
A Generic Framework for Handling Uncertain Data with
Local Correlations

Xiang Lian and Lei Chen
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong, China
{xlian, leichen}@cse.ust.hk

ABSTRACT

Data uncertainty is ubiquitous in many real-world applications such
as sensor/RFID data analysis. In this paper, we investigate uncer-
tain data that exhibit local correlations, that is, each uncertain ob-
ject is only locally correlated with a small subset of data, while
being independent of others. We propose a generic framework for
dealing with this kind of uncertain and locally correlated data, in
which we investigate a classical spatial query, nearest neighbor

query, on uncertain data with local correlations (namely LC-PNN).
Most importantly, to enable fast LC-PNN query processing, we
propose a novel filtering technique via offline pre-computations to
reduce the query search space. We demonstrate through extensive
experiments the efficiency and effectiveness of our approaches.

1. INTRODUCTION
Real-world data often exhibit uncertainty and impreciseness due

to the imperfect nature of sensing devices in many applications
such as sensor data analysis [10, 6], RFID networks [13], multi-
media databases [17], location-based services (LBS) [24], object
identification [5], data integration [9], and so on. Figure 1(a) illus-
trates a sensor network that consists of 8 sensor nodes, n1 ∼ n8,
deployed in 3 rectangular monitoring regions (Areas 1, 2, and 3)
of an outdoor environment. Figure 1(b) shows the sensory data oi

collected from sensor nodes ni with 2 attributes, temperature and
light. Due to various reasons such as environmental factors, packet
loss, and/or low battery power, sensor data (i.e., oi) are often noisy,
and the reported data often deviate from the actual values. Such
imprecise data can be modeled as uncertain objects residing in un-

certainty regions (i.e., circles as depicted in Figure 1(b)) in the con-
text of uncertain databases [6]. Within each uncertainty region, the
object can reside anywhere following a probabilistic distribution.

In the literature of uncertain databases [6, 25, 22], it is often as-
sumed that uncertain objects are independent. While this indepen-
dence assumption holds in some real applications, in other scenar-
ios, however, application data may exhibit dependencies and corre-
late with each other. In the previous example, sensor nodes n3 ∼
n6 in Figure 1(a) are spatially close to each other in a small mon-
itoring region, Area 2. As a result, their collected data o3 ∼ o6

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th  September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 1
Copyright 2010 VLDB Endowment 21508097/10/10... $ 10.00.

(a) sensor network (b) collected data oi from sensors ni

Figure 1: Illustration of Uncertain Data With Local Correlations

(shown in Figure 1(b)) also tend to be similar and appear correlated
with each other. Here, we call these data are locally correlated,
where the term “locally” means data collected from a sensor are
only correlated with a subset of the entire sensor data set, as they
are independent of other data that are collected from sensors far
away, and moreover the “correlated” means that if a sensor reports
a value for a parameter (e.g., temperature/light), then its nearby
sensors will also report some values with certain probabilities.

In reality, the phenomenon of uncertain objects exhibiting local
correlations is not uncommon. For example, noises in the data col-
lected from sensing devices (e.g., RFID readers or sensors) that are
spatially close are often correlated. In this case, not all pairs of
uncertain objects are dependent (i.e., only locally correlated), that
is, RFID/sensor data at sites far away can be independent of each
other. Similarly, during the data integration [9], a financial analysis
system can collect the trend predictions for stock data from dif-
ferent analysts (i.e., data sources can be their comments or reports
about future stocks) via data fusion [4]. Rather than giving fixed
predicted values, analysts usually provide estimated uncertain in-
tervals for future stock prices, which can be modeled as uncertain
objects. Moreover, different analysts may have the expertise in dif-
ferent areas such as financial or energy sectors. Thus, analysts with
the same expertise (e.g., inferred from historical data [9]) tend to
give similar (correlated) predictions, while being independent of
predicted data from analysts with other expertise. In this case, lo-
cal correlations exist among the predicted stock data.

Due to the practical existence of data correlation, previous works
on query processing that assume independent uncertain objects can-
not be accurately used in the correlated case. Furthermore, the
probabilistic graphical model (PGM) [14] has been adopted in some
works [28, 29, 31] to represent probabilistic relational table(s) with
globally correlated data (i.e., every pair of uncertain objects are as-
sumed to be correlated). These works usually consider relational
queries on these tables, including select, project, and join. In con-
trast, our work exploits locally correlated uncertain data, and an-
swers advanced spatial queries (including a typical nearest neigh-

bor query [27]) on them following a generic framework. While pre-
vious works studied basic relational operators on PGM (e.g., with

12



range predicates on static attributes), their techniques cannot be di-
rectly applied to more complex spatial query types, where dynamic
distance predicates between objects are involved.

In this paper, we provide a data model for locally correlated data,
which generalizes the existing one with the data independence as-
sumption. Typically, to efficiently answer queries on data with local
correlations, we investigate a classical spatial query, probabilistic

nearest neighbor query [6] (namely, LC-PNN), and take it as a case
study to illustrate how to enable fast online filtering via offline pre-
computations. Our generic framework can also incorporate other
spatial queries such as LC-PNN in metric spaces, dynamic sky-
line [8], and top-k [12] queries, whose guideline can be found in
Appendix D. The LC-PNN query has practical applications such
as forest surveillance in the GreenOrbs project [21]. GreenOrbs
deploys 1,000+ sensor nodes in the forest, collecting various sen-
sory data including temperature, humidity, light, and carbon diox-
ide titer. Some dangerous events (e.g., fire) in the forest usually
correspond to patterns in sensory data. Thus, given a query pattern
q, the LC-PNN query is useful to find sensors whose (locally corre-
lated and noisy) data are the closest to q with high confidence. In-
tuitively, locations of the retrieved sensors are the most dangerous
places to be taken care of. Similarly, with data integration tech-
niques, these sensory data can be also integrated/fused into other
heterogeneous data such as animals’ positions (via RFID) in the
forest, which are collected, cited, or maintained by different re-
search groups. Due to some of the correlated data sources, the
resulting integrated data are locally correlated. The LC-PNN query
is thus conducted on such integrated data which can study the habi-
tats and behaviors of animals. Specifically, given a query object
q (i.e., a behavior pattern w.r.t. environmental parameters and an-
imals’ movement pattern), the LC-PNN query retrieves those an-
imals whose behaviors are highly likely to match with q. In the
previous stock example, the financial analysis system can issue an
LC-PNN query with the actual stock data as query object q, and
find out those analysts that have the most accurate predictions (e.g.,
with the smallest Euclidean distances to q) with high confidence.

In particular, we highlight our contributions as follows:

1. Our work first models local correlations among uncertain ob-
jects in Section 2.1.

2. We present a framework in Section 2.2 for answering queries
on locally correlated uncertain data, which generalizes many
probabilistic queries with the assumption of object indepen-
dence, and explore a classical query, LC-PNN in Section 2.3.

3. We propose effective and non-trivial filtering methods in Sec-
tion 3 to reduce the LC-PNN search space. Especially, a
novel cost-model-based offline pre-computation technique is
proposed to enable online filtering, which no prior works
studied on locally correlated data.

4. We provide an efficient query procedure in Section 4 to an-
swer LC-PNN queries, and provide the guideline for other
queries on locally correlated data in Appendix D.

Section 5 evaluates the performance of our approaches. Section
6 overviews previous works on uncertain query processing with and
without considering correlations. Section 7 concludes this paper.

2. PROBLEM DEFINITION

2.1 Data Model
Uncertain Databases. An uncertain database DU consists of N
uncertain objects o1, o2, ..., and oN , where uncertain objects are
collected from data sources ni (e.g., sensor nodes). In the literature
of uncertain databases [6], each uncertain object oi (1 ≤ i ≤ N )

can be modeled by an uncertainty region UR(oi), in which oi re-
sides following arbitrary distribution (see Figure 1(b) as an exam-
ple). The object distribution can be represented by either probabil-

ity density function (pdf) [6] or discrete samples [25]. In this paper,
we adopt the sample representation1. Each object oi has l samples
si,j (or si for brevity), where si,j is associated with an appear-

ance probability si,j .p∈(0, 1] satisfying
∑l

j=1 si,j .p = 1. Such a
representation has practical applications in sensor/RFID networks
with the collected data in explicit form of discrete samples2.
Local Correlations. We model the local correlations among uncer-
tain objects oi ∈ DU as follows. Assume that uncertain database
DU is composed of several (disjoint) partitions, namely locally cor-

related partitions (LCPs). Each object oi ∈ DU exactly belongs
to one LCP, denoted as LCS(oi) ∪ {oi} (short for locally corre-

lated set3); objects from the same LCP are locally correlated with
each other; and objects from any two distinct LCPs are indepen-
dent of each other. This model can be used for describing real-
world data. For example, Figure 1(b) shows 3 LCPs in the sensor
data, where each LCP contains correlated data (uncertain objects)
from spatially close sensors deployed in a monitoring area, and data
from two areas are independent (since they are far away from each
other). In this paper, we consider static uncertain databases, and
assume that LCPs can be identified by specific applications.

Note that, our model is generic enough to cover the previously
proposed model that assumes either object independence [6, 25] or
global correlations [28, 29, 31, 16]. Specifically, they, respectively,
correspond to two special cases: 1) the database has multiple LCPs,
each containing only one object, and 2) the database has only one
LCP, which contains all objects correlated with each other.

To represent local correlations of objects within an LCP, we adopt
one of popular probabilistic graphical models (PGMs) [14], Bayesian

Networks. Figure 2 illustrates the graphical model for locally cor-
related uncertain objects in Area2 of Figure 1(b). In particular, in
Figure 2(a), o5 is locally correlated with other objects in LCS(o5)
= {o3, o4, o6}. The local correlations of objects in LCS(o5) ∪
{o5} can be expressed by a directed acyclic graph (DAG) in Fig-
ure 2(b), where each vertex corresponds to an object, and each di-
rected edge, −−→oioj , indicates that oj depends on oi. As an example,
edge −−→o6o3 in Figure 2(b) implies that, if o6 has certain value pair,
e.g., (temperature, light) = (23, 60), then it can be inferred that
o3 is also likely to report some values, e.g., (22, 65), with certain
probability (e.g., 0.2). To store correlations among vertices (ob-
jects), Figure 2(c) summarizes them in 4 conditional probability

tables (CPTs). That is, Table T1 corresponds to the distribution of
attributes (temperature, light) in object o6; similarly, Table T2

(T3) records conditional probabilities in vertex o3 (o4), Pr{o3|o6}
(Pr{o4|o6}); further, Table T4 stores conditional probabilities in
vertex o5, that is, Pr{o5|o3, o4} (since o5 is correlated with o3

and o4). Note that, in practice, DAG in Figure 2(b) and CPTs in
Figure 2(c) are derived by classical theory of the graphical model
[14], which (including object uncertainties) are inputs of our query
processing framework given later in Section 2.2.
Queries on Locally Correlated Data. Therefore, each LCP can
be modeled by a local graph (similar to Figure 2), on which queries
can be performed over LCPs. While previous works on graphical
model [31] usually consider relational operators such as selection,
in this paper, we will study more complex spatial queries such as
nearest neighbor queries (NN).

1
For the pdf representation, we can first obtain random samples from pdf(s) via sam-

pling techniques, and then apply our proposed methodology in this paper.
2
If samples are not available, then domain-specific knowledge in real applications

(e.g., [5]) can help model the data uncertainty.
3
Here, we assume that LCS(oi) excludes oi, though oi correlates with itself.

13



(a) Example in Figure 1 (b) DAG Representation (c) Conditional Probability Tables (CPTs)

Figure 2: An Example of Probabilistic Graphical Model for Uncertain Data with Local Correlations

For previous works with relational operators, query predicates
are usually directly imposed on static attribute values, for example,
to compute the joint probability Pr{o3, o6} that both o3 and o5

report temperature within [20, 30] degrees. Some offline optimiza-
tions can be used to return attribute values within the interval and
their confidences. That is, such joint probabilities can be obtained
by variable elimination over CPTs based on the theory of graphi-
cal model. In the example of Figure 2(c), both variables o3 and o5

are in Table T4. Thus, it is only needed to eliminate variable o4 in
Table T4 by projecting on attributes of o3 and o5 (ignoring o4) and
summing up probabilities with the same (projected) attribute val-
ues. For joint probabilities with variables in multiple CPTs, vari-
able elimination can be accomplished over the join result of CPTs.

In contrast, our work involves more complicated and compu-
tationally intensive spatial queries, which cannot directly borrow
techniques for relational operators. Taking the NN query as an ex-
ample, given a query point q, we want to obtain those uncertain
objects similar to q with high probability. Different from relational
operators, the NN query now involves variables of (correlated) dy-
namic distances (rather than static attributes) from uncertain objects
to an ad-hoc query point q. Thus, to find NNs on locally correlated
data, the straightforward method is to exhaustively access/join all
CPTs, and compute (correlated) distances from samples of all un-
certain objects to q (joint probabilities as well). However, this
method needs to visit all CPTs, which is more time-consuming than
relational operators, in terms of distance and probability computa-
tions. As an example in Figure 2, we have to join all the four CPTs,
T1∼T4, online obtaining correlated object distances to q, and cal-
culate probabilities that objects are NNs. What is worse, due to
the ad-hoc q, offline optimizations for relational operators on static
tables [31] cannot be directly applied to dynamically changing dis-
tance variables. Thus, it is more challenging to conduct spatial
queries on locally correlated uncertain data.

2.2 Generic Framework
We highlight the generic framework for answering spatial queries

over uncertain and locally correlated data in three phases:

• Indexing phase: We use an R*-tree [1], I, to index locally
correlated uncertain data. We bound all objects oi ∈ LCPj

(i.e., uncertainty regions UR(oi)) by a minimum bound rect-

angle (MBR), and then insert LCPj into I by using the stan-
dard “insert” operator of the R-tree. Each LCP is also asso-
ciated with a graphical representation (e.g., Figure 2).

• Filtering phase: For each spatial query Q, we traverse the
index I, and apply pruning methods to filter out false alarms.

• Refinement phase: We refine candidates by checking query
predicates via graphical model, and return final answers.

2.3 Definition of LCPNN Queries
In this paper, we particularly study one classical spatial query,

nearest neighbor query, on locally correlated uncertain data (called
LC-PNN), different from NN on independent uncertain objects [6].

DEFINITION 2.1. (Probabilistic Nearest Neighbor Query on Lo-

cally Correlated Data, LC-PNN) Given an uncertain database DU

with locally correlated uncertain objects, a query point q, and a

probabilistic threshold α ∈ (0, 1], an LC-PNN query retrieves

those uncertain objects oi ∈ DU are the nearest neighbors of q
with probabilities, PrLC-PNN (q, oi), not smaller than α, that is,

PrLC-P NN (q, oi)

=

∫ r2

r1



Pr{dist(q, oi) = r} · Pr







∧

∀u∈LCS(oi)

dist(q, u) ≥ r | r







· Pr











∧

∀v∈DU\(LCS(oi)∪{oi})

dist(q, v) ≥ r
















dr ≥ α (1)

where r1 and r2 are the minimum and maximum possible distances

from query point q to object oi, respectively, and dist(x, y) =
√

∑d

j=1(x[j] − y[j])2 for d-dimensional objects x and y.

Intuitively, the LC-PNN probability, PrLC-PNN (q, oi), in Def-
inition 2.1 is the joint probability that all other objects (e.g., u and
v) have distances to q greater than or equal to r (= dist(q, oi)). In
particular, since oi is correlated with objects u in the same LCP as
oi (i.e., LCS(oi)), given that distance dist(q, oi) equals to r, we
can obtain the joint probability that all objects u ∈ LCS(oi) have
distances to q greater than or equal to r (i.e., the second term in In-
equality (1)); similarly, for objects v in other LCPs, we can also ob-
tain their joint probabilities having distances to q not below r (i.e.,
the third term in Inequality (1)). Due to the independence among
distinct LCPs, we multiply the two joint probabilities (terms) dis-
cussed above4. An object oi ∈ DU is an LC-PNN, if its LC-PNN
probability is not below threshold α.

Previous work on NN over independent uncertain data [6] can be
subsumed by Definition 2.1. That is, in the case of data indepen-
dence, the joint probabilities in Inequality (1) can be replaced with
multiplications of probabilities that objects have distances to q not
smaller than r. In our LC-PNN problem, due to the locally corre-
lated data, the processing of LC-PNN is more complex and chal-
lenging, which requires computing joint probabilities via graphical
model at high costs. A natural nested-loop method would incur
high complexity (i.e., O(N2) for database size N ). This inspires
us to design effective filtering methods, and essentially achieve low
LC-PNN retrieval cost by quickly pruning false alarms.

3. HEURISTICS OF FILTERING METHODS

3.1 Index Pruning
Recall from Section 2.2 that, we store LCPs in an index I (e.g.,

R*-tree [1]), which facilitates fast query processing by directly ac-
cessing the data we want. Thus, to answer a spatial query like LC-
PNN (Definition 2.1) on I, we propose an index pruning method
to decide whether or not a node/object can be safely pruned.

LEMMA 3.1. (Index Pruning, IP) Let best so far be the small-

est maximum distance from query point q to any uncertain objects

we have seen so far. A node/object e ∈ I can be safely pruned, if it

4
For the latter probability, if set DU\(LCS(oi) ∪ {oi}) contains more than one

LCP, then it can be also represented by a multiplication of joint probabilities (with
distances to q greater than or equal to r) from different LCPs.

14



Figure 3: Heuristics of Candidate Filtering

holds that mindist(q, e) > best so far, where mindist(q, e) is

minimum possible distance from query point q to node/object e.

Proof. Please refer to Appendix A. 2

Note that, the pruning condition given in Lemma 3.1 prunes
those uncertain objects that definitely cannot be nearest neighbor
(NN) of query point q. This is similar to the classical NN re-
trieval over the R-tree index in spatial databases [27] (however,
without considering data uncertainty). Similar pruning conditions
were given in some existing works [6] for retrieving probabilis-
tic nearest neighbors (PNN) under the assumption of object inde-
pendence. In contrast, Lemma 3.1 proves the correctness of this
pruning condition for LC-PNN queries on locally correlated un-
certain data. The index pruning, however, may still produce many
LC-PNN candidates (as later shown in experiments of the Basic
method in Figure 8), which incurs high refinement cost via the
graphical model. This inspires us to propose a novel filtering tech-
nique below that utilizes the properties of data local correlation to
further reduce the size of the candidate set.

3.2 Candidate Filtering via PreComputations
We notice that the online computation cost of the LC-PNN prob-

ability PrLC-PNN (q, oi) in Inequality (1) is high (i.e., joining CPTs
as mentioned in Section 2.1). Thus, we propose a candidate filter-
ing technique which derives and utilizes an upper bound, denoted
as UB PrLC-PNN (q, oi), of the LC-PNN probability at a lower
cost. The rationale is that an object oi can be safely discarded, if it
holds that UB PrLC-PNN (q, oi) < α. The lemma below guaran-
tees the correctness of this pruning.

LEMMA 3.2. (Candidate Pruning, CP) Let UB PrLC-PNN (q,
oi) be an upper bound of the LC-PNN probability, PrLC-PNN (q, oi),

given in Inequality (1). Then, uncertain object oi can be safely

pruned, if it holds that UB PrLC-PNN (q, oi) < α.

Proof. Please refer to Appendix B. 2

Next, we describe how to obtain this probability upper bound
using a 2D example in Figure 3, where q and o5 are query point
LC-PNN candidate, respectively. In particular, by overestimating
the third term in Inequality (1) as 1, we can derive the LC-PNN
upper bound probability for candidate o5:

PrLC-P NN (q, o5) (2)

=

∫ r2

r1



Pr{dist(q, o5) = r} · Pr







∧

∀u∈LCS(o5)

dist(q, u) ≥ r | r







· Pr











∧

∀v∈DU \(LCS(o5)∪{o5})

dist(q, v) ≥ r
















dr

≤
∫ r2

r1



Pr







(dist(q, o5) = r)
∧





∧

∀u∈LCS(o5)

dist(q, u) ≥ r











· 1



 dr

Below, we use the pre-computed information of LC-PNN candi-
dates to enable the pruning. Specifically, we observe that the Eu-
clidean distance function dist(·, ·) follows the triangle inequality:
dist(x, y) + dist(y, z) ≥ dist(x, z).

Our basic idea is to select some pivot, say pivsi , for a sam-
ple si of LC-PNN candidate oi (o5 with pivot pivs5 in our exam-
ple). Then, since it holds that dist(q, pivs5) + dist(pivs5 , u) ≥
dist(q, u) by triangle inequality, we can rewrite Inequality (2) as:

PrLC-P NN (q, o5) (3)

≤
∫ r2

r1



Pr







(dist(q, o5) = r)
∧





∧

∀u∈LCS(o5)

dist(q, u) ≥ r













dr

≤
∫ r2

r1

(

Pr
{

(

dist(q, pivs5
) + dist(pivs5

, o5) ≥ r
)

∧





∧

∀u∈LCS(o5)

dist(q, pivs5
) + dist(pivs5

, u) ≥ r













 dr.

// upper bound, UB PrLC-P NN (q, o5)

Inequality (3) exactly gives an upper bound, UB PrLC-PNN (q,
o5), of the LC-PNN probability for candidate o5. One interesting
property of this upper bound is that, we can offline pre-compute (an
upper bound of) the joint probability, denoted as JPo(s5):

JPo(s5) = Pr







∧

∀u∈LCS(o5)∪{o5}

dist(q, pivs5
) + dist(pivs5

, u) ≥ r







,

in Inequality (3), for r = dist(q, s5), which is equivalent to:

JPo(s5) = Pr







∧

∀u∈LCS(o5)∪{o5}

dist(pivs5
, u) ≥ dist(q, s5) − dist(q, pivs5

)







.

Observing that, in the joint probability above, the LHS of the
inequality, dist(pivs5 , u), can be obtained offline without knowing
query point q (once pivot pivs5 is selected), whereas the RHS (i.e.,
dist(q, s5)−dist(q, pivs5)) is related to query point q. Therefore,
we only need to offline pre-compute the joint probability above by
replacing RHS with some pre-selected constants λ.

In a general case, for sample si of an uncertain object oi, we
pre-compute the joint probability, JPo(si, λ), defined below.

DEFINITION 3.1. (Pre-Computed Joint Probabilities, JPo(si,
λ)) For any sample si of an uncertain object oi, we define the joint

probability, JPo(si, λ), below.

JPo(si, λ) = Pr







∧

∀u∈LCS(oi)∪{oi}

dist(pivsi
, u) ≥ λ







. (4)

The joint probabilities JPo(·) above can be pre-computed of-
fline via standard variable elimination in graphical model [14]. For
any online LC-PNN query w.r.t. candidate oi (with sample si), we
first compute distances dist(q, si) and dist(q, pivsi). Then, we
choose a largest λ value (we pre-selected) satisfying λ ≤ (dist(q,
si) −dist(q, pivsi)), and use its pre-computed joint probability
JPo(si, λ) (in Eq. (4)) to derive the LC-PNN probability upper
bound below. Here, we use the largest λ, since it can result in
tighter (i.e., smaller) upper bound and achieve higher pruning power.

LEMMA 3.3. (Upper Bound of LC-PNN Probability) Given a

query point q and an LC-PNN candidate oi, the upper bound of the

LC-PNN probability, UB PrLC-PNN (q, oi), is given by:

UB PrLC-P NN (q, oi) =
∑

∀si∈oi∧λ=max{λ′|λ′≤dist(q,si)−dist(q,pivsi
)}

JPo(si, λ)

(5)where JPo(·) is given in Definition 3.1.

By using pre-computations w.r.t. pivots, to derive the probability
upper bound in Lemma 3.3, we only need to online compute dis-
tances from q to si and pivsi , rather than exhaustively computing
distances from q to all objects in LCPs, thus greatly saving the cost.

Discussions on Obtaining the Domain of λ. We address the re-
maining issue on how to obtain the domain, [min λ, max λ], of
λ values above. Assuming we know the domain of the data space,
we can obtain the minimum and maximum possible values of λ
(= dist(q, si) − dist(q, pivsi)) for any position of q in the data
space. This method, however, may lead to a loose bound of λ, and

15



Figure 4: Illustration of Obtaining min λ and max λ

it is not useful for obtaining a tight probability upper bound5. Thus,
we adopt another direction to obtain domain [min λ, max λ].

Instead of considering λ on RHS of inequality in Eq. (4), we
check the bound of its LHS (i.e., dist(pivsi , u)). Figure 4 shows
distance bounds from a pivot pivs5 to objects u ∈ {o3, o4, o5, o6}
in LCP of o5, in the previous example of Figure 3. We can obtain
domain of λ by letting min λ=min∀u∈LCS(o5){mindist(pivs5 ,
u)} and max λ = min∀u∈LCS(o5) {maxdist(pivs5 , u)}.

The reason for the settings above is that: When λ < min λ,
the joint probability, JPo(si, λ), in Eq. (4) is always 1; similarly,
when λ > max λ, we have JPo(si, λ) = 0. Thus, when we of-
fline select λ values, we only need to choose values within [min λ,
max λ]. The number of selected λ values for pre-computation
depends on the available space (note: upper bounded by the total
number of samples in LCS(oi) ∪ {oi}). The pivot selection will
be discussed later in Section 4.3, based on a formal cost model.

4. QUERY PROCESSING

4.1 Candidate Filtering via Nodes
Since LCPs are indexed in an R*-tree (Section 2.2), we will

consider pruning candidate oi by using pre-computed probabilities
from an index node e (containing LCPs) which are defined below.

DEFINITION 4.1. (Pre-Computed Joint Probabilities for Index

Nodes) Given an index node e, a pivot pive, and a threshold λ, we

define the joint probability, JPe(e, λ), as follows.

JPe(e, λ) =
∏

∀LCPj∈e



Pr







∧

∀u∈LCPj

dist(pive, u) ≥ λ









 . (6)

In Definition 4.1, JPe(e, λ) is offline pre-computed, which is
the joint probability that all the objects u in node e have distances
to a node pivot pive greater than or equal to λ. Similar to candidate
filtering in Section 3.2, we can derive an upper bound of the LC-
PNN probability via JPe(e, λ) for a candidate oi.

LEMMA 4.1. (Upper Bound of LC-PNN Probability via Nodes)
Given a query point q, an LC-PNN candidate oi, an index node

e, and a pivot pive, the upper bound of the LC-PNN probability,

UB PrLC-PNN (q, oi), is given by:

UB PrLC-P NN (q, oi) =
∑

∀si∈oi∧λ=max{λ′|λ′≤dist(q,si)−dist(q,pive)}

JPe(e, λ)

(7)where JPe(·) is given in Definition 4.1.

Once we obtain the probability upper bound UB PrLC-PNN (q,
oi), we can check the pruning condition in Lemma 3.2. Note that,
for any node e, we simply select the corner points of e as pivots
pive in Eq. (6). Moreover, similar to discussions on parameter λ in
Section 3.2, the domain of λ in JPe(·) of Eq. (6) can be given by
[min λ, max λ], where min λ = min∀u∈e {mindist(pive, u)}
and max λ = min∀u∈e{maxdist(pive, u)}.

4.2 LCPNN Query Procedure
The LC-PNN query processing can be achieved by traversing the

index that contains locally correlated uncertain data. Specifically,
we traverse the index in a best-first manner [11], and apply either
index pruning or candidate filtering via pre-computations discussed

5
The bound can be too loose w.r.t. all possible positions of q, while q expects to be

close to LC-PNN candidate o5 (i.e., dist(q, s5)−dist(q, pivs5
) should be small).

Figure 5: Illustration of Pivot Selection

Figure 6: Illustration of Deciding δmax

in Sections 3 and 4.1. If a node/LCP cannot be pruned, then we
need to further check its children; if an object cannot be pruned,
then this object is an LC-PNN candidate. Finally, we refine candi-
dates and return true LC-PNN answers. Please refer to the detailed
pseudo-code of LC-PNN query processing in Appendix C.

4.3 Cost Model for Selecting Pivots
Next, we illustrate how to select pivots to enable effective can-

didate filtering. Recall from Section 3.2 that, we use the LC-PNN
probability upper bound (given in Eq. (5)) to prune candidate oi

(in case UB PrLC-PNN (q, oi) < α). Our goal is to select “good”
pivots such that this upper bound is as small (i.e., close to the actual
LC-PNN probability) as possible, achieving high pruning power.

We use an example in Figure 5 to illustrate our basic idea of
selecting pivots. Specifically, we partition the data space into cells
of equal size (i.e., δ×δ), and the center of each cell is considered as
a candidate position for pivot6. Consider a sample s5 of object o5

in a rectangle with four candidate positions (ne, nw, sw, and se) of
pivots as corners. Given a query point q, our intuition is to select a
pivot pivs5 such that the upper bound probability given by Eq. (4)
at least has some pruning power. In other words, it is desirable
that dist(q, s5)−dist(q, pivs5)>0 (i.e., λ > 0 in Eq. (4)). Based
on this heuristics, we always select a position for pivot (from four
candidate positions) that is in the same quadrant (w.r.t. sample s5)
as q. Thus, in Figure 5, for sample s5, we can choose sw as pivot
pivs5 , and offline pre-compute probability upper bounds in Eq. (4)
using 4 candidate positions. For any query point q, we can decide
its position in the quadrant of s5, and use the pre-computed bound
corresponding to the pivot in that quadrant. This way, the filtering
over LC-PNN candidate can be performed.

Now the only remaining issue is on how to set the side length, δ,
of cells. In the sequel, we first give the maximum possible δ value,
denoted as δmax. Then, we provide a cost model for deciding a δ
value within [0, δmax] that achieves low query processing cost.

4.3.1 Deciding δmax

As mentioned earlier, to guarantee the pruning power of proba-
bility upper bound, it is desired that dist(q, s5)−dist(q, pivs5)>0
holds. Figure 6 exactly corresponds to the extreme extreme case
with critical condition dist(q, s5)−dist(q, pivs5)=0, where sam-
ple s5 resides at point ne, and query point q be located at the mid-

6
For highly skewed data, we can divide data space into smaller partitions, and set δ or

pivots for each partition.

16



Parameters Values

α 0.1, 0.2, 0.5, 0.8, 0.9

[eLCP
min , eLCP

max ] [1, 1], [1, 2], [1, 3], [1, 4], [1, 5]
N 50K, 100K, 150K, 200K, 250K
n 2, 3, 5, 8, 10

Table 1: The Parameter Settings

Figure 7: Selection of Parameter δ for Pivots (lUeU )

dle point between ne and sw. Clearly, if the diagonal length (i.e.,√
2δ in the 2D case) of the rectangle (with sw and ne as corners) is

greater than 2·dist(q, s5), then we have dist(q, s5)−dist(q, pivs5)
<0, and thus the LC-PNN probability is 1, having no pruning power.
So we should let

√
2 · δ ≤ 2 · dist(q, s5) in the 2D space. In a gen-

eral d-dimensional space, for sample si of object oi, we have:

δ ≤ 2 · dist(q, si)√
d

≤
2 · (dist(q, Coi

) + roi
)

√
d

. (8)

where Coi and roi are the center and radius of uncertainty region
UR(oi) for object oi, respectively.

Therefore, we can obtain δmax by estimating the RHS of In-
equality (8). For roi , we can approximate it by the average radius
of uncertain objects in the database. Moreover, observing that ob-
ject oi is an LC-PNN candidate close to query point q, we thus
estimate dist(q, Coi) as the distance from q to its nearest center
among all centers of uncertain objects. In other words, in a hyper-
sphere centered at q with radius dist(q, Coi), there exists only one
center point Coi . Thus, we apply the power law [2], resulting in:

(N − 1) ·
(

2πd/2 · distd(q, Coi
)

d · Γ(d/2)

)D2/d

= 1, (9)

which can be simplified as:

dist(q, Coi
) =

(

(d · Γ(d/2))D2/d

(2πd/2)D2/d · (N − 1)

)1/D2

, (10)

where D2 is the correlation fractal dimension of all the object cen-
ters in DU , d is the dimensionality of the database, and Γ(·) is the
gamma function. By substituting dist(q, Coi) in Eq. (10) and av-
erage radius roi into RHS of Eq. (8), we obtain the δmax value.
Note that, since power law can capture arbitrary distribution, our
cost model expects to achieve low query cost.

4.3.2 Selection of δ

We next decide which value in [0, δmax] is appropriate for set-
ting parameter δ. Below, we provide a cost model to formalize the
query cost, involving parameter δ, and aim to choose a good δ value
such that this query cost is minimized. Specifically, the query cost
consists of two parts, the cost of computing distances between q
and pivots, costfilter , and that of refining candidates, costrefine.
Cost costfilter is proportional to the number of possible candidate
pivots within the region where LC-PNN candidates reside. By ap-
plying the power law [2], we can obtain:

Figure 8: Comparison of Filtering Power (Basic vs. LC-PNN )

(a) wall clock time (lU ) (b) speed-up ratio (lU )

(c) wall clock time (lS) (d) speed-up ratio (lS)

(e) wall clock time (CA) (f) speed-up ratio (CA)

Figure 9: Performance vs. Probabilistic Threshold α

costfilter = (N − 1) ·
(

2πd/2 · (dist(q, Coi
) + 2 · roi

)d

d · Γ(d/2)

)D2/d

·
(

2πd/2 · (roi
+ δ)d/δd

d · Γ(d/2)

)

· tflt (11)

In Eq. (11), the first two terms estimate the number of LC-PNN
candidates by the power law, the third term is the number of cells
(pivots) that are relevant to each candidate, and the fourth one tflt

is the unit time cost to check the filtering condition via pivots.
The second refinement cost, costrefine, is related to the pruning

power of pivot. Let PP be the probability that an object oi can be
pruned by our filtering method, that is,

PP = Pr







Pr







∧

∀u∈LCS(o5)∪{o5}

dist(pivs5
, u) ≥ λ







< α







. (12)

Therefore, we have the refinement cost as follows:

costrefine = (N − 1) ·
(

2πd/2 · (dist(q, Coi
) + 2 · roi

)d

d · Γ(d/2)

)D2/d

·(1 − PP ) · trfn, (13)

where the first three terms estimate the number of candidates after
filtering, and the fourth one trfn is the average time cost (obtained
from statistics of query history) to refine a candidate.

This way, we can estimate the query cost, costfilter+costrefine,
for any δ in [0, δmax], and select the one with the lowest cost as δ.

Discussions on Other Queries Over Locally Correlated Data.

Please refer to Appendix E for other query types in our framework.

5. EXPERIMENTAL EVALUATION
Experimental Settings. We conduct experiments on real/synthetic
locally correlated uncertain data. For synthetic data, each LCP,
LCPj , is centered at CLCPj with extent eLCPj∈[eLCP

min , eLCP
max ]

on each dimension, in which we produce locally correlated data.
For different center and extent distributions, we obtain 4 data sets
lUeU , lUeG, lSeU , and lSeG. We also test real California Road
Network data, CA eU and CA eG. The detailed data descriptions

17



(a) wall clock time (lU ) (b) speed-up ratio (lU )

(c) wall clock time (lS) (d) speed-up ratio (lS)

Figure 10: Performance vs. LCP Extent Range [eLCP
min , eLCP

max ]

are in Appendix E. We compare our approach, LC-PNN , with
a modified index-based method [6], Basic, which obtains PNN
candidates via index, and refines candidates by considering data
correlations rather than independence. We report the wall clock

time, which is the execution time of LC-PNN, and speed-up ratio,
defined as the time cost of Basic divided by that of LC-PNN .
Table 1 depicts parameter settings, where numbers in bold font are
default values. Each time we vary one parameter, while setting
other parameters to default values. All our experiments are con-
ducted on a Pentium IV 3.2GHz PC with 1G memory.

Selection of Parameter δ. Figure 7 shows the effect of parameter
δ on the LC-PNN performance over data set lUeU , where δ is a
parameter mentioned in Section 4.3 to determine positions of piv-
ots. Large δ results in low computation cost via pivots, however,
low pruning power as well. Thus, there is a trade-off between com-
putation cost and pruning power. In Figure 7, when δ increases, the
total time cost first decreases and then increases. The maximum
value, δmax, of δ is given by 2.18, derived by our cost model (Sec-
tion 4.3.1). When δ = 1, the time cost achieves the lowest value.
The trends with other data sets are similar and thus omitted. In sub-
sequent experiments, in order to show the trend of other parameters
without being affected by different δ, we will set δ to 1.

Comparison of Filtering Power. Figure 8 compares LC-PNN
with Basic on 6 real/synthetic data, in terms of the number of can-
didates after filtering, where parameters are set to their default val-
ues. We can see that LC-PNN incurs much fewer (by orders of
magnitude) candidates than Basic, which confirms the effective-
ness of our candidate filtering technique via offline pre-computations.

Effect of Probabilistic Threshold α. Figure 9 illustrates the ef-
fect of α on the LC-PNN performance, with α varying from 0.1 to
0.9. Larger α results in higher pruning power due to the candidate
filtering. In figures, the wall clock time of LC-PNN is low (i.e.,
around 0.45∼1 sec for default settings), and decreases for large α,
due to the retrieval and refinement of fewer candidates. In contrast,
Basic obtains candidates without considering α constraint. Thus,
the speed-up ratios increase for large α. The results on real data
CA are similar, thus, we only show results on synthetic data below.

Effect of LCP Extent Range [eLCP
min , eLCP

max ]. Figure 10 presents
results by varying [eLCP

min , eLCP
max ] from [1, 1] to [1, 5]. When the

range is wider, the wall clock time slightly increases. This is be-
cause more LCPs are accessed and filtered for wider range, which
requires higher cost. Nonetheless, the time cost is low (i.e., 0.1∼1
sec). The speed-up ratio of LC-PNN increases with wider range,
as Basic produces more candidates than LC-PNN .

(a) wall clock time (lU ) (b) speed-up ratio (lU )

(c) wall clock time (lS) (d) speed-up ratio (lS)

Figure 11: Performance vs. Data Size N

(a) wall clock time (lS) (b) speed-up ratio (lS)

Figure 12: Performance vs. LCP Size n

Effect of Data Size N . Figure 11 tests the scalability of LC-PNN
on the total number, N , of uncertain objects from 50K to 250K.
In figures, the wall clock time of LC-PNN smoothly increases
with the increasing N . Nonetheless, the wall clock time remains
low (i.e., about 1 sec). Further, the speed-up ratio indicates that
LC-PNN outperforms Basic by 1-2 orders of magnitude, which
shows good scalability of our LC-PNN approach.

Effect of LCP Size n. Figure 12 evaluates the wall clock time and
speed-up ratio of LC-PNN on lS data sets by varying the average
number of objects per LCP, n, from 2 to 10. The results on lU data
are similar and omitted. Due to larger LCP size, the calculation
of joint probability via the graphical model becomes more costly;
moreover, since the total data size increases, the data retrieval leads
to more I/O and computation costs. Thus, in Figure 12(a), the wall
clock time increases for larger n. Further, for larger n, due to our
proposed filtering technique via pre-computations, LC-PNN has
much fewer candidates than Basic. Thus, the speed-up ratio in-
creases with the increasing n, and remains high.

Comparisons with PNN With Object Independence. We com-
pare Basic and LC-PNN with PNN over independent uncer-
tain objects [6], namely IND-PNN , which has the same index
traversal as Basic, but in the refinement step replaces the joint
probability in Inequality (1) with multiplications of probabilities
for individual objects (v or u). Figure 13(a) shows the efficiency
comparison on real/synthetic data. IND-PNN has much lower
time cost than Basic, since IND-PNN assumes independent
data and does not need to compute joint probabilities. For lU data,
LC-PNN has a bit higher (but comparable) wall clock time than
IND-PNN , due to more refinement cost via graphical model; for
lS and CA data, LC-PNN performs better than IND-PNN ,
since LC-PNN has fewer candidates to refine. Figure 13(b) shows
the recall and precision of IND-PNN on locally correlated data,
where LC-PNN answers are the ground truth, recall is the num-
ber of true answers obtained by IND-PNN divided by that of
true answers, and precision is the percentage of true answers in the

18



(a) wall clock time (b) recall / precision of IND-PNN

Figure 13: Comparison of Basic, IND-PNN , and LC-PNN

returned IND-PNN answer set. About 15% - 40% of LC-PNN
answers are missing by using IND-PNN ; moreover, 15% - 35%
of IND-PNN results are not LC-PNN answers, incurring extra
refinement cost, which in turn shows the effectiveness of LC-PNN .

6. RELATED WORK
Previous works on uncertain query processing can be classified

into two categories, with and without object independence. The
first category includes NN query [6, 3], skyline [25], similarity join
[18, 23], and so on. In probabilistic databases [7], top-k queries
[26, 30, 32, 20] are also explored assuming independence among x-

tuples under possible worlds semantics. The most relevant work to
ours is the probabilistic nearest neighbor (PNN) query [6, 3] on in-
dependent uncertain data. Their essential idea is to use boundaries
of uncertainty regions to reduce the search space. Then, candidates
are refined by assuming object independence. Thus, the correctness
and applicability of these techniques to locally correlated uncertain
data are not trivial. In our work, we proved the correctness of index
pruning and designed an effective candidate filtering method.

The second category considers correlations among uncertain data
[28, 29, 31]. Sen and Deshpande [28] presented a framework for
explicitly modeling/querying correlated tuples via graphical mod-
els in probabilistic databases. Sen et al. [29] exploited shared cor-
relations in uncertain data to speed up the efficiency of relational
operators (e.g., join). Wang et al. [31] based on a class of First-

Order Bayesian Network to model correlated uncertain data, and
performed relational operators (e.g., select, project and join). Kana-
gal and Deshpande [16] indexed correlated probabilistic databases
to answer inference/aggregation queries. A large junction tree is
recursively divided into partitions via classical tree partition algo-
rithms which form a hierarchical tree structure. While the index in
[16] is obtained by partitioning the tree (that may incur high cost
of visiting all tree nodes for spatial queries in the Euclidean space
like LC-PNN), our work uses the index that naturally stores lo-
cally correlated data in Euclidean spaces. Further, the index of [16]
stores joint probabilities for variables under/among nodes for se-
lection on static attributes. In our problem, however, spatial queries
like LC-PNN have ad-hoc query point only known at query time.
To enable lightweight query processing, we have to design prun-
ing methods via offline pre-computations. Other works [15, 19]
model temporally correlated probabilistic streams by a simplified
graphical model, Markovian Model, whereas our work focuses on
spatially locally correlated data; further, our targeting queries are
spatial queries, not relational operators. Thus, previous methods
are not directly applicable with different data and queries.

7. CONCLUSION
Uncertain and locally correlated data are pervasive in many real

applications. In this paper, we propose a generic framework for
handling such uncertain and locally correlated data. We study a typ-
ical query, probabilistic nearest neighbor query (LC-PNN), on lo-
cally correlated uncertain data. To facilitate fast query processing,
we propose a novel filtering technique via offline pre-computations
to reduce the search space. We demonstrate through extensive ex-
periments the LC-PNN performance of our approach.

8. REFERENCES
[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:

an efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[2] A. Belussi and C. Faloutsos. Self-spacial join selectivity estimation
using fractal concepts. ACM Trans. Inf. Syst., 16(2), 1998.

[3] G. Beskales, M. Soliman, and I. F. Ilyas. Efficient search for the top-k
probable nearest neighbors in uncertain databases. In VLDB, 2008.

[4] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv.,
41(1), 2008.

[5] C. Böhm, A. Pryakhin, and M. Schubert. The Gauss-tree: efficient
object identification in databases of probabilistic feature vectors. In
ICDE, 2006.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, 2003.

[7] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. The VLDB Journal, 16(4), 2007.

[8] E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. In VLDB, 2007.

[9] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating
conflicting data: The role of source dependence. PVLDB, 2(1), 2009.

[10] A. Faradjian, J. Gehrke, and P. Bonnet. Gadt: A probability space
ADT for representing and querying the physical world. In ICDE,
2002.

[11] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2), 1999.

[12] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A
system for the efficient execution of multi-parametric ranked queries.
In SIGMOD, 2001.

[13] S. R. Jeffery, M. J. Franklin, and M. Garofalakis. An adaptive RFID
middleware for supporting metaphysical data independence. VLDBJ,
17(2), 2008.

[14] M. I. Jordan. Graphical models. In Statistical Science (Special Issue

on Bayesian Statistics), 2004.
[15] B. Kanagal and A. Deshpande. Efficient query evaluation over

temporally correlated probabilistic streams. In ICDE, 2009.
[16] B. Kanagal and A. Deshpande. Indexing correlated probabilistic

databases. In SIGMOD, 2009.
[17] M. Koskela, J. Laaksonen, and E. Oja. Use of image subset features

in image retrieval with self-organizing maps. In CIVR, 2004.
[18] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic

similarity join on uncertain data. In DASFAA, 2006.
[19] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access methods

for markovian streams. In ICDE, 2009.
[20] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in

probabilistic databases. PVLDB, 2(1), 2009.
[21] M. Li, Y. He, Y. Liu, J. Zhao, S. Tang, X.-Y. Li, and G. Dai. Canopy

closure estimates with greenorbs: Sustainable sensing in the forest.
In ACM Sensys, 2009. http://greenorbs.org.

[22] X. Lian and L. Chen. Monochromatic and bichromatic reverse
skyline search over uncertain databases. In SIGMOD, 2008.

[23] V. Ljosa and A. K. Singh. Top-k spatial joins of probabilistic objects.
In ICDE, 2008.

[24] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query
processing for location services without compromising privacy. In
VLDB, 2006.

[25] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on
uncertain data. In VLDB, 2007.

[26] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, 2007.

[27] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[28] P. Sen and A. Deshpande. Representing and querying correlated
tuples in probabilistic databases. In ICDE, 2007.

[29] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations
in probabilistic databases. Proc. VLDB Endow., 1(1), 2008.

[30] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing
in uncertain databases. In ICDE, 2007.

[31] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and J. M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with
probabilistic graphical models. PVLDB, 1(1), 2008.

[32] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of
top-k queries in uncertain databases. In ICDE, 2008.

19



Acknowledgments

Funding for this work was provided by Hong Kong RGC GRF
Grant No. 611608 and NSFC Grant No. 60933011 and 60933012.

Appendix

A. Proof of Lemma 3.1.

Proof. It is sufficient to prove that for any uncertain object oi in
node e, it always holds that PrLC-PNN (q, oi) in Inequality (1)
equals to 0 (since α > 0). Since oi ∈ e holds, we have mindist(q,
oi) ≥ mindist(q, e). Thus, by the assumption of lemma that
mindist(q, e) > best so far holds, we obtain mindist(q, oi) >
best so far via inequality transition. As a result, the LC-PNN
probability in Inequality (1) is always equal to 0, due to the exis-
tence of an object (we have seen so far) with maximum distance,
best so far, to q (i.e., dist(q, ·) < r always holds for this object).
Hence, the lemma holds. 2

B. Proof of Lemma 3.2.

Proof. Since the upper bound of PrLC-PNN (q, oi) is given by
UB PrLC-PNN (q, oi), according to the lemma assumption that
UB PrLC-PNN (q, oi) < α, we have PrLC-PNN (q, oi) < α.
Thus, from Definition 2.1, object oi can be safely pruned. 2

C. Pseudo Code of LCPNN Query Processing.

Figure 14 illustrates the pseudo-code of LC-PNN query process-
ing, namely LC-PNN Processing, which retrieves probabilistic
nearest neighbor of a query point q over uncertain data with local
correlations, with probability greater than or equal to a threshold
α ∈ (0, 1]. Specifically, we conduct the LC-PNN query by travers-
ing an R-tree index containing LCPs, as mentioned in our generic
framework. To facilitate the query processing, we maintain a can-
didate set Scand (initially empty) for storing LC-PNN candidates,
as well as a variable best so far (initially +∞) to keep the small-
est distance upper bound from q to objects we have seen so far (line
1). To traverse the index, we also create a minimum heap H accept-
ing entries in the form 〈e, key〉 (line 2), where e is either an R-tree
node or a locally correlated partition (LCP), and key is the sorting
key in the heap defined as the minimum distance from query point
q to node/LCP e. Next, we insert the root, root(I), of index I into
heap H (line 3). Each time we pop out an entry 〈e, key〉 from the
heap (line 5). If key is greater than variable best so far, indicat-
ing the rest of entries in the heap cannot be closer to q than that we
have seen, we will terminate the loop (line 6); otherwise, we further
check the children of e.

When e is an LCP, we verify whether or not for each object
oi ∈ e, mindist(q, oi) ≤ best so far holds. If the answer is yes,
oi is a candidate and is added to the candidate set Scand lines 7-10);
otherwise, oi can be discarded (via Lemma 3.1). In addition, we
also load the pre-computed joint probabilities (e.g., JPo(·)), and
and compute the probability upper bound, UB PrLC-PNN (q, oi).
If it holds that UB PrLC-PNN (q, oi) < α, we can prune candi-
date oi by marking it as a false alarm.

On the other hand, no matter e is a leaf or non-leaf node, for
each child ei of e, we check whether or not mindist(q, ei) ≤
best so far holds. If the answer is yes, then it indicates that ei

may contain LC-PNN answers. Thus, we insert objects/nodes in ei

(in the form 〈ei, mindist(q, ei)〉) into heap H for further filtering
(lines 16-25). Further, we can apply the filtering method discussed

in Section 4.1 via the pre-computed JPe(·) (lines 20 and 25). The
index traversal stops when either heap H is empty (line 4) or no
nodes in the heap can contain LC-PNN answers (line 6).

After the index traversal, we can obtain and refine the remaining
LC-PNN candidates by computing the actual LC-PNN probability
(given in Inequality (1)) using the graphical model on locally corre-
lated uncertain data (line 26). Finally, we return the actual LC-PNN
answers satisfying Inequality (1) (line 27).

Procedure LC-PNN Processing {
Input: an uncertain database DU containing uncertain objects with local

correlations, an R-tree index I over DU , a query point q, and
a probabilistic threshold α ∈ (0, 1]

Output: the answer to the LC-PNN query
(1) Scand = φ; best so far = +∞;
(2) initialize an empty min-heap H accepting entries in the form 〈e, key〉
(3) insert 〈root(I), 0〉 into heap H
(4) while heap H is not empty // Section 3.1
(5) 〈e, key〉 = de-heap (H)
(6) if key > best so far, then break; // Lemma 3.1
(7) if e is a locally correlated partition
(8) for each object oi ∈ e
(9) if mindist(q, oi) ≤ best so far
(10) Scand = Scand ∪ {oi}
(11) load the pre-computed joint probabilities for object oi // Section 3.2
(12) if UB PrLC-P NN (q, oi) < α, then mark oi as false alarm
(13) if best so far > maxdist(q, oi)
(14) let best so far = maxdist(q, oi)
(15) filter out false alarms in Scand with the updated best so far
(16) if e is a leaf node
(17) for each LCP LCPj ∈ e
(18) if mindist(q, LCPj) ≤ best so far
(19) insert 〈LCPj , mindist(q, LCPj)〉 into heap H
(20) filter candidates in Scand via JPe(·) on LCPj // Eq. (7)
(21) if e is an intermediate node
(22) for each entry ei ∈ e
(23) if mindist(q, ei) ≤ best so far
(24) insert 〈ei, mindist(q, ei)〉 into heap H
(25) filter candidates in Scand via JPe(·) on node ei // Eq. (7)
(26) refine candidates in Scand by computing the actual LC-PNN probability
(27) return the final answer set

}

Figure 14: Procedure of LC-PNN Query Processing

D. Discussions on Other Queries Over Locally
Correlated Data.

We now discuss how to apply our filtering idea via pre-compu-
tations to answering other spatial queries over uncertain and locally
correlated data in our framework (Section 2.2). In brief, our basic
idea of filtering technique is to derive an upper bound of proba-
bility, that a candidate oi satisfies query predicates P , by offline
pre-computing joint probabilities in LCS(oi) and other LCPs via
pivots (filtering in index nodes is similar to Lemma 4.1). One im-
mediate query type is the LC-PNN query under metric distance
functions (other than Euclidean distance in LC-PNN), such as L1-
norm. Since our pre-computations use pivots to derive probability
upper bound, we can apply the similar technique as long as the un-
derlying distance functions follow the triangle inequality.

Another interesting query is the dynamic skyline query [8], that
retrieves uncertain objects that are not dynamically dominated by
other objects (w.r.t. a query point q) with probability greater than
or equal to a threshold. That is,

DEFINITION 8.1. (Probabilistic Skyline Query on Uncertain

Data with Local Correlations, LC-SKY) Given an uncertain database

DU containing locally correlated uncertain objects and a proba-

bilistic threshold α ∈ (0, 1], an LC-SKY query retrieves those un-

certain objects oi ∈ DU such that oi is not dominated by other

objects with probability, PrLC-SKY (oi), greater than or equal to

α, that is,

20



PrLC-SKY (oi) =

∫

oi∈UR(oi)



Pr{oi} · Pr







∧

∀u∈LCS(oi)

u ⊀ oi | oi







·






Pr











∧

∀v∈DU\(LCS(oi)∪{oi})

v ⊀ oi






















dr (14)

where x ⊀ y indicates that x is not dominated by y. In particular,

we say that x dominates y, if it holds that 1) x[i] ≤ y[i] for all di-

mensions 1 ≤ i ≤ d; and 2) x[j] < y[j] for at least one dimension

1 ≤ j ≤ d.

Similar to LC-PNN, we can pre-compute the joint probabilities
that each sample of a candidate oi is not dynamically dominated
w.r.t. pivots by objects in each of LCPs, considering different pos-
sible positions of q. This way, a probability upper bound can be
derived from these pre-computations.

For top-k queries [12], with a pre-selected preference function,
we can also pre-compute joint probabilities that each sample of ob-
ject oi has score higher than others in LCPs. We would like to in-
corporate other spatial queries on uncertain and locally correlated
data into our framework as future work.

E. Descriptions of Experimental Settings in Sec
tion 5.

We test our proposed approaches on both real and synthetic data
sets. For the synthetic data, we generate the locally correlated par-
titions (LCPs), LCPj , as follows. That is, we first pick up a center
location, CLCPj , for LCP LCPj in a data space U = [0, 100]d.

Then, we randomly produce the extent, eLCPj ∈ [eLCP
min , eLCP

max ], of
LCPj on each dimension (i.e., along the k-th dimension, objects in
LCPj are within [CLCPj [k]− eLCPj [k], CLCPj [k] + eLCPj [k]]).
Within LCPj , we further generate n locally correlated uncertain

objects on average. In particular, we randomly generate uncertain
objects oi in LCPj , each with object extent in [eLCP

min /2, eLCP
min ]

on each dimension. We simulate the correlations among uncer-
tain objects in each LCP LCPj as follows. We first create a large
table having every coordinate of each object in LCPj as one at-
tribute, then assign each tuple in the table with a joint probability
(note: the summation of joint probabilities for all tuples in the ta-
ble is equal to 1), and finally construct conditional probability ta-
bles (CPTs) from this large table based on a probabilistic graphical
model (graph structure is randomly generated, i.e., producing ran-
dom edges between pairs of objects until the graph is connected,
like the one in Figure 2(b)). We denote the data set with LCP
center location CLCPj following Uniform (or Skew with skewness
0.8) distribution as lU (lS); similarly, denote the data set with LCP
extent following Uniform (Gaussian with mean (eLCP

min +eLCP
max )/2

and variance (eLCP
max − eLCP

min )/5) distribution as eU (eG). Thus,
we have four types of data sets, lUeU , lUeG, lSeU , and lSeG. In
our experiments, we set the attribute domain of objects in each LCP
to 10 and the default dimensionality to 2. Note that, for other data
sets with different parameters or distributions (e.g., dimensionality,
mean, variance, skewness), the query trends are similar.

Moreover, for the real data, we use a spatial data set, CA, which
contains nodes of California Road Network obtained from Digi-
tal Chart of the World Server [http://www.maproom.psu.edu/dcw/ ].
We consider each data point in CA as the center CLCPj of an LCP,
and randomly generate its extent eLCPj following either Uniform
or Gaussian distribution (denoted as CA eU and CA eG, respec-
tively). The resulting data sets can simulate the scenarios with lo-
cally correlated spatial objects. For each of the data sets above,
we insert LCPs into an R*-tree index [1] with page size 4K, on
which the LC-PNN query is processed. To enable the candidate fil-
tering, we offline pre-compute the joint probabilities (by using 10
selected λ values within [min λ, max λ] in our experiments), as
mentioned in Section 3.2.

21


