
Citrusleaf: A Real-Time NoSQL DB which Preserves ACID
V. Srinivasan
Citrusleaf, Inc.

444 Castro Street, Suite 703
Mountain View, CA 94041

+1 650-336-5323

srini@citrusleaf.com

Brian Bulkowski
Citrusleaf, Inc.

444 Castro Street, Suite 703
Mountain View, CA 94041

+1 650-336-5323

brian@citrusleaf.com

ABSTRACT

In this paper, we describe the Citrusleaf real-time distributed

database platform that is built using the core principles of

traditional database consistency and reliability while also being

fast and flexible enough for use in high-performance applications

like real-time bidding. In fact, Citrusleaf is unique among

NoSQL databases for its ability to provide immediate consistency

and ACID while still being able to consistently exceed the high

performance and scalability standards required by demanding

real-time applications. This paper describes how the Citrusleaf

system achieves the marriage of traditional database reliability,

including immediate consistency and ACID, with flexibility and

operational efficiency.

Citrusleaf scales linearly at extremely high throughput while

keeping response time in the sub-millisecond range as

demonstrated by the test results presented here. This kind of

performance has enabled Citrusleaf to become the underlying

component of some of the world‟s largest real-time bidding

networks.

1. INTRODUCTION
Over the past several years, there has been an explosion in the

growth of internet applications for the Real Time Web [15] (e.g.,

real-time advertising, mobile, location based apps, real-time

feeds from social networks, etc.). The limitations of the existing

databases to handle the high write loads inherent in many of

these applications was initially encountered by major internet

companies like Amazon, Facebook, Google, Yahoo!, etc., but

these limitations are now being routinely encountered in many

small and medium size companies that desire to build a

meaningful real-time internet service to leverage the relentlessly

explosive growth in internet usage. Here are a few examples:

 Real-time bidding (RTB) platforms for display

advertising require an extremely scalable and cost

effective high performance transaction system.

 Real-time campaign management for advertising and

marketing campaigns requires minute by minute

analysis of data that is changing as users navigate these

campaigns.

 Social networking applications, especially social

gaming require real-time exchange of data between

users that are taking part in various games

Of late, several new databases [11], [20], [16], etc. have emerged

out of several independent efforts to provide a scalable, flexible

database alternative that can effectively address the needs of

these high volume internet applications. Citrusleaf is also in this

category of products.

Many of these new databases are built on extremely solid

networking and distribution technologies but have diverged

significantly from traditional database techniques. E.g., some of

these systems support a technique called “eventual consistency”

[1], where an update that was completed in the system could

occasionally disappear from the view of other readers until it

eventually reappears at some time in the future (hence the name,

eventual consistency). While eventual consistency may be

sufficient for certain applications (e.g., shopping carts on a web

site), this sort of non-deterministic behavior creates enormous

challenges for application developers who now have to handle

complex failure cases themselves.

Our premise, however, is that it is possible (and imperative) to

build clustered database systems that incorporate the best in

networking technologies [6] (these are “table stakes” in the new

world) while also retaining the robust concurrency and recovery

practices used in traditional databases. Therefore, Citrusleaf is a

product focused on maintaining the high performance and

scalability of NoSQL solutions while also sticking to the time

tested DBMS fundamentals like ACID, immediate consistency,

backup and restore, high availability, etc. Most of the techniques

described in this paper have been validated in mission-critical,

internet scale deployments over a twelve month period.

The rest of the paper is organized as follows. In Section 2, we

provide an overview of system architecture. Section 3 describes

the key technology behind the system. In Section 4, we present

results to demonstrate the linear scalability of Citrusleaf. In

Section 5, we compare and contrast Citrusleaf with the various

other products in this space. We describe future directions in

Section 6 and present the conclusions in Section 7.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present their

results at The 37th International Conference on Very Large Data Bases,

August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 12

Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1340

2. System Architecture
The Citrusleaf database platform (Figure 1) is based on the

classic shared-nothing database architecture [7]. The database

cluster consists of a list of commodity server nodes, each of

which has CPU, DRAM, rotational disk (HDD) and optional

flash storage (SSD). These nodes are connected to each other

using a standard TCP/IP network.

In Citrusleaf, as in traditional databases, there is strict separation

at the network level between the client and the server. The

Citrusleaf client typically runs on the same node as the

application and is usually tightly integrated with the application.

One of the fundamental ways in which Citrusleaf differs from

other comparable systems is its ability to use client-side load

balancing to vastly increase transaction performance and achieve

smooth linear scalability.

We will first describe the database cluster architecture and then

the client layer.

Figure 1: Citrusleaf Architecture.

2.1 Database Cluster Architecture
Each node in the database cluster comprises of two layers, the

distribution layer and the data layer. These are explained in more

detail below.

2.1.1 Distribution Layer
The Distribution Layer (Figure 2) is responsible for both

maintaining the scalability of the Citrusleaf clusters, and for

providing many of the ACID reliability guarantees. The

implementation of the Distribution Layer is „shared nothing‟ [7].

This means that there are no centralized „managers‟ of any sort,

eliminating bottlenecks, inefficient resource usage and single

points of failure such as those often created by master/slave

relationships.

Citrusleaf uses standard network components and therefore all

communication in the system happens via TCP/IP. We have

found that in modern Linux environments, TCP/IP requests can

be coded in a way that allows many thousands of simultaneous

connections at very high bandwidths. We have not found the use

of TCP/IP to impact system performance when using Gigabit-

Ethernet connections between components.

There are three major modules within the Distribution Layer –

the Cluster Administration Module, the Data Migration Module,

and the Transaction Management Module. These are discussed

in more detail below.

Figure 2: Distribution Layer.

2.1.1.1 Cluster Administration Module
The Cluster Administration Module is a critical piece of both the

scaling and reliability infrastructure, since it determines which

nodes are currently in the cluster. Each node periodically sends

out a heartbeat to all the other nodes, informing them that it is

alive and functional. If any node detects a new node, or fails to

receive heartbeats from an existing node, that node‟s Cluster

Administration Module will trigger a Paxos [8,9] consensus

voting process between all the cluster nodes. This process

determines which nodes are considered part of the cluster, and

ensures that all nodes in the cluster maintain a consistent view of

the system. The Cluster Administration Module can be set up to

run over multicast IP (preferred for zero-config cluster

management) or unicast IP (requiring slightly more

configuration).

To increase reliability in the face of heavy load - when heartbeats

could be delayed - the system also counts any transactional

requests between nodes as secondary heartbeats.

Once membership in the cluster has been agreed upon, the

individual nodes use a distributed hash algorithm to partition the

primary index space into „slices‟ and subsequently assign read

and write masters and replicas to each of the slices. Because this

partitioning is purely algorithmic, the system scales without a

master and there is no need for additional configuration at the

application level that is required in a non-clustered environment

(e.g., sharding [19]). After cluster reconfiguration, data

migration between the slices is handled by the Data Migration

Module, below.

2.1.1.2 Data Migration Module
When a node is added or removed from the cluster, the Data

Migration Module is invoked to rebalance the data within the

cluster as determined by the Cluster Administration Module

described in the previous Section. The Data Migration Module is

responsible for ensuring that the multiple copies of every data

item eventually reaches the correct cluster nodes. Note that

Citrusleaf supports keeping more than two copies of a data item

but most installations keep just two. This data migration process

is completely transparent to both the Client and the Application.

Note that a naïve data migration scheme could take a lot of

system resources. For example, adding a fourth node to a three

1341

node cluster results in 50% of the data in the cluster moving to

the new node. If all the existing nodes start to send the data at

full throttle to the new node, it is quite likely the new node could

go down as soon as it comes up! Therefore, the Data Migration

Module, like much of the Citrusleaf code, has been carefully

constructed to ensure that loading in one part of the system does

not cause overall system instability. Transactions and heartbeats

are prioritized above data migration, and the system is capable of

fulfilling transactional requests even when the data has not been

migrated to the „correct‟ node (this is explained in more detail

below in Section 2.1.1.3). This prioritization ensures that the

system stays 100% available to application level transactions

even while nodes are being added to or removed from the cluster.

Using a stateless deterministic hashing algorithm for assigning

slices to nodes is not necessarily optimal and it could result in

more rebalances than those that would result by using other

algorithms (e.g., linear hashing). However, we have found that

rebalancing is relatively rare in production systems that have

been running for over a year and, therefore, the stateless

approach has worked very well in practice.

2.1.1.3 Transaction Processing Module
The Transaction Processing Module provides many of the

consistency and isolation guarantees of the Citrusleaf system.

This module processes the transaction requests from the Client,

including resolving conflicts between different versions of the

data that may exist when the system is recovering from being

partitioned.

In the most common case, the client has correctly identified the

node responsible for processing the read or write transaction. In

this situation, the Transaction Processing Module looks up the

data, applies the appropriate operation (read or write) and

returns the result to the client. If the request modifies data, the

Transaction Processing Module also co-ordinates the changes to

multiple copies of this data item thus ensuring immediate

consistency.

Note that any node in the cluster has the ability to execute

transactions for any data item using an intra cluster proxy

mechanism. This is because, occasionally, the node that receives

the transaction request will not contain the data needed to

complete the transaction. This typically happens during the brief

period after the arrival or departure of a node, when the client‟s

routing tables to the cluster may briefly be out of date. In this

situation, the Transaction Processing Module from the first node

forwards the transaction to the Transaction Processing Module of

the node that is responsible for the data item referenced by the

client. Once the transaction is completed, the node contacted by

the client fetches the transaction result from the node that

actually executed the transaction and returns it to the client. The

fact that the transaction was actually executed on a different

cluster node is completely transparent to the client and is

handled by the cluster itself.

Finally, the Transaction Processing Module is responsible for

resolving conflicts that are created after cluster nodes rejoin after

a network partitioning event that can cause a cluster to split

(partition) into two (or more) separate running sub-clusters.

Multiple conflicting writes to the same data item in different

clusters need to be resolved. More on this topic is discussed later

in Section 3.1.2.

2.1.2 Data Layer
The Data Layer (Figure 3) holds the indexes and data stored in

each node, and handles interactions with the physical storage. It

also contains modules that automatically remove expired data

from the database (Citrusleaf supports an optional time-to-live,

ttl, setting for each data item that can be set by the Application),

and defragment the physical storage to optimize disk usage.

Before discussing these components, let‟s first take a look at the

Citrusleaf Data Model.

Figure 3: Data Layer.

2.1.2.1 Data Model
The Citrusleaf system is fundamentally a key-value store where

the keys can be associated with a set of named values (similar to

a „row‟ standard RDMBS terminology.)

At the highest level, data is collected into policy containers

called „namespaces‟, semantically similar to „databases‟ in an

RDBMS system. Namespaces are configured when the cluster is

started, and are used to control expiry, replication, and storage

settings for a given set of data. For example, keeping more

copies of the data allows you to trade increased storage

requirements for improved availability during unexpected

hardware failures that take out one more nodes in a cluster.

Within a namespace, the data is subdivided into „sets‟ (similar to

„tables‟) and „records‟ (similar to „rows‟). Each record has an

indexed „key‟ that is unique in the set, and one or more named

„bins‟ (similar to columns) that hold values associated with the

record. Values in the bins are strongly typed, and can include

strings, integers, and binary data, as well as language-specific

binary blobs that are automatically serialized and de-serialized

by the system. Note that although the values in the bins are

typed, the bins themselves are not – the same bin value in one

record may have a different type than the bin value in different

record.

Although these structures may seem at first glance to be very

similar to the familiar RDBMS structures, there are important

differences. Most importantly, unlike RDBMS systems, the

Citrusleaf system is entirely schema-less. This means that sets

and bins do not need to be defined up front, but can be added

1342

during run-time thus providing maximum flexibility for

applications. Note that having arbitrary schema will result in

increased run-time overhead for maintaining indexes. Citrusleaf,

therefore, provides special optimization in cases where specific

schema simplifications are present – e.g., single column

namespaces have been used widely in several deployments due to

their enormous efficiencies in both storage and performance.

Each record also has hidden fields like generation, ttl, etc. that

enables the system to efficiently implement CAS (check and set)

[10] and data expiry.

Figure 4: Data Model.

2.1.2.2 Data Storage
Citrusleaf can store data in DRAM, traditional rotational media,

and SSDs, and each namespace can be configured separately.

This configuration flexibility allows an application developer to

put a small namespace that is frequently accessed in DRAM, but

put a larger namespace in less expensive storage such an SSD.

Significant work has been done to optimize data storage on

SSDs, including bypassing the file system to take advantage of

low-level SSD read and write patterns.

Citrusleaf‟s data storage methodology is optimized for fast

transactions. Indices (via the primary Key) are stored in DRAM

for instant availability, and data writes to disk are performed in

large blocks to minimize latencies that occur on both traditional

rotational disk and SSD media. The system also can be

configured to store data in direct format – using the drive as a

low-level block device without format or file system – to provide

an additional speed optimization for real-time mission critical

systems.

 Because storing indices in DRAM impacts the amount of

DRAM needed in each node, the size of an individual index

entry per data item has been painstakingly minimized.

Citrusleaf‟s indexing scheme allows keys of arbitrary sizes while

storing only a fixed length digest as part of the index. At present,

Citrusleaf can store indices for 100 million records in 7 gigabytes

of DRAM.

2.1.2.3 Defragmenter and Evictor
Two additional processes – the Defragmenter and the Evictor –

work together to ensure that there is space both in DRAM and

disk to write new data. The Defragmenter tracks the number of

active records on each block on disk, and reclaims blocks that

fall below a minimum level of use.

The Evictor is responsible for removing references to expired

records and for reclaiming memory if the system gets beyond a

set high water mark. When configuring a namespace, the

administrator specifies the maximum amount of DRAM used for

that namespace, as well as the default lifetime for data in the

namespace. Under normal operation, the Evictor looks for data

that has expired, freeing the index in memory and releasing the

record on disk. The Evictor also tracks the memory used by the

namespace, and releases older, although not necessarily expired,

records if the memory exceeds the configured high water mark.

By allowing the Evictor to remove old data when the system hits

its memory limitations, Citrusleaf can effectively be used as an

LRU cache.

Note that the age of a record is measured from the last time it

was modified, and that the Application can override the default

lifetime any time it writes data to the record. The Application

may also tell the system that a particular record should never be

automatically evicted.

2.2 Client Architecture
Citrusleaf provides a „smart client‟ layer between the application

and the server. This „smart client‟ handles many of the

administrative tasks needed to manage communication with the

node – it knows the optimal server for each transaction, handles

retries, and manages any cluster reconfiguration issues in a way

that is transparent to the application. This is done to improve the

ease and efficiency of application development – developers can

focus on key tasks of the application rather than database

administration. The Client also implements its own TCP/IP

connection pool for further transactional efficiency.

The Client Layer itself consists only of a linkable library, the

„Client‟, which talks directly to the cluster. This again is a

matter of operational efficiency – there are no additional cluster

management servers or proxies that need to be set up and

maintained.

Note that Citrusleaf Clients have been optimized for speed and

stability; however, developers are welcome to create new clients,

or to modify any of the existing ones for their own purposes.

Citrusleaf provides full source code to the Clients, as well as

documentation on the wire protocol used between the Client and

servers. Clients are available in many languages, including C,

C#, Java, Ruby, PHP and Python.

Figure 5: Client Architecture.

1343

The Client Layer has the following responsibilities:

 Providing an API for the Application

 Tracking cluster configuration

 Managing transactions between the Application and the

Cluster

Each of these responsibilities is discussed in more detail below.

2.2.1 Providing an API
Citrusleaf provides simple and straightforward interface for

reading and writing data. The underlying architecture is based

around a key-value store where the „value‟ may actually be a set

of named values, similar to columns in a traditional RDBMS.

Developers can read or write one value or multiple values with a

single API call. In addition, Citrusleaf implements optimistic

locking to allow consistent and reliable read-modify-write cycles

without incurring the overhead of a lock. Additional operations

available include batch processing, auto-increment, and reading

or writing the entire contents of the database. This final

operation – reading and writing the entire database – is used for

online backup and restore.

The APIs also provide several optional parameters that allow

application developers to modify the operation of transaction

requests. These parameters include the request timeout (critical

in real-time operations where transactions are only valid if they

can be completed within a specified time) and the policy

governing automatic retry of failed requests.

For more information on the data model underlying the APIs, see

Section 2.1.2.

2.2.2 Tracking Cluster Configuration
To ensure that requests are routed to the optimal cluster node,

the Client Layer tracks the current configuration of the server

cluster using the info protocol. To do this, the Client

communicates periodically with the cluster, maintaining an

internal list of server nodes. Any changes to the cluster size or

configuration are tracked automatically by the Client, and such

changes are entirely transparent to the Application. In practice,

this means that transactions will not fail during the transition,

and the Application does not need to be restarted during node

arrival and departure.

2.2.3 Managing transactions
When a transaction request comes in from the application, the

Client formats that request into an optimized wire protocol for

transmission to the servers and sends it to the server that is most

likely to contain the requested data.

As part of transaction management, the Client maintains a

connection pool that tracks the active TCP connections associated

with outstanding requests. It uses its knowledge of outstanding

requests to detect transactional failures that have not risen to the

level of a server failure within the cluster. Depending on the

desired policy, the client will either automatically retry failures

or immediately notify the Application of the transaction failure.

If transactions on a particular node fail too often, the Client will

attempt to route requests that would normally be handled by that

node to a different node that also has a copy of the requested

data. Note that read requests can be satisfied by any node that

has a copy of the data, while write requests require access to the

node that contains the master copy of the specific record. This

strategy provides an additional level of reliability and resilience

for reads when dealing with transient connectivity issues.

2.3 Summary
The Citrusleaf architecture is derived from three core principles

– NoSQL scalability and flexibility, traditional database

consistency and reliability, and cluster self-management. These

principles are demonstrated in the shared-nothing distribution

architecture, the schema-less data framework, the insistence on

immediate consistency and atomicity, and system-wide fault-

tolerance. In addition, the architecture is geared to operational

efficiency, both in its ease of use for application developers and

system administrators, and in its speed and low resource

overhead requirements when running on off-the-shelf Linux

environment.

3. Technology
Citrusleaf technology combines classic DB techniques with the

latest in networking and distributed technology while still

providing extremely high performance. We will describe here

how Citrusleaf implements ACID and how it supports scalability

and high performance.

3.1 ACID
Citrusleaf is intended to outperform traditional databases by an

order of magnitude in the mission-critical environments where

that performance is most needed: e.g., the high volume of

frequently updated data that drives the front end of a business.

We will briefly describe how Citrusleaf is optimized to squeeze

as much transaction throughput as possible while still

guaranteeing strong consistency (ACID) to make application

development easy.

3.1.1 Atomicity
For read/write operations on a single record, Citrusleaf makes

strict guarantees about the atomicity of these operations as

follows:

 Each operation on a record is applied atomically and

completely. For example, a read from or a write to

multiple bins in a record is guaranteed a consistent

view of the record.

 After a write is completely applied and the client is

notified of success, all subsequent read requests are

guaranteed to find the newly written data: there is no

possibility of reading stale data. Therefore, Citrusleaf

transactions provide immediate consistency.

In addition to single record operations, Citrusleaf supports

distributed multi-key transactions using a simple and fast

iteration interface where a client can simply request all or part of

the data in a particular set. This mechanism is currently used for

database backup and basic analytics on the data and delivers

extremely high throughput. Single key transactions are serialized

with respect to a multi-key transaction but two multi-key

operations may not be serialized with each other.

1344

3.1.2 Consistency
For operations on single keys, Citrusleaf provides immediate

consistency using synchronous replication.

Multi-key transactions are implemented as a sequence of single

key operations and do not hold record locks except for the time

required to read a clean copy. Thus the multi-key transaction

provides a consistent snapshot of the data in the database (i.e., no

"dirty reads" are done).

Citrusleaf's support for relaxing consistency models gives

operators the ability to maintain high performance during the

cluster recovery phase after node failure. E.g., read and write

transactions to records that have unmerged duplicates in the

cluster can be sped up by bypassing the duplicate merge phase.

In the presence of failures, the cluster can run in one of two

modes - Partition Tolerant or High Consistency. The difference

between the two modes is seen only for a brief period during

cluster recovery after a node failure. Citrusleaf is highly

consistent when the cluster does not split.

3.1.2.1 Partition Tolerance
In Partition Tolerant mode, when a cluster splits, each faction of

the cluster continues operating. One faction - or the other - may

not have all of the data, so an application reading data may have

successful transactions stating that data is not found in the

cluster. Each faction will be in the process of obeying the

replication factor rules, thus replicating data, and may accept

writes from clients. Application servers which read from the

other faction will not see the applied writes, and may write to the

same primary keys. If, at a later point, the factions rejoin, data

which has been written in both factions will be detected as

inconsistent. Two policies may be followed. Either Citrusleaf

will 'auto-merge' the data by favoring the last write (the write

with the latest server timestamp), or both copies of the data will

be retained. If two copies - versions - of the data are available in

the cluster, a read of this value will return both versions,

allowing the application to resolve the inconsistency. The client

application - the only entity with knowledge of how to resolve

these differences - must then re-write the data in a consistent

fashion.

3.1.2.2 High Consistency
In High Consistency mode, when the cluster splits, the cluster

with a minority quorum could be made to halt. This action

prevents any client from receiving inconsistent data, but will

reduce availability.

3.1.3 Isolation
Citrusleaf implements distributed isolation techniques consisting

of latches and short-term record locks to ensure isolation

between multiple transactions. Therefore, when a read and a

write operation for a record are pending simultaneously, they will

be internally serialized before completion, though their precise

ordering is not guaranteed.

For enabling simple multi-record transactions, Citrusleaf

supports an optimistic concurrency control scheme based on

atomic conditional operations (CAS - Check and Set [10]),

making the very common read-modify-write cycle safe -- without

the often-crippling overhead of explicit locking. In many

simplistic data storage systems, reading a data element,

modifying it, and then writing it back exposes a race condition

that could lead to data corruption during highly concurrent access

to the data item.

For multi-key operations, one of the cluster nodes anchors the

iteration operation and requests data from all the other nodes in

parallel. Snapshots are taken of the indexes at various points to

allow minimal lock hold times. As data is retrieved in parallel

from the working nodes, it is forwarded to the client. Care is

taken that the client is not overwhelmed by a flood of responses

from multiple cluster nodes. Therefore, the client-server protocol

has flow control features that the client uses to regulate the

responses from the multiple nodes in the cluster that are working

on the distributed transaction.

Any client-server system suffers from the client being potentially

disconnected from the server at any time. This can result in the

client being unable to distinguish whether a transaction in flight

has been applied or not. Recovery from this situation may be

quite complex. Citrusleaf supports mechanisms for retrying

writes and using a client generated unique persistent transaction

identifier that enables clients to properly determine if the

transaction has completed properly.

3.1.4 Durability
In order to keep your data always available, Citrusleaf provides

multi-server replication of your data. The cluster is configured to

contain multiple namespaces (like 'databases' within a RDBMs),

and each namespace contains configuration of the storage system,

and storage policies, for the data contained in that namespace.

The basic mechanisms for providing durability in Citrusleaf

consist of replication to multiple nodes using both DRAM and

persistent storage. Therefore, every transaction update is written

to multiple locations on the cluster before returning to the client.

For example, in a persistent namespace that stores data in both

DRAM and disk with a replication factor 2, the record is stored

in four locations, two copies in DRAM on two nodes and two

additional copies on disk.

3.1.4.1 Resilience to hardware failures
In the presence of node failures, clients are able to seamlessly

retrieve one of the copies of the data from the cluster with no

special effort. This is because, in a Citrusleaf cluster, the virtual

partitioning and distribution of data within the cluster is

completely invisible to the client. Therefore, when client

libraries make calls using a lightweight Client API to the

Citrusleaf cluster, any node can take requests for any piece of

data.

If a cluster node receives a request for a piece of data it does not

have locally, it satisfies the request by internally creating a proxy

request, fetching the data from the real owner using the internal

cluster interconnect and subsequently replying to the client

directly. The Citrusleaf client-server protocol also implements

caching of latest known locations of client requested data in the

client library itself to minimize the number of network hops

required to respond to a client request.

During the period immediately after a cluster node has been

added or removed, the Citrusleaf cluster automatically transfers

data between the nodes to rebalance and achieve data

1345

availability. During this time, Citrusleaf's internal "proxy"

transaction tracking allows high-consistency to be achieved by

applying reads and writes to the cluster nodes which have the

data, even if the data is in motion. The proxy mechanism ensures

that the client does not have to handle dynamic redirection of

requests, i.e., once a client makes a request of any node of the

cluster, it is guaranteed to receive the response from that node

even if the data itself is located in a different node within the

cluster.

3.1.4.2 Backup and Recovery
Citrusleaf provides online backup and restore, which, as the

name indicates, can be applied while the cluster is in operation.

Even though data replication will solve most real-world data

center availability issues, an essential tool of any database

administrator is the ability to backup and restore. A Citrusleaf

cluster has the ability to iterate all data within a namespace

(similar to a map/reduce). The backup and restore tools are

typically run on maintenance machines with a large amount of

inexpensive, standard rotational disk.

Citrusleaf backup and restore tools are made available with full

source. The file format in use is optimized for high speed but

uses an ASCII format, allowing an operator to validate the data

inserted into the cluster, and use standard scripts to move data

from one location to another. The backup tool splits the backup

into multiple files to allow restores to occur in parallel from

multiple machines during a rapid response to a catastrophic

failure event.

3.2 High Performance Transaction Processing
Citrusleaf uses a distributed hash table with a two level hashing

scheme. The key space is first separated out into a large number

of partitions. The second hash function distributes the partitions

among nodes in the cluster. This enables transactions to be

concurrently executed at an extremely high rate.

Citrusleaf further speeds up transaction processing as follows:

 The basic server code is written in the C language,

using the same principles underlying an operating

systems kernel and this enables extremely fast

dispatching of tasks within the Citrusleaf server.

 Using the info protocol, the Citrusleaf client is aware

of the assignment of partitions within the cluster nodes.

Therefore, every client is able to efficiently route

requests to the appropriate node within the cluster that

proceeds to handle the transaction with the minimal

number of network hops. In fact, this optimization is

one reason why Citrusleaf is able to support immediate

consistency and still provide the extremely high

throughput needed for NoSQL applications.

 Support for relaxing consistency models gives

operators the ability to maintain high performance

during the cluster recovery phase after node failure.

E.g., read and write transactions to records that have

unmerged duplicates in the cluster can be sped up by

bypassing the duplicate merge phase.

 Multi-key transactions are implemented as a sequence

of single key operations and do not hold record locks

except for the time required to read a clean copy. Thus

the multi-key transaction provides a loosely consistent

snapshot of the data in the database, i.e., no "dirty

reads" are done but the snapshot may not be serialized

with respect to other concurrent multi-key transactions.

 A sophisticated real-time prioritization algorithm is

used to balance long running tasks versus client

transactions. This scheme prioritizes fast read and

write transactions higher than long running tasks like

data rebalancing, data expiry from namespaces, cluster-

wide backup/restore, batch queries, etc. Note that the

prioritization scheme ensures that the long running

tasks continue to make reasonable progress so that they

complete in due course while also ensuring that the

response times of the short client transactions is within

acceptable parameters (i.e., well under 1 millisecond)

3.3 Scalability
There are two noteworthy aspects of Citrusleaf scaling:

 Linear scaling - the Citrusleaf cluster capacity

increases linearly as nodes are added to the cluster with

per node throughput staying well over 200,000 TPS at

under 1 millisecond response times in real-world

configurations.

 Auto scaling - the system requires no operational

intervention to add new nodes to the cluster.

3.3.1 Linear Scaling
Citrusleaf attains smooth linear scaling by implementing efficient

clustering algorithms, balanced data partitioning and efficient

transaction routing from the client to the nodes within the

cluster.

3.3.1.1 Efficient Distributed Consensus
All of the nodes in the Citrusleaf system participate in a Paxos

[8,9] distributed consensus algorithm, which is used to ensure

agreement on a minimal amount of critical shared state. The

most critical part of this shared state is the list of nodes that are

participating in the cluster. Consequently, every time a node

arrives or departs, the consensus algorithm runs to ensure that

agreement is reached. This process takes a fraction of a second.

After consensus is achieved, each individual node agrees on both

the participants and their order within the cluster. Using this

information the master node for any transaction can be computed

along with the replica nodes. Since the essential information

about any transaction can be computed, transactions can be

simpler and use proven database algorithms. This results in low

latency transactions which only involve a minimal subset of

nodes.

3.3.1.2 Balanced Data Partitioning
In a Citrusleaf database cluster, the contents of a namespace are

partitioned by key value and the associated data items are spread

across every node in the cluster. Once a node has been added to

or removed from a cluster, data rebalancing starts immediately

after a cluster change is detected. The automatic data rebalancing

is conducted across the internal cluster interconnect. Balanced

data ensures that query volume is distributed evenly across all

nodes, and the cluster stays robust in the event of node failure

1346

happening during rebalancing itself. This provides Citrusleaf's

most powerful feature: scalability in both performance and

capacity can be achieved entirely horizontally. Furthermore, the

system is designed to be continuously available, so data

rebalancing doesn't impact cluster behavior.

If a cluster node receives a request for a piece of data that it does

not have locally, it satisfies the request by creating an internal

proxy for this request, fetching the data from the real owner

using the internal cluster interconnect (see Figure 6), and

subsequently replying to the client directly.

Figure 6: Cluster Interconnect.

3.3.1.3 Efficient transaction routing
Without efficient transaction routing from the client, a request

would always require an extra network hop. Either a proxy

would be placed in the middle of the transaction, increasing

latency and decreasing throughput, or transactions would flow

over the cluster interconnect. Therefore, the Citrusleaf client

dynamically discovers the cluster's current partition state and

routes transactions to the correct node in the cluster. As nodes

are added to the cluster and the data is automatically rebalanced,

the cluster's capacity to handle client throughput continues to

increase linearly. Specifically, there is no added overhead

introduced because of cluster interconnect. This fact is borne out

in our benchmarks which demonstrate that the maximum number

of transactions supported per node stays constant as we add

nodes to the cluster.

3.3.2 Auto Scaling
The Citrusleaf database platform is self-organizing and scales

elastically to fit your business needs in a "just in time" manner.

Distributed consensus algorithms for automatic node addition

and removal combined with automatic data rebalancing

algorithms provide robust self-management of the system during

node arrival and departure.

3.3.2.1 Automatic node addition and removal
The Citrusleaf algorithms for detecting node arrival and

departure are robust.

 We use multiple independent paths for nodes to

discover each other. Nodes can be discovered via an

explicit heartbeat message and/or via other kinds of

traffic sent to each other using the internal cluster

interconnects.

 The algorithms to discover node departure need to

avoid mistaken removal of nodes during temporary

congestion. We again use failures along multiple

independent paths to ensure high confidence in the

event.

 Sometimes nodes can depart and then join again in a

relatively short amount of time (router glitches). The

system therefore avoids race conditions by uniquely

identifying the order of node arrival and departure

events using single threaded execution for this

function.

The Citrusleaf consensus algorithm for admitting and removing

nodes from the cluster is unique in that consistency votes are

taken only during cluster reorganization. Once the cluster

membership list is agreed upon, the rest of the data routing

tables can be independently generated by the cluster members

very quickly. Unlike many other clustered solutions, Citrusleaf

clusters do not have a “master” during normal operation. All

nodes are treated equal and data is distributed equitably among

all nodes of the cluster.

3.3.2.2 Automatic Data Rebalancing
Citrusleaf‟s data rebalancing mechanism ensures that query

volume is distributed evenly across all nodes, and is robust in the

event of node failure happening during rebalancing itself. The

system is designed to be continuously available, so data

rebalancing doesn't impact cluster behavior. The transaction

algorithms are integrated with the data distribution system, and

there is only one consensus vote to coordinate a cluster change.

With only one vote, there is only a short period when the cluster

internal redirection mechanisms are used while clients discover

the new cluster configuration. Thus, this mechanism optimizes

transactional simplicity in a scalable shared-nothing environment

while maintaining ACID characteristics.

Citrusleaf allows configuration options to specify how much

available operating overhead should be used for administrative

tasks like rebalancing data between nodes as compared to

running client transactions. In cases where slowing transactions

temporarily is preferred, the cluster will heal more quickly. In

cases where transactional speed and volume must be maintained,

the cluster will rebalance more slowly.

In some cases, the replication factor cannot be satisfied with the

remaining cluster resources. The cluster can be configured to

either decrease the replication factor and retain all data, or begin

evicting the oldest data that is marked as disposable. If the

cluster can't accept any more data, it will begin operating in a

read-only mode until new capacity becomes available - at which

point it will automatically being accepting application writes.

By not requiring operator intervention, the cluster is able to self-

heal even at demanding times. In one customer deployment, a

rack circuit breaker blew, taking out one node of an 8 node

cluster. No operator intervention was required. Even though the

outage was at peak time for the data center, transactions

continued with full ACID fidelity. In several hours, when the

fault was corrected and the troublesome rack was brought back

online, operators did not need to take special steps to maintain

the Citrusleaf cluster.

1347

4. System Scalability
This section provides the results of tests we ran to validate that

the Citrusleaf cluster scales linearly at high performance.

Citrusleaf scales linearly, handling over 200,000 transactions

per second per server node of read-heavy load on commodity

hardware, while providing immediate consistency.

Here is a description of the tests that we ran (the results are

compiled in Table 1). The following apply to all the tests:

 We tested Citrusleaf's ability to scale to up to four

server nodes.

 We ran with two, three, and four node Citrusleaf

clusters, with 2-way replication featuring immediate

consistency,.

 The number of records used was 25M records per

server node, with 50 byte keys and a single 8 byte

integer values (we also ran tests with larger values and

got similar results).

 Citrusleaf was run with the configuration of keeping

data in memory while also backing up the data

persistently on rotational disk. In this configuration,

every update transaction will synchronously write to

both memory copies and queue the write to rotational

storage, before returning success to the client. In a year

of the system running in production with 100% uptime,

we have found this scheme to provide robust durability

with extremely high transaction throughput.

 Note that we also ran tests with data directly stored in

flash based storage (Solid State Disk or SSD) that

showed similar scalability characteristics but those

results are omitted here due to lack of space. The key

difference we noticed in the SSD based tests is that the

response times are about four tenth of a millisecond

higher and transaction throughputs are commensurately

lower compared to the in-memory configuration.

 The tests report average response time values and, for

both SSD and non-SSD configurations, we were able to

consistently get response times of less than 1

millisecond for over 95% of both reads and writes.

 Note that in none of these tests, we attempted to push

the system to its maximum throughput per node. One

reason was that we had access to only 8 client nodes

and 2 clients per server node was insufficient to push

the node to its max throughput.

In all the tests, the Throughput is rounded to the nearest 1,000

and Response Time is rounded to the nearest 0.01 milliseconds.

4.1 Test #1: Throughput, 50/50 R/W
In the first test, we had a number of client nodes read and update

simultaneously against these records. These reads and updates

simulated a random update-heavy load, and were done in a 50/50

ratio, and did not use batching. The number of client nodes used

was scaled linearly with the number of server nodes, at a rate of

2 client nodes per server node. For example, the test with 3

server nodes received input from 6 client nodes. Each client node

ran exactly 6 client processes.

4.2 Test #2: Throughput 95/5 R/W
In the second test, we had a number of client nodes read and

update simultaneously against the records loaded into the system.

These reads and updates simulated a random read-heavy load,

were done in a 95/5 ratio, and did not use batching. The number

of client nodes used was scaled linearly with the number of

server nodes, at a rate of 2 client nodes per server node. For

example, the test with 4 server nodes received input from 8

client nodes. Each client node ran exactly 8 client processes.

Table 1: Scalability.

Test N

Through

put

(Server-

Side(2))

Resp.

Time

(Read)

Resp.

Time

(Update)

#1

Throughput

 50/50 R/W

2 297K 0.26 ms 0.69 ms

3 404K 0.28 ms 0.77 ms

4 519K 0.29 ms 0.80 ms

#2

Throughput
(6)

 95/5 R/W

2 433K 0.30 ms 0.39 ms

3 636K 0.30 ms 0.41 ms

4 839K 0.31 ms 0.42 ms

#3

Min Response

Time

 50/50 ratio

2 100K 0.16 ms 0.34 ms

3 150K 0.16 ms 0.33 ms

4 200K 0.16 ms 0.34 ms

4.3 Test #3: Min Response Time, 50/50 R/W
In the third test, we had an appropriate number of client nodes,

each running four Java clients, read and update simultaneously

against these records which kept the response time as low as

possible. These clients generated a total throughput of 50,000

transactions per server node of random update-heavy load. As in

the other tests, these reads and updates simulated a random load,

were done in a 50/50 ratio, and did not use batching. The

servers in the two node test received input from 1 client node,

the servers in the three node test received input from 2 client

nodes, and the servers in the four node test received input from 3

client nodes. The results show that the system response time

stays constant across nodes.

4.4 Hardware specification

4.4.1 Server Node
 Intel core i5-2400 Quad-Core @ 3.10GHz

 Asus P7P55 LE BIOS 1101

 16GB 1600 MHz DDR3 memory

 1 Gb/sec Realtek RTL8111B ethernet (single port)

 7200 rpm system disk formatted as ext3

 CentOS 5.5 with 2.6.36.4 kernel

 Citrusleaf Version 2.0.23.11

1348

4.4.2 Client Node
 Intel core i5-750 Lynnfield Quad-Core @ 2.80GHz

 Asus P7P55 LE BIOS 1101

 16GB 1333 MHz DDR3 memory

 1 Gb/sec Realtek RTL8111B ethernet (single port)

 7200 rpm system disk formatted as ext3

 CentOS 5.5 with 2.6.36.4 kernel

 Citrusleaf Version 2.0.23.11

 Java 1.6.0_17

4.4.3 Networking Equipment
 Dlink DGS-1016D

5. Other Systems
As we mentioned earlier, there are a number of systems that have

tackled the problem of high performance needed for applications.

Here is a review of how some of the key systems differ from

Citrusleaf in their approach.

5.1 Today’s RDBMS
Today‟s RDBMs implementations provide a rich and well known

set of interfaces for data storage. These systems are the primary

means for reliable data storage within computer systems. Within

the overall web application environment, RDBMs are either a

strong starting point due to their ease of use and well known

interfaces (example: MySQL and Postgres), or a more trusted

alternative (Oracle, DB/2, MSSQL). In what is now seen as a

traditional architecture, three external technologies are required

to achieve scale: a key-value cache, read replicas, and write-

shards. Some open-source frameworks have evolved to provide

scalability wrappers to RDBMs, and some professional RDBMSs

vendors sell cache products that have some overlap with

Citrusleaf (Oracle‟s Coherence).

As we outlined earlier, the lack of cost-effectiveness of the

enhanced RDBMS solutions for high traffic internet applications

(and their virtual inability to scale horizontally without a lot of

special hardware and configuration) had given rise to a number

of new database technologies, the NoSQL and the high

performance SQL alternatives. Citrusleaf is currently part of the

NoSQL list (for lack of a better term) and is cost-effective for the

most demanding data intensive applications like real-time

bidding.

5.2 NoSQL
We briefly discuss a few NoSQL technologies and identify key

differences between them and Citrusleaf.

5.2.1 Cassandra
Cassandra [1] is a clustered distributed database that is

extremely scalable and in use in some very huge internet

deployments today. A key difference between Citrusleaf and

Cassandra is that Citrusleaf provides immediate consistency

while Cassandra currently supports only eventual consistency.

5.2.2 Mongo DB
Mongo DB [11] has strong support for secondary indexes,

map/reduce scan using JavaScript, integration with the newly-

popular „node.js‟ web programming model. Their use of server-

side JavaScript provides an easy-to-use programming

environment for those who are used to web programming. The

key difference between MongoDB and Citrusleaf is that Mongo

DB supports an automatic sharding scheme, Citrusleaf is natively

clustered like Cassandra and clustered systems are inherently

amenable to easy self-management. While MongoDB is high

performance, it is not clear that it is intended for extremely high

throughputs at low latency that real-time bidding systems

demand.

5.2.3 Redis
Redis [16] is primarily used for real-time analytics today. Redis,

like Citrusleaf, can easily be configured to store data on

rotational disk for durability. Its strengths are internal support for

complex data types, such as lists and counters. It does not

support native clustering yet, but is very high performance.

5.2.4 Other NoSQL
Note that addition to the above products that are somewhat

closely related to Citrusleaf are a number of other systems that

are also present, e.g., CouchBase [4], Riak [17], etc., and also

related high-performance SQL based solutions like VoltDB [20],

Clusterix [2], Schooner [18], etc. Reviewing all the related

products in this area is beyond the scope of this paper.

5.3 Scalable SQL
There have been a few key efforts in making SQL databases

scale for real-time applications. Clustrix [2] and VoltDB [20] are

two examples.

5.3.1 Clustrix
Clustrix [2] is a clustered SQL database appliance. It claims to

support a rich amount of MySQL [12] functionality. The system

depends of special network level interconnect like Infiniband

unlike a software only solution like Citrusleaf.

5.3.2 VoltDB
VoltDB [20] is an effort to modernize and rewrite the processing

of SQL based entirely on in-memory technology. VoltDB

supports ACID transactions and traditional database level

reliability. The key difference between Citrusleaf and VoltDB is

VoltDB‟s support for a subset of SQL (Citrusleaf does not

support SQL) and the lack of support for flash storage (Citrusleaf

supports both main-memory and flash based configurations).

6. Future Work
There are two kinds of scenarios in which the new database

technology can evolve.

One way is for specialized databases to be built based on the

application domain. In this scenario, there will be specialized

databases for Graph (e.g., Neo4J [13]), other specialized ones for

ultra-high performance transaction processing (e.g., VoltDB,

Citrusleaf), and yet another for Geo-location processing, and so

on. In this model, there will be a specific DBMS that is well

suited for every application area that is not very suitable for those

in another area.

1349

Another scenario of database evolution would be one where a

single fast, reliable database platform would support multiple

application level APIs. The advantage of this approach is that the

database platform can be optimized to solve some of the hardest

issues like real-time prioritization, clustering, storage

management, concurrency, ACID, failure management, etc. Such

a platform can then be used to support any and all application

APIs. In fact, it is well known that the traditional Database

systems that dominate the market place today ([14] [5]) were

built on previously existing high performance storage platforms

that included support for ACID and had a fast access path to the

data. It was only later that SQL became popular and the SQL

interface engine was simply built on top of these fast reliable

storage platforms.

One way to think of Citrusleaf is that it is a “state of the art”

version of an ultra high performance transactional storage

platform that runs on commodity hardware. We believe that we

should be able to provide access to such a platform from existing

interfaces, both SQL and various kinds of NoSQL APIs. No

doubt, this would be an extremely challenging endeavor but by

no means impossible as demonstrated by the evolution of

database products over the last 30 years.

Our position here logically leads to a list of future work in this

area. A few possibilities are to add query processing support to

handle real-time analytics, adding APIs for graph and geo-

location, and even using Citrusleaf as the backend data platform

with SQL as a front-end interface. Another dimension of future

enhancements would be to support replication of data between

geographically distributed clusters analogous to what is

supported by PNUTS [3].

7. Conclusion
Citrusleaf is a distributed database platform that marries

traditional database consistency and reliability with high

performance distributed clustering and sophisticated self-

management. Citrusleaf is unique among NoSQL databases for

its ability to provide immediate consistency and ACID while still

being able to consistently exceed the performance and scalability

standards required by demanding real-time applications.

The Citrusleaf system architecture is such that there is no single

master in the system and this creates extreme resiliency. The

system can rebalance data on the fly while using real-time

prioritization techniques to balance short running transaction s

with several classes of long running tasks. Our technology is able

to achieve high transactional throughput using a variety of

techniques on the server as well as by smart routing done by the

client.

The system scales linearly at extremely high throughput while

keeping response time in the sub-millisecond range as seen by

the results of tests presented above. This kind of performance has

enabled Citrusleaf to be used by some of the world‟s largest real-

time bidding networks in the area of display advertising.

Finally, it is noteworthy that the high availability and self

management techniques outlined in this paper have been

validated in the field by internet scale production deployments

that have run for almost a year with no downtime whatsoever.

8. ACKNOWLEDGMENTS
Our thanks to IBM Fellow, Don Haderle for many illuminating

discussions on how to build a high performance NoSQL database

with traditional ACID properties, to Carolyn Wales for

documenting the Citrusleaf architecture in a concise manner, to

Joey Shurtleff for designing and running the scalability tests.

9. REFERENCES

[1] Cassandra, http://cassandra.apache.org

[2] Clustrix, http://www.clustrix.com

[3] Cooper, B. F., et al. PNUTS: Yahoo!‟s hosted data serving

platform. PVLDB, 1, 2, 1277-1288, (2008).

[4] CouchBase, http://www.couchbase.com

[5] DB2, http://www.ibm.com/software/data/db2

[6] DeCandia, G., et al, Dynamo: Amazon‟s Highly Available

Key-value Store, Proceedings of the Symposium on

Operation Systems Principles, 205-220, (Oct. 2007).

[7] Dewitt, D., Gerber, B., Graefe, G., Heytens, M., Kumar, K.,

Muralikrishna, GAMMA – A High Performance Dataflow

Database Machine. Proceedings of the 1986 VLDB

Conference, 228-237, (Aug. 1986).

[8] Lamport, L. Paxos Made Simple, Fast, and Byzantine.

OPODIS, 7-9, (2002).

[9] Lamport, L., The part-time parliament. ACM Trans. On

Computer Syst, 16, 2, 133-169, (May 1998).

[10] Memcached, http://memcached.org

[11] MongoDB, http://www.mongodb.org

[12] MySQL, http://www.mysql.com

[13] Neo4J, http://neo4j.org

[14] Oracle,

http://www.oracle.com/us/products/database/index.html

[15] Real-time Web, http://en.wikipedia.org/wiki/Real-time_web

[16] Redis, http://redis.io

[17] Riak, http://wiki.basho.com

[18] Schooner, http://www.schoonerinfotech.com

[19] Shard (database architecture),

http://en.wikipedia.org/wiki/Shard_(database_architecture)

[20] VoltDB, http://voltdb.com

1350

