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ABSTRACT
In this paper, we examine the application of various grouping tech-
niques to help improve the efficiency and reduce the costs involved
in an electronic discovery process. Specifically, we create coherent
groups of email documents which characterize either a syntactic
theme, a semantic theme or an email thread. All such grouped doc-
uments can be reviewed together leading to a faster and more con-
sistent review of documents. Syntactic grouping of emails is based
on near duplicate detection whereas semantic grouping is based on
identifying concepts in the email content using information extrac-
tion. Email thread detection is achieved using a combination of
segmentation and near duplicate detection. We present experimen-
tal results on the Enron corpus that suggest that these approaches
can significantly reduce the review time and show that high preci-
sion and recall in identifying the groups can be achieved. We also
describe how these techniques are integrated into the IBM eDis-
covery Analyzer product offering.

1. INTRODUCTION
Discovery is a process in the pre-trial phase of a lawsuit in which

each party involved in a dispute is required to produce relevant in-
formation, records and other evidence related to the case to the
other party. In December 2006, Federal Rules for Civil Proce-
dures (FRCP) [12] codified the requirements of producing relevant
electronic information and records also referred to as electronically
stored information (ESI). These amendments to FRCP gave rise to
electronic discovery or e-discovery which is part of a process for
providing ESI that is relevant to a case to the other party. Examples
of ESI include emails, chat logs and other documents such as word
documents, presentations and spreadsheets.

The rapidly increasing volume of ESI poses an enormously chal-
lenging problem of finding the information that is relevant to a case.
To complicate matters further, 60% the total legal cases warrant
some form of e-discovery and this number is likely to increase over
the next few years according to the Socha Report [21]. These vol-
umes contributed to the first billion dollar year for e-discovery in
2005 and it is projected to increase to $4.8 billion by 2011 [18].

Figure 1 shows the different stages involved in an e-discovery
process [8][9]. The process starts with locating potential sources
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of ESI and determining its scope in the identification stage. This is
followed by gathering ESI from heterogeneous sources for further
use and ensuring that it is protected against inappropriate alteration
or destruction. The collected data is then processed which includes
formatting the data into a canonical form and reducing the volume
of ESI data by context, keywords and patterns. The processed data
is then evaluated for relevance and privilege in the review stage and
is produced to the concerning party in an appropriate media form
in the production stage.

Figure 1: Different stages involved in an e-discovery process.

The huge costs involved in the e-discovery process are gener-
ally attributed to the high cost involved in the review stage. In
this stage documents are categorized as responsive, non-responsive
or privileged. Responsive documents are relevant to the case and
need to be produced, non-responsive documents are irrelevant and
can be skipped, while the privileged document need to be with-
held and cannot be produced. Typically, a team of reviewers use
keyword based search to first determine a set of potentially rele-
vant documents. These documents are then manually reviewed and
categorized. It is this manual processing that is the most resource
consuming. As an example, in the civil lawsuit brought by the
Clinton administration against tobacco companies in 1999 (U.S.
Vs. Philip Morris), 32 million email records from the White House
were made subject to discovery. A set of 200,000 emails along with
attachments was uncovered by using an automated search engine
and Boolean queries. These documents then had to be manually
reviewed on a one-by-one basis to determine the responsiveness to
the case. This took over six months for a team of 25 reviewers
posing a huge cost [1].

In this paper, we propose techniques that have the potential to
help significantly reduce the time required for manual review of
documents. We focus on emails as they are one of the most impor-
tant categories of ESI. Emails are ubiquitous and constitute more
than 50% of the total volume of ESI [8]. Our approach is to present
groups of documents rather than individual documents to an ana-
lyst at review time. The analyst can then mark the whole group as
responsive, unresponsive, or privileged after reviewing some or all
the documents contained in a group. Optionally, the analyst can
also mark only a few documents in a group. The group level view
of documents enables faster reviews because all the documents in
a group have “similar” or related content. Since there are typically
multiple analysts performing reviews, the grouping of documents
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also enables assigning entire groups of related documents to ana-
lysts, potentially making the review process more consistent.

Leveraging information retrieval technologies and techniques de-
veloped for the detection of near duplicate documents, we develop
methods to create three different types of coherent email groups:
(1) grouping syntactically similar emails (along with the detection
of automated messages), (2) grouping semantically similar email
documents, and (3) grouping emails that are part of the same thread
or ”conversation.” In a group of syntactically similar documents,
all documents are either exact duplicates or near duplicates of each
other. Semantic grouping is achieved by associating documents
with legal concepts based on their content. Email thread groups
can be formed based on their reply and forwarding relationships.
We evaluate the effectiveness of these grouping features in terms of
the quality of grouping and show that it can lead to a significant im-
provement in efficiency. Many of the techniques described in this
paper have also been integrated into the IBM product offering for
e-discovery review: IBM eDiscovery Analyzer.

The rest of the paper is organized as follows. In Section 2, we
present an architectural overview of a typical e-discovery review
system. In Section 3, we present the technique that we adopt for de-
tection of near duplicate documents. We use this technique for de-
tecting groups of automated emails in Section 3.4. In Section 4 and
Section 5 we present our methods for semantic grouping of emails
and email thread detection, respectively. We present experimental
evaluations of the proposed techniques in Section 6. We provide
details on how these techniques are integrated into and used in the
IBM eDiscovery Analyzer product in Appendix C. We conclude
and discuss future work in Section 7.

2. E-DISCOVERY ARCHITECTURE
The process of e-discovery starts with locating potential sources

of relevant emails. These emails are collected from multiple sources
and vendor repositories and may be archived in a content manage-
ment repository. An e-discovery review system takes the archived
emails, processes them and provides an interface where a user can
query, manually review and categorize the emails. The gathering
and archiving of emails is typically done by a separate system.

Figure 2: Architecture of a typical e-discovery review system.

Figure 2 shows the architecture of a typical e-discovery review
system. Archived emails are passed through a pipeline of anno-
tators. Each annotator in the pipeline is a piece of software that
processes an email and discovers new features associated with it.
Examples of annotators are named entity annotators which detect
person names, company names, and location names that appear in
the email content, meta fields annotators which identify meta fields
such as sender, recipient, and subject associated with an email,
and language annotators that recognize the languages in which an
email is written. Once an email is processed through these annota-
tors, its content and the newly generated features are indexed. The
index provides the capability of efficiently searching emails based
on words and other associated features such as named entities, lan-

guage, sender, recipient, and date information. An e-discovery re-
view system provides a user interface where such queries can be
formed and the returned set of emails can be reviewed. Emails can
be manually tagged with a predefined set of categories during the
review process. These tags can be used, for example, to indicate
whether an email is responsive, privileged, or unresponsive.

The techniques proposed in this paper are used to provide ad-
ditional features in an e-discovery review system. These grouping
features have the potential to significantly expedite the manual re-
view process.

3. SYNTACTIC SIMILARITY
The problem of detection of near duplicates or syntactically sim-

ilar groups has been an active area of research in the database and
in the Web search communities. In this section, we present a brief
overview of related work and discuss the method adopted for near
duplicate detection of emails in our solution.

3.1 Related Work
Most of the existing duplicate detection techniques can be cate-

gorized into two classes: (1) full content based and (2) signature
based.

Full content based approaches use a vector space model which
treats a document as a “bag-of-words.” One full content based ap-
proach uses the identity measure that is based on the intuition that
similar documents should contain similar numbers of occurrences
of words [14]. Therefore, differences in the number of occurrences
are used as a penalty in computing the identity measure for a pair
of documents. Computing the similarity measure using the entire
document is time consuming and therefore a method based on ran-
dom projection is proposed by Charikar [5]. This method has been
found to be very efficient in a large scale evaluation [13].

Signature based techniques take a sequence of contiguous tokens
or substrings of a document. A popular similarity measure used is
resemblance that compare the number of matching substrings [3,
4]. Two documents are said to be near duplicates of each other if
they share several substrings.

Signature based algorithms differ in their choice of substring
size, hashing function used, and substring selection strategy. Sub-
string size refer to the number of tokens used in each substring.
A large value of substring size would yield several false negatives
while a small value would result into many false positives. Prior
work has suggested that substrings of 3-5 words are good [14]. The
popular hashing functions are SHA1 [4] and Rabin fingerprinting
[11] as they are efficient to compute and have a low rate of hash
collision.

Substring selection strategy is used pick a subset of all the sub-
strings present in a document that is used for hashing and matching.
Various strategies have been proposed in the past which can be cat-
egorized as frequency based, anchor based, hash value based, and
position based. The frequency based strategies select substrings
based on term frequency (tf ) and inverse document frequency (idf )
[6][7]. Methods based on idf are known to be over sensitive to
small changes in the document content and therefore can easily lead
to high false negatives. The anchor based strategies pick substrings
that start with some special character sequences and have been
shown to work effectively [14] [22]. However these approaches re-
quire some manual supervision for identifying the special character
sequences. Hash value based strategies select substrings based on
their hash values. The popular DSC approach [4] selects substrings
with the minimum hash value and uses them to compute the resem-
blance measure. They show that by using a min-wise independent
family of permutation a fixed size sketch can be generated which
preserves the resemblance measure for a pair of documents.
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Algorithm ComputeSignatures (Document d)

% Initialize all n signatures to the maximum value
For (i = 1; i ≤ n; i++)

signaturei = MAX

For each k length character sequence seq in doc d
For (i = 1; i ≤ n; i++)

Let checksumi = fi(seq)
If checksumi < signaturei then

signaturei = checksumi

% Keep only the j lowest significant bits
For (i = 1; i ≤ n; i++)

signaturei = lsbj(signaturei)

Figure 3: Signature computation algorithm.

3.2 Our Approach
For detecting almost identical content, we adopt a signature based

technique. Signature based techniques are not only faster to com-
pute but can also be efficiently stored in an index structure and
can thus easily be used for detecting near duplicates with varying
degrees of similarity thresholds at runtime. Signature based tech-
niques generate a set of signatures for each document and use them
to compute a similarity measure between a pair of documents. We
specifically use the resemblance measure [4] to compute the simi-
larity of a pair of documents which is defined as follows:

Sim(d1, d2) =
S1 ∩ S2

S1 ∪ S2
(1)

where, d1 and d2 are two given documents and S1 and S2 are
the set of all the substrings of length k that appear in d1 and d2
respectively. A high value of resemblance signifies a high similarity
in the content of the given documents.

Figure 3 describes a method ComputeSignatures that generates
n signatures for each document. The method uses n different one-
to-one functions referred to as fi in the Figure 3 that are kept the
same for all documents. Each function is a 64 bit Rabin fingerprint-
ing function. For a given document d, all the k length character
sequences are considered. The value of k is empirially determined
and in our experiments, we use a value of k = 20. Note, that if
the document d contains p characters then there will be p − k + 1
such sequences. For each fi all the p− k + 1 values are computed
and the smallest of them is kept as the ith signature. For efficiency
reasons we keep only the j lowest significant bits for each of the
smallest signatures which is computed by the function lsbj in the
Figure 3. Thus the value of signatures range from 0 to 2j − 1. This
method has some similarities to the method proposed in [10]. It
cannot be proved that these functions are min-wise independent [4]
but they are found to be effective in practice [10] [13].

Assuming a uniform probability distribution on the values, the
probability of two documents having the same signature is 1

2j
, where

each signature is a j bit value. This is the probability that two doc-
uments will have the same signature by chance. The probability
that two documents will have the same m signatures by chance can
be given by ( 1

2j
)m. This value could be very high for low value of

j and m. A high value of this probability will increase the occur-
rence of false positives. We investigate appropriate values for these
parameters in Appendix A.

3.3 Groups of Near Duplicate Emails
Each signature value can be used as a dimension and an email

can be represented as a feature vector in this space. Traditional
clustering algorithms such as K-means or hierarchical agglomera-

Procedure CreateSyntacticGroups(Index I)

For each document d in Index I do
If d is not covered

Let S = {s1, s2, . . . , sn} be its signatures
D = Query(I, atleast(S, k))

% make all the documents in D covered
For each document d in D

d is covered

Figure 4: Creating groups of syntactically similar documents.

tive clustering (HAC) [2] can then be used to create groups of near
duplicate emails. However, the traditional clustering algorithms are
in-memory algorithms and cannot be easily used for huge datasets
with millions of documents. We therefore develop a clustering
method that works out of an index.

For each email n signatures are computed and indexed along
with the content and other meta fields associated with the docu-
ment. We then use the procedure CreateSyntacticGroups outlined
in Figure 4 to create groups of near duplicate emails. It uses a pa-
rameter referred to as k that denotes the minimum number of sig-
natures that needs to be the same for a pair of documents to belong
to the same group.

The procedure finds groups of near duplicate emails by first pick-
ing up an uncovered email d from the index. It then searches for all
the emails that have at least k same signatures as the n signatures
associated with the email d. This set can easily be identified using a
single query on the index using the posting list associated with each
signature value. In the Figure 4, the function Query(I, atleast(S, k))
returns the set of emails that have at least k signatures from the set
S. Other kinds of constraints concerning the hash value of the asso-
ciated attachments can also be included in the query. These kinds of
queries are supported in several off-the-shelf indexing frameworks
such as Lucene1. The returned set forms a set of near duplicate
emails as all of them have at least k same signature values. The
procedure continues with the next uncovered email to find other
groups of near duplicate emails. Note that while reviewing a par-
ticular group at review time, an analyst can change the value of k
to obtain more or less fine grained groups. Creating the group with
a new value of k involves running a single query against the index
and therefore can be done in an on-line fashion.

3.4 Groups of Automated Emails
We observe that there are several types of automated messages

in an enterprise collection of emails. Automated messages are fre-
quently used for various purposes such as automatic reminders,
confirmations, out of office messages, and claims processing. These
messages are typically generated based on a template which con-
sists of some textual content along with a set of fields that are filled
in during message generation. All the messages that are generated
from a single template have almost identical content and are there-
fore near duplicates of each other. Figure 5 shows four example
emails from our large email testing set that are generated automat-
ically along with a possible template (in the rectangular box at the
bottom) that could be used to generate these messages. For each
email, only the subject and content fields are shown. The subject
and content of all the emails are identical except at a few places that
are highlighted in the figure. In our analysis, we found as many as
3, 121 emails in the large 500K email collection that are generated
using a similar template and are near duplicates of the examples
given in the Figure 5.
1http://lucene.apache.org
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Figure 5: (A) Examples of automated messages from an email
collection. (B) A possible template for generating these mes-
sages is shown in the rectangular box at the bottom.

To discover groups of automated emails from the groups of near
duplicate emails we use a simple heuristic. We observe that each
group of near duplicate emails that we discover falls in one of the
following three categories:

• Group of automated messages: These emails are generated
using the same template and are near duplicates of each other.

• Group of bulk emails: A bulk email is an email that is sent
to several people. Therefore there are several copies of the
same email in the collection. By definition these emails are
exactly similar to each other and therefore also appear as a
group in the groups of near duplicate emails.

• Group of forwarded emails: When an email is forwarded its
content may differ from the content of the original email due
to formatting and boundary markers inserted by the email
client or additional text inserted by the user. Thus these
emails are near duplicates of each other and appear in the
same group. These groups also contain emails that are replied
to with extremely short messages and therefore have signifi-
cant overlap with the content of the original email.

To distinguish automated message groups from bulk email groups,
we select only those groups which do not have exactly the same
content for all of its emails. This can be checked by using the hash-
value of all the emails in a group. To distinguish automated mes-
sage groups from forwarded email groups, we select only those
groups in which all the emails have only one segment. When an
email is forwarded or replied the original content of the email is
copied as a separate segment and thus these emails have more than
one segment in them. Identification of segments in an email is de-
scribed in Section 4.3.1 and Section 5.

4. SEMANTIC SIMILARITY
Semantically similar emails are identified by associating them to

a set of concepts that are helpful in identifying responsive, priv-
ileged and unresponsive documents. The legal concepts can be
broadly divided into two categories: focus and filter.

4.1 Focus Categories
As the name suggests, focus categories help to reduce the area of

interest from a large pool of information. These categories identify
mails that are relevant for a case. Focus category annotators iden-
tify emails that fall under this category. It is important to achieve
high recall for focus category annotators since we would not want

to miss out on relevant emails. Focus categories include the follow-
ing: Legal Content, Financial Communication, Intellectual Prop-
erty, Audit Info, Confidential Communication, and Privileged Com-
munication.

4.2 Filter Categories
Filter categories identify emails that are irrelevant and that can

be filtered out to reduce the effort of the manual review process.
Filter category annotators identify emails matching the filter cate-
gories so that they can be filtered out. It is important to achieve
high precision for filter category annotators to ensure that relevant
emails are not filtered out. The filter categories includes following:
Private Communication and Bulk email.

4.3 Implementation
We develop a set of annotators that automatically identify the

concepts present in a document. The concept annotators can be
built using either machine learning or rule based approaches. The
advantage of the rule based approach is that the rules are human
comprehensible and can be tweaked to get the desired results. To
build rules for the concept annotators, we first had to come to a
common understanding of what each concept means. This required
consulting legal experts to understand what they mean by each of
the concepts. We looked up the standard definitions of these con-
cepts from the sources pointed to by the legal experts. The next
step is to codify the definitions of the legal concepts into System
T rules (System T is an information extraction system which uses
AQL, declarative rule language with an SQL-like syntax)[19]. The
main issues that we had to address were as follows:

4.3.1 Email Segmentation
Emails are divided into meta-data like sender and recipient in-

formation, and content fields like subject and body. The body of
an email can be divided into different parts. For example, a typi-
cal email body contains a greeting (such as “Dear XXX”, “Hi” or
“Hello”), the main content, salutation at the end (“Thanks”, “Re-
gards”, etc followed by a name). It can optionally include the sig-
nature of the sender and a footnote text. The footnote can include
standard disclaimers such as “The content of this email is confiden-
tial and subject to attorney-client privilege”. Additionally, many
emails are either replies to previous email threads or contain for-
warded emails. In this case, the email body includes the content
of the email thread being replied to or forwarded. While identi-
fying the concepts in an email, it is important to first segment the
email body since the rules may be applicable to specific parts of the
email. For example, to identify Privileged email, we need to iden-
tify the footnote and check if the footnote contains the privileged
declaration. Segmenting the email body consists of two phases:
1. Splitting the email containing a thread of emails into individual
email blocks, each corresponding to a single email. 2. For each
block, identifying the various parts of the email such as the greet-
ing, content, signature and footer. Splitting the email into blocks is
done by identifying how most of the common email clients include
the content of the email being forwarded or replied to into a new
email. These patterns are then encoded using regular expressions
in the rules. Identifying various parts of a block is done similarly
by identifying patterns that are typically used in emails. For exam-
ple, the footer is most often separated from the rest of the email by
separator line such as “———” or “*********”.

4.3.2 Identifying patterns for concepts
For each concept, we identified a set of keywords and phrases

that are indicative of that concept. For example, keywords such as
“patent”, “copyright”, “NDA”, “tradesecret”, “IP”, “trademark” in-
dicate that the email may be discussing about intellectual property.
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We create a dictionary of such keywords and match it against the
text using rules. Regular expressions are also used to identify pat-
terns that are indicative of certain concepts. For example, mention
of currency figures in an email can be used to identify Financial
Communication. We used regular expressions to encode such ex-
pressions to identify a currency amount in the email content. For
each concept, we wrote multiple rules to identify the basic building
blocks and the relationships between them.

4.3.3 Consolidation
The rules developed for each concept were independent of each

other. Thus, the same email can match rules for different concepts
and can be tagged with multiple concepts. In general, such a situ-
ation can happen in reality and is not a problem. For example, an
email could contain mentions of Financial information as well as
Legal content. However, for specific categories, we may have some
constraints that preclude the same email from belonging to multi-
ple categories. This could be either due to a “implies” or a “con-
tradicts” relationship between the categories. The relationships for
the categories we developed are listed below:

Category 1 Relationship Category 2
Privileged Implies Legal Content
Intellectual Property Implies Legal Content
Privileged Implies Confidential
Bulk Email Contradicts Confidential

To handle these constraints, we make a pass after the concepts have
been identified and eliminate redundant (implied) or contradicting
concepts.

5. EMAIL THREAD DETECTION
As mentioned in Section 1, the goal of email thread detection

is to find and organize messages that should be grouped together
based on reply and forwarding relationships. In this section, we
present a brief overview of related work and then discuss our ap-
proach to email thread detection.

5.1 Related Work
Existing methods for detecting email threads can be separated

into two groups: 1) metadata based, and 2) content based. Meta-
data based approaches make use of email header fields, such as the
In-Reply-To and References fields defined in RFC 2822 [20] to re-
construct email threads [25]. When an email client creates a new
reply message, the In-Reply-To field should be populated with the
Message-ID of the parent message and the References field should
be populated with the contents of the parent’s References field fol-
lowed by the parent’s Message-ID. As a result, the In-Reply-To field
of an email could be used to determine its parent-child relationship
and the References field could be used to determine all the emails
in the same thread. However, since these header fields are optional
for email clients, they are not always available. This is especially
true in large archived email collections that span a variety of email
clients. In general, we cannot rely on the availability and consis-
tency of these header fields for email thread detection.

There are a number of approaches to email thread detection that
make use of the actual email content. Some of these content based
approaches look only at specific fields. For example, Wu and Oard
([23]) links emails together that have the same normalized sub-
ject field values. Klimt and Yang ([15]) additionally examines the
sender and recipient fields and only groups messages into the same
thread if they have the same normalized subjects and have at least
one sender/recipient in common. Other approaches look at the main
content of the emails. For example, Lewis and Knowles ([16]) de-
termines if a message is a response to another message by searching
for the quoted part of the message in the unquoted parts of the target

Figure 6: Example emails with segmentation boundaries and
email segments.

messages. To efficiently perform the search, they use an informa-
tion retrieval approach by indexing the messages and then creating
a query using the quoted part of the message to search the index.
Yeh and Harnly ([24]) use a similar technique but add additional
constraints on the subject, date, and sender/recipient fields. They
preprocess the email using a set of regular expressions to separate
the reply and quotation parts of the email and use a unigram overlap
metric to measure similarity between any two messages.

5.2 Our Approach
Typically when replying to an email, the contents of the old email

exist in the newly composed reply email as a separate segment.
Thus a segment in an email captures one communication turn and
an email may contain several segments if it is part of a long run-
ning email conversation. The segments associated with an email
can be used to compute a containment relationship between pairs
of emails. An email ei is said to contain another email ej , if ei ap-
proximately contains all the segments of ej . Figure 6 shows two ex-
ample emails where the first email contains the second email. This
is true because all the segments that appear in the second email are
also present in the first email. These segments may appear with
slight variations across different emails. The variations may be
caused by different email clients inserting some formatting syntax.
The segments may also change because a user might insert some
additional text in the old segments as she responds to an email. A
thread can be constructed by first discovering an email that contains
only a single segment. Other emails in a thread can then be deter-
mined based on containment relationships with the existing emails
in the thread.

Our approach to email thread detection is a content based ap-
proach that relies on the availability of the email history and lever-
ages near duplicate detection and information retrieval techniques.
It consists of four stages: 1) email segmentation, 2) near duplicate
signature computation of the email segments, 3) segment signa-
ture indexing, and 4) runtime thread group identification and thread
structure generation.

First, we attempt to identify all the segments present in an email.
To do this, we manually defined rules to identify email segment
boundaries using the IBM System T information extraction sys-
tem [19]. We used a set of several hundred manually marked ref-
erence emails spanning a variety of email clients and languages to
guide our rule writing efforts. We use SystemT because it allows
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us to write complex rule sets that can be efficiently executed as an
annotator within the context of a UIMA processing pipeline2. Once
the boundaries in an email are identified, we take the content in be-
tween the boundaries as the segments of the email. Figure 6 illus-
trates the email segments generated by this first processing stage.

Next, we generate a segment signature for each segment in an
email using the near duplicate detection technique described in Sec-
tion 3. The segment signatures represent the content of the email
segments for the purpose of email threading and are used to de-
termine the containment relationship between a pair of emails. The
use of near duplicate signatures allows us to handle small variations
in the segment content.

To support efficient runtime email threading, we adopt an infor-
mation retrieval approach and index the segment signatures into the
search index similar to what is done for near duplicate document
detection. This indexing allows fast retrieval of the segment signa-
tures associated with a specific email message and also allows fast
identification of the email messages that have a specific segment
signature.

Finally, at runtime, we make use of the email segment signature
index to perform thread group identification and thread structure
generation. To identify the thread group for a selected email mes-
sage, we first retrieve all the segment signatures associated with
that email. Next, we determine the root segment which should cor-
respond to the initial email in the thread group. If the email has
only one segment, then that segment becomes the root segment. If
the email has multiple segments, we select the last non-empty email
segment as the root segment. We then create a query consisting of
the root segment signature and search for all messages that contain
the same root segment signature. The resulting message set should
contain all the emails in the same thread. At this point we have
enough information to get a count of the number of messages in
the thread and a list of the emails in the thread. Additional process-
ing can then be performed to organize the emails in the thread into
a hierarchical tree structure based on containment relationships. To
do this, we first find an email in the group that contains only a single
segment and assign that email as the root node of the thread hier-
archy. Next, we find emails in the group with two segments that
contain the first segment and make them child nodes of the root
node. Then we find emails in the group with three segments and
make each a child of a two segment node that is contained by the
three segment email. We continue this processing until all emails
in the thread group have been linked into the thread hierarchy.

This runtime processing is illustrated in Figure 7. Let’s assume
that the selected email is Email1. This email has segment signa-
tures A, B, and C with the root segment signature being identified
as A. Searching for emails with root segment signature A returns:
Email1, Email2, Email3, Email4, and Email5. This set of five
emails belongs to the same thread group. Email4 is identified as
the root node since it has only one segment and the constructed
thread hierarchy based on containment relationships is shown in
Figure 7.

6. EXPERIMENTS
In this section, we present experimental evaluations of the pro-

posed techniques and show their effectiveness for the e-discovery
review process. We investigate the performance of automated mes-
sage detection, semantic grouping, and email thread detection. Ex-
periments evaluating the performance of the underlying near dupli-
cate document detection techniques are described in Appendix A.
For most of our experiments, we use a large real-world email cor-
pus that contains over 500,000 emails from about 150 users [15].
We also present the results of a small user evaluation on reviewing
2http://incubator.apache.org/uima

Email Id Segment Signatures
Email1 A, B, C
Email2 A, B, C, D
Email3 A, D, E
Email4 A
Email5 A, B
Email6 X, Y
Email7 X, A

Figure 7: Example emails and the resulting thread hierarchy.

documents with and without syntactic, semantic, and thread group-
ing in Appendix B.

6.1 Automated Message Detection
To evaluate our method for detecting groups of automated mes-

sages, we manually selected a set of 641 emails from the large
email set which are generated using 6 different templates. There-
fore, these emails can be grouped into 6 clusters corresponding to
the different templates. We refer to this clustering as the reference
clustering.

We generate 10 near duplicate signatures for each email and in-
dex them as described in Figure 3. We then create groups of auto-
mated messages by clustering this dataset with varying similarity
threshold values using the procedure described in Figure 4.

For each cluster, we calculate its precision by looking at each
pair of documents that appears in it and checking whether the pair
appears in the same cluster or not in the reference clustering. If a
cluster contains only a single document then its precision is defined
to be 1. We present the results in Table 1. For each similarity
threshold value, we give the number of clusters obtained and the
average precision.

Threshold (%) No. of Clusters Avg. Precision
90 110 1.0
70 18 1.0
50 6 1.0
30 6 0.9
10 3 0.4

Table 1: Automated message detection precision.

We observe that on this data set, our proposed method of clus-
tering is able to achieve 100% precision when using a similarity
threshold of 50% or higher. The precision drops off quickly af-
ter that. With a similarity value of 50%, we are able to discover
the reference clustering exactly. For higher values of the similarity
threshold, we observe that a single cluster in the reference clus-
tering can get fragmented into many clusters. Therefore, we get
increasing numbers of clusters with higher values of the similarity
threshold. As a result, using a high similarity threshold value may
not be advantageous for the manual review process as an analyst
would need to review a larger number of clusters. From this exper-
iment it seems that it is better to use a medium similarity threshold
value in order to get a smaller number of clusters while maintaining
a high level of precision. We should note that 100% precision may
not be possible in all cases and results would vary based on the type
and actual content of the data.

6.2 Semantic Grouping
For evaluating the quality of semantic groups, we sampled 2200

emails from the large email collection using a set of generic key-
words and then manually labeled them in one or more of the fol-
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lowing five categories: (1) Confidential, (2) Financial Communica-
tion, (3) Intellectual Property, (4) Legal Content, and (5) Privileged
Communication. The manual creation of this dataset provided us
insights into the concepts and helped us in building the rules. We
therefore refer to this dataset as “train dataset” in this section. In
order to check completeness of our rules we also asked two other
candidates who were not involved in the building of rule based an-
notators to create a dataset which we refer to as “test dataset”. Ta-
ble 2 provides details of “train” and “test” datasets.

Class Train Test
Confidential 406 21

Finance 1215 54
Intellectual Property 153 22

Legal Content 553 41
Privileged 433 34

Table 2: Data set used for semantic grouping experiments.

In order to see how our rule based approach compares with the
machine learning based approach, we pose the annotation problem
as a classification problem. We use naı̈ve Bayes classifier and build
a two class classifier for each class. We use the rainbow toolkit
implementation for naı̈ve Bayes [17]. For Rule based annotators we
evaluate on “train dataset” as well as for “test dataset”. For naı̈ve
Bayes classifier we use “train dataset” for training the classifier and
“test dataset” for testing the classifier. For each class we build a two
class classifier by creating a class called “Others” by combining
emails from all the other classes. Table 3 presents the precision
and recall numbers for rule based (RB) approach as well as for the
naı̈ve Bayes classifier.

Class RB (Train) RB (Test) Naı̈ve Bayes
P R P R P R

Confidential 77 87 100 57 22 71
Finance 91 92 52 92 63 94

Intellectual Property 83 92 75 100 79 46
Legal Content 83 82 58 95 34 51

Privileged 87 97 89 94 52 91

Table 3: Semantic grouping precision and recall.

The performance of rule based annotators on the “train dataset”
is better than the performance on the “test dataset.” The table
also illustrates that the performance of rule based annotators is al-
ways better than the one achieved by naı̈ve Bayes classifier. Naı̈ve
Bayes performs particularly badly for Confidential and Legal Con-
tent classes. This is due to the consolidation rules. Many emails
that have terms indicating confidentiality are also privileged. Since
the Privileged category is given a higher priority, these emails are
not included in the Confidential class and are included in the Other
class of Confidential. This leads to a poor classifier for Confiden-
tial since the discriminating terms for the Confidential class occur
in both the Confidential and the Other class used while training the
classifier. Similar reasoning holds for the Legal Content class since
it is also given a lower priority by the consolidation rules.

6.3 Email Thread Detection
Email thread detection performance is quantified in terms of pre-

cision (P ) and recall (R) which are defined as follows: P = C
N

and
R = C

D
where C is the number of correctly identified near dupli-

cate documents, N is the total number of near duplicates identified,
and D is the actual number of near duplicates. A single number per-
formance measure that is also commonly used is the F1-measure
which is defined as the harmonic mean of precision and recall:

F1 =
2 ∗ P ∗R
P +R

(2)

In order to compute the precision, recall, and F1 performance
measures, we need to have a collection with labeled email thread
information. We need to know which thread group each email be-
longs to. Unfortunately, the large email data set we had did not
have this thread information available. But we could generate an
approximation to this ”ground truth” thread information using the
following procedure.

One simple way to identify emails that are likely part of the same
conversation or email thread is to compare the subject field in the
emails. In a typical email conversation, when a user replies or for-
wards emails, email systems prefix the original subject with ”Re:”,
”Fwd:” etc. If we normalize the content of the subject field to re-
move such prefixes, and then retrieve a set of emails that have the
same normalized subject field, we get a set of emails that are po-
tentially part of the same ”thread.” Of course, it is possible for a
sender to change the subject entry. And of course, for very generic
subjects such as ”Hello” or ”Lunch?” the approximation does not
work very well - but we think that for most cases it is useful.

For a given email, we queried the collection and retrieved email
threads using our method described in Section 5 as well as the
heuristic approach based on the normalized subject field. Let the
set of emails returned, as part of the thread, using our method be
T1 and those returned by the heuristic normalized subject approach
be T2. We then manually verified the emails contained in both
email thread sets T1 and T2. Let the set of correct emails (emails
that are actually part of the thread) in T1 be C1 and let C2 be the
set of correct emails in T2. Then the set of correct emails T is :

T = C1 ∪ C2 (3)

Thus, T approximates the ground truth for email threads - i.e., the
correct set of emails that should be part of an email thread for a
given email. This T can then be used to determine the number of
correctly identified emails in the thread and the actual total number
of emails in the thread values needed for computing the precision
and recall performance measures.

To evaluate the performance of our email thread detection method,
we randomly selected 100 emails from the large email set and used
our system to retrieve email threads for each of the 100 emails. We
also retrieved email threads using the normalized subject method.
The results are shown in Figure 8. The average thread depth, i.e.,
number emails in a given thread, is 3.13 .

In order to study any impact of our approximation of ground
truth of email threads, we used a separate small email data set
which had thread information available. This data set has 1000
emails and contains approximately 100 email threads with an aver-
age thread depth of 6.23 . We randomly selected 50 emails and used

Figure 8: Results using the large email collection.
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Figure 9: Results using the small email collection.

our system to retrieve email threads for each of the 50 emails. We
also retrieved email threads using the normalized subject method.
The results are shown in Figure 9.

We notice that the results are comparable for both data sets. In
both cases we find that, while the subject normalization approach
shows slightly higher recall, our method shows much higher pre-
cision. The F1-measure for our email thread detection approach is
approximately 0.8 which is higher than the 0.7 value for the sub-
ject normalization approach. The precision for our approach is 0.91
which is significantly higher than the precision of 0.62 value for the
subject normalization approach.

7. CONCLUSIONS AND FUTURE WORK
We presented approaches to detect syntactic groups, semantic

groups and email threads that leverage near duplicate detection and
information retrieval techniques. The detection of automated mes-
sages (including near-duplicates) and email threads allows multiple
emails to be reviewed, categorized, and processed together in the
appropriate context which can help lead to more efficient and con-
sistent reviews. We also showed the potential of large savings in the
review time by evaluating our methods on a large email collection.
Many of these approaches have been integrated into the IBM eDis-
covery Analyzer product offering and is described in Appendix C.

There are a number of possible areas for future work. One area
is in developing improved user interactions. For example, provid-
ing an easy way for the user to see the differences between emails
that have been grouped together as automated messages, near du-
plicates, or email threads could be a very useful and time-saving
feature. A second area of potential work is to productize some
of the advanced capabilities such as categorizing near duplicate
message groups (synactic groups) into automated messages, bulk
emails, and forwarded emails and organizing the emails in a thread
group into a tree structure.
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APPENDIX
Appendix A describes the experiments for the evaluation of the
near duplicate detection technique used in the paper for grouping
emails. Appendix B presents a small user study that shows how
auto-grouping of emails can significantly reduce the time needed
for document reviews.” Finally in Appendix C, we describe the in-
tegration of many of these features into IBMs eDiscovery Analyzer
product offering.

A. NEAR DUPLICATE DETECTION
In this experiment, we measure the quality of the near duplicate

emails detected by our proposed method. Similar to email thread
detection, near duplicate document detection performance is quan-
tified in terms of precision and recall. Since we did not have a list
of all the near duplicate documents for a given document in the
large email set we used, it will have been very difficult to quantify
the recall of our method. As a result, in this experiment we only
focused on the precision of the returned set of near duplicates.

For quantifying precision, we manually reviewed sets of near
duplicate emails returned in response to 500 queries. The queries
were constructed using a randomly selected set of 15 emails. We
measured precision as a function of two variables: 1) the number of
bits used to store the signatures and 2) the level of similarity thresh-
old used for search. We experimented with a minimum of 6 bits to
a maximum of 14 bits for storing signatures. In all cases, 10 sig-
natures are generated for each email. For the similarity threshold,
we experimented with a maximum of 100% similarity to a mini-
mum of 50% similarity. Note that the similarity threshold values
are translated into a minimum number of signatures that needs to
be shared by a document for it to be considered a near duplicate of
the given document. Note that using a similarity threshold level of
100% is not the same as finding exact duplicates using a hashing
function such as MD5. Emails may have exactly the same signa-
tures (e.g., 100% similarity) even if their contents differ slightly
whereas their MD5 values will be completely different. Figure 10
shows the precision for various configurations. We observe that the
precision drops drastically when we use only 6 bits for each sig-
nature. We observe, in this particular case, a precision of 100%
even with a low similarity threshold of 50% when we use more bits
(10, 12 and 14 bits) for the signatures. It is, of course, not clear
that 100% precision would be possible in all cases. Results would
vary based on the type and actual content of emails. These results
support the observation made in Section 3 that lower values for bits
per signature and lower levels for similarity threshold have a higher
probability of false positives.

Since it is important to use more bits to represent the signatures,
we next examined the impact of the signature bit size on the size of
the index. For this experiment, we generated ten signatures for each
email and varied the range of each signature from 6 bits to 14 bits
with an interval of 2. In our index, we do not have a provision for
storing integers and rather store them as strings. Figure 11 shows
the increase in index size as a function of the number of bits used
for each signature. Overall, the storage requirement for signatures
is very modest. Even after storing ten signatures of 14 bits for every
document, the index size increases by less than 1.9%.

In our next experiment, we investigated how much near duplicate
document detection can help in the review process. As pointed out

Figure 10: Precision of results obtained for several emails with
different size signatures and similarity threshold.

Figure 11: Increase in index size for storing signatures.

earlier, since we cannot measure the recall of our method (due to
unavailable reference assessments), we instead computed the num-
ber of near duplicate emails that can potentially be determined us-
ing our method with a precision of 100%. We are able to do this
since we manually reviewed the near duplicate email sets returned
by the system. We create sets of documents such that all the near
duplicate emails are grouped together. In this test, we used 14 bits
per signature and generated near duplicate sets with varying lev-
els of similarity threshold ranging from 100% to 50%. Since most
of the content of the emails in a set is the same, all emails in the
set can be reviewed together which can potentially save a lot of
review time. Figure 12 shows the number of near duplicate sets ob-
tained in the large email collection with varying levels of the sim-
ilarity threshold. The graph shows that only 33.4% of the emails
are unique at a similarity threshold of 50%. Therefore, more than
66% of the emails are either exact or near duplicate messages. The
results suggest that identifying exact or near duplicate emails or
messages and reviewing them together as a group can lead to sig-
nificantly reduced review times.

The large email set contains many exact duplicates. In our next
experiment, we quantified the number of exact duplicate documents
so we can get a clearer picture of how many additional documents
are detected by the near duplicate method. To detect exact dupli-
cates, we used the MD5 hash algorithm on the email contents. Fig-
ure 13 shows the number of emails with a certain number of copies
in the large email set. Note that the vertical axis in the graph is in
Log scale. This is a power distribution showing a large number of
emails with a small number of copies and a small number of emails
with very large numbers of copies. We found 116,728 emails that
had no copies. At the other extreme, we found one email that has as
many as 112 exact duplicates in the set. Overall we found 51.8%
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Figure 12: Decrease in number of sets that need to be reviewed
using near duplicate detection.

Figure 13: Distribution of exact duplicate emails.

of the email messages to be unique. Since the near duplicate detec-
tion processing found only 33.4% of the emails to be unique (at a
similarity threshold of 50%), this means that the near duplicate pro-
cessing is able to account for an additional 18% of the documents
over exact duplicate processing. Even with a similarity threshold
of 100%, the near duplicate processing is able to account for an ad-
ditional 6.9% (51.8 - 44.9) of the documents over exact duplicate
processing.

B. USER EVALUATION
In order to understand the benefits obtained by the group level

view of documents for presentation in the e-discovery review pro-
cess, we created a dataset consisting of around 150 emails. Of these
150 emails, 32 emails were picked up from the subset3 of Enron
corpus which was manually annotated by a group of people at uni-
versity of California, Berkley and are related to company policies.
We mixed around 120 emails with them which were not related
to company policies. To showcase the benefits obtained form the
group level review, we purposefully picked up emails that could be
clustered in a few number of groups. We then asked 3 analysts to
independently review the dataset and find all the emails related to
company policies. All the analysts were asked to review the dataset
twice, once without the group level view and again with group level
view of the dataset. The group level view had 28 different groups
to be reviewed. Table 4 presents the time taken and accuracies ob-
tained for both the cases.

As expected, there is a significant decrease in the time taken to
review the dataset with the group level view. This is true for this
dataset as there were several emails that could be grouped. The

3http://sgi.nu/enron/use.php

User Time Accuracy Time Accuracy
(no groups) (groups)

User 1 33 mins 87.5% 6 mins 100%
User 2 45 mins 93.7% 8 mins 100%
User 3 42 mins 100% 8 mins 100%

Table 4: Results of user study on grouping effectiveness.

real gains obtained from the grouping will heavily depend on the
existence of such emails in a dataset. More interestingly the table
shows that 2 of the 3 analysts miss to flag some emails when they
review emails without group level view leading to a lower accuracy
of their review. This signifies that we get improved consistency in
the review process with the group level treatment of documents.

C. INTEGRATION INTO THE
IBM EDISCOVERY ANALYZER

The IBM eDiscovery suite is a set of tools that can be used to
collect, organize, manage, and retrieve relevant information from
multiple sources and vendor repositories as an aid during litigation.
The IBM eDiscovery suite 4 consists of:

• IBM ContentCollector (ICC) for collecting enterprise ESI from
multiple sources and vendor repositories

• IBM P8 and CM8 content management repositories for man-
aging and archiving the collected data,

• IBM eDiscovery Manager (eDM) for searching, culling, hold-
ing, and exporting case-relevant ESI , and

• IBM eDiscovery Analyzer (eDA) for providing conceptual
search, analysis, and organization of ESI data

IBM eDiscovery Analyzer is the e-discovery review tool that can
be used by legal professionals and litigation support specialists to
help them quickly to refine, analyze and prioritize case-related ESI
after it has been collected in content management repositories using
ICC and processed and culled using eDM. The advanced search,
navigation, and reporting features in eDA can be used to identify,
flag, and organize the documents. These tools can help the users to
identify relevant (non-responsive and responsive) documents. Doc-
uments can be flagged for further review.

The eDA product provides a good functional framework into
which the near duplicate, automated message, semantic grouping,
and email thread detection technologies can be integrated to pro-
vide additional and relevant value.

C.1 Syntactic Groups
There are two primary scenarios related to this goal that we at-

tempt to address with our eDA product. In the first scenario, the
user would like to have the system detect near-duplicates automat-
ically and alert him about the existence and number of such doc-
uments. In the second scenario, the user is looking at a specific
document (via a document preview functionality) and would like
to run a search to help her identify any near-duplicates of that doc-
ument. To support the first scenario, a link is placed in the search
results row for documents where the system was able to automati-
cally detect one or more near-duplicates with a very high similarity
threshold as shown in Figure 14-A.

The link shows the number of such near-duplicates and says
“View all N near duplicates of this document” where N is the num-
ber of near-duplicates. Results without any detected near-duplicates
will not have this link. Clicking the link will run a search for
4http://www-01.ibm.com/software/data/content-
management/ediscovery.html
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the near-duplicates and show them in-lined in an expanded result
row as illustrated in Figure 14-B. At this point, the link changes to
“Hide all N near duplicates of this document”. Clicking the link
again will collapse the result row and revert the query. To flag all
of the identified near-duplicate documents, the user can check the
“Select all’ box (Figure 14-C) and then click the flag button (Fig-
ure 14-D) to bring up a flagging dialog to select the flags to apply
to the set of near-duplicate documents.

To support the second scenario, a new button has been added
to the document preview screen as shown in Figure 15-A. When
clicked, it brings up the near-duplicate search dialog shown in Fig-
ure 15-B. This dialog allows the user to specify the near-duplicate
match threshold (to return more or less documents) and issue a new
search to look for identified near-duplicates of the document cur-
rently being viewed.

C.2 Semantic Groups
The semantic groups discovered are shown in the IBM eDiscov-

ery Analyzer UI as a panel on the screen (shown in Figure 16). The
groups names can be clicked to filter the current search result set to
only show the emails belonging to that group. Multiple groups can
be selected to perform the results filtering.

C.3 Email Thread Detection
The contents of a case will typically contain email messages that

belong to the same thread. Similar to the case of near-duplicate
documents, it would be more efficient for the analyst to handle,
view, and flag these threaded email messages together as a group in
the appropriate context.

The primary use case that we attempt to address in eDA is to
allow the user to use eDA to detect threaded email messages and
alert him about the existence and number of such messages. In
addition, eDA will allow the user to look at that subset of messages.

A link is placed in the search results row for documents where
the system was able to automatically detect one or more email mes-
sages in the same thread as shown in Figure 17. The link shows the
number of threaded messages and says “View all N e-mails in this
thread” where N is the number of messages. Results not belonging
to any detected email threads will not have this link.

Clicking the link will run a search for the messages in the thread
and show them in-lined in an expanded result row as illustrated in
Figure 17-A. The emails are sorted by date so that the initial email
in the thread is listed first.

Figure 14: (A) Near-duplicate document link. (B) Expanded
result row showing the near-duplicates for this document. (C)
“Select all” documents check box. (D) Flag documents button.

Figure 15: (A) Near-duplicate search button in the document
preview screen. (B) Near-duplicate search dialog.

Figure 16: Panel showing semantic groups.

Figure 17: (A) Expanded result row showing the messages from
the same thread as this document. To flag all of the threaded
messages, the user can check the “Select all’ box (B) and then
click the flag button (C) to bring up a document flagging dialog.
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