
SXPath - Extending XPath towards Spatial Querying on
Web Documents

Ermelinda Oro
Department of Electronics,
Informatics, and Systems

University of Calabria
Altilia s.r.l.

Via. P. Bucci, 41/C, 87036,
Rende CS, Italy

linda.oro@deis.unical.it

Massimo Ruffolo
Institute of High Performance
Computing and Networking

of the Italian CNR
Altilia s.r.l.

Via. P. Bucci, 41/C, 87036,
Rende CS, Italy

ruffolo@icar.cnr.it

Steffen Staab
Institute for Computer Science

Institute WeST
University of Koblenz

Universitätsstraße 1, PO Box
201 602 56016

Koblenz, Germany

staab@uni-koblenz.de

ABSTRACT
Querying data from presentation formats like HTML, for purposes
such as information extraction, requires the consideration of tree
structures as well as the consideration of spatial relationships be-
tween laid out elements. The underlying rationale is that frequently
the rendering of tree structures is very involved and undergoing
more frequent updates than the resulting layout structure. There-
fore, in this paper, we present Spatial XPath (SXPath), an extension
of XPath 1.0 that allows for inclusion of spatial navigation primi-
tives into the language resulting in conceptually simpler queries on
Web documents. The SXPath language is based on a combination
of a spatial algebra with formal descriptions of XPath navigation,
and maintains polynomial time combined complexity. Practical ex-
periments demonstrate the usability of SXPath.

1. INTRODUCTION
HTML is a presentation-oriented document format conceived for

presenting Web documents on screen. Querying data from such a
format requires a versatile machinery to abstract from presentation
structure into conceptual relationships. Germane to such abstrac-
tion is the transformation into structural languages such as XML.
Indeed quite often XML languages are used as presentation for-
mats, e.g. HTML 5. Based on these structural languages, one may
use well founded and known query formalisms such as XPath 1.0
[25] and XQuery 1.0 [24] in order to turn presentation structure
into meaningful relational or logical representations. Typical prob-
lems are incurred by the separation of document structure and the
ensued spatial layout — whereby the layout often indicates the se-
mantics of data items, e.g. the meaning of a table cell entry is most
easily defined by the leftmost cell of the same row and the topmost
cell of the same column (in Western languages) [9]. In tree struc-
tures such as those arising on real-world Web pages, such spatial
arrangements are rarely explicit and frequently hidden in complex
nestings of layout elements — corresponding to intricate tree struc-
tures that are conceptually difficult to query.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/11... $ 10.00.

In the literature, approaches aimed at manipulating Web pages
by leveraging the visual arrangement of page contents [13, 22], and
frameworks for representing and querying multimedia and presen-
tation databases [2, 14] have been proposed. However such ap-
proaches and frameworks provide limited capabilities in navigating
and querying Web documents for information extraction purposes.
Therefore, we propose to extend XPath 1.0 by new spatial naviga-
tion primitives, namely: (i) Spatial Axes, based on topological [21]
and rectangular cardinal relations [18], that allow for selecting doc-
ument nodes that have a specific spatial relation w.r.t. the context
node. (ii) Spatial Position Functions that exploit some spatial or-
derings among document nodes, and allow for selecting nodes that
are in a given spatial position w.r.t. the context node.

The main contributions of this paper are the following: (i) We
have defined the novel Spatial Document Object Model (SDOM)
that constitutes a mixed spatial and structural model of HTML pages.
In our model, we represent the relationships between DOM nodes
resulting from the XML tree structures on the one hand and from
the spatial relationships between the rendered XML elements on
the other hand. (ii) We have defined and implemented the Spatial
XPath (SXPath) language that allows for navigating the SDOM.
It can be used on its own, but also as building block for more
expressive languages such as XQuery. (iii) We have defined two
fragments of SXPath language, namely: Core SXPath that repre-
sents the navigational core of SXPath, and Spatial Wadler Frag-
ment (SWF) that is a fragment with very interesting practical value,
since the vast majority of useful queries fall into it, and that allows
for optimized evaluation. (iv) We have defined the formal seman-
tics of the language and the evaluation algorithms that allow for
maintaining combined polynomial time complexity [12]. (v) We
have performed several empirical evaluations showing that (a) pro-
cessing time needed is polynomial as predicted by worst case com-
plexity, and that the SXPath language is (b) substantially indepen-
dent from the adopted browser and visualization parameters varia-
tions, (c) easy to learn and easier to use than pure XPath on Web
pages, (d) more tolerant to modifications of the internal structure of
Web pages, and (e) capable to provide benefit to some current Web
contents manipulation and wrapper learning approaches.

The paper is organized as follows. In Sec. 2 we provide moti-
vations that drove us to extend XPath 1.0 with spatial navigation
primitives. In Sec. 3 we describe SXPath data model, formal syn-
tax, semantics and complexity issues. Sec. 4 reports notes on the
implementation and results of experiments aimed at evaluating pro-
cessing performances, SXPath usability, and qualitative enhance-
ment in real applications. Sec. 5 briefly describes related works.

129

2. WHY SPATIAL XPATH?
Web designers plan Web pages contents in order to provide vi-

sual patterns that help human readers to make sense of document
contents. This aspect is particularly evident in Deep Web pages
[16], where designers always arrange data records and data items
with visual regularity to meet the reading habits of humans.

Figure 1: A Page of the http://www.lastfm.it/ Web Site

In Figure 1 we show a deep Web page coming from the last.fm
social network. For instance, information about the two bands
‘Coldplay’ and ‘Radiohead’ in Figure 1 is given using similar lay-
out. In the past, manual wrapper construction (e.g. [22]), or wrap-
per induction approaches (e.g. [7, 19, 27]) have exploited regu-
larities in the underlying document structures, which led to such
similar layout, to translate such information into relational or log-
ical structures. However, surveying a large number of real (Deep)
Web pages, we have observed that the document structure of cur-
rent Web pages has become more complicted than ever implying a
large conceptual gap between document structure and layout struc-
ture. Thus, it has become very difficult: (i) for human and appli-
cations aiming at manipulating Web contents (e.g. [10, 13, 22]),
to query the Web by language such as XPath 1.0; (ii) for existing
wrapper induction approaches (e.g. [19, 27]) to infer the regular-
ity of the structure of deep Web pages by only analyzing the tag
structure. Hence, the effectiveness of manual and automated wrap-
per construction are limited by the requirement to analyse HTML
documents with increasing structural complexity. The SXPath lan-
guage allows for navigating DOM structures like XPath 1.0 as well
as for exploiting the spatial layout of DOM nodes after Web pages
rendering. In the following examples we give an intuition about
novel features and capabilities of the SXPath language.

Layout engines of Web browsers consider the area of the screen
aimed at visualizing a Web page, as a 2-dimensional Cartesian
plane. They adopt rendering rules that take into account the page
DOM structure and the associated cascade style sheets (CSS). In
the rendered page each DOM node is visualized in a rectangle hav-
ing sides parallel to the axes of the Cartesian plane. Figure 2 de-
picts rectangles created by a layout engine for the page in Figure 1.
Some rectangles are annotated by fragments of XPath 1.0 location
paths that characterize related DOM nodes.

A human reader can relate information on the page in Figure 1
by considering the spatial arrangement of laid out content elements.
He can interpret the spatial proximity of images and nearby strings
as a corresponding aggregation of information, namely as the com-
plete record describing the details of a music band profile and one
of its photos. Figure 3 depicts a sketch of the DOM related to the
part of the document containing the profile of the Radiohead music
band. Grey circles and boxes are used for the nodes that are visu-

alized on screen, whereas white circles and boxes depict nodes that
belong to the DOM but are not visible on screen.

../ul/li[2]../ul/li[2]/a[2]
../ul/li[2]/a[2]/text()

../ul/li[2]/a[1]/strong
../ul/li[2]/a[1]/strong/text()

../ul/li[2]/p[1]
../ul/li[2]/p[1]/text()

../ul/li[2]/p[2]

../ul/li[2]/p[2]/text()[1]

../ul/li[2]/p[2]/a[2]
../ul/li[2]/p[2]/a[2]/text()

../ul/li/a[1]../ul/li[2]/a[1]/span
../ul/li[2]/a[1]/span/span

../ul/li[2]/a[1]/span/span/img

../ul/li[2]/p[3] ../ul/li[2]/p[3]/a
../ul/li[2]/p[3]/a/span

../ul/li[2]/p[3]/a/span/text()

../ul/li[2]/p[2]/text()[4]

Figure 2: Rectangles that Bound Visualized DOM Nodes

Figure 3: A DOM Portion of the Web Page in Figure 1

The Web page in Figure 1 allows us to show how to extract data
about music bands by a corresponding conventional query using
existing XQuery 1.0 [24] and XPath 1.0 on the DOM partially de-
picted in Figure 3.

Example 1. XQuery 1.0 and XPath 1.0
for $li in document ("last-fm.htm")
(1.1) //div[@id=’content’]//ul/li return

<music-band>
(1.2) <name> {$li/a/strong/text()} </name>

<similar-bands>
(1.3) {$li/p[2]//text()}

</similar-bands>
</music-band>

For writing the query in Example 1 above, a human user must
know the intricate DOM structure of the input Web page (a sketch
of which is given in Figure 3). The location path (1.1) is the shortest
relative path found by performing many attempts. In fact, shorter
location paths like //li or //div//ul/li (that does not use at-
tributes) make the query unsound. In contrast, the following query
exploits SXPath that allows for extracting details of music bands by
exploiting only the DOM nodes of type img and text, and their
spatial relationships.

Example 2. XQuery 1.0 and SXPath
for $img in document ("last-fm.htm")
(2.1) /CD::img[N|S::img] return

<music-band>
(2.2) <name> {$img/E::text[W,1][N,1]} </name>

<similar-bands>
(2.3) {$img/E::*[W,1][N,3][max]/CD::text}

</similar-bands>
</music-band>

The spatial location path (2.1) returns images that form a ver-
tical sequence. These are exactly the photos of music bands in the
page. Such kind of visual patterns (i.e. alignment in a given direc-
tion) are very frequent in Deep Web pages, but often hard to recog-
nize in the DOM structure. The spatial location path $img/E::
text in (2.2) returns all nodes labeled by text that lie on east
(spatial axis E) of the context node represented by the variable
$img (photos of music bands). Among these nodes the predi-
cates [W,1] and [N,1] select the node that is the first from west
and from north, i.e. the name of the bands (e.g. Coldplay and
Radiohead). The spatial location path (2.3) selects the nodes
that are first from west, third from north, and are not contained in

130

other nodes (predicate [max]) among all nodes on east of each
photo of music bands (see the node ..ul/li[2]/p[2] in Fig-
ure 2). So, all similar bands are selected.

Example 2 demonstrates that human users can exploit visual pat-
terns that they recognize on the screen. They can define spatial lo-
cation paths based on layout and DOM structure1. We argue that
in the future machines will be able to perform a likewise step of
exploiting visual patterns for learning extraction rules, because the
spatial location paths are conceptually simpler than their XPath 1.0
based counterparts.

3. THE SXPATH LANGUAGE
The SXPath language extends the W3C’s XPath 1.0 [25] with

spatial capabilities. Intuitive navigational features and querying
capabilities of XPath 1.0 are central to most XML-related tech-
nologies. For this reason XPath 1.0 has attracted great attention
in the computer science research community. Even though XPath
2.0 reached recommendation status, it is not well suited for our ob-
jectives. In fact, the XPath Core 2.0 query evaluation is PSpace-
complete [23] in contrast to the polynomial time complexity of
XPath 1.0 [12, 20] (combined complexity). Furthermore, a strong
theoretical background on XPath 1.0 is currently available, and spe-
cific subsets of the language with attractive properties and essential
language features have been characterized [6]. These investiga-
tions lay the foundations for understanding the formal properties of
SXPath. The SXPath language adopts the path notation of XPath
1.0 augmented by a user-friendly syntax having a natural semantics
that enables spatial querying. In particular, SXPath provides: (i) A
new set of spatial axes that allow for selecting nodes that have a
specific spatial relation w.r.t. context nodes; (ii) New node set func-
tions, namely spatial position functions, that allow for expressing
predicates working on positions of nodes in the plane. As already
shown in Example 2, such extensions are very useful in practice.
In this section, we first define the SXPath data model and describe
its new spatial capabilities. Then we provide the formal syntax and
semantics, and the computational complexity of the language.

3.1 Data Model
In this section we present the SXPath data model, namely Spatial

DOM (SDOM), and some auxiliary functions used in the rest of the
paper. The SDOM considers relations existing among the visual
representation of DOM nodes defined as follows.

Definition 1. Let n be a node in the DOM of a Web page, the
minimum bounding rectangle (MBR) of n is the minimum rectan-
gle r that surrounds the contents of n (see Figure 2) and has sides
parallel to the axes (x and y) of the Cartesian plane. The function
mbr(n) returns the rectangle r assigned to a DOM node by the
layout engine of a Web browser. We call rx and ry the segments
that are obtained as the projection of r on the x-axis and the y-axis
respectively. Then, each side of the rectangle is represented by the
segments (r−x, r

+
x) and (r−y , r

+
y), where r−x (resp. r−y) denote the infi-

mum on the x-axis (y-axis) and r+x (resp. r+y) denote the supremum
on the x-axis (y-axis) of the segments rx and ry .

Considering the function mbr(n) given in Def. 1, a Web page
can be modeled as a DOM enriched by spatial relations existing
between MBRs. For representing such spatial relations we adopt
the Rectangle Algebra (RA) qualitative spatial model [4], which
allows for representing all possible relations between rectangles the
sides of which are parallel to the axes of some orthogonal basis in a
2-dimensional Euclidean space. RA is a straightforward extension
of the standard model for temporal reasoning, the Interval Algebra
1In this example, the DOM structure in use was restricted to XML
node types.

(IA) [3], to the 2-dimensional case. IA models the relative position
between pairs of segments by a set of 13 atomic relations (Rint),
namely before (b), meet (m), overlap (o), start (s), during (d),
finish (f), together with theirs inverses {bi, mi, oi, si, di, fi}
and the relation equal (e). Let s and s1 be two segments the IA
relation s b s1 represents that the segment s is preceded by the
segment s1. For a pictorial representation of IA relations see Table
4 in Appendix A. Let a and b be two rectangles, a RA relation
between them is written as a ρ b where ρ = (ρx, ρy) is a pair of
IA relations. The RA relation holds iff the IA relations ax ρx bx
and ay ρy by hold for segments that are obtained as projections of
rectangle sides along x (i.e. ax, bx) and y (i.e. ay, by) respectively.
The expressiveness of RA covers the modeling of all qualitative
spatial relations between two MBRs. For a pictorial representation
of RA relations see Figure 7 in Appendix A. Furthermore, since
the RA model is an algebra, it holds many important properties
(e.g. invertibility) that allow optimized query evaluation.

Definition 2. SDOM is a node labeled sibling ordered tree [11,
15, 17] enriched by RA relations. It is described by the following
5-tuple:

SDOM = ⟨V,R⇓,R⇒,A, fs⟩
where:

● V is the set of labeled DOM nodes. V = Vv ∪Vnv , where Vv
is the set of nodes visualized on screen, and Vnv is the set of
nodes that are not visualized.

● R⇓ is the firstchild relation. Let n and n′ be two nodes in
V , nR⇓n′ holds iff n′ is the first child of n.

● R⇒ is the nextsibling relation. Let n and n′ be two nodes
in V , nR⇒n′ holds iff n′ is the next sibling of n.

● A ⊆ Vv × Vv is the set of arcs that represent spatial relations
between pairs of nodes visualized on screen.

● Let Rrec be the set of RA relations, fs ∶ A → Rrec is the
function that assigns to each element in A a RA relation in
Rrec. So, let n and n′ be two nodes in Vv , we have a =

(n,n′) ∈ A holds iff mbr(n) fs(a)mbr(n′).

Definition 3. Let Σ be the labeling alphabet (i.e., “tags”). We
define the node test function T ∶ (Σ∪ {∗} ∪ {text}) → 2V (“node
test”) which assigns to each label (XML tag or textual leaf node)
the set of nodes labeled with it. Furthemore, T (∗) ∶= V .

Figure 4: A SDOM Fragment of the Web Page Portion in Fig-
ure 2

Figure 4 depicts the SDOM for a portion of Web page shown in
Figure 2. Solid arrows represent the classical DOM tree structure
that is equivalent to the DOM depicted in Figure 3. Dashed labeled
arcs represent the RA relations between pairs of nodes. For in-
stance, the arc (d, d) between nodes ul and li represents the RA
relation mbr(ul)(d, d)mbr(li), i.e. both IA relations mbr(ul)x d
mbr(li)x and mbr(ul)y d mbr(li)y hold, and means that the
rectangle mbr(li) is spatially contained in the rectangle mbr(ul).
In order to improve readability of the figure, spatial relations are
represented only for a subset of nodes.

131

The SDOM model provides orders among nodes defined as follows.

Definition 4. Document order relations for a SDOM are:
● the document total order <doc, already defined in [25]. Let
u,w ∈ V be two nodes, then u <doc w iff the opening tag of
u precedes the opening tag of w in the (well-formed version
of the) document.

● the document directional total orders ⩽↑ (from south), ⩽→
(from west), ⩽↓ (from north), and ⩽← (from east). Let u,w ∈

Vv be two nodes with MBRs a = mbr(u) and b = mbr(w)

respectively, we have u < w (or u = w) iff:
– a−y < b−y (a−y = b−y) for ⩽↑, – a−x < b−x (a−x = b−x) for ⩽→,

– a+y > b+y (a+y = b+y) for ⩽↓, – a+x > b+x (a+x = b+x) for ⩽←.

● the containment partial order ⩽t. Let u,w ∈ Vv be two nodes
with a = mbr(u) and b = mbr(w) respectively, we have
u ≤ w iff a−x ⩽ b−x ⩽ b+x ⩽ a+x and a−y ⩽ b−y ⩽ b+y ⩽ a+y . In
particular, u = w if a−x = b

−
x, b+x = a

+
x, a−y = b

−
y , and b+y = a

+
y .

In the following we introduce the concept of layering adopted
for computing spatial order among nodes of a given node set.

Definition 5. Let Γ ⊆ Vv be a set of SDOM nodes, for each
spatial order ⩽z , where ⩽z∈ {⩽↑,⩽→,⩽↓,⩽←,⩽t}, the spatial lay-
ering of nodes in Γ w.r.t. ⩽z is an ordered list of non-empty lists
L⩽z(Γ) = {l1⩽z

,⋯, lh⩽z
}, where let u,w be two nodes in Γ:

● if u = w w.r.t. ⩽z , then u,w ∈ li⩽z
for some i⩽z ∈ {1,⋯, h⩽z}.

● if u < w w.r.t. ⩽z , then u ∈ li⩽z
and w ∈ lj⩽z

where i⩽z and
j⩽z are the smallest numbers such that i⩽z , j⩽z ∈ {1,⋯, h⩽z}

and i⩽z < j⩽z .

Example 3. Considering Figure 5 and the spatial order ⩽↑, we
obtain the layering L⩽↑({n1, . . . , n6}) = {l1⩽↑ , l2⩽↑ , l3⩽↑ } where
l1⩽↑ = {n1}, l2⩽↑ = {n2, n4, n6}, and l3⩽↑ = {n3, n5}. The layer-
ing corresponds to the following directional total order from south:
n1 ⩽↑ n2 =↑ n4 =↑ n6 ⩽↑ n3 =↑ n5.

In order to facilitate the definition of SXPath language semantics
we introduce the concepts of spatial index function and last index
function as follows.

Definition 6. Let Γ ⊆ Vv be a set of SDOM nodes, and letL⩽z(Γ)

= {l1⩽z
, ⋯, lh⩽z

} be the spatial layering of nodes in Γ w.r.t. ⩽z ,
where ⩽z∈ {⩽↑,⩽→,⩽↓,⩽←,⩽t}. The spatial index function pidx⩽z

(u,Γ) returns the index of the layer which the node u belongs to
(where 1 is the smallest index). The last directional index function
plast⩽z(Γ) returns the index h⩽z .

mbr(n2)

mbr(n3) mbr(n5)

mbr(n6)

From East
to West

 From South to North

From North to SouthFrom West
to East

mbr(n1)

mbr(n4)

Figure 5: Ordering directions

3.2 Spatial Axes
RA relations, stored in the SDOM, represent all qualitative spa-

tial relations between MBRs, but they are too fine grained, ver-
bose and not intuitive for querying. Therefore, for defining SXPath
spatial axes we consider the more synthetic and intuitive Rectan-
gular Cardinal Relation (RCR) [18] and Rectangular Connection
Calculus (RCC) [21] models. In particular, RCRs express spa-
tial axes that represent directional relations between MBRs. RCRs
are computed by analyzing the 9 regions (cardinal tiles) formed,

as shown in Figure 6, by the projections of the sides of the refer-
ence MBR (i.e. r). The atomic RCRs are: belongs to (B), South
(S), SouthWest (SW), West (W), NorthWest (NW), North
(N),NorthEast (NE),East (E), and SouthEast (SE). Using the
symbol “:” it is possible to express conjunction of atomic RCRs.
For instance, by considering Figure 6, r E:NE r1 means that the
rectangle r1 lies on east and (symbol “:”) north-east of the rectan-
gle r. Moreover, the RCR model allows for expressing uncertain
(disjunction of) directional relations: for example r E|E:NE r1
means that r1 lies on E or (symbol “∣”) on E:NE of r. Further-
more, the three relations inspired by the RCC calculus, namely:
contained (CD), container (CR), and equivalent (EQ), allow for
expressing spatial axes that represent topological relations between
MBRs. For instance, r CD r2 means that the rectangle r2 is spa-
tially contained in the rectangle r.

r
2

r
1

r B

N

S

W E

SE

NENW

SW

Figure 6: Cardinal tiles
Each spatial axes (expressed by a RCR or a topological relation)

corresponds to a set of RA relations expressed by the Cartesian
product shown in tables 1 and 2. Formally:

Definition 7. Let Rcard, Rtopo and Rrec be the set of (atomic
and conjunctive) RCRs, topological and RA relations respectively,
then the mapping function µ ∶ 2Rcard ∪Rtopo → 2Rrec that maps
RCRs and topological relations in terms of RA relations is:

µ(R) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

as in table 1 if R ∈ Rcard
as in table 2 if R ∈ Rtopo
µ(R1) ∪ ... ∪ µ(Rk) if R = R1∣...∣Rk

Example 4. For the relation NW reported in Tab. 1 we have
µ(NW) = {b,m} × {bi,mi} = {(b, bi), (b,mi), (m,bi), (m,mi)}.

× {b,m} {o,fi} {di} {e,s,d,f} {si,oi} {bi,mi}
{b,m} SW W:SW SW:W:NW W W:NW NW
{o,fi} S:SW B:S:SW: B:S:SW: B:W B:W: N:NW

W W:NW:N NW:N
{di} S:SW:SE B:S:SW: All B:W:E B:W:NW: NW:N:NE

W:E:SE N:NE:E
{e,s,d,f} S B:S B:S:N B B:N N
{si,oi} S:SE B:S:E:SE B:S:N:NE:E:SE B:E B:N:NE:E N:NE
{bi,mi} SE E:SE NE:E:SE E E:NE NE

Table 1: RCRs as cartesian products of RA Relations
Top. rel. RA-relations

EQ := { (e,e) }
CR := {{ e, si, di, fi } × { e, si, di, fi }} − {(e,e)}
CD := {{ e, s, d, f } × { e, s, d, f }} − {(e,e)}

Table 2: Topological relations mapped into RA Relations
Like in XPath 1.0, SXPath axes are interpreted binary relations

χ ⊆ V × V . Let self ∶= {⟨u,u⟩∣u ∈ V } be the reflexive axis,
remaining SXPath axes are partitioned in two sets: ∆t and ∆s.
The set ∆t contains traditional XPath 1.0 axes (forward, e.g. child,
descendant, and reverse, e.g. parent, ancestor) that allow for navi-
gating along the tree structure. They are encoded in terms of their
primitive relations (i.e. firstchild, nextsibling and their inverses), as
shown in [11, 12]. The set ∆s contains the novel (directional and
topological) spatial axes corresponding to the RCRs and Topolog-
ical Relations that allow for navigating along the spatial RA rela-
tions. In the following we formally define spatial axes in terms of
their primitive RA relations stored in the SDOM.

Definition 8. SXPath spatial axes are interpreted binary rela-
tions χs ⊆ Vv × Vv of the following form χs = {⟨u,w⟩∣u,w ∈

Vv ∧ mbr(u) ρ mbr(w) ∧ ρ ∈ µ(R)}. Here, R is the RCR or
topological relation that names the spatial axis relation and µ is the
mapping function.

132

In order to define the semantics of SXPath we give a trivial gen-
eralization of the document total order w.r.t. an axis [25] and define
the relative index function.

Definition 9. The document total order w.r.t. the axis χ written
as <doc,χ is: (i) the reverse document order >doc when χ is a tradi-
tional reverse axis [25]; (ii) the document total order <doc (Def. 4)
otherwise.

Definition 10. Let Γ ⊆ V be a set of nodes, the index function
w.r.t. the axis χ written as idxχ(u,Γ) returns the index of the node
u in Γ w.r.t. <doc,χ (where 1 is the smallest index).

3.3 Syntax
In this section we present the formal syntax of two important

fragments of SXPath, namely: Core SXPath and Spatial Wadler
Fragment. The grammar of their unabbreviated version is incre-
mentally provided. Like XPath 1.0, SXPath has also a number of
syntactic abbreviations, used in Example 2 of Sec. 2. But they are
just syntactic sugar and are not considered in the following.

We define the fragment of Core SXPath as the navigational core
of SXPath. It is obtained extending Core XPath [11] (the naviga-
tional core of XPath 1.0) by spatial axes introduced in Sec. 3.2.

Definition 11. The EBNF grammar of Core SXPath is:
locpath ::= ‘/’ locpath | locpath ‘/’ locpath |

locpath ‘|’ locpath | locstep
locstep ::= axis ‘::’ t | locstep ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr|

‘not(’ bexpr ‘)’ | locpath.
axis ::= xpathAxis | spatialAxis
xpathAxis ::= ‘self’ | ‘child’ | ‘parent’ | ⋯

spatialAxis::= topAxis | dirAxis
topAxis ::= ‘EQ’ | ‘CD’ | ‘CR’
dirAxis ::= ‘B’ | ⋯ | ‘U’
where:

● locpath is the start symbol.
● axis denotes axis relations that are traditional XPath axis

(xpathAxis) and spatial axes (spatialAxis).
● t is the node test.

Since Core SXPath lacks the ability to exploit spatial position of
nodes, we define the Spatial Wadler Fragment (SWF). SWF is the
spatial extension of the Extended Wadler Fragment (EWF) [12]. It
allows positional, logical and arithmetic features.

Definition 12. The syntax of the SWF-Queries is defined by the
Core SXPath grammar with the following extensions.
expr ::= locpath | bexpr | nexpr
dirAxis ::= ‘B’ | ⋯ | ‘U’ | disjDirAxis
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr|

‘not(’ bexpr ‘)’ | nexpr relop nexpr |
sexpr relop sexpr | locpath |
locpath relop sexpr | locpath relop number

nexpr ::= number | nexpr arithop nexpr |
‘position()’ | ‘last()’ | ‘posFromS()’ |
‘lastFromS()’ | ‘posFromN()’ | ‘lastFromN()’|
‘posFromW()’ | ‘lastFromW()’ | ‘posFromE()’ |
‘lastFromE()’ | ‘posSpatialNesting()’

sexpr ::= string
arithop ::= ‘+’ | ‘-’ | ‘*’ | ‘div’ | ‘mod’
relop ::= ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’

where:
● expr (instead of locpath) is the start symbol.
● dirAxis considers disjunctive directional relation disjDi
rAxis2.

● nexpr extends traditional XPath numerical expressions with
spatial position functions. number and string denote
constant real-valued numbers and strings respectively.

We don’t give here the syntax of the full SXPath language. The
reason for this is lack of space. However, by considering [25] ex-
tending the syntax is an easy exercise.
2Core SXPath does not allow for querying spatial orders, so spatial
axes corresponding to disjunction of RCRs do not add expressive-
ness.

3.4 Semantics
In this section we define the semantics of SXPath by adopting

the denotational semantics proposed in [26]. Like in XPath 1.0
the main structural feature of SXPath are expressions, that return a
value from one of the following types: node set, number, string, or
Boolean. Every expression evaluates relative to a context. Context
and domain of context are defined in the following as extension of
the definition given in [26].

Definition 13. The Context is the following 12-tuple:
c⃗ = ⟨n, p<doc , s<doc , p⩽↑ , s⩽↑ , p⩽→ , s⩽→ , p⩽↓ , s⩽↓ , p⩽← , s⩽← , p⩽t ⟩

where: (i) n is a context node. (ii) p⩽z are natural numbers that
indicate the context positions w.r.t. orders ⩽z ∈ {<doc,⩽↑,⩽→,⩽↓
,⩽←,⩽t}. (iii) s⩽z are natural numbers that indicate the context
sizes w.r.t. orders in {<doc,⩽↑,⩽→,⩽↓,⩽←}.

Definition 14. The Domain of Contexts is the following set:

C = {⟨n, p<doc , s<doc , p⩽↑ , s⩽↑ , p⩽→ , s⩽→ , p⩽↓ , s⩽↓ , p⩽← , s⩽← , p⩽t ⟩

∣n ∈ V ∧ 1 ⩽ p<doc
⩽ s<doc

⩽ ∣V ∣ ∧ 1 ⩽ p⩽z ⩽ s⩽z ⩽ ∣Vv ∣ ∧ 1 ⩽ p⩽t ⩽ ∣Vv ∣}

where ⩽z∈ {⩽↑,⩽→,⩽↓,⩽←}.

In the following we first define the auxiliary semantic function
for location paths then we give the semantics of SXPath.

Definition 15. Location path semantics. Considering the gram-
mar defined in the Sec. 3.3. Let π,π1, π2 be location paths, let
locstep be a location step over an axis χ, let bexpr be a boolean
expression and let n be a context node, then the semantics function
of SXPath location paths P ∶ LocationPath→ node→ nodeset

is defined as follows:
P J/πK(n) := P JπK(root)
P Jπ1/π2K(n) := {n2∣n1 ∈ P Jπ1K(n) ∧ n2 ∈ P Jπ2K(n1)}

P Jπ1∣π2K(n) := P Jπ1K(n) ∪P Jπ2K(n)
P Jaxis ∶∶ tK(n) :={n′ ∣ JaxisK(n,n′)} ∩ T (t)

P Jlocstep[bexpr]K(n) := {n′ ∣ W⃗=P JlocstepK(n) ∧ n′∈W⃗ ∧

εJbexprK(⃗cn′) = true ∧ ⃗cn′ ∶= ⟨w, idxχ(n′, W⃗), ∣W⃗ ∣, pidx⩽↑(n′, W⃗)

plast⩽↑(W⃗), pidx⩽→(n′, W⃗), plast⩽→(W⃗), pidx⩽↓(n′, W⃗),

plast⩽↓(W⃗), pidx⩽←(n′, W⃗), plast⩽←(W⃗),pidx⩽t(n
′, W⃗)⟩}

where T is the node test function defined in Def. 3, and the se-
mantics of an axis (JaxisK) is: (i) JspatialAxisK:={(n,n′) ∣

mbr(n) ρ mbr(n′) ∧ ρ = µ(spatialAxis)} for spatial axes, (ii)
the semantic of traditional axis already described in [17].

Definition 16. Given an SXPath expression e and a context c⃗,
the semantics function ε ∶ SXPathExpression→C→ SXPathType

returns number, string, boolean, or node set values:
εJπK(c⃗) ∶= P JπK(n) εJposSpatialNesting()K(c⃗) ∶= pt
εJposition()K(c⃗) ∶= p<doc εJlast()K(c⃗) ∶= s<doc

εJposFromN()K(c⃗) ∶= p⩽↓ εJlastFromN()K(c⃗) ∶= s⩽↓
εJposFromS()K(c⃗) ∶= p⩽↑ εJlastFromS()K(c⃗) ∶= s⩽↑
εJposFromW ()K(c⃗) ∶= p⩽→ εJlastFromW ()K(c⃗) ∶= s⩽→
εJposFromE()K(c⃗) ∶= p⩽← εJlastFromE()K(c⃗) ∶= s⩽←
εJOp(e1, ..., em)K(c⃗) ∶= F JOpK(εJe1K(c⃗), . . . , εJemK(c⃗))

where: (i) P is the function in Def. 15. (ii) F JOpK ∶ O1×...×Om →
O, is defined in Tab. 3 (for a complete list of functions we refer to
[11, 25]). The meaning of each expression is given by the meaning
of its subexpressions.
F J const. number i:→ num K() ::= i
F J ArithOp: num × num→ num K (i1, i2) ::= i1 ArithOp i2 , where ArithOp∈ {+,-,*,/,%}
F J constant string s:→ str K() ::= s

F J RelOp: num × num→ bool K (i1, i2) ::= i1 RelOp i2 , where RelOp ∈ {=,≠,⩽,<,⩾,>}
F J RelOp: str × str→ bool K (s1, s2) ::= s1 RelOp s2
F J RelOp: nset × const. string→ bool K (Γ, s)::= ∃u∈Γ:strval(u) RelOp s
F J RelOp: nset × bool→ bool K (Γ, b) ::= F J boolean K(Γ)RelOp b

. . .

Table 3: Semantics of Functions in SXPath

133

3.5 Complexity Issues
This section summarizes the computational complexity results of

the SXPath query evaluation problem. We show that Core SXpath,
Spatial Wadler Fragment (SWF), and Full SXpath allow polyno-
mial time combined complexity query evaluation with increasing
degree of the polynomial. In the following theorems we denote by
D the XML document, which has size Θ(∣V ∣), where ∣V ∣ is the
number of nodes of its SDOM representation. It is noteworthy that
the SDOM (see Sec. 3.1) has size O(∣V ∣

2
).

Theorem 1. Core SXPath queries can be evaluated in timeO(∣D∣
2

∗ ∣Q∣), where ∣D∣ is the size of the XML document, and ∣Q∣ is the
size of the query Q.

Proof Sketch 1. In [12] it has been shown that Core XPath 1.0
has linear time combined complexity. We extend Core XPath 1.0
evaluation algorithm, proposed in [12], by spatial axes function.
For evaluating spatial axes, spatial relations between any pair of
visualized nodes must be considered. Since in the SDOM any vis-
ible node is spatially related to any other visible node, there are
O(∣Vv ∣

2
) many spatial relations to be considered in addition to the

O(∣V ∣) many relations of the DOM incurring a higher polynomial
worst case complexity. The detailed description of the proof is
found in the Appendix B.1.

Considering the SWF syntax presented in Sec. 3.3, we can give
the following complexity result.

Theorem 2. SXPath queries that fall in the Spatial Wadler Frag-
ment can be evaluated in time O(max(∣D∣

3
∗ ∣Q∣, ∣D∣

2
∗ ∣Q∣

2
)),

where D is the XML document, and Q is a SWF query.
Proof Sketch 2. The basic idea for proving this theorem is to

adopt the top-down/bottom-up evaluation strategy proposed in [12]
for EWF queries. The most costly operation in SWF is the evalu-
ation of spatial location paths that require the construction of the
full context. This operation, which requires the computation of the
layering introduced in Def. 5, generates a higher polynomial worst
case complexity w.r.t. EWF [12]. The detailed description of the
proof is found in the Appendix B.2.

Theorem 3. Full SXPath queries can be evaluated in timeO(∣D∣
4

∗ ∣Q∣
2
) and space O(∣D∣

2
∗ ∣Q∣

2
), where D is the XML document,

and Q is a Full SXPath query.
Proof Sketch 3. Full SXPath combined complexity bound can

be proved by adopting a seamless extension of Full XPath queries
evaluation strategy proposed in [12] by spatial operators. The most
costly operation in SXPath still remains the evaluation of XPath op-
erations on any input context [12] resulting in the same combined
complexity bound of XPath 1.0. The detailed description of the
proof is found in the Appendix B.2.

4. IMPLEMENTATION AND EXPERIMENTS
We have implemented the language in a system that embeds the

Mozilla browser and computes the SDOM in real time at each vari-
ation of visualization parameters (i.e. screen resolution, browser
window size, font type and dimension). In this way for each Web
page and visualization condition there is a unique corresponding
SDOM that enables the user to query the Web page by consider-
ing what s/he sees on the screen. For computing the SDOM the
system exploits the Mozilla XULRunner3 application framework
that allows for implementing the function mbr (see Def. 1) that ac-
quires coordinates of the MBRs assigned by the layout engine to
each visualized DOM node. Queries posed by users are parsed and
evaluated on the SDOM by the query evaluator that returns query
answers, and visualizes returned SDOM nodes on the Web page by
rectangles with highlighted borders.
3https://developer.mozilla.org/en/XULRunner 1.9.2 Release Notes

4.1 System Efficiency
For evaluating the SXPath system efficiency we have performed

experiments that evidence the practical system behavior for both
increasing document and query sizes. Due to lack of space, we il-
lustrate and compare results only for queries falling in SWF. For
evaluating data efficiency of the query evaluator, which is indepen-
dent from SDOM construction, we have used a fixed SWF query
having size ∣Q∣=167. Then, we have computed the needed query
time for increasing documents sizes from ∣D∣=50 to double the
maximum size we found on real-world Web pages, i.e. ∣D∣=7500
nodes. Figure 8, in the Appendix C.1, depicts obtained curves (in
log log scale) indicating polynomial time efficiency w.r.t. document
size. In particular, curves slopes are all 1, which indicates lin-
ear time behavior. The time needed for constructing the SDOM
is depicted as a straight line on the log log scale (see Figure 9
in the Appendix C.1). In particular, the line slope is 2 indicat-
ing quadratic runtime behavior — as expected. Thus, the runtime
requirements for the integrated system with SDOM construction
and query evaluation remains polynomial. For evaluating query
efficiency we tested the whole system with fixed document sizes
(∣D∣=1000, ∣D∣=3000, ∣D∣=6000) and increasing query sizes. Fig-
ure 10, in the Appendix C.1, depicts obtained curves on a log log
scale. For this experiment time grows linearly with the query size
(curves slopes are all 1). Thus, empirical behavior of the system is
better than expected from the SWF worst case upper bound. De-
tails and rationales about Web pages and queries adopted in the
experiments are given in Appendix C.1.

4.2 Language Usability
In this section we present experiments aimed at assessing the us-

ability of our approach and the enhancements provided by SXPath
language over XPath 1.0. For the evaluation we have considered
the situation of an expert user aiming at manually developing Web
wrappers for Deep and Social Web sites. We assume that this expert
has a good command of XPath. S/he visualizes and explores Web
pages by using the SXPath system where the embedded Mozilla
browser is configured using a typical setting for which Web pages
are generally developed (i.e. screen resolution of 1280x800 pixels,
browser window size of 1024x768 pixels, standard font type and
dimension). We investigate the following questions in our evalua-
tion: (1) How robust is the SXPath language w.r.t. Web browser and
visualization parameters variations? (2) How “easy” is it for this ex-
pert to understand and apply SXPath? (3) How suitable is SXPath
for manual wrapper construction, giving the expert the possibility
to look only at the visualized Web page, in comparison to XPath?
(4) How suitable is SXPath for manual wrapper construction, giv-
ing the expert full insight into the SDOM/DOM, when compared
against XPath? (5) How transportable is SXPath across multiple
Web sites in comparison to XPath? Experiments described in the
following explore these questions. In the experiments we have used
a dataset of 125 pages obtained by collecting 5 pages per site from
25 Deep Web sites already exploited for testing wrapper learning
approaches [10, 19, 27] (see Tab. 7 in Appendix C.2). Experiments
have involved ten users who were students well trained in XPath
with no experience in SXPath.

Experiment 1. In this experiment we have explored question (1)
by evaluating the robustness of SXPath w.r.t. Web browser and vi-
sualization parameters variations. Firstly, considering the dataset of
25 Web sites listed in Tab. 7 in Appendix C.2, we have varied val-
ues for screen resolution (i.e. 1280x800, 1024x768, 800x600 pix-
els), browser window size (i.e. 1024x768, 800x600, 640x480 pix-
els), font dimension (i.e. small, standard, large, huge), and font type
(i.e. times, times new roman, tahoma, arial) and tested if the spatial
relations between node change. We have observed that modifica-

134

tions in: (i) Screen resolution and font type do not cause changes
in the spatial arrangement of visualized nodes. (ii) Browser win-
dow size does not affect 20 Web sites (highlighted by “†” in Tab. 7
in Appendix C.2) because they are based on absolute positioning
properties, whereas for 5 sites we have changes in the spatial ar-
rangement of visualized nodes. (iii) Font dimension affects the spa-
tial arrangement of visualized nodes. In particular, by using large
and huge fonts, visual appearance of Web pages strongly changes
w.r.t. standard font dimension. Thus, modifications in screen reso-
lution and font type do not affect query results, whereas changes
in browser window size and font dimension could affect the query
result. However, this aspect does not impact SXPath usability be-
cause the SXPath system: (i) Embeds the browser and computes the
SDOM real time (i.e. at each changing of visualization parameters).
So, users can query what they see on the screen at each moment.
(ii) SXPath queries are stored with visualization parameter settings
adopted by the user during the query design process. Thus, when
a query is reused on a Web page the embedded browser is set with
visualization parameters for which the query has been designed.

Secondly, we have constructed a dataset of 200 Deep Web pages,
presenting either data records or tables, randomly selected from
the www.completeplanet.com Web site (the largest portal of Deep
Web sites). We have visualized pages by the four most used Web
browsers, i.e. Microsoft Internet Explorer, Mozilla Firefox, Google
Chrome, Safari set with default visualization parameters and stan-
dard window size (i.e. 1024x768 pixels). We have observed that,
even if coordinates returned by different browsers for rectangles
bounding visualized nodes were slightly different, the qualitative
spatial arrangement of visualized SDOM nodes remained stable.
Such a result was expected because rendering rules of most diffused
layout engines4 have been strongly standardized as it is possible to
verify by tests available in [1]. So, SXPath queries do not depend
on the browser for fixed visualization parameters.

Experiment 2. In this experiment we have investigated ques-
tion (2) by evaluating the effort needed for learning SXPath and the
feeling perceived by users in applying the language. We have de-
fined the user task “identify product data records and extract prod-
uct names and prices” from the Web site www.bol.de. We have
asked users to learn the SXPath language and complete the task
by writing a sound and complete SXPath query looking only at the
visualized Web page. For learning the language, we have provided
users with a short manual explaining spatial axis and position func-
tion behavior. We have computed both the number of attempts and
the time needed by users for defining the query by using the SX-
Path system. We have observed that users have required an average
number of 4.3 and 3.6 attempts for recognizing name and price re-
spectively, and an average time equal to 57 minutes for learning the
SXPath language and accomplishing the assigned task. For evalu-
ating the level of “easiness” and “satisfaction” perceived by users
in learning and applying the SXPath language, at the end of the ex-
periment, we have asked users to answer a questionnaire based on
the seven-item Likert scale (described in Appendix C.2) where -3
corresponds to “very difficult/unsatisfactory”, and +3 corresponds
to “very easy/satisfactory”. The language was assessed as easy to
learn and quite satisfactory to use.

Experiment 3. In this experiment we have explored question
(3) by assessing whether spatial information is helpful for a human
aiming at manually writing Web wrappers. We have asked users to
perform the same extraction task of Experiment 2 by identifying,
for each Web site in the dataset and only by looking at the dis-
played Web pages, the best XPath and SXPath queries they could
4Trident for Microsoft Internet Explorer, Gecko for Firefox, We-
bKit for Safari and Google Chrome

achieve by using at the most 5 attempts. Results (shown in Tab. 7 in
the Appendix C.2) indicate average precision of 99% and recall of
100% for SXPath and average precision of 42% and recall of 99%
for pure XPath 1.0. Users were able to define a good SXPath query
by using 2 attempts on average, whereas all the 5 available attempts
were not enough for finding a good pure XPath query for all Web
pages in the dataset. The experiment clearly shows the advantage
of SXPath over pure XPath. In fact, only SXPath makes spatial
layout information explicitly available for querying.

Experiment 4. In this experiment we have investigated ques-
tion (4). We have asked users to perform the same extraction task
of Experiment 2 by identifying, for each Web site in the dataset
and looking at both visualized Web pages and internal page struc-
tures (i.e. DOM and SDOM), sound and coplete XPath and SXPath
queries by using at the most 10 minutes. Results (shown in Tab. 7
in the Appendix C.2) indicate that: (i) For writing queries users
needed 4.2 and 2.7 average attempts for pure XPath and SXPath re-
spectively. Since the number of attempts is proportional to needed
time, a greater number of attempts indicate that to write queries in
pure XPath requires more time in comparison to SXPath. (ii) In
defining pure XPath queries all users have shown the tendency to
write absolute location paths by deeply analyzing the DOM struc-
ture, hence the average number of location steps for pure XPath and
SXPath has been 18.9, and 5.3 respectively. Hence, we asked users
to write queries by using relative pure XPath location paths by us-
ing at most 5 minutes. We observed that further attempts needed
by users are proportional to the complexity of the DOM structure.
Such an experiment clearly shows that manually writing queries in
pure XPath is more “complex” in comparison to SXPath because
XPath requires the navigation of very intricate DOM structures,
whereas SXPath mainly requires to look at the displayed Web page.

Experiment 5. In this experiment we have aimed at answer-
ing question (5) by evaluating whether SXPath queries are more
general and abstract than pure XPath queries given different Web
pages and the same extraction task. Firstly, we have chosen the
subset of Web sites in the dataset having product names presented
by the same visual pattern (such sites, highlighted by “⊙” in Tab. 7
of Appendix C.2, have different internal representations). We have
observed that it is possible to use the same sound and complete
spatial location path for extracting product names on all these Web
sites. Instead, different XPath location paths are needed. Secondly,
we have asked users to write a SXPath query aimed at extracting
the list of friends in a social network randomly chosen among those
listed in Tab. 8 in Appendix C.2. Then we have asked users to try
to apply the same query to other remaining social networks in the
list. Even though the internal tag structure of various social net-
works differ strongly (so different pure XPath queries are needed),
all users have been able to use almost the same SXPath query for all
social network Web sites. This experiment points out that SXPath
allows for more general and abstract queries, that are independent
from the internal structure of Web pages, in comparison to XPath.

Experiments provide a strong evidence for believing that humans
aiming at manually defining Web wrappers and manipulating Web
pages, may benefit from using SXPath navigation instead of pure
XPath navigation. Moreover, the transportability of SXPath queries
from one Web site to the next simplify manual definition of Web
wrappers and can also support wrapper induction from sparsely an-
notated data, while the lack of such transportability observed for
pure XPath is detrimental for both manual wrapper definition and
wrapper induction. A full investigation of SXPath implications for
wrapper induction effectiveness, however, goes beyond space and
scope of this paper. Details and rationales about all previous exper-
iments are given in Appendix C.2.

135

5. RELATED WORK
Related work broadly falls in the following three areas. Lan-

guages aimed at manipulating visual information. Kong et al. pre-
sented [13] a formalism that uses the visual appearance of Web
pages in order to extract relevant information from them. Such a
formalism, named spatial graph grammars (SGGs), extends graph
grammars by incorporating spatial notions into language constructs.
SGG productions are used to describe parts of Web pages by a
graph representation. The representation includes spatial relations
of the following types: direction relations that describe an order in
the space, topological relations that express neighborhood and in-
cidence, and distance relations such as near and far. The system
allows for extracting page contents of interest for the user, but it is
quite complex in term of both usability and efficiency. Web wrap-
per induction exploiting visual interfaces. Sahuguet et al presented
W4F system [22] that uses a SQL-like language named HEL. In
W4F parts of the query in HEL can be generated using a visual
wizard which returns the full XPath location path of DOM nodes.
So the HEL language is unable to recognize when information in
a Web page is presented by the same visual pattern but is repre-
sented by different tag structures. So, the W4F system may benefit
from using SXPath as more expressive basis for defining extrac-
tion rules. Query languages for multimedia database and presen-
tation. Lee et al. [14] and Adah et al. [2] represent multimedia and
presentation objects as direct acyclic graphs with spatiotemporal
relations. They adopt algebraic language augmented with ad hoc
operators for querying spatial relations among objects. Unlike SX-
Path, these languages are too complex and not suitable for querying
Web pages.

6. CONCLUSION AND FUTURE WORK
In this paper we have extended XPath to include spatial navi-

gation into the query mechanism. We have used spatial algebras
to define new navigational primitives and mapped them for query
evaluation onto an extension of the XML document object model
(DOM), i.e. the SDOM. Thus, we have given a formal model of the
extended query language and have evaluated theoretical complex-
ity. The theory has been implemented in a SXPath tool. Empiri-
cal evaluation has been performed for testing its performances and
functionality. Results on representative real Web pages have evi-
denced practical applicability of SXPath. The language can still be
handled efficiently, yet it is easier to use and allows for more gen-
eral queries than pure XPath. The exploitation of spatial relations
among data items perceived from the visual rendering allows for
shifting parts of the information extraction problem from low level
internal tag structures to the more abstract levels of visual patterns.

The SXPath query language that we have defined will be a step-
ping stone for our future work on extracting information from Web
pages. We argue that SXPath could improve both human and au-
tomatic capabilities in querying and extracting information. For
instance, the popular LIXTO system [10], which allows users to
visually define Web wrappers, uses XPath patterns and depends on
internal HTML tag structure. It could exploit SXPath in order to
leverage visual patterns as desired by authors of [5].

7. REFERENCES
[1] Acid Tests, http://www.acidtests.org. Web Standards Project.
[2] S. Adali, M. L. Sapino, and V. S. Subrahmanian. An algebra

for creating and querying multimedia presentations.
Multimedia Syst., 8(3):212–230, 2000.

[3] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[4] P. Balbiani, J.-F. Condotta, and L. F. d. Cerro. A new
tractable subclass of the rectangle algebra. In IJCAI, pages
442–447, 1999.

[5] R. Baumgartner, G. Gottlob, and M. Herzog. Scalable web
data extraction for online market intelligence. VLDB,
2(2):1512–1523, 2009.

[6] M. Benedikt and C. Koch. Xpath leashed. ACM
Computational Survey, 41(1):1–54, 2008.

[7] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A
survey of web information extraction systems. TKDE,
18(10):1411–1428, 2006.

[8] P. Eades and K. Sugiyama. How to draw a directed graph.
Journal of Information Processing, 13(4):424–437, 1990.

[9] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and
B. Pollak. Towards domain-independent information
extraction from web tables. In WWW, pages 71–80, 2007.

[10] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and
S. Flesca. The lixto data extraction project: back and forth
between theory and practice. In PODS, pages 1–12, 2004.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing xpath queries. In VLDB, pages 95–106, 2002.

[12] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing xpath queries. TODS, 30(2):444–491, 2005.

[13] J. Kong, K. Zhang, and X. Zeng. Spatial graph grammars for
graphical user interfaces. TOCHI, 13(2):268–307, 2006.

[14] T. Lee, L. Sheng, T. Bozkaya, N. H. Balkir, Z. M.
Özsoyoglu, and G. Özsoyoglu. Querying multimedia
presentations based on content. TKDE, 11(3):361–385, 1999.

[15] L. Libkin. Elements Of Finite Model Theory. SpringerVerlag,
2004.

[16] J. Madhavan, S. R. Jeffery, S. Cohen, X. . Dong, D. Ko,
C. Yu, A. Halevy, and G. Inc. Web-scale data integration:
You can only afford to pay as you go. In CIDR, 2007.

[17] M. Marx and M. de Rijke. Semantic characterizations of
navigational xpath. SIGMOD Rec., 34(2):41–46, 2005.

[18] I. Navarrete and G. Sciavicco. Spatial reasoning with
rectangular cardinal direction relations. In ECAI, pages 1–9,
2006.

[19] N. K. Papadakis, D. Skoutas, K. Raftopoulos, and T. A.
Varvarigou. Stavies: A system for information extraction
from unknown web data sources through automatic web
wrapper generation using clustering techniques. TKDE,
17(12):1638–1652, 2005.

[20] P. Parys. Xpath evaluation in linear time with polynomial
combined complexity. In PODS, pages 55–64. ACM, 2009.

[21] J. Renz. Qualitative spatial reasoning with topological
information. Springer, 2002.

[22] A. Sahuguet and F. Azavant. Building intelligent web
applications using lightweight wrappers. DKE,
36(3):283–316, 2001.

[23] B. ten Cate and M. Marx. Axiomatizing the logical core of
xpath 2.0. Theory of Computing Systems, 44(4):561–589,
2009.

[24] W3C, http://www.w3.org/XML/Query/. XML Query
(XQuery), 1.0 edition.

[25] W3C, http://www.w3.org/TR/xpath. XML Path Language
(XPath) Version 1.0, 1.0 edition, November 1999.

[26] P. Wadler. Two semantics for xpath. Draft: http://homepages
.inf.ed.ac.uk/∼wadler/papers/xpath-semantics, 2000.

[27] Y. Zhai and B. Liu. Structured data extraction from the web
based on partial tree alignment. TKDE, 18(12):1614–1628,
2006.

136

APPENDIX
A. SPATIAL REASONING MODELS

The rectangle algebra model (RA) [4] has been obtained by ex-
tending Allen’s temporal interval algebra (IA) [3] to the 2-dimensio-
nal case. IA models the spatial position between two segments and
it is based on 13 atomic spatial relationsRint = {b, m, o, s, d, f,
bi,mi, oi, si, di, fi, e}, see Tab. 4. For instance, the relation
s b s1 means that the segment s is preceded by the segment s1.

Relation Symbol Meaning Inverse
before b s1zÐÐx

zÐx
s bi

meets m s1zÐx
zÐx

s mi
overlaps o s1zÐx

zÐx
s oi

starts s s1zx
zÐx

s si
during d s1zx

zÐx
s di

finish f s1zx
zÐx

s fi
equals e s1zÐx

zÐx
s e

Table 4: IA Relations.
The set of possible atomic and conjuntive RA relations is called

Rrec. It is obtained by combining Rint relations on x and y-axes.
Thus, Rrec = R2

int contains 132
= 169 elements. Figure 7 shows

that RA relations are invertible and represents a pictorial represen-
tation of the Mapping Function µ (Def. 7).

Figure 7: Pictorial Representation of the RA relations

B. PROOFS
B.1 Proof of Theorem 1

In this section we prove that Core SXPath queriesQ can be eval-
uated in O(∣D∣

2
∗ ∣Q∣) combined complexity (Theorem 1), where

D is the XML document. In order to prove the Theorem 1 we first
define: (i) the axis function by extending the definition presented in
[11] to both traditional and spatial axes; (ii) the RA function; (iii)
the algorithm which compute the axis function.

Definition 17. Let χ denote an axis in ∆. The related axis func-
tion, which overloads the relation name χ ∶ 2V → 2V is defined
as χ(Γ) ∶= {u∣∃c ∈ Γ ∶ cχu} , where Γ ⊆ V is a set of nodes.
Moreover, the inverse axis function χ−1 ∶ 2V → 2V is defined as
χ−1(Γ) ∶= {c ∈ V ∣χ({c}) ∩ Γ ≠ ∅}.

Definition 18. Let ρ denote a RA relation in Rrec. The related
RA function fρ ∶ Vv → 2Vv is defined as fρ(u) ∶= {v ∣ uρv ∧ u, v ∈
Vv ∧ ρ ∈ Rrec}

The function fρ works on the SDOM (Def. 2) represented as a
nested direct-access data structure. Such data structure for SDOM
can be computed in a preprocessing step, which runs in O(∣Vv ∣

2
)

and requiresO(∣Vv ∣
2
) more space than a standard DOM. It is note-

worthy that fρ takes as input a single node u ∈ Vv , accesses in
constant time the hash set representing the SDOM, and returns the
node set associated to u by the RA relation ρ in constant time.

Lemma 1. Let ρ be an RA relation. For each pair of nodes u, v ∈
Vv , u ρ v iff v ρ−1 u.

Let Γ ⊆ V be a set of nodes of a SDOM, let χt ∈ ∆t be a
traditional axis other than self, let χs ∈ ∆s be a spatial axis, let %
be a set of RA relations, and let E(χt) denote a regular expression
based on the primitives firstchild and nextsibling as presented in
[11, 12] that defines χt ∈ ∆t.

Algorithm 1. (Axis evaluation)
Input: A set of nodes Γ and an axis χ ∈ ∆
Output: χ(Γ)

Method: evalχ(Γ)

(1.1) function evalself (Γ) ∶= Γ.
(1.2) function evalχt(Γ) ∶= evalE(χt)(Γ).
(1.3) function evalχs(Γ) ∶= eval{ρi ∣ρi∈µ(χs)}(Γ).
(1.4) function evalχ−1

s
(Γ) ∶= eval{ρ−1

i
∣ρi∈µ(χs)}(Γ).

(1.5) function eval%(Γ) begin
(1.6) Γ′ ∶= ∅;
(1.7) foreach u ∈ Γ ∩ u ∈ Vv do
(1.8) foreach ρi ∈ % do
(1.9) Γ′ ∶=Γ′ ∪set fρi(u) od od
(1.10) return Γ′end.

The Algorithm 1 computes the set of nodes reached from a set
of nodes Γ by means of an axis χ. For traditional axes in (1.1)
and (1.2) the algorithm requires time O(∣V ∣) [11]. Whereas, for
spatial axis in (1.3) and (1.4), we have to consider the mapping
function µ that runs in constant time (see Def. 7) and returns a set
of atomic/conjunctive RA relations % representing the axis given
as input. The function eval% (1.5)-(1.10), for each input node u
and for each RA relation ρ ∈ % takes the reached nodes using the
function fρ . The union of the resulting set of nodes (1.9) runs in
time O(∣Vv ∣), hence the total time required is O(∣V ∣

2
). Now, we

are ready to prove the theorem 1.
PROOF. In [11] it is was shown that Core XPath 1.0 fragment

have linear combined complexity by mapping its queries to an al-
gebraic expression. Likewise for Core XPath 1.0 and its exten-
sion, every query that falls in the Core SXPath can be mapped in
timeO(∣Q∣) to an algebraic expression Φ over the set of operations
∩,∪,¬, χ (the axis function) and its inverse χ−1 and V

root
(Γ) ∶=

{x ∈ V ∣root ∈ Γ} (that is, returns V if root ∈ Γ and ∅ otherwise).
In the query Q there are at most O(∣Q∣) of such operations. Each
operation in our algebra can be computed in time O(∣V ∣) except
for the axis function that is computable in O(∣Vv ∣

2
) time bound in

the spatial case as shown in Algorithm 1. Hence, the computation
has time bound O(∣V ∣

2
∗ ∣Q∣).

B.2 Proof of Theorem 2 and 3
In this section we prove first that Full SXPath can be evaluated

in time O(∣D∣
4
∗ ∣Q∣

2
) and space O(∣D∣

2
∗ ∣Q∣

2
), where D is the

XML document, and Q is a Full SXPath query (Theorem 3). Then
we exploit such proof in order to prove that queries falling in the
SWF can be evaluated in better time than full SXPath queries.

In order to obtain a polynomial-time combined complexity bound
for Full SXPath query evaluation we use dynamic programming
adopting the Context-Value Table (CV-Table) principle proposed in
[11]. Given an expression e belonging to an input query, the CV-
Table of e specifies which value is obtained given a valid context
c⃗: (c⃗, εJeK(c⃗)). The CV-Table of each expression is obtained com-
bining the values of its subexpressions. Moreover, we adopt the

137

simple idea [26] that for evaluating each expression just the neces-
sary information of the context (relevant context) can be taken into
account. The relevant contexts of any expression e associated to a
node q of Q can be computed in a preprocessing step as follows: (i)
If q is leaf node of the query parse tree, the relevant context depends
on e. If e is a constant, then its evaluation does not depends on the
input context and thus the relevant context is empty. If the expres-
sion is a location path or a positional function, then the relevant
context corresponds to the ith value of the context5 that defines
the semantics of the expression as defined in Def. 16. (ii) Other-
wise, if e is a location path, then the relevant context of q is the
context node. In the other cases, the relevant context of q is given
by the union of the relevant context of children parse tree nodes
(q1, ..., qk) of q: RelevContext(q) ∶= ∪ki=1RelevContext(qi).

The CV-Table principle avoids exponential time complexity be-
cause it guarantees that no evaluation of the same subexpression for
the same context is done more than once. So it allows simultaneous
evaluation for all possible contexts (node). As in [12] where posi-
tion and size are computed on demand, we compute all spatial posi-
tion functions in a loop for all pairs of previous/current nodes. For
evalauting SXPath location steps we use the min context algorithm
presented in [12] with the substantial difference being the compu-
tation of location step and spatial position functions. The complete
context will be needed only for predicates of location steps that use
spatial position functions. In the following, for lack of space, we
describe only the most costly part of the location step evaluation
algorithm that computes complete contexts.

Algorithm 2. (Location step evaluation algorithm)
Input: A set of nodes Γ and a location step e = χ ∶∶ τ[e1] . . . [em]

Output: P JeK(Γ)
Method: eval(e,Γ) begin
(2.1) Res ∶= ∅
(2.2) W ∶= χ(Γ) ∩ T (τ);
(2.3) for each u ∈ Γ do
(2.4) W ′ ∶= {w ∣w ∈W ∧ u χ w}

(2.5) for each ei with 1 ⩽ i ⩽m (in ascending order) do
(2.6) W⃗ ∶= layering(W ′)
(2.7) W ′ ∶= {w ∣ w∈W⃗ ∧εJeiK(c⃗w) = true ∧

c⃗w ∶= ⟨w, idxχ(w, W⃗), ∣W⃗ ∣, pidx⩽↑(w, W⃗), plast⩽↑(W⃗),

pidx⩽→(w, W⃗), plast⩽→(W⃗), pidx⩽↓(w, W⃗), plast⩽↓(W⃗),

pidx⩽←(w, W⃗), plast⩽←(W⃗), pidx⩽t(w, W⃗)⟩}

od
(2.8) Res ∶= Res ∪W ′

od
(2.9) return Res end;

The Algorithm 2 corresponds to the semantic definition of lo-
cation step presented in Def. 15. But it considers only the most
expensive case that requires the computation of the complete con-
text. Such a case is sufficient for proving the combined complexity
of Full SXPath. We need to compute complete context when all
expressions e1 . . . em, in the input location step, require the eval-
uation of positions w.r.t. document and spatial orders. As detailed
in [12], when expressions do not require evaluation of positions
we can pre-compute the CV-Tables because the relevant context
is empty or corresponds to a single node. In the instruction (2.2)
we obtain the nodes reachable via χ ∶∶ τ . In (2.3)-(2.7) we select
nodes that satisfy the predicates e1 . . . em. We have to compute the
complete context c⃗ corresponding to any pair of previous and cur-
rent nodes u and w, respectively. The instruction (2.7) builds the
context c⃗ that considers the position of the node w in W⃗ w.r.t. the
document order and all spatial orders (see Def. 13). For obtaining
spatial ordering we need to apply the layering function (instruc-
tion (2.6)) to W⃗ (i.e. the set of nodes reached from u). Such a
5Given a context c⃗ then c⃗[i] represents the ith value of the context
(e.g., c⃗[3] represents the context size w.r.t. the document order).

function assigns to each node a layer in order to allow the functions
pidx⩽z(u,Γ) and plast⩽z(u,Γ) (see Def. 6) for computing spatial
position of w in W⃗ . The layering for each spatial order (directional
or topological) can be obtained by applying a topological layering
algorithm [8]. For lack of space and because the layering for the
other orders can be obtained in similar way, only the layering for
the topological order is shown in the following.

Definition 19. Let Γ ⊆ Vv be a set of SDOM nodes, the topo-
logical directed acyclic graph (TDAG) Gt = (Γ,At) is the graph
obtained from the SDOM by considering RA relations that express
containment among nodes. So for each pair of nodes n,n′ in Γ, an
arc is added to At iff n′ is spatially contained in n.

Definition 20. Let Γ ⊆ Vv be a set of SDOM nodes, and let
Gt = (Γ,At) be the corresponding TDAG, the topological lay-
ering Lt(Gt) = {l1,⋯, lht} (Def. 5) is obtained applying to Gt a
topological layering algorithm [8].

Layering algorithm runs in timeO(∣Γ∣+ ∣At∣) by using appropri-
ate data structures with minor modifications to the standard topo-
logical sorting algorithm. Topological layers allow for defining a
topological ordering among nodes in Γ based on their spatial nest-
ing. So, for example, the first layer represents nodes in Γ that are
not contained in other nodes. The second layer represents nodes
that are directly contained in nodes in the first layer at first level
of nesting, and so on. The layering for each directional order can
be obtained also by using optimized methods that work on a pre-
layered version of the SDOM, not explained here for lack of space.

Having obtained the complete context c⃗, the instruction (2.7) al-
lows for computing the set of nodes W ′ reached from the current
node u and that satisfy the predicates e1 . . . ei. For the current node
w, the value of εJeiK(c⃗w) is looked up from the table if c⃗w exists
in the CV-Table of ei, computed otherwise. The resulting nodeset
(instruction (2.9)) is the union of nodes reached from each current
node u in Γ and satisfying e1 . . . em predicates. Now, we are ready
to prove the Theorem 3.

PROOF. Space complexity. In the preprocessing step we cre-
ate the SDOM structure, then in order to save the spatial relations
O(∣Vv ∣

2
) additional space is required w.r.t. the XML document.

During the query computation, we know that an input Full SXPath
queryQ has at most ∣Q∣ subexpressions, thus at most ∣Q∣ CV-Tables
are required. We explicitly set up the CV-table for a subexpres-
sion e only if the relevant context of e corresponds to a node (i.e.
{c[1]}), or to the empty set. Hence, the CV-Table has at most ∣V ∣

rows (O(∣D∣)). Moreover, since Full SXPath and Full XPath 1.0
have the same set of operations and return the same result types,
then the most costly operation w.r.t. space size is concatenation on
string [12]. We haveO(∣D∣∗ ∣Q∣) maximal size for one entry value
in the CV-Table. Hence we obtain the bound O(∣D∣

2
∗ ∣Q∣

2
).

Time complexity. The SDOM computation, which costs O(∣V ∣
2
),

precedes the query evaluation step. An SXPath expressionQ has at
most ∣Q∣ subexpressions that have to be evaluated. Each subexpres-
sion e of the input queryQ has to be evaluated for at mostO(∣V ∣

2
)

different contexts that can be computed in a loop over all possible
values c⃗ corresponding to pairs previous/current of context-nodes
(see algorithm 2). Moreover, it was shown in [12] that time required
for computing each XPath operation on any context c⃗ is bounded
by O(∣D∣

2
∗ ∣Q∣). In our case, we add only spatial relations and

the position functions. The former ones, given in input only one
context c⃗ can be computed in time O(∣Vv ∣) (In fact, in this case the
method eval% of the algorithm 1, has to run only for a node u (see
instruction (1.7)). Given a context c⃗, a positional function returns
the value corresponding to the ith value of the context that defines
the semantics of the expression (see Def. 16). As shown in Algo-
rithm 2 topological layering is needed (see instruction (2.2) in the

138

Algorithm 2) for computing the complete context, but this opera-
tion does not impact the worst case bound. Hence we have the time
combined complexity O(∣D∣

4
∗ ∣Q∣

2
).

In order to prove that queries falling in SWF can be evaluated in
better time than full SXPath queries (Theorem 2), we: (i) Consider
the syntax defined by the grammar presented in Def. 12. (ii) Adopt
restrictions described in [12] for EWF. Such restrictions imply that
functions which select data from the XML document, and boolean
expressions that compare node sets are not allowed. Furthermore,
boolean expressions locpath relop sexpr or locpath relop

number (see Def. 12) consider only numbers and strings which size
do not depend on the XML document (i.e. are values fixed in the
query). (iii) Adopt the bottom-up/top-down query evaluation strat-
egy proposed in [12]. Such an evaluation strategy distinguish be-
tween outer and inner location paths, where an inner path appears
within a predicate, whereas an outer path does not.

For showing computational complexity of SWF we describe how
the node set resulting for a SWF query can be computed by ex-
ploiting the Algorithm 2. In particular, outer location paths are
computed by the Algorithm 2 as it is (top-down and forward eval-
uation). Whereas, inner location paths are bottom-up and back-
ward computed. In this case the evaluation algorithm starts from
the last location step in a inner location path, and takes as initial in-
put node set Γ either all nodes in V (when the considered boolean
expression coincides with the inner location path itself), or the set
of nodes that satisfy allowed boolean expressions. Then evaluation
algorithm computes node sets as in the Algorithm 2 where: in in-
struction (2.2) the axis is χ−1 instead of χ (backward evaluation),
instruction (2.3) is for each previous u ∈W , and in instruction (2.4)
current node w is in Γ. Having in mind above discussion we can
prove the Theorem 2.

PROOF. Time complexity. An SWF query Q has at most ∣Q∣

subexpressions that have to be evaluated. Such subexpressions are
computed by the Algorithm 2 used as described in the above dis-
cussion for enabling both top-down and bottom-up evaluation. Lo-
cation path evaluation is performed in time O(∣V ∣

2
) in instruction

(2.2) of the Algorithm 2 (see Algorithm 1). For any expression e,
the computation of the result value of e for a single context c⃗ takes
at most O(∣Q∣) time (see restrictions presented above). Further-
more, we have O(∣V ∣

2
) contexts (instructions (2.3) and (2.7)) and

at most ∣Q∣ sub expressions, hence the total time required by each
expression e ofQ is limited byO(∣V ∣

2
∗∣Q∣). However, let u be the

node under evaluation, we have to compute the layering for reached
nodes in order to obtain the complete context (instruction (2.6) in
the Algorithm 2). The layering method costsO(∣V ∣

2
) and has to be

computed for reach node under evaluation. So, we need O(∣V ∣
3
)

time for computing all contexts (see operations (2.3)-(2.6) in Algo-
rithm 2). Hence, the total computational complexity is bounded by
O(max(∣V ∣

3
∗ ∣Q∣, ∣V ∣

2
∗ ∣Q∣

2
)). Since normally, V >> Q then,

the complexity bound follows.

B.3 Complexity Comparison
The complexity results are summarized in Table B.3. These re-

sults are compared with the fragment of XPath 1.0 that they extend.

XPath 1.0 SXPath
Space Core[11] O(∣D∣ ∗ ∣Q∣) Spatial O(∣D∣2 ∗ ∣Q∣)

Time O(∣D∣ ∗ ∣Q∣) Core O(∣D∣2 ∗ ∣Q∣)

Space EWF[12] O(∣D∣ ∗ ∣Q∣2) SWF O(∣D∣2 ∗ ∣Q∣2)

Time O(∣D∣2 ∗ ∣Q∣2) O(max(∣D∣3 ∗ ∣Q∣, ∣D∣2 ∗ ∣Q∣2))

Space Full[11] O(∣D∣2 ∗ ∣Q∣2) Full O(∣D∣2 ∗ ∣Q∣2)

Time Xpath 1.0 O(∣D∣4 ∗ ∣Q∣2) SXPath O(∣D∣4 ∗ ∣Q∣2)

Table 5: Comparison between complexity bound of SXPath
and XPath 1.0 for a XML document D and a query Q.

C. EXPERIMENT RESULTS
C.1 System Efficiency

For testing system efficiency we have considered: (i) a dummy
Web page that presents a table with 3 columns and an increasing
number of rows; (ii) 3 types of queries, falling in the SWF, based
on: (a) traditional axes and position functions, (b) spatial axes (both
directional and topological) and spatial position functions; (c) a
mix of traditional and spatial features. Queries were constructed as
follows. For query types (a) and (c), the first query was given by:
“/descendant::TD/following-sibling::TD[1]”. For query
type (b), the first query was given by: “/CD::TD/E::TD[W,1]”.
The (i+1)-th query was constructed by appending the following lo-
cation paths to the i-th query: (a) “/following-sibling::TD[1]
/preceding-sibling::TD[1]”; (b) “/E::TD[W,1]/W::TD[E,
1]”, and (c) “/following-sibling::TD[1]/W::TD[E,1]”. For
instance, the third query (i = 2) for the spatial query type (b) was
“/CD::TD/E::TD[W,1]/E::TD[W,1]/W::TD[E,1]/E::TD[W,
1]/W::TD[E,1]”. All queries aim at extracting the central col-
umn of the table in the page. They are based on opposite axes (i.e.
“at-east” and “at-west”), so they redundantly jump back and for-
ward within the input documents. Our rationale was that by this
way the query processor must handle many different spatial paths
in parallel coping thus with an intuitively “difficult” query. Fig-
ure 8 and 10 show that time needed for query evaluation is linear
w.r.t. the document size and the query size respectively (curves are
all straight lines in log log scale and curves slopes are all 1). Fig-
ure 9 shows the curve obtained for the SDOM construction. The
obtained curve is a straight line in log log scale with slope equal to
2 indicating the polynomial complexity of the whole system.

102 103 104

101

102

103

Docs, Log |D|

Ti
m

e,
 L

og
 m

illi
se

c

(a) Traditional (c) Mix (b) Spatial

Figure 8: Linear-time Data Efficiency of SXPath Query Evaluation

102 103 104

101

102

103

104

Docs, Log |D|

Ti
m

e,
 L

og
 m

illi
se

c

SDOM

Figure 9: Quadratic-time Complexity of SDOM Construction

100 101

102

103

Query Log #repetitions

Ti
m

e,
 L

og
 m

illi
se

c

|D|=1000 |D|=3000 |D|=6000

Figure 10: Linear-time Query Efficiency of SXPath Query Evaluation

139

C.2 Evaluation of Usability
Experiment 2. Tab. 6 reports results of the experiment aimed at

assessing the effort needed for learning SXPath and the user feeling
in applying the language. The table gives: (i) in column 1 the users
identifiers; (ii) in column 2 the time needed for learning SXPath
and manually writing the assigned query; (iii) in columns 3 and 4
answers provided by users to the questions“How easy is the SXPath
language?” and “What is your level of satisfaction in using the SX-
Path language?” respectively. Possible answers have been designed
as the following seven-item Likert scale: very easy/satisfactory (3),
easy/satisfactory (2), quite easy/satisfactory (1), neutral (0), quite
difficult/unsatisfactory (-1), difficult/unsati-sfactory (-2), very dif-
ficult/unsatisfactory (-3); (iv) in columns 5 and 6 the number of
attempts that each user needed for writing spatial location paths for
names and prices respectively; (v) in the last two rows the average
values and the standard deviations for all observed values.

#user Time (min) Easiness/ Satisfaction/ #attempts
Difficulty Unsatisfaction name price

1 75 2 0 7 6
2 45 3 2 4 2
3 65 1 1 5 4
4 40 2 1 2 3
5 50 3 2 4 4
6 30 3 3 2 1
7 125 -1 -1 9 8
8 50 2 1 3 4
9 35 3 2 2 2

10 55 2 1 5 2
Average 57 2 1.2 4.3 3.6
σ 26 1.18 1.1 2.2 2

Table 6: Evaluation of the Effort Needed for Learn and Apply
SXPath

Experiment 3. Table 7 reports results of the experiment aimed at
finding out whether it is easier to specify an SXPath query than an
XPath query given only the rendered Web page, but no information
about the internal structure. Tab. 7 gives: (i) the average number of
pairs (product names and prices) correctly extracted (“Cr.”) using
SXPath and XPath in columns 2 and 5 respectively; (ii) in columns
3 and 6 the corresponding average number of pairs wrongly (Wr.)
extracted (false positive – FP/ false negative – FN); (iii) in columns
4 and 7, the average number of attempts (the maximal was fixed to
5) performed by users for obtaining the most accurate results; (iv)
in the last two rows the average recall and precision respectively.

Experiment 4. In this experiment we have evaluated the ef-
fort needed by users for obtaining sound and complete SXPath
and pure XPath queries, giving to users the possibility to look at
both DOM/SDOM and visualized Web page. Tab. 7 gives: (i) in
columns 8 and 10 the average number of attempts needed by all
users for writing sound and complete XPath and SXPath queries
respectively. For SXPath queries already sound and complete in
Experiment 3, we have reported in column 8 the value of attempts
already observed in column 4. (ii) in columns 9 and 11 the average
number of location steps in SXPath and pure XPath queries respec-
tively. These numbers has been computed as the average between
the number of location steps in location paths that identify product
names and prices; (iii) in columns 12 and 13 the average number of
further attempts and the average number of location steps needed
for expressing pure relative XPath queries respectively. All users
have noticed that for some Web sites (highlighted by “◇” in Tab. 7)
it has been very difficult to find a sound and complete pure XPath
query because of the very intricate DOM structures that make nec-
essary long disjunctions of location paths. Such difficulties are due
to the fact that data records in these Web sites are contained in dis-
continuous pieces of the DOM (e.g. www.amazon.com), and that
the tag structure representing a given data item can be different

Querying Querying
Without DOM/SDOM With DOM/SDOM

Deep Web Sites SXPath XPath SXPath Abs. XPath Rel. XPath
Cr. Wr. Att. Cr. Wr. Att. Att. Steps Att. Steps Att. Steps

amazon.com ⊙◇ 58 0/0 2.5 43 32.5/15 5 2.5 5.5 6.5 24 13 10
bestbuy.com † 68 0/2 2.2 70 825/0 5 4.2 4.5 3 12.5 2.5 6
bigtray.com ⊙◇ 125 5/0 2 125 130/0 5 4 4.5 3 10 6 7

bol.de † 60 0/0 2 60 15/0 5 2 4.5 3 16.5 3.5 6.5
buy.com † 100 2/0 3.2 100 30/0 5 4.2 5.5 3 19 4.5 8
ebay.com ◇ 258 0/0 3 258 60/0 5 3 5.5 4.5 21 9 7

mediaworld.it †⊙ 125 0/0 2 125 30/0 5 2 5 3.5 21.5 2 5
shopzilla.co.uk †⊙◇ 100 0/0 1.5 100 937/0 5 1.5 4 6.5 23 4 9

apple.com †⊙ 50 0/0 1.4 50 0/0 5 1.4 4 4 14 2 4
venere.com †⊙ 75 0/0 3.2 75 75/0 5 3.2 4.5 3 9 2.5 4
powells.com ⊙ 125 0/0 1.5 125 247.5/0 5 1.5 5 3 11.5 2 4

barnesandnoble.com †⊙ 50 0/0 2.3 50 255/0 5 2.3 4.5 3 15.5 2.5 7
shopping.yahoo.com †⊙ 75 0/0 1.7 75 187.5/0 5 1.7 4 3 21 3 5

cooking.com † ◇ 100 7.5/0 3.2 100 180/0 5 7.2 7.5 8 36 6 9
cameraworld.com †⊙ 125 0/0 2 125 10/0 5 2 5.5 3 11.5 2 4.5

drugstore.com † ◇ 45 0/4 1.5 41 5/0 5 5.5 8 6.5 16.5 2.5 4.5
magazineoutlet.com †⊙ 45 0/0 1 45 125/0 5 1 5 3 21.5 5 9

dealtime.com †⊙ 150 0/0 1 150 20/0 5 1 5.5 3 16 3.5 7
borders.com †⊙ 125 0/0 1.6 125 40/0 5 1.6 6 3.5 18 4 6

google.com/products ⊙ 50 0/0 1.5 50 130/0 5 1.5 5.5 3.5 9.5 2.5 5.5
nothingbutsoftware.com †⊙ 80 0.8/0 2.2 80 55/0 5 4.2 6.5 3.5 28 3 8

abt.com †⊙◇ 200 5/0 1.3 200 0/0 5 2.3 6.5 4.5 27 4 6
cutleryandmore.com †⊙◇ 150 1/0 1.5 150 68/0 5 2.5 5 10 36 4 10

cnet.com †⊙◇ 150 0/0 2 130 0/20 5 2 4 4 17.5 5.5 8
target.com † 50 0/0 3 50 2/0 5 3 5.5 3.5 16.5 2.5 5

Average 2 5 2.7 5.3 4.2 18.9 4 6.6
Total 2535 27.3/6 2506 3459.5/35
Recall 100% 99%

Precision 99% 42%

Table 7: Usability Evaluation of SXPath on Deep Web Pages.

from a record to another (e.g. www.ebay.com), even though records
have the same spatial arrangement in all selected pages.

Experiment 5. In this experiment we aimed to qualitatively
evaluate whether SXPath queries are more general and abstract
than XPath queries given different Web pages and the same ex-
traction task. Firstly, we have considered the subset of Web sites
in the dataset that show the same visual pattern for product names.
Each record is represented by the product image that has at east
more than one product attribute, the first attribute from north is
the product name. Such Web sites are highlighted by ”⊙” in col-
umn 1 of Tab. 7. We have observed that the spatial location path
/CD::img[GS|GN::img][GE::*[W,1][N,2][self::text]]/

GE::text[W,1][N,1] is able to identify product names in all
these Web sites in a sound and complete way. In contrast, pure
XPath location paths for the same subset of sites were all com-
pletely different and no reuse of code was possible. Secondly, we
have asked users to extract lists of friends in social networks listed
in column 1 of Tab. 8. The table, also, gives: (i) in column 2 sound
and complete queries defined by user #6 without looking at the
(S)DOM; (ii) in column 3 the pure XPath location paths that al-
low for extracting friend names produced by the user looking at the
DOM. The variety of location paths produced by users, looking at
the DOM, and listed in Tab. 8 indicates the large heterogeneity of
internal tag structures observed for different social networks.

Social Queries
Networks SXPath Pure XPath
facebook /CD::text()[.="Amici"]/ //div[@id=’profile friends box

CR::*[CR,1]/CD::img/GS::*[N,1] inner content’]/div//div/div/div/a
youtube /CD::text()[.="Amici"]/ //div[@id=’user friends’]//

CR::*[CR,2]/CD::img/GS::*[N,1] div[1]/div/center/a
netlog /CD::text()[.="Amici"]/ //div[@id=’nicknameFriends’]/

CR::*[CR,2]/CD::img/GS::*[N,1] div/div/a[2]
care /CD::text()[.="Friends"]/ //td[@id=’col right’]//

CR::*[CR,1]/CD::img/GS::*[N,1] table[1]/tbody/tr[1]/td/a[2]
bebo /CD::text()[.="Friends"]/ //div[@id=’content Friend’]/

CR::*[CR,2]/CD::img/GS::*[N,1] ul[2]/li/span[2]/a

Table 8: Generality of SXPath Queries on Social Network Sites

Acknowledgements
Work done by Steffen Staab was partially funded by German Na-
tional Science Foundation (DFG) in the project ’Multipla’. Work
done by Ermelinda Oro and Massimo Ruffolo was partially funded
by Regione Calabria in the projects ’Voucher Ricercatori’ and ’Easy-
PA - ID: 1220000277’.

140

