapper-based

∗This work was supported by the National Science Foundation
(IIS-0904497), the Boeing Corporation, KAUST, and an Amazon
Web Services Research Grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

approach to capture fine-grained provenance transparently, while
retaining Hadoop’s parallel execution and fault tolerance. In previ-
ous work [4], we showed that RAMP imposes reasonable time and
space overhead during provenance capture. Moreover, RAMP’s
default scheme for storing provenance enables efficient backward
tracing without requiring special indexing of provenance informa-
tion.

In the remainder of this demonstration proposal, we:
• Provide foundations of provenance for MapReduce workflows,

summarizing material from [4] (Section 2)
• Explain how RAMP captures and traces provenance (Section 3)
• Describe the MapReduce workflow and data sets to be used in

the demonstration, and walk through real-world debugging and
drill-down scenarios (Section 4)

2. FOUNDATIONS
The MapReduce framework involves map functions and reduce

functions:1

Map Functions. A map function M produces zero or more out-
put elements independently for each element in its input set I:
M(I) =

⋃
i∈I M({i}). In practice, programmers in the MapRe-

duce framework are not prevented from writing map functions that
buffer the input or otherwise use “side-effect” temporary storage,
resulting in behavior that violates this pure definition of a map func-
tion. The RAMP system currently assumes pure map functions.

Reduce Functions. A reduce function R takes an input data set
I in which each element is a key-value pair, and returns zero or
more output elements independently for each group of elements in
I with the same key: Let k1, . . . , kn be all of the distinct keys in
I . Then R(I) =

⋃
1≤j≤n R(Gj), where each Gj consists of all

key-value pairs in I with key kj . Similar to map functions, RAMP
assumes pure reduce functions, i.e., those satisfying this definition.
Hereafter, we use G1, .., Gn to denote the key-based groups of a
reduce function’s input set I .

Let transformation T be either a map or a reduce function. Given
a transformation instance T (I) = O for a given input set I , and an
output element o ∈ O, provenance should identify the input subset
I∗ ⊆ I containing those elements that contributed to o’s deriva-
tion. First we define provenance for each function type, then we
show how this “one-level” provenance is used to define workflow
provenance.

1This section assumes workflows are arbitrary compositions of sep-
arate map and reduce functions. Our implementation also handles
traditional MapReduce jobs that combine a map and a reduce func-
tion into a single transformation.

1351

RecordReader

Mapper

(ki, vi)

(km, vm)

 Wrapper

 Wrapper

RecordReader

(ki, vi)

Mapper

(ki, 〈vi, p〉)

(ki, vi)

(km, vm)

(km, 〈vm, p〉)

Input Input

Map Output Map Output

p

p

(a) Wrapping a map function

 Wrapper

 Wrapper

Reducer

RecordWriter

(ko, vo)

Reducer

(ko, vo)

RecordWriter

(ko, 〈vo, km
ID〉)

(ko, vo)

(km, [vm
1,…,vm

n])

(km, [〈vm
1, p1〉,…, 〈vm

n, pn〉])

Map Output Map Output

Output Output

(km, [vm
1,…,vm

n])

(km
ID, pj) (q, km

ID)

Provenance

 q

(b) Wrapping a reduce function
Figure 1: Provenance capture in RAMP.

Provenance for single functions is straightforward and intuitive:
• Map Provenance. Given a map function M , the provenance

of an output element o ∈ M(I) is the input element i that
produced o, i.e., o ∈M({i}).
• Reduce Provenance. Given a reduce function R, the prove-

nance of an output element o ∈ R(I) is the group Gj ⊆ I that
produced o, i.e., o ∈ R(Gj).

The provenance of an output subset O∗ ⊆ O is simply the union of
the provenance for all elements o ∈ O∗.

Now suppose we have a MapReduce workflow: an arbitrary
acyclic graph composed of map and reduce functions. We would
like the provenance of an output element in terms of the initial in-
puts to the workflow. For our recursive definition, we more gen-
erally define the provenance of any data element involved in the
workflow—input, intermediate, or output.

DEFINITION 2.1 (MAPREDUCE PROVENANCE). Consider a
MapReduce workflow W with initial input I and any data element
e. The provenance of e in W , denoted PW (e), is a set I∗ ⊆ I .
If e is an initial input element, i.e., e ∈ I , then PW (e) = {e}.
Otherwise, let T be the transformation that output e. Let PT (e) be
the one-level provenance of e with respect to T as defined above.
Then PW (e) =

⋃
e′∈PT (e) PW (e′). 2

This recursive definition is quite intuitive: If the “one-step”
provenance of an output element o through the map or reduce func-
tion that produced o is the set E of intermediate elements, then o’s
provenance is (recursively) the union of the provenance of the ele-
ments in E. Additional formal material on provenance in MapRe-
duce workflows appears in [4].

3. SYSTEM OVERVIEW
RAMP is built as an extension to Hadoop. It consists of three

main components: a generic wrapper implementation for captur-
ing provenance, pluggable schemes for assigning element IDs and
storing provenance, and a stand-alone program for tracing prove-
nance. Our current implementation is compatible with the Hadoop
0.20 API (also known as the “new” API).

RAMP captures provenance by wrapping the Hadoop compo-
nents that define a MapReduce job: the record-reader, mapper,
combiner (optional), reducer, and record-writer. This wrapper-
based approach is transparent to Hadoop, retaining Hadoop’s paral-
lel execution and fault tolerance. Furthermore, in many cases users
need not be aware of provenance capture while writing MapReduce
jobs—wrapping is automatic, and RAMP stores provenance sepa-
rately from the input and output data.

Since RAMP stores provenance as mappings between input and
output element IDs, RAMP requires schemes for assigning element
IDs and storing provenance. When input and output data sets are
stored in files, RAMP uses (filename, offset) as a default unique ID
for each data element, so user intervention is not needed. RAMP
also has a default provenance storage scheme for file input and out-
put; details are in [4]. For other settings, RAMP allows users to
define custom ID and storage schemes.

In previous work [4], we conducted performance experiments on
two standard MapReduce jobs: Wordcount and Terasort. For these
experiments, which were run on a 51-machine Hadoop cluster with
500GB of input data, provenance capture incurred 20-76% time
overhead. Backward-tracing one element from the full data set took
as little as 1.5 seconds without special indexes.

3.1 Provenance Capture
Although our formalism in Section 2 was based on individual

map and reduce functions, our implementation is based on MapRe-
duce jobs. We assume our workflows combine adjacent map and
reduce functions into MapReduce jobs; all remaining independent
map and reduce functions are treated as MapReduce jobs with iden-
tity reduce or map components, respectively. For presentation pur-
poses, we consider MapReduce jobs without a combiner; the ex-
tension for combiners is straightforward.

For map functions, RAMP adds to each map output element
(km, vm) a unique ID p for the input element (ki, vi) that gen-
erated (km, vm) (Figure 1(a)). Specifically, RAMP annotates the
value part of the map output element, allowing Hadoop to correctly
group the map output elements by key for the reduce function.

For reduce functions, RAMP stores the reduce provenance as a
mapping from a unique ID for each output element (ko, vo) to the
grouping key km that produced (ko, vo). It simultaneously stores

1352

1 raw_movie = LOAD ’movies.txt’ USING PigStorage(’\t’) AS (title: chararray, year: int);
2 movie = FOREACH raw_movie GENERATE LOWER(title) as title;
3
4 raw_tweet = LOAD ’tweets.txt’ USING PigStorage(’\t’) AS (datetime: chararray, url, tweet: chararray);
5 tweet = FOREACH raw_tweet GENERATE datetime, url, LOWER(tweet) as tweet;
6 rated = FOREACH tweet GENERATE datetime, url, tweet, InferRating(tweet) as rating;
7 ngramed = FOREACH rated GENERATE datetime, url, flatten(GenerateNGram(tweet)) as ngram, rating;
8 ngram_rating = DISTINCT ngramed;
9

10 title_rating = JOIN ngram_rating BY ngram, movie BY title USING ’replicated’;
11 title_rating_month = FOREACH title_rating GENERATE title, rating, SUBSTRING(datetime, 5, 7) as month;
12
13 grouped = GROUP title_rating_month BY (title, rating, month);
14 title_rating_month_count = FOREACH grouped GENERATE flatten($0), COUNT($1);
15
16 november_count = FILTER title_rating_month_count BY month eq ’11’;
17 december_count = FILTER title_rating_month_count BY month eq ’12’;
18 outer_joined = JOIN november_count BY (title, rating) FULL OUTER, december_count BY (title, rating);
19 result = FOREACH outer_joined GENERATE (($0 is null) ? $4 : $0) as title, (($1 is null) ? $5 : $1) as

rating, (($3 is null) ? 0 : $3) as november, (($7 is null) ? 0 : $7) as december;
20 STORE result INTO ’/sentiment-analysis-result’ USING PigStorage();

Figure 2: Pig script for Twitter data analysis.

Infer
Rating

Generate
NGram

Distinct

Lower

Lower Tweets

Movies

⋈ GroupBy Count
Extract
Month

σ

σ

⟗
Results

MR #2

MR #1

MR #3

MR #4

Figure 3: MapReduce workflow compiled from Pig script.

the map provenance as a mapping from the grouping key km to the
input element ID pj’s (Figure 1(b)). By storing map provenance
after the map output elements have been grouped, RAMP allows
all input element IDs corresponding to the same grouping key to be
stored together. Since the grouping key km merely joins the map
and reduce provenance, km is replaced with an integer ID km

ID .

3.2 Provenance Tracing
Since RAMP captures provenance for each MapReduce job’s

output elements with respect to the job’s inputs, a single backward-
tracing step for one output element proceeds as follows:
1. Given an output element ID q, RAMP accesses the reduce

provenance as specified above to determine the corresponding
grouping key ID km

ID .
2. Using km

ID , RAMP accesses the map provenance as specified
above to retrieve all relevant input element ID pj’s.

The IDs returned by step 2 can either be used to fetch actual data
elements, or they can be fed to recursive invocations of backward
tracing until the initial input data sets are reached.

Carefully crafted schemes for assigning element IDs and storing
provenance can improve the efficiency of provenance tracing. For
example, RAMP’s default schemes for file input and output always
store provenance in ascending key order so that RAMP can exploit
binary search on the provenance data during backward tracing.

4. DEMONSTRATION
Since it’s difficult to give an engaging demonstration of the au-

tomatic wrapping process, our demonstration will primarily show
how RAMP’s provenance capture and tracing capabilities are use-
ful for drilling-down and verifying output elements in a realistic
MapReduce workflow setting.

4.1 Workflow Description
We demonstrate RAMP on a MapReduce workflow for movie

sentiment analysis using Twitter data. The workflow is compiled
from a Pig script (Figure 2) that takes two data sets as input:
• Tweets collected over several months in 2009 [8]
• 478 highest-grossing movies from the Internet Movie Database

(http://www.imdb.com/boxoffice/alltimegross)
The Pig script infers movie ratings from the Tweets as follows:
1. For each Tweet, it invokes the UDF InferRating(), which

uses sentiment analysis to infer a 1–5 overall sentiment rating.
It uses a Naive Bayes classifier trained with a sentence polarity
dataset [6], using unigrams as features.

2. For each rated Tweet from Step 1, it invokes the UDF
GenerateNGram(), which generates all possible n-grams
from each Tweet. (Currently we limit n to 3, thereby missing
a few movies with longer names.) It then joins the generated
n-grams with the movies from IMDb to find all movie titles (if
any) mentioned in the Tweet.

Lastly, the script counts the number of instances of each rating for
each movie, separating November and December (2009). A por-
tion of the final output can be seen in the background of Figure 4
(columns are movie, rating, #november, and #december).

4.2 Running the Workflow
We begin the demonstration by compiling the Pig script into a

MapReduce workflow; the result consists of four MapReduce jobs,
as shown in Figure 3. RAMP automatically wraps the generated
MapReduce jobs, so when the workflow is executed in Hadoop, we
see that provenance files have been created in addition to the output
files.

1353

Figure 4: Provenance of the output element (title:avatar, rating:1, nov:2, dec:7).

4.3 Provenance Tracing
After executing the workflow, we use RAMP’s backward-tracing

feature to investigate suspect or otherwise unusual output elements.
Note that without the provenance captured by RAMP, it would be
difficult and time-consuming—perhaps even impossible—to find
the input Tweets from which a particular movie rating was inferred.

RAMP’s interface, shown in Figure 4, is a modified version
of the HDFS (Hadoop Distributed File System) web interface.
RAMP’s interface allows the user to browse input and output ele-
ments as well as backward-trace output elements. Initially, RAMP
shows the set of output elements with hyperlinks, visible in the
background of Figure 4. Clicking any output element causes a win-
dow to appear showing its provenance, visible in the foreground of
Figure 4.

Drill-Down Scenario: Avatar
Suppose we would like to know why some people did not
like the movie Avatar. We investigate the output element
(title:avatar, rating:1, nov:2, dec:7). When we
click on it to view its provenance, we find the nine Tweets that
resulted in a 1 rating for Avatar, shown in Figure 4. (Scrolling to
the left more clearly delineates the nine separate Tweets.) Of the
Tweets that criticize the film, one mentions a “bad and overused
plot” while another complains about the “bad story.” Thus, it seems
that Avatar’s plot is a point of criticism. But we also discover
through backward-tracing that not all nine Tweets in the prove-
nance actually contain negative opinions; for example, one Tweet
expresses the desire to see Avatar “really bad.”

Drill-Down Scenario: New Moon
Conversely, suppose we would like to know why some people did
like the movie New Moon. We backward-trace the output element
(title:new moon, rating:5, nov:54, dec:13) to obtain
the relevant Tweets, but we don’t immediately see a pattern or
problem. We then notice that the Twitter data contains an attribute
called url, pointing to the user account that created each Tweet.
Inspecting the user accounts, we see that the Tweets comprising

the provenance of the 5 ratings for New Moon were written almost
exclusively by teenage girls.

Debugging Scenario: Eclipse
Finally, we backward-trace output element (title:eclipse,

rating:5, nov:9, dec:15) to understand why people liked
the movie Eclipse. We find that most of the Tweets in the element’s
provenance have no mention of the movie Eclipse; some Tweets
discuss a lunar eclipse, while others rave about the Eclipse IDE. Of
the Tweets that are about the movie, all simply express a desire to
see the film. It turns out that Eclipse was not released until June
2010, while all of the Tweets in our data set are from 2009. To
avoid speculative ratings in future runs of the workflow, we could
modify the Pig script to filter out movies not yet released at the time
of the Tweet.

5. REFERENCES
[1] Jaql. http://code.google.com/p/jaql/.
[2] Apache. Hadoop. http://hadoop.apache.org/.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. In OSDI, pages 137–150, 2004.
[4] R. Ikeda, H. Park, and J. Widom. Provenance for generalized

map and reduce workflows. In CIDR, pages 273–283, 2011.
[5] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.

Pig Latin: A not-so-foreign language for data processing. In
SIGMOD, pages 1099–1110, 2008.

[6] B. Pang and L. Lee. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales. In ACL, pages 115–124, 2005.

[7] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive: A
petabyte scale data warehouse using hadoop. In ICDE, pages
996–1005, 2010.

[8] J. Yang and J. Leskovec. Patterns of temporal variation in
online media. In WSDM, pages 177–186, 2011.

1354

