
HIWAS: Enabling Technology for Analysis of Clinical Data
in XML Documents

Joshua Hui
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

(1) 408 -927-1721

jhui@us.ibm.com

Sarah Knoop
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

(1) 408 -927-2622

seknoop@us.ibm.com

Peter Schwarz
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

(1) 408 -927-1750

schwarz@almaden.ibm.com

ABSTRACT

The information contained in large collections of clinical data can
be used for many valuable purposes, such as epidemiological
studies, evidence-based medicine, monitoring compliance with
best clinical practices, and cost-benefit analyses. However, the
emerging standards for the electronic representation of clinical

data, such as the Clinical Document Architecture (CDA) [4], are

very complex and new tools are required to effectively extract and
utilize the information contained in these documents.

In this paper, we present HIWAS, a research prototype of a new
tool that creates a structural summary of a collection of XML
documents, thereby enabling users to find relevant information for
a specific purpose within complex XML documents. A HIWAS
user can create a target model that contains just the information
they need, in a simplified representation that can be queried
efficiently and is compatible with existing relational business
intelligence technology. By making these complex XML
documents digestible with conventional tools, HIWAS lowers a
key barrier to meaningful use of aggregated clinical data.

1. INTRODUCTION
Around the world, governments are taking steps to encourage the
electronic interchange of healthcare information. A key part of
this effort is the development of standards for the representation
of clinical data, so that information produced by one organization
can be consumed and acted upon by another. For example, in the
United States, recent rulings by the Department of Health and
Human Services have identified the establishment of such
standards as a critical step on the path to achieving “meaningful
use” of electronic medical records. In addition to the obvious
benefit of better care coordination for individual patients, the
information contained in large collections of electronic health
records can be used for many other valuable purposes, such as
epidemiological studies, evidence-based medicine, monitoring
compliance with best clinical practices, cost-benefit analyses, and
more. Although they were originally conceived as a medium for
information exchange, standard-compliant documents are now

increasingly being considered as a useful long-term storage
representation for clinical data, thanks to their flexibility,
extensibility, and ability to accurately preserve the context of a
clinical event

A leading contender among the proposed standards for healthcare
data is the XML-based Clinical Document Architecture (CDA),
developed by the international healthcare standards organization

Health Level Seven (HL7) [14]. The standard was designed to

facilitate several goals, among them the ability to represent
virtually any kind of clinical data. While this flexibility is one of
the key benefits of CDA, it also poses significant challenges for
the design of software intended to aggregate and analyze large
collections of clinical data obtained from a variety of sources. In
the first place, today’s business intelligence tools, such as IBM

Cognos [17], BIRT [5], SAS [30] or SPSS [21] are primarily

designed to work with data in a tabular format, as one might find
it in a relational database or spreadsheet. Therefore, data
represented in XML must be converted to relational form before
these tools can be applied, and a naive choice for the relational
representation can result in poor performance on analytic queries.
Furthermore, although numerous schema-mapping tools have

been proposed and/or built, including Clio [10], Altova

MapForce [1], and Stylus Studio [28], all of them rely heavily

upon XML schemas as the means for describing the source, target
and implementation of the mapping. The same is true of typical
Extract/Transform/Load (ETL) tools, such as IBM Infosphere

DataStage [18], and Oracle Warehouse Builder [27]. However, as

we discuss in greater detail in the next section, the size,
complexity and generic nature of the CDA schema makes such
tools difficult to use in practice for this application.

This paper presents HIWAS, a research prototype for a new kind
of tool that lowers these barriers to analyzing the information
contained in large sets of standard-compliant healthcare
documents. Although we focus specifically on the Clinical
Document Architecture in this paper, the same model-driven

methodology [12] was used to develop the entire family of HL7

Version 3 messaging standards [11], and similar methodologies

are employed in other industries as well. The HIWAS tool gives
those who work with such documents the ability to find the
information they need for a particular purpose and extract it in a
representation that can be analyzed using the primarily relational
business intelligence technology that is available today.

Several key aspects of HIWAS differentiate it from other tools in
this space. First, HIWAS inspects the collection of documents to
be analyzed and builds a structure called a Semantic Data Guide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1260

(SDG) that focuses the user’s attention on those structural variants
that actually exist in the collection, typically a much smaller set
than those theoretically allowed by the schema. Secondly,
HIWAS identifies document elements in the SDG with
semantically-meaningful names derived from supplemental
information, rather than generic element names derived solely
from the XML schema. Lastly, HIWAS allows the user to
selectively drag-and-drop elements of interest from the SDG into
a target model that is constructed incrementally, rather than
requiring a target schema to be constructed prior to mapping.

The remainder of this paper is organized as follows. In the next
section, we provide additional background on the Clinical
Document Architecture, to illustrate the mechanisms used in a
typical XML-based healthcare standard to control document
structure, and to show why accessing the information from such
documents can be so challenging. In Section 3, we describe the
warehousing environment in which our tool is intended to
function, and provide an overview of how it is used. Section 4
describes our technology for summarizing the structural variations
in a collection of documents and for finding information of
interest, and Section 5 describes how a user can select, extract and
restructure information for analysis with conventional tools.
Section 6 presents a study, in which we built a purpose-specific
warehouse from data contained in a collection of public health
documents, and details the benefits we derived from using
HIWAS. Section 7 summarizes the contributions of this work and
outlines potential future improvements.

2. ANALYZING STANDARD-COMPLIANT

HEALTHCARE DATA
As we noted in the introduction, XML-based standards like the
Clinical Document Architecture pose several challenges for
analytic applications. Some of these challenges come from the
details of how the CDA standard represents clinical data, but
others are more general and likely to apply in many situations
where analysis of complex XML documents is required. We
discuss both types of challenge in this section.

2.1 Generic Challenges for XML Analytics
Although XQuery and XML database technology have been
around for some time, the vast majority of the marketplace relies
on relational technology for querying, aggregation, ETL and
report generation. In part, this is because relational technology is
more mature, leading to better performance, especially on

complex analytic queries. Beyer et al. [2] point out that XQuery,

as originally specified, lacks key constructs for expressing OLAP-
style queries, and workarounds using other constructs can lead to
poor performance. Some of these shortcomings have been
remedied by the adding a grouping construct to the language, but
OLAP-style queries are still complex and difficult to write.
Another important consideration is the need to integrate data
represented in XML with reference information from other
sources that is typically available in tabular form. For example, in
a public health laboratory report, a laboratory test may confirm
the presence of a specific strain of Salmonella, say Salmonella
tennessee 6,7,14;z29;1,2,7. In the report, this kind of information
would be represented as an observation whose value is a clinical

code, say from SNOMED CT [25], that specifically identifies this

organism. One can easily imagine, however, that a public health
agency might want to count the number of Salmonella incidents

for a given location and time period, regardless of specific strains.
The challenge is that each document bears the precise code of the
Salmonella serotype identified, and not the relationship with the
genus Salmonella. The latter information is captured in the code
system, which in the case of SNOMED CT includes over 300,000
concepts and their relationships, all of which is external to the
documents being analyzed. This is but one example; clinical data
typically contains coded values for many concepts, such as
diagnoses, medications, and even mundane things like postal
codes, all of which need external reference data to be interpreted
and/or aggregated.

In theory, it should be possible to pose the necessary queries in

SQL/XML [8] or a similar language, and execute them on a

database management system that supports queries across both
relational data and XML, such as IBM DB2 or Oracle. Our
experience, however, has been that this approach is also quite
difficult in practice. The complexity of the CDA documents (see
below) makes these queries hard to write, and good performance
is hard to achieve. Another alternative is to transform all or part
of the XML data, and store it in relational form. However, naïve
approaches to relational storage can also result in poor
performance. We advocate transformation to a carefully-designed
hybrid relational-XML schema, tailored to a specific set of use
cases, that places key attributes in tables for easy retrieval and
integration with reference data, while preserving rarely-used
information in snippets of XML. HIWAS is a design-time tool
intended to help domain experts with limited knowledge of the
CDA standard create such transformations. In Section 3, we will
describe in greater detail how HIWAS is used, but first we
describe some particular characteristics of the CDA standard that
make designing such transformations difficult with existing tools.

2.2 Designing Transformations for CDA
While the challenges outlined above apply to many situations
involving analysis of XML data, particular aspects of the Clinical
Document Architecture exacerbate these problems and introduce
some additional ones. To start with, the CDA schema is very
large and complex. Table 1 provides some statistics that illustrate
the sheer size of the schema, which also includes mutually
recursive types and other complex constructs.

Table 1 Statistics for the CDA schema.

 Number

Elements (with different types) 951

Attributes within unique elements 492

Complex types 220

Simple types 2016

Although the number of types and elements is large, a typical
document only makes use of a small number of these types. See
Section 6 for additional statistics that characterize some specific
kinds of documents.

The size of the schema is not the only source of complexity. The
following fragment of a CDA-compliant document illustrates
some additional issues.

<observation classCode="OBS" moodCode="EVN">
 <templateId root="2.16.840.1.10.20.1.28"/>
 <id root="ab1791b0-5c71-b0de-0800200c9a66"/>
 <code code="282291009"
 displayName="Diagnosis"

1261

 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED CT"/>
 <text>
 <reference value="#prob-1"/>
 </text>
 <statusCode code="completed"/>
 <effectiveTime value="20070509"/>
 <value xsi:type="CD" code="46177005"
 displayName="End-stage renal disease"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED CT">
 <translation code="584.9"
 codeSystem="2.16.840.1.113883.6.103"
 codeSystemName="ICD-9"
 displayName="Acute kidney failure“/>
 </value>
 <entryRelationship typeCode="REFR">
 <observation classCode="OBS"
 moodCode="EVN">
 <templateId root="2.16.840.120.1.50"/>
 <templateId root="2.16.840.120.1.57"/>
 <code code="33999-4"
 displayName="Status"
 codeSystem="2.16.840.1.113883.6.1"
 codeSystemName="LOINC"/>
 <statusCode code="completed"/>
 <value xsi:type="CE" code="55561003"
 codeSystem="2.16.840.1.113883.6.96"
 displayName="Active”
 codeSystemName="SNOMED CT"/>
 </observation>
 </entryRelationship>
</observation>

Note that many elements in this document fragment (and their
types) are generic, like observation. Knowing the name or

type of such an element provides very little information about the
semantics of the data it contains. Such generic schema elements
facilitate stylesheet-level interoperability, but pose problems for
applications that wish to locate and/or extract a specific kind of
information from a collection of documents. For example, using
the element tags alone, it is not possible to craft an XPath
expression to uniquely identify the observation in this document
as a diagnosis.

There exist other cues in the document that provide additional
information about content, but tools driven entirely by the XML
schema cannot take advantage of them. Instead of relying on the
schema, HL7’s methodology uses an additional mechanism,
templates, to constrain document structure and content to suit a
specific clinical purpose. A template is a set of rules1 for the
structure of a clinical document that goes beyond what is required
for conformance to the underlying CDA schema. For example, the
template for a specific kind of observation, like a lab result, may
require a timestamp element to be present, whereas the CDA
schema for a generic observation may allow this element to be
absent. Similarly, the template may require a specific clinical code

from LOINC [26] be used to differentiate a lab result observation

from other kinds of observations, or to encode the identity of the
particular test that was conducted.

Although template definitions are not included in documents, note
that the sample document contains templateId elements at

1 The manner in which these rules are specified does not concern

us here. The normative specification is typically in English, but
implementors have used machine-processable representations,
such as Schematron or Object Constraint Language to codify the
rules.

various levels designating the templates to which those portions of
the document conform. The document also contains other items,
like codes, whose meaning is defined externally and can be used
as cues that provide information about the semantics of document
portions. Codes, template identifiers and other such cues allow
XML elements that would otherwise be schema-wise identical to
one another to be distinguished. For example, the outer
observation in the sample document can be recognized as a
Problem Observation from its templateId, and more specifically as
a Diagnosis by the presence of the appropriate code from
SNOMED CT. The inner observation includes template
identifiers and codes that indicate a Problem Status Observation.

The sample document also illustrates how many of the constructs
in a typical CDA document, such as classCode, typeCode

and entryRelationship, do not convey clinical information,

but rather reflect how the construct being documented was

derived from HL7’s Reference Information Model (RIM) [12].

The presence of this information leads to additional layers of
structure that tend to obscure the actual content, and can mostly
be ignored when extracting clinical data for analysis.

Even once elements of interest have been identified, designing a
correct and complete transformation can still be a complex task.
The CDA standard allows for considerable flexibility in how
particular constructs are represented. The same or similar
information may be represented in different ways, or appear in
different locations within a document, depending on the vendor
that produced the document or the context in which the
information was obtained. All these variations must be taken into
account in creating a transformation, and care must be taken to
match corresponding pieces of information correctly.

Lastly, we note that much of the information in a CDA is not
relevant for all use cases. For example, in the sample document,
the statusCode which indicates whether an event (an

observation, in this case) has taken place or is merely
contemplated, may be important in a clinical care setting but is
rarely of interest in a research study. A selective approach to
transformation and target representation is indicated, rather than a
single all-purpose solution.

3. AN OVERVIEW OF HIWAS
In the previous section, we described how standard-compliant
clinical data is represented, and outlined the challenges in
transforming such data for analysis. In this section, we describe
how an investigator would build a clinical data warehouse using
conventional tools, and contrast it with how the same task could
be accomplished using HIWAS.

3.1 Building a Data Warehouse
Consider a typical warehousing environment, as shown in Figure
1. CDA documents created by various sources (electronic
medical record systems, lab systems, etc.) are collected in an
operational store whose primary purpose is day-to-day patient
care. Queries against the operational store typically seek to
retrieve one or more documents about a particular patient. To
facilitate queries over aggregated data from many patients,
information is extracted from the operational store to a data
warehouse with a more-specific purpose. As we noted previously,
much of the information in the operational store may not be
relevant for the purpose envisioned for the warehouse. For

1262

example, if the warehouse is intended for clinical investigations,
custodial information about documents or test specimens is
probably unnecessary. However, this information might be very
important for a warehouse intended to monitor regulatory
compliance.

Unlike queries posed against the operational store, queries against
a clinical warehouse focus on aggregated data from many patients.
Before undertaking an in-depth study, a researcher must establish
how many patients meet basic criteria and which patients’ data
should be included in the study. Our goal is to make it possible to
carry out such queries directly on the warehouse using
conventional business intelligence tools. For the actual study,
further cleansing and transformation of the data may be needed,
and data for the selected patient cohort is often exported to a
datamart using Extract/Transform/Load (ETL) tools. Once again,
our goal is to facilitate the use of existing tools for this purpose.

We focus, therefore, on tools for building the warehouse, because
it is at this stage in the workflow that data conforming to
healthcare XML standards must be integrated with reference data
and made compatible with existing tools. To build a warehouse
of clinical information concerning, for example, cancer patients,
an investigator using today’s tools would be faced with a difficult
and largely manual task. Starting from a complex specification
and thousands of de-identified documents, the investigator would
first have to undertake a period of manual inspection, to better
understand the data available and to determine which pieces are
relevant for this particular warehouse. The investigator would
then need to decide how best to store this information, so that
queries and relational-based business intelligence software could
digest it efficiently and integrate it with reference information like
value sets and disease taxonomies. Typically, this would involve
designing both a relational target schema and an executable
mapping to populate the target schema from CDA documents.
Existing schema-mapping tools that rely heavily on the XML
schema of the source documents as a means of describing the data

to be transformed would be of little value, since, for example, the
schema does not delineate a primary diagnosis of cancer from a
family history of cancer, nor differentiate the document section
containing current medications from the section containing
laboratory test results. Schema mapping tools also assume that
the target schema has been designed beforehand, and then require
the expert to explicitly connect source and target elements that
correspond to one another, typically by drawing lines in a
graphical user interface. With documents as complex as CDA
instances, the number of explicit connections needed to express a
comprehensive mapping rapidly becomes unmanageable. Lastly,
since the source of each correspondence is a generic schema
element that might contain many different types of information,
elaborate conditions must be added to each mapping to select only
the items desired.

3.2 Designing a Warehouse Using HIWAS
The process for accomplishing the same task using HIWAS is
illustrated in Figure 2. First, HIWAS helps the investigator
explore the available data by constructing a Semantic Data Guide
(SDG), a structural summary of a collection of XML documents
that takes advantage of codes, template identifiers and other
information in the documents to replace generic element names
based on the XML schema with meaningful ones. The SDG also
provides statistical information about the frequency with which
specific constructs occur in a particular context, co-occurrence of
concepts in documents, and the like. The SDG is described in
greater detail in Section 4 of this paper.

After using the SDG to identify data of interest, HIWAS helps the
investigator construct a simpler representation of that information,
called a target model, as shown in step 3 of Figure 2. Like the
source XML documents, the target model is hierarchical. Using a
drag-and-drop paradigm, the user selects information of interest
from the SDG and adds it to the target model. Although not
powerful enough to allow arbitrary restructuring of the input, the

Figure 1 The HIWAS Warehouse Environment.

1263

target model editor provides enough restructuring capability for
most situations encountered in practice. Once the target model
has been constructed, no additional modeling is necessary if the
investigator wishes to keep the transformed data as XML.
However, as we have noted, most business intelligence tools
available today are designed to work primarily with relational
data, and therefore, HIWAS can automatically produce a
relational model based on the hierarchical target model the user
has constructed. The target model editor is described in more
detail in Section 5.

The final step is to instantiate the target model and populate it
with data from transformed documents. Requirements for this
stage vary widely, depending on whether the result is to be XML
or relational, the number of documents to be transformed, how
new documents are obtained (individually or in batches), etc.
Although we implemented a simple runtime for demonstration
and testing, rather than include a transformation engine within
HIWAS we chose instead to produce standard artifacts that can be
consumed by a variety of engines, in a runtime tailored to the
user’s requirements and environment.

Up to four artifacts may be produced (see step 4 of Figure 2). The
first artifact (not shown in Figure 2) is an XML map file that
contains a high-level specification of the mapping from source
XML documents to XML documents that conform to the target
model, represented in Mapping Specification Language (MSL)

 [21] [23]. The MSL specification is used to generate the second

artifact, an XSLT script or XQuery that can perform the actual
transformation. The code that produces the transform from the
mapping is part of another product, IBM Websphere Integration

Developer (WID) [22]. Saving the map file with HIWAS is

optional, but if the mapping created by HIWAS needs
adjustments, WID also provides a graphical editor for this
purpose. The third artifact produced by HIWAS is an XML
schema (XSD) that corresponds to the target model. If the user
wishes to produce relational tables, HIWAS can automatically

augment this schema with directives for the DB2 Annotated

Schema Decomposition Engine [16], a DB2 application for

shredding XML documents into relational tables. Lastly, HIWAS
can generate SQL DDL statements to create relational tables, if
the user elects to produce them.

HIWAS is implemented as a set of Eclipse [6] plugins, which can

easily be integrated with other ETL, modeling and business
intelligence tools, especially those that are also based on Eclipse.
For example, once a target model has been designed using
HIWAS, the artifacts that are produced can be used by ETL tools

like IBM InfoSphere Warehouse [20] or IBM InfoSphere

DataStage [19] to instantiate and populate the model (Figure 2,

step 5). The structure of models built using HIWAS can be

analyzed with modeling tools like InfoSphere Data Architect [18],

and report generation can be done using BI tools like BIRT or
IBM Cognos.

4. THE SEMANTIC DATA GUIDE
The first task in analyzing a collection of CDAs or similar XML
documents is to obtain an understanding of how the documents
are structured and where the information of interest is located
within them. As we have noted, the XML schema for the
documents gives only very general information about their
structure. Simple exploratory queries using XQuery or textual
search are likely to overlook documents of interest, whereas
queries designed to account for every hypothetical variation are
likely to be more complex than necessary, perform poorly, and be
impossible to understand.

HIWAS has therefore taken a different approach. Instead of
relying on the schema, our solution presents the user with a
summary of the structural variants that actually occur in the
document collection being investigated. In addition, we leverage
the template identifiers and other values whose meaning is
defined by external terminologies to provide more meaningful

Figure 2 Building a Warehouse with HIWAS.

1264

labeling and grouping of information. These two approaches are
embodied in a data profiling structure called a Semantic Data
Guide (SDG), an extension of the Data Guide structure proposed

by Goldman and Widom [9] as a tool for understanding semi-

structured databases. The SDG is constructed by parsing the
documents in the repository to be analyzed (or a representative
sample) while building a summary of the variations encountered
and collecting various statistics. The Semantic Data Guide can be
incrementally updated, to accommodate new types of documents.

Figure 3 An example SDG.

The SDG is structured as a tree, in which each node represents the
actual occurrence, in one or more documents, of a particular
element in a particular context. Figure 3 shows an example of an
SDG in the Navigator view of our HIWAS tool. At the top level,
it lists the different types of CDA documents found in the
collection, all of which have a root element named
ClinicalDocument. Under the root element, there are other

header elements, such as recordTarget, author,

custodian, etc., as well as the element structuredBody

which contains the actual clinical data. The structure of the SDG
resembles the structure of the XML schema for CDA documents,
but differs in several ways.

Firstly, in addition to the original XML element label (e.g.
ClinicalDocument), some elements have other labels, such

as “ContinuityOfCareDocument(ccd)”, “Patient Summary(hitsp)”
and “Summarization of episode note”. We separate elements

with the same generic name based on the values of elements (e.g.
templateId, code) contained within them that provide

additional information about what the element is intended to
represent. We call these distinguishing elements discriminators,
and describe them in greater detail below. In this example, the
first element of the SDG represents ClinicalDocument

instances whose structure is constrained by a pair of document-
level templates, namely the “Continuity of Care Document
(CCD)” template from HL7 and the “Patient Summary” template

from HITSP’s C32 standard [15], and this information is added to

the node’s label in the SDG. Furthermore, a top-level LOINC
code indicates that this document is a “Summarization of Episode

Note” and this information is also included in the node label.
Another example is provided by the section elements

contained within the component element of the

structuredBody. Instead of a common generic “section” label

for all of these elements, the SDG uses discriminators contained
within each section to label each kind appropriately, e.g. as
“Payers Section” vs. “Vital Sign Section”. We refer to an element
whose name includes additional information of this kind as a
discriminated element.

Secondly, the SDG only shows what is actually present in the
documents. For example, the SDG indicates that “authenticator”
and “authorization” elements are present in Microbiology Studies
documents, but not in Summarization of episode notes, even
though the CDA schema allows them in both contexts.

Thirdly, the SDG includes various statistics to help the user
understand the document collection. For each node in the SDG,
available statistics include the percentage of documents in the
collection that include the (discriminated) element represented by
the node, the node’s cardinality (the maximum and minimum
number of times the designated element occurs under its parent),
and the node’s arity (the maximum and minimum numbers of
child elements observed for the designated element), as well as
coexistence ratios between elements.

Lastly, each SDG node, is associated with a small set of sample
documents. The user can easily refer to an actual document to
examine how data is stored in an element.

Collectively, the information in the SDG gives the HIWAS user
considerable insight into the document collection. S/he can better
understand the purpose of particular elements thanks to improved
labeling, discover which structural variants actually exist in the
collection, discover which variants are common and which are
outliers, and understand how and when various constructs are
used together. If more documents are subsequently added to the
collection, the SDG can be updated incrementally, and HIWAS
will identify newly-created nodes so that they can be considered
for inclusion in the target model.

4.1 Discriminator configuration
As we noted above, we use discriminators to differentiate generic
XML schema elements and give them more meaningful labels.
The examples showed how template identifiers and codes could
be used for this purpose, but CDAs contain numerous additional
values that can be used as discriminators. Examples include the
typeCode attribute of the participant element (which

distinguishes different types of participants, e.g. “Referring
Physician” vs. “Indirect Target”2) and the use attribute of the

addr element which differentiates things like Permanent Home

Address, Office Address, etc. Value sets for these attributes are

part of the HL7 vocabulary [13].

Rather than “wire in” a predefined set of discriminators, HIWAS
provides a configuration mechanism that allows the user to define
an extensible set of context-sensitive discriminators. Although
HIWAS can be used with any XML standard, we provide a
default configuration tailored for CDA documents.

2 In HL7-speak, an “indirect target” is a participant not present

during an act or not affected by it, but related to the patient in
some way, for example, as an emergency contact.

Discriminated
element

% of documents

1265

Below is an excerpt from a HIWAS discriminator configuration
file that illustrates a few ways in which discriminators may be
defined.

<discriminator id="1"> ------------------ (1)
 <name>participant</name>

 <attribute type="identifier">

 typeCode
 </attribute>
</discriminator>

<discriminator id="2"> ------------------ (2)
 <child>
 <name>code</name>

 <attribute type="identifier">

 Code
 </attribute>

 <attribute type="identifier">

 codeSystem
 </attribute>
 </child>
</discriminator>

<discriminator id="3"> ------------------ (3)
 <name>ClinicalDocument</name>
 <child>
 <name>templateId</name>

 <attribute type="identifier">

 Root
 </attribute>
 </child>
</discriminator>

The first rule, (1), states that in any XML element named
participant, the attribute named typeCode should be used

as a discriminator. The result will be that participant

elements with different typeCode values will be treated as

separate elements in the SDG.

The second rule differs from the first one in that it applies not to
an element with a specific name, but rather to any XML element
which has a child element named code that contains both code

and codeSystem attributes. Any element containing a code

will be split into variants based on the joint values of code and

codeSystem.

The last rule demonstrates how both these approaches can be
combined. In this case, the value of the root attribute of a

templateId element is used as a discriminator, but only if the

templateId element is the child of a ClinicalDocument

element. Although not shown in these examples, one can also
combine values from multiple child elements to define a
discriminator. In this case, the element will not be discriminated
unless it has all the specified child elements. It is also possible to
specify that a discriminator be disabled in specific contexts.

Discriminator values are used not only to differentiate elements,
but also to label nodes in the SDG. The discriminator value itself
can be used in the label, or it can be used as a lookup key for a
display name defined elsewhere. For example, if a
ClinicalDocument element contains a templateId

element with a root attribute value of

“2.16.840.1.113883.10.20.1”, this value is looked up in a table,
yielding the display name “ContinuityOfCareDocument(ccd)” for
use in labels. Currently, the lookup table is also stored as a
configuration file, but we expect terminology servers for many
standard value sets to be available in the future, including code
systems like LOINC and template sets defined by various
organizations.

Figure 4 Other views of the SDG.

4.2 Other views of the SDG
Apart from the tree-based navigator view shown in Figure 3, the
HIWAS tool also provides other views and functionality to
facilitate searching for information in the SDG. These include a
Concept view, which flattens all the elements in the SDG into a
simple list that can be searched by (discriminated) element name
or type. Since the same concept can be associated with multiple
nodes in the SDG, HIWAS also provides a Context Paths view
that gives a concise summary of all the locations where a concept
is found, and allows the user to compare the structures associated
with the concept in each location. An example, shown in Figure 4,
is a patient element which is part of the CDA header

information and is found in all three types of documents in the
repository.

From the context path view, a user can easily switch back to the
navigator to examine the global picture. Lastly, in addition to
textual concept search, a HIWAS user can also find concepts that
are potentially related because they share a common subset of
discriminator values.

5. CREATING THE TARGET MODEL
The Semantic Data Guide allows a HIWAS user to explore the
available collection of documents to determine what information
is available and where in the documents it can be found. The next
step toward making the data available for analysis is to identify
the data elements that are needed for a particular purpose, and to
define a simpler representation for this restricted set of data that is
easily consumed by standard business intelligence tools.

The HIWAS target model editor allows the user to incrementally
construct a hierarchical target model that can be realized as
transformed XML documents or as a set of relational tables. The
target model editor uses a drag-and-drop paradigm to construct
the target model. A data element can be selected from any of the
SDG views described above. The selected element is then
dragged to the target model and inserted at a specific location, i.e.
as a new child for an existing node.

By selecting a data element from the SDG and dragging it into the
target model, the user indicates that when an instance of the XML
subtree represented by the SDG node is found in a source
document, it is to be copied and inserted into the target document

1266

at the indicated location within an existing subtree, typically one
that was created by copying another subtree from source to target.
When there is at most one occurrence of the source subtree in the
source document, and the target location can occur at most once
in the target document, there is no ambiguity. However, the
source subtree can occur multiple times (if its root element, or an
ancestor of its root element, has been observed to occur more than
once in a source document), as can the target location (if it is
embedded in a subtree that can occur more than once). In these
cases, a rule is needed to determine which source subtree
instance(s) should be copied to which target subtree instance(s).

In HIWAS, we use the hierarchical nature of the documents as a
heuristic for matching subtrees. When a new SDG node is
inserted below a target model node, HIWAS determines the SDG
node that corresponds to the target node (which was created,
explicitly or implicitly, by a previous insertion). HIWAS then
attempts to determine the minimal common subtree of the SDG
that includes both the new and existing target elements. When
transforming a source document, HIWAS will copy into each
existing target subtree all instances of the new subtree that share
the same common minimal subtree in the source document.

For example, consider a set of laboratory report documents that
each contains one or more act elements, each act associated with

a different group of tests (Hematology, Microbiology, etc.) all
performed on a single specimen. Within each act is one or more
observations, each of which corresponds to the results of a
specific test performed on the specimen. As illustrated in Figure
5, the SDG will contain nodes for each kind of act, and beneath
each act there will be a node for the specimen, and one for each
test result.

Suppose a user drags the SDG node representing a Rabies Test
observation from the Microbiology Studies act into the target
model, as a child of the root node. HIWAS interprets this as a
request to include all subtrees that represent Rabies test results in
the target document. Now, suppose the user also drags the
“specimen” node from the Microbiology act to the target model,
and inserts it as a child of the previously inserted Rabies Test
observation node. HIWAS will interpret this as a request to copy
specimen information from the minimal common subtree shared

by the specimen node and the test node into the test result in the
target model. In this example, the minimal common subtree
shared by both nodes has as its root the “act” node that contains
both the specimen and Rabies Test result information, so
information about the specimen for the act will be copied to the
result structure for the rabies test in which the specimen was used.

As a further example, suppose the document element associated
with a Microbiology Studies act also included a list of technicians
involved in the test. If the technicians node was also

inserted into the Rabies Test observation subtree, the information
about all the technicians associated with the act would be added to
the test result subtree.

Because the SDG is a summary of many documents, the minimal
common subtree containing two nodes in the SDG is not
necessarily the minimal common subtree for those two nodes in
any specific document in which they appear. For example, the
root node of the common subtree in the SDG may occur multiple
times in source documents, but both nodes of interest may never
occur as descendants of any single instance of the apparent
common root. In this case, the actual root of the minimal
common subtree occurs farther up the hierarchy, at some ancestor
of the apparent root. The HIWAS SDG keeps track of enough
extra information to detect this in certain special cases that occur
commonly.

In addition to insertion of data elements, the target model editor
supports several additional operations for customizing the target
model. By default, target model nodes are named using the
discriminated element name of their source, but the user can
rename any node in the target model. One can also create
initially-empty nodes in the target model, below which subtrees
from unrelated parts of the source document can be grouped. The
root of the target model is such an initially-empty node. Lastly,
the user can delete unwanted subtrees from the target model,
which allows a complex structure to be inserted into the target and
subsequently pruned.

Once the target model has been completed, an XLST script or
XQuery can be generated by the tool to transform the original
CDA document to the XML document conforming to this model.

Figure 5 The HIWAS Target Model Editor.

1267

5.1 Creating a Relational Model
If, as is most often the case, a relational target is desired, the user
can further map the data elements of the target model to a set of
relational tables. The default relational mapping generated by
HIWAS is a set of tables that mirrors the hierarchy in the target
model. In general, each element in the target model that can
repeat gives rise to a table in the relational model, and non-
repeating elements supply the column values, as shown in the last
three columns of Figure 5. Information about actual element
cardinalities from the SDG is used to eliminate unnecessary
tables, i.e. those that correspond to elements in the target model
that can occur multiple times in theory (according to the schema)
but actually occur only once in practice. Keys are generated
automatically to link tuples in a child table to the correct parent.

Users can modify the default relational mapping in various ways.
Tables and columns, whose default names are derived to ensure
uniqueness more than readability, can be renamed as appropriate.
HIWAS attempts to guess the correct data type for each column
based on the type of the corresponding XML element, but because
the HL7 data types used in CDA make very limited use of XML
types, the default type will usually be a character string. The user
can select an alternate type in the editor, and if necessary, supply
the name of an SQL function for conversion.

A user can also store portions of the CDA as XML, taking
advantage of support for hybrid relational-XML databases.
Designating the type of a model element as “XML” in the editor
causes the subtree rooted at the element to be stored as an XML
column in the appropriate table. In the same model, particular
elements within the subtree (e.g. ones that need to be joined with
other data) can be surfaced as regular relational columns. This
approach allows the full XML context of a piece of information to
be preserved for reference, while exposing its key elements in
relational form to facilitate querying.

6. AN EXAMPLE: PUBLIC HEALTH

REPORTS
In the previous sections, we have tried to demonstrate the need for
a tool like HIWAS, and to describe in general terms how HIWAS
is used to design a warehouse. In this section, we consider a
specific example in greater detail.

Public Health laboratories have a need to exchange information
about outbreaks of communicable diseases, often across
administrative or political boundaries. A solution developed for

this purpose by IBM, the Public Health Affinity Domain [3], uses

documents based on the XD-LAB specification [24] to exchange

information about which strains of various pathogens have been
detected, drug resistance, and so forth. XD-LAB is a general-
purpose CDA-based standard for laboratory test results,
developed by an organization called Integrating the Healthcare
Enterprise (IHE). XD-LAB constrains the basic CDA model
using the techniques described in Section 2, i.e. by defining a set
of templates and other coding standards that specify in detail how
specific kinds of laboratory results should be represented. A few
additional templates were defined specifically for public health.

An XD-LAB document for public health is structured as follows.
The header, which is similar across all types of CDA-compliant
documents, contains patient demographic information,
information about the laboratory that performed the tests, the

ordering physician, etc. The body of the document contains one
or more laboratory specialty sections, depending on the test or
tests that were performed (Microbiology Studies, Chemistry
Studies, Urinalysis, etc.). Within each section are report items,
whose format also varies depending on the kind of tests
conducted. An item can represent an individual test, a battery of
tests (test panel) or a complete study. A section also contains
information about the specimen on which the tests were
performed (blood, urine, food, etc.), including when the specimen
was collected and received. Furthermore, if a communicable
disease was identified, a special Notifiable Condition (or
Notification of Disease) entry is created with case and outbreak
information, as applicable. The important thing to note is that the
document structure is highly variable, depending on the nature of
the tests conducted for each pathogen, the test subject (human,
animal, or food), and the test outcome (positive vs. negative).

6.1 Documenting an Influenza Outbreak
Our purpose in studying these documents was to experience the
complexity associated with the various tasks involved in
identifying and transforming clinical data for OLAP analysis. For
the purposes of this paper, we focus on Influenza test reports in
the Microbiology Studies section. Our specific goal was to create
a warehouse model for studying the distribution of influenza cases
among different regions and populations.

Figure 6 A Notifiable Condition in the Concepts view.

We began by using the Spatiotemporal Epidemic Modeling

(STEM) system [7] to generate a set of documents representing

the stream of information that a public health laboratory might
receive during an influenza outbreak. From these documents we
generated a Semantic Data Guide and used it to locate the specific
information needed for the Influenza report. We found the patient
demographic information by entering the search keyword
“patient” in the tool’s Concepts view, and then added all the
demographic information to the target model by dragging the
patient node from the SDG and dropping it in the target

model. The Notifiable Condition observation was added to the
target model in the same way (see Figure 6). Next, we added
information about the specimen collection and reception times to
the Notifiable Condition by dragging the corresponding nodes
from the SDG and inserting them under Notifiable Condition in
the target model. The final step was deletion of unnecessary items
like templateId, classCode, moodCode, etc.

The completed target model (Figure 7) contains six pieces of
information: patient demographics (gender, birth time and home

1268

zip code) and positive test result information (specimen reception
and collection time and virus type). We chose the default SQL
mapping to materialize the selected data in a relational database.

Figure 7 The model for the Influenza report.

The final step was to generate the artifacts (DDL, XSLT and
Annotated XSD Schema) needed to instantiate the target model,
deploy them in a suitable runtime system, and execute them to
create and populate the relational warehouse.

To support OLAP analysis, we also populated the warehouse with
a set of dimension tables, such as location, gender, age group,
virus hierarchy and time. The star schema for the warehouse
database is shown in Figure 8.

Figure 8 Warehouse database tables.

After populating the warehouse, we used Cognos BI Server to
generate reports like those shown in Figure 9, to better understand
disease propagation and distribution under the simulated scenario.

Figure 9 BI reports generated by Cognos.

6.2 Benefits of HIWAS
The exercise we described above verified the benefits of using the
HIWAS tool. Firstly, the Semantic Data Guide enabled users of
the tool to avoid parsing and understanding the CDA schema.
The documents in the input collection used only a small subset of
the elements and types defined in the schema. A typical influenza
test report has around 105 unique elements (elements with distinct
types) and 88 attributes, which represent 11% and 18% of the

elements and attributes defined by the schema, respectively. Other
public health documents are similar in this regard, as can be seen
from the first five rows of Table 2.

Table 2 Statistics for CDA documents.

Document type % Elements % Attributes Size

Influenza 11.0% 17.9% 18K

HIV 10.5% 14.6% 16K

Lead Poisoning 11.1% 18.7% 16K

Salmonella Poisoning 11.7% 20.7% 56K

E. Coli 11.1% 17.7% 43K

Continuity of Care
Document

13.4% 29.1% 190K

The last row of Table 2 contains analogous numbers for a typical
Continuity of Care Document, a summary of patient records for
the purpose of discharge and care transfer that contains
information like vital signs, problem diagnoses, allergies, medical
history, social history, medications, etc. These documents contain
much more information than public health documents, and are
correspondingly larger, but the fraction of schema elements and
attributes used is just slightly higher, with around 59% of
elements overlapping with those used in the public health
documents. The advantage of using the Semantic Data Guide,
which is driven by the document instances rather than the schema,
is clear. Furthermore. although the number of constructs present
in the documents is small compared to the schema, the selection
of elements used for our influenza report is even smaller. Only 6
elements were selected for the target model, which represents less
than 6% of the elements in typical public health documents.

Secondly, the discriminated element names used to label nodes in
the Semantic Data Guide were much more helpful than the
generic element names used in the documents. Using our
discriminator configuration, the tool was able to identify 19
discriminated elements in the influenza documents. A few
examples are given in Table 3. With discriminated element
names, users can identify elements of interest without knowing
the particular code or template identifier that distinguishes one
generic item from another.

Table 3 Discriminated elements in the Influenza report.

Discriminated
Name

XML
Element
Name

Discriminators

Referring
Physician

participant typeCode="REF"

Performer participant typeCode="PRF"

Annotation
Comment

act
code="48767-8"

codeSystem="2.16.840.1.113883.6.1"
templateId="1.3.6.1.4.1.19376.1.5.3.1.4.2"

Specimen
Collection

Time
act

code="33882-2"
codeSystem="2.16.840.1.113883.6.1"

templateId="1.3.6.1.4.1.19376.1.3.1.2”

Laboratory
Observation,

Influenza
Serotype

observation
code="20951-0"

codeSystem="2.16.840.1.113883.6.1"
templateId="1.3.6.1.4.1.19376.1.3.1.6"

1269

Discriminated
Name

XML
Element
Name

Discriminators

Notifiable
Condition,

Notification of
Disease

observation
code="170516003"

codeSystem="2.16.840.1.113883.6.96"
templateId="1.3.6.1.4.1.19376.1.3.1.1.1"

Thirdly, the XML-to-XML transformations needed to populate
the target model were automatically constructed by the HIWAS
tool with much less user interaction than conventional tools would
require. The need to construct a complete target schema in
advance was eliminated, and each user gesture added an entire
subtree to the target model, instead of requiring the user to create
element-by-element mappings between the source schema and the
target schema at each level. Moreover, HIWAS added the correct
conditions to each mapping so that only the desired elements were
selected. For example, in the case of the specimen collection time,
11 conjunctive conditions were specified in the XSLT
transformation to identify the specific act element containing this
information. Three conditions (code, codeSystem and templateId)
were required to select Microbiology Studies documents, 3 more
to select Laboratory Specialty Sections within those documents, 2
conditions were needed to select Microbiology Studies acts, and 3
conditions were used to select the Specimen Collection Time act.

Finally, the study illustrates how different structures can be used
to represent similar information, even within the same kind of
document. For example, the location of the Microbiology Culture
laboratory observation in the influenza test document is different
when the test result is positive than when it is negative. Figure 10
shows the two paths that correspond to these alternatives.

Figure 10 Multiple context paths.

The first laboratory observation is for a negative test result, and
just shows a negative finding of influenza. The second path is for
a positive result, in which the test result is part of an Isolate
Organizer. The organizer represents an additional microbiology
study performed on isolates derived from the original specimen, in
order to identify the particular strain of influenza. HIWAS can
help users to identify and examine these differences, and select the
correct entities for the target model.

6.3 Other lessons learned
Our study of public health documents also revealed some
requirements that we had not initially anticipated. Type
conversions are a case in point. For simple types derived from the
built-in types of XML, HIWAS will generate an XML-to-SQL
type conversion based on the built in type and add it to the
schema annotation that describes how to generate the
corresponding column value. However, there are several simple
types defined by HL7 that derive from XML’s string datatype but
should be mapped to a different datatype in SQL. The simple type
ts is a typical example. Intended to represent a timestamp, its

definition restricts the element value to strings with a particular

format defined by HL7 that does not conform to any of the
standard string representations of an SQL timestamp. To
accommodate such types, we added a feature to HIWAS that
allows users to provide user-defined functions (SQL UDFs) to
handle type conversions.

Another problem we discovered is that some values that make
good discriminators in one context are not helpful in others. For
example, codes are often good candidates for discriminators, but
not always. Although it is useful to use an associated code to
distinguish an act element that represents an Annotation Comment
from one that represents a Microbiology Study, in other cases,
codes are used as a source of values for describing an entity. For
example, the code in the element specimenPlayingEntity

describes the type of specimen being tested (stool sample, blood,
brain tissue, etc.). The structure and meaning of the element
remains the same regardless of the code value. Therefore, if we
use code as a discriminator for elements of this type, a different
SDG node will be created for each kind of specimen. We call this
over-discrimination, and to avoid it we allow an exclusion list to
be specified as part of the definition of a discriminator. In the
public health document study, there were about 10 element
contexts for which a specific discriminator was excluded.

7. CONCLUSIONS AND FUTURE WORK
As nations and technology providers around the world move
towards adopting HL7 CDA as the standard for healthcare
information exchange, one needs to concurrently acknowledge the
challenges in extracting the valuable clinical information these
documents contain, especially for purposes beyond immediate
patient care. The prevalence of relational database systems and
the dearth of XML tools that can handle such complex documents
represent gaps on the path towards meaningful use of standard-
compliant clinical data. HIWAS bridges these gaps in several
ways. Through the use of the Semantic Data Guide, HIWAS
enables investigators to understand the structure of the documents
available to them and find information of interest quickly. The
data mapping technology that underlies the target model editor
simplifies the task of transforming the data to a form that can be
analyzed with existing tools.

While the current version of HIWAS is a useful tool, our
experience performing various mapping exercises has revealed
several areas where it could be improved or extended. Firstly, the
hierarchical structure of the target model may not reflect the
primary/foreign key relationships that are ultimately desired. The
target model is inherently document-centric, whereas a more
patient-centric perspective may be desired in the warehouse.
Currently, we use manually-created SQL views to fine-tune the
relational schema produced by HIWAS, but a more integrated
approach would be less laborious.

Secondly, although our current strategy for producing a relational
representation of clinical data is to materialize it in a warehouse,
one could also envision a “virtual warehouse” in the form of
SQL/XML views over the original data, an approach that may
become more attractive as XML database technology matures. We
have recently extended HIWAS with the capability to create such
views, allowing users to choose the transformation technology
best suited to their requirements.

We have also encountered situations in which the target schema is
known a priori. We view HIWAS’ ability to work without a pre-

1270

existing target as a differentiator from existing schema mapping
tools and an advantage in many contexts, but there would also be
value in developing a hybrid mapping tool combining HIWAS’
ability to locate information using the SDG with the schema-
matching and map-generation capabilities of existing tools.

Expanding the SDG to include information about content as well
as structure is also an interesting possibility. For example,
statistical information about the distribution of values in a field
might provide users with additional insight into their data.

Another potential area for extension concerns the configuration of
discriminators. We have mentioned how a tighter integration
between HIWAS and a terminology server could reduce the need
for configuration files. A more ambitious goal would be to
produce discriminator configurations directly from the
specification of the standard. The process of creating and curating
standards based on CDA is evolving toward the use of mainstream
modeling tools like UML, which should enable automated
processing and analysis of the specifications in ways that are
difficult with today’s natural-language representation.

We have also already mentioned the problem of over-
discrimination, which we currently handle by statically defining
exclusion rules in the discriminator configuration. However, the
decision whether or not to consider a code or some other value as
a discriminator in a certain context ultimately depends on the
purpose of the warehouse. Rather than change the configuration
and rebuild the SDG for each use case, we would prefer to give
users the option of turning discriminators on or off dynamically as
they explore the data and build their target model.

Lastly, we note that while our model for specifying discriminators
works well with the CDA standard, and certain standards used in

other industries, e.g. RIXML [29], there are standards like XBRL

 [31] that use different conventions to specify the semantic

relationships among document elements and to constrain
document structure. It would be interesting to extend HIWAS to
support such standards as well.

8. REFERENCES
[1] Altova Inc., Altova MapForce,

http://www.altova.com/mapforce.html

[2] Beyer, Kevin S. et al, XQuery for Analytics: Challenges and
Requirements. In Proc. 1st Int’l Wkshp. on XQuery

Implementation, Experience and Perspectives (XIME-P):3-8,
Paris, 2004.

[3] Carmeli, Boaz et al, "Public Health Affinity Domain: A
Standards-Based Surveillance System Solution",
BioSurveillance:147-158, 2007.

[4] Dolin R. H. et al, HL7 Clinical Document Architecture, Rel
2. JAMIA 13:30-39, 2006.

[5] Eclipse Foundation, Business Intelligence and Reporting
Tools, http://www.eclipse.org/birt/

[6] Eclipse Foundation, Eclipse, http://www.eclipse.org

[7] Eclipse Foundation, The Spatiotemporal Epidemic Modeling
(STEM) Project, http://www.eclipse.org/stem

[8] Eisenberg, A. and Melton, J.: Advancements in SQL/XML.
ACM SIGMOD Record 33, 3: 79-86, 2004.

[9] Goldman, R. and Widom, J. DataGuides: Enabling query
formulation and optimization in semi-structured databases. In
Proc. 23rd VLDB: 436–445 Athens, August 1997.

[10] Haas, L. et al, Clio grows up: from research prototype to
industrial tool. In Proc. 24th ACM SIGMOD Conf.:805-810,
Baltimore, 2005.

[11] Health Level Seven, HL7 V3 Messaging Standard,
http://www.hl7.org/implement/standards/v3messages.cfm

[12] Health Level Seven, HL7 V3 Reference Information Model,
http://www.hl7.org/v3ballot/html/infrastructure/rim/rim.html

[13] Health Level Seven, HL7 Vocabulary Domains,
https://www.hl7.org/
library/data-model/RIM/C30202/vocabulary.htm

[14] Health Level Seven International, http://www.hl7.org/

[15] HITSP, C32 Summary Documents Using HL7 CCD,
http://www.hitsp.org/ConstructSet_Details.aspx
?&PrefixAlpha=4&PrefixNumeric=32

[16] IBM Corp., DB2 Annotated Schema Decomposition Engine,
http://www.ibm.com/developerworks/data/library/techarticle/
dm-0604pradhan2/

[17] IBM Corp., IBM Cognos.
http://www-01.ibm.com/software/data/cognos/

[18] IBM Corp., IBM InfoSphere Data Architect, http://www-
01.ibm.com/software/data/optim/data-architect/

[19] IBM Corp., IBM InfoSphere DataStage. http://www-
01.ibm.com/software/data/infosphere/datastage/

[20] IBM Corp., IBM InfoSphere Warehouse, http://www-
01.ibm.com/software/data/infosphere/warehouse/

[21] IBM Corp., IBM SPSS Statistics, http://www.spss.com/

[22] IBM Corp., IBM WebSphere Integration Developer,
http://www-01.ibm.com/software/integration/wid/

[23] IBM Corp., Mapping Specification Language,
http://www.ibm.com/developerworks/websphere/library/tech
articles/1003_spriet1/1003_spriet1.html

[24] IHE International, XD-LAB Content Module,
http://www.ihe.net/Technical_Framework/upload/
ihe_lab_TF_rel2_1-Vol-3_FT_2008-08-08.pdf

[25] International Health Standards Development Organization,
SNOMED-CT, http://www.ihtsdo.org/snomed-ct/

[26] LOINC.org, Logical Observation Identifiers Names and
Codes, http://loinc.org/

[27] Oracle Corp., Oracle Warehouse Builder,
http://www.oracle.com/technetwork/developer-
tools/warehouse/overview/index.html

[28] Progress Software Corp., Stylus Studio 2011 XML,
http://www.stylusstudio.com/xml_mapper.html

[29] RIXML.org, Research Information Markup Language,.
http://www.rixml.org/

[30] SAS Institute Inc, http://www.sas.com/

[31] XBRL International, Extensible Business Reporting
Language. http://www.xbrl.org

1271

