
Update Rewriting and Integrity Constraint Maintenance
in a Schema Evolution Support System: PRISM++

Carlo A. Curino
MIT

curino@mit.edu

Hyun Jin Moon
NEC Labs America

hjmoon@sv.nec-labs.com

Alin Deutsch
UCSD

deutsch@cs.ucsd.edu

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

ABSTRACT
Supporting legacy applications when the database schema evolves
represents a long-standing challenge of practical and theoretical im-
portance. Recent work has produced algorithms and systems that au-
tomate the process of data migration and query adaptation; however,
the problems of evolving integrity constraints and supporting legacy
updates under schema and integrity constraints evolution are signif-
icantly more difficult and have thus far remained unsolved. In this
paper, we address this issue by introducing a formal evolution model
for the database schema structure and its integrity constraints, and
use it to derive update mapping techniques akin to the rewriting tech-
niques used for queries. Thus, we (i) propose a new set of Integrity
Constraints Modification Operators (ICMOs), (ii) characterize the
impact on integrity constraints of structural schema changes, (iii) de-
vise representations that enable the rewriting of updates, and (iv) de-
velop a unified approach for query and update rewriting under con-
straints. We then describe the implementation of these techniques
provided by our PRISM++ system. The effectiveness of PRISM++
and its enabling technology has been verified on a testbed containing
evolution histories of several scientific databases and web informa-
tion systems, including the Genetic DB Ensembl (410+ schema ver-
sions in 9 years), and Wikipedia (240+ schema versions in 6 years).

1. INTRODUCTION
Practitioners and researchers have long acknowledged the prob-

lem of evolving Information Systems to respond to perpetually chang-
ing requirements [24]. As a result of past database research, practi-
tioners can now rely on sophisticated methods and robust tools for
designing their initial schema; however, effective methods and tools
for supporting and automating the later unavoidable evolution of the
schema are still missing from practitioner’s arsenal. The need for
practical solutions already very strong in traditional enterprise en-
vironments is made even more urgent by the growing popularity of
large web information systems such as Wikipedia (over 240 schema
versions in 6 years) and data-intensive, Big-Science projects such
as Ensembl Genome project [15] (over 410 schema versions in 9
years) or the LHC project at European Organization for Nuclear
Research (CERN)1. The large number and diversity of stakehold-

1See: http://cern.ch.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/11... $ 10.00.

ers, and the highly collaborative, fast-progressing environment that
is typical of today’s enterprise and web and scientific endeavors, is
characterized, in fact, by very strong need for evolution, and reduced
tolerance for migration downtime. These conclusions are also sup-
ported by the histories of 12 major information systems collected
in our schema evolution testbed [10]. This analysis also confirms
the need to support integrity constraints and updates: as examples
consider the Ensembl DB schema history containing over 175 in-
dividual changes of primary and foreign keys and that almost 20% of
the SQL statements in the Wikipedia workload are legacy updates.

Until today, this manifest need for schema evolution support re-
mained largely unanswered, even though much progress was made
on topics, such as mapping composition, invertibility and query rewrit-
ing [17, 16, 13] that provide the formal basis for sound solutions.
The computational costs of these techniques in their general form
has prevented their practical deployment, leaving a gulf between the
elegant advances in theory and the needs of struggling practitioners—
a gulf that has only partially bridged by recent results [7, 11, 30].

In fact, the common practice today is for the database administra-
tor (DBA) to manually migrate data from the old to the new schema,
and for application developers to carefully adapt old applications to
operate on the new schema. These operations are extremely time-
consuming and error-prone—over 18% of Wikipedia evolution steps
contained errors detectable by an automatic tool.

To the best of our knowledge, PRISM++ is the first system that
offers end-to-end support for query and update adaptation through
both structural schema changes and integrity constraints evolution.
The design of PRISM++ benefits from (i) our previous experience
[11] and our schema evolution testbed [10], and (ii) a careful analysis
and avoidance of computational pitfalls that pervade this domain.

Given a specification of the desired schema and integrity con-
straints evolution, PRISM++ automates the migration of the data and
the mapping of (legacy) queries and updates from the old schema to
the new schema. The notion of a sound mapping for queries and
updates across schemas has been extensively studied in the past and
can be formalized as follows2:

Let the current schema be S′, the current database instance I ′, and
let S be a past schema version.

1. Given a legacy query Q defined over S, PRISM++ conceptu-
ally migrates I ′ “backwards” to an S-instance I , by inverting
the schema evolution steps. Then the result Q(I) of executing
Q on I is returned.

2. For a legacy update U against schema S, PRISM++ concep-
tually migrates I ′ backwards to S-instance I , applies the up-
date to obtain U(I), then migrates U(I) “forward” through
the evolution steps, to obtain a new S′-instance, replacing I ′.

2This is an adaptation of the classical view update semantics [5, 12,
22] to our context, in which evolution operators replace the views.

117

id description
g_descr

id type
gene

region start end

region_id name
seq_region

length

id rank
exon

region start end

id biotype
gene

start end

region_id name
seq_region

length

source region description

id region start end

exonS 1 S 3

id description
g_descr

id type
gene

region start end

region_id name
seq_region

length

id
exon

region start end
S 2

Figure 1: Three (simplified) schema versions from the actual Ensembl genetic DB schema history.

The challenge in achieving this semantics is to avoid the pro-
hibitive cost of actually migrating data to support legacy queries
or updates. Rather than performing the costly materialization of I ,
PRISM++ rewrites the legacy queries Q and updates U to queries Q′

and updates U ′ against current schema S′, such that the intended se-
mantics is preserved by operating only on the current database ver-
sion: Q′(I ′) = Q(I) and U ′(I ′) is equivalent to executing U(I)
and migrating it forward to S′.

Our first attempt in this direction [11], lacked the support of up-
dates, was not designed to handle evolution steps modifying integrity
constraints, and could only rewrite a limited class of queries.

PRISM++ solves all this by introducing update rewriting to adapt
legacy updates to run on the current schema, evolution of integrity
constraints significantly extending the class of evolution steps cov-
ered, and finally provides support for a wider class of queries, that
now include queries with negation and simple functions.

In addition to these external functionality extensions, major chan-
ges were made internally to incorporate the advances made in mod-
eling and mapping legacy update, including: (i) the representation
of updates in a fashion that is amenable to rewriting, namely based
on query equivalence, (ii) a new inference engine combining novel
algorithms and chase-based rewriting technology to rewrite queries
and updates through both structural changes of the schema and in-
tegrity constraints evolution, and (iii) a set of operators that support
modeling of integrity constraint evolution, and a characterization of
how integrity constraints are affected by structural schema changes.

In its design the system balances the need to achieve sufficient
expressivity to cover a wide range of practical cases, with compu-
tational complexity of several related problems that are notoriously
hard in the general case, including: the view update problem [5], de-
ciding schema equivalence [28], schema mapping composition [16]
and inversion [17], and consistent query answering [3]. The most
general version of the schema evolution problem modeled under
these formalisms tend to be intractable or even undecidable (for
schema mappings expressed classically, in the language of arbitrary
views [31] or of source-target tgds [19, 23])—see Section 6 for a
discussion of related work. Thus, the design of PRISM++ uses the
evolution language as its main defense against the complexity threat:
indeed, this language allows us to “divide and conquer” the tasks, by
applying case-by-case analysis for each evolution operator.

Our newly developed testbed [10] provided us with the ability of
testing the expressivity of the PRISM++ evolution language and the
effectiveness of our rewriting techniques on the evolution history
and workloads (queries and updates) of several real-world systems,
including Ensembl DB and Wikipedia. A short video demo of
PRISM++ is available on-line3.

1.1 Running Example: a Genetic DB
The PRISM++ system has been designed and validated on many

evolution histories from several application domains [10], among
which we chose the genetic DB Ensembl as running example.

The Ensembl project1, funded by the European Biology Institute
and the Welcome Trust Sanger Institute, provides a data-centric plat-

3See: http://tinyurl.com/updaterewriting

form used to support the homonymous human genome database, and
other 15 genetic research endeavors. Ensembl DB has witnessed an
intense schema evolution history. In about 9 years of life-time over
410+ schema versions appeared to public (i.e., almost a version a
week in the last decade). Ensembl users can to underlying database
in multiple ways, including web-page mediated searches, direct SQL
access, and data-mining and querying APIs. Every change to the
schema potentially impacts all the applications and interfaces built
on it, some developed by third parties and therefore hard to maintain.
Hence, there is a substantial need for transparent evolution support.

We select from this long schema history a few representative ex-
amples, compressed and adapted for the sake of presentation. The
starting schema S1 of Figure 1 is an excerpt of the CVS4 schema re-
vision 188.2.6; this schema describes how the Ensembl DB stores
its information about DNA sequences, exons5 and genes. Under-
lined attributes are primary keys and arrows indicate foreign keys.
Each table has a primary key constituted of one numerical identi-
fier, except for the exon table, where the rank of an exon is also
needed to uniquely identify its tuples. Both exon and gene refer
to DNA sequences stored in table seq region, by referencing
their region id and specifying start and end positions in the DNA
sequence. The g descr table, stores textual descriptions of genes.

In July, 2003 the team of DBAs decided to remove from exon
the rank attribute and force id to be the new primary key, discard-
ing violating tuples6, leading to the schema S2 in Figure 1 (revision
188.2.8 CVS schema).

In August 2005, a new evolution step impacting this subset of the
schema appeared in the public release of the DB. This evolution step
involved two actions: (i) renaming of column type to biotype in
table gene, and (ii) the joining of the tables gene and g descr
into a unified table gene, leading to the schema S3 in Figure 1 (re-
vision 226 of CVS schema). This example is used throughout the
paper to illustrate our technical contributions.

The remainder of this paper is organized as follows: Section 2
presents the evolution language, Section 3 describes the resulting
data migration, Section 4 details query and update rewriting, Sec-
tion 5 discusses optimizations and experiments. Section 6 and 7
summarize related works and conclusions.

2. A SCHEMA EVOLUTION LANGUAGE
In [11] we introduced the Schema Modification Operators (SMO)

of Table 1. Each operator captures an atomic (and natural) change
performed to evolve the schema. By combining them, it is possi-
ble to express complex evolutions. The SMOs’ atomicity and clear
semantics represent an ideal basis to tackle the problem of data mi-
gration and schema evolution. However, SMOs alone do not capture
integrity constrains evolution. PRISM++ extends this approach by
introducing six new operators used to edit the schema integrity con-
straints: the Integrity Constraints Modification Operators (ICMOs)

4See Ensembl CVS repository at: http://tinyurl.com/
ensembl-schema
5An exon is a nucleic acid sequence related to a portion of DNA.
6This information is derived from the CVS logs and from the SQL
used for data migration.

118

shown in the second part of Table 1. The “<policy>” place-holder
is used as a selector to chose among the various integrity constraints
enforcement policies offered by PRISM++, as discussed in detail in
Section 3. PRISM++ supports three basic integrity constraints: pri-
mary keys, foreign keys, and simple value constraints7. This set of
simple constraints covers all the constraints that were actually used
in the large dataset of [10]. In the following, we provide details on
how the two sets of operators interact and combine into a powerful
and intuitive language for evolution.

Let us start by presenting as an example the evolution step S1 −
S2 of Section 1.1. The DBA describes the structural and integrity
constraints changes as in the following:

EXAMPLE 2.1. Three operators that transform S1 into S2

1) ALTER TABLE exon DROP PRIMARY KEY pk1;
2) DROP COLUMN rank FROM exon;
3) ALTER TABLE exon ADD PRIMARY KEY pk2(id) ENFORCE;

The operators 1 and 3 are ICMOs (introduced by the ALTER key-
word), while operator 2 is an SMO.

The keyword ENFORCE in the third statement, prescribes that the
systems will discard all tuples involved in a violation of the newly
introduced key. This is only one of the alternative enforcement poli-
cies provided by PRISM++, as detailed in Section 3.

2.1 Impact of SMO on Integrity Constraints
Integrity constraint evolution occurs directly (when the adminis-

trator add or remove constraints via ICMOs), or indirectly (when an
SMO changes a schema structure mentioned by a constraint). An in-
teresting question is thus: “given a set of constraints IC1 on schema
S1, that is evolved by the sequence of SMOs and ICMOs M into
schema S2, which are the constraints IC2 that must hold on S2?”

Formally, we say that IC2 is implied by IC1 under the evolution
M and we write IC1 |=M IC2 —see Appendix A, for details.

Note that, for general evolution steps given by arbitrary views,
and for general classes of integrity constraints, this problem is no-
toriously hard: checking that a constraint is implied is undecidable,
and the implied constraints may have non-finite cover. [21].

However, in PRISM++ we do not have to solve the general ver-
sion of this problem. We only have to deal with three types of
supported constraints (key, foreign key and value), and with sim-
ple evolution steps expressed by SMOa and ICMOs—that have been
carefully designed to enable all common evolution scenarios, while
avoiding complexity/decidability pitfalls. It is therefore feasible to
pre-compute, for each type of constraint on the initial schema and
for each evolution operator, the derived constraints it corresponds to
on the evolved schema—see Appendix A.

2.2 Forcing Information Preservation for SMOs
It turns out that the key technical challenges to PRISM++ data

migration and query/update rewriting are raised by those evolution
operators that are not information-preserving.

DEFINITION 2.1. We say that an evolution operator O from sche-
ma S1 to schema S2 is information preserving if (i) O is functional,
i.e. for every S1-instance I1 there is a unique S2-instance I2 with
O(I1) = I2, and (ii) there is an operator O−1 from S2 to S1 (the
inverse of O) such that for every S1-instance I2, O−1(O(I1)) = I1.

This notion of information preservation is related to classical no-
tions of invertibility of schema mappings [17], schema equivalence
[28], information capacity [27], instantiated to the special case when
the schema mapping is given by our evolution operators: O is inform-
ation-preserving if and only if it is invertible, if and only if schemas
S1 and S2 are equivalent, i.e. have the same information capacity.
7These are simple equality assertions about the value of a column
and constants, supported by the SQL DDL.

Table 1: A language for schema evolution: SMO+ICMO
Schema Modification Operators (SMO) Syntax
CREATE TABLE R(a,b,c)
DROP TABLE R
RENAME TABLE R INTO T
COPY TABLE R INTO T
MERGE TABLE R, S INTO T
PARTITION TABLE R INTO S WITH cond, T
DECOMPOSE TABLE R INTO S(a,b), T(a,c)
JOIN TABLE R,S INTO T WHERE cond
ADD COLUMN d [AS const|func(a, b, c)] INTO R
DROP COLUMN c FROM R
RENAME COLUMN b IN R TO d

Integrity Constraints Modification Operators (ICMO) Syntax
ALTER TABLE R ADD PRIMARY KEY pk1(a, b) <policy>
ALTER TABLE R ADD FOREIGN KEY fk1(c, d) REFERENCES T (a, b) <policy>
ALTER TABLE R ADD VALUE CONSTRAINT vc1 AS R.e = “0” <policy>
ALTER TABLE R DROP PRIMARY KEY pk1
ALTER TABLE R DROP FOREIGN KEY fk1
ALTER TABLE R DROP VALUE CONSTRAINT vc1

Since non-information-preserving operators require special care,
we made the design decision of minimizing their number by normal-
izing the evolution history so as to force every structural change op-
erator (i.e. every SMO) to apply in a context in which it is information-
preserving—this is an important difference from [11]. To this end,
we successfully exploited ICMOs, which are by definition not infor-
mation-preserving and require special handling anyway (as discussed
in Sections 4.1 and 4.3).

No generality is lost in our approach, since every structural change
operator can be sanitized into its information preserving counterpart
by simply adding the proper ICs—whereby any information loss will
now be imputed to the sanitizing ICMOs rather than the SMO. This
makes the overall set of SMOs and ICMOs a more precise, finer-
grained tool for describing evolution—the intuitive advantage is to
separate management of structural modifications from alterations of
the information capacity (i.e., IC editing).

This is illustrated by Example 2.2, which displays the operator
sequence used to evolve schema S2 into S3.

EXAMPLE 2.2. Three operators that transform S2 into S3

1) RENAME COLUMN type IN gene TO biotype;
2) ALTER TABLE gene ADD FOREIGN KEY fk2 (id)

REFERENCES g_descr(id) ENFORCE;
3) JOIN TABLE gene,g_descr INTO gene

WHERE gene.id = g_descr.id;

The example contains the following evolution steps: (i) renaming
of column type to biotype in table gene (operator 1), and (ii)
the join of table gene and g descr (operator 3), plus the needed
integrity constraints modifications (operator 2).

Operator 2 introduces a foreign key to table gene, constraining
its values, and thus guaranteeing that the subsequent JOIN operator
is information preserving (lossless). As one can see, any loss of tu-
ples that would have been incurred by operator 3 is now imputed to
operator 2. Similar sanitizing IC alterations have been studied and
identified for each SMO. PRISM++ automatically suggests the san-
itizing ICMOs required before each SMO entry, and provides feed-
back on the potential data losses. This is possible because for each
SMO we can statically define a set of pre-conditions under which
each the operator is information preserving.

The DBA tightens or relaxes the integrity constraints in the schema,
by issuing ICMOs that add or remove such constraints without mod-
ifying the schema structure. Issuance of such ICMOs (and the choice
of enforcement policies) can: (i) affect the current DB content and
(ii) determine the rewriting of queries and updates as discussed in
the following. These are the subjects of the next two sections.

3. DATA MIGRATION
The new evolution language we designed guarantees that data mi-

gration steps through SMOs will always be invertible (and informa-

119

SELECT type FROM exon e
WHERE e.id=1 AND rank=0;

ICMO
rewriting

ALTER TABLE exon DROP PRIMARY KEY pk1

inverse

ALTER TABLE exon
ADD PRIMARY KEY pk1(id) ENFORCE

SELECT type FROM exon e
WHERE e.id=1 AND rank=0 AND NOT EXISTS(
 SELECT * FROM exon e2 WHERE e.id=e2.id AND e.rank=e2.rank AND
 (e.type!=e2.type OR e.start!=e2.start OR e.end!=e2.end));

Figure 2: Query Rewriting through ICMO: ENFORCE.

tion preserving), this significantly simplifies their handling. The fo-
cus of this section is thus on migrating data through evolution steps
that involve changes of the integrity constraints, in particular we dis-
cuss two policies to handle violations of integrity constraints.

In terms of database content, we will assume that the database sat-
isfies the initial constraints IC1. Thus, after a constraint is dropped
(IC2 = IC1 − k) the DB instance also satisfies the new relaxed
constraints (I1 |= IC2), and therefore no additional measures are
required. However, when constraints are added (IC2 = IC1 + k)
the original DB instance I1 might violate the new constraint k and
some corrective action is required. PRISM++ helps the DBA in this
phase by offering two alternative IC enforcement policies, which are
very common in practice [10]. These are: CHECK, and ENFORCE.

When CHECK is used the system verifies that the current database
satisfies the new constraint k. The ICMO operation is rolled back
otherwise. This policy is very common in real-life scenarios, where
constraints are often enforced at the application level long before
being declared in the schema—for example, all of the foreign keys
currently declared in the Ensembl genetic DB have been enforced
at the application level for years, before being explicitly introduced.

When ENFORCE is chosen the system removes all tuples violat-
ing the newly introduced constraint k: if a pair of tuples agrees on
the key attributes but disagrees on any non-key attribute, then both
tuples are removed. If a tuple violates a foreign key constraint, it
is removed, and if its removal leads to additional foreign key viola-
tions, the removal cascades recursively. The “removed” tuples are
not lost: they are stored in the new database instance in temporary
violation tables, to support any inconsistency resolution action the
DBA might wish to carry out. We denote contents of the violation
tables with Iviol

1 . The remaining tuples form an instance Isat
1 , which

satisfies the constraint, and which we call the canonical repair of I1.
Our design was motivated by the goal of enabling PRISM++ to

work in a permissive mode in which inconsistencies do not halt evo-
lution. PRISM++ supports (but does not mandate) the DBA’s in-
tervention for inconsistency resolution. As long as this interven-
tion is delayed (possibly indefinitely), inconsistencies are tolerated
and their eventual resolution continues to be supported. Our objec-
tive is not to hard-code the “best” repair technique, but to provide
the interface in PRISM++ for the DBA or domain expert to plug in
their favorite. This is achieved via violation tables and the default
repair policy mentioned above. Well-known DB repair techniques
(including manual repair) can be applied starting from our canon-
ical repair. Our approach is in contrast to that of minimal repairs
from the literature [3]. For instance, in a minimal repair, only one
of the two tuples violating a key constraint is removed. This suffices
to restore consistency, and is less invasive. There usually are sev-
eral minimal repairs possible, and many theoretical works advocate
evaluating queries under certain answer semantics over the set of
minimal repairs. Minimal repairs are a very attractive concept, but
unfortunately they lead to intractable data complexity of query an-
swering [3] even for very restricted query languages. In PRISM++,
we part from this classical notion and insist on choosing a single
repair in order to preserve tractable query answering. This can be
the canonical repair that, though non-minimal, is prevalent in prac-
tice, and it is also compatible with subsequent conversion into any

standard minimal repair (performed by transferring the appropriate
tuples back from the violation tables into the instance).

4. A NEW REWRITING TECHNOLOGY
In the following, we discuss our rewriting technology. Just as

a reminder, PRISM++ implements via rewriting the semantics we
present in the introduction, which corresponds to a virtual migration
of the data from the current schema back to the past version schema
being queried and updated by some legacy application. More pre-
cisely, the DBA using PRISM++ evolves the old schema S1 (with
integrity constraints IC1) into a new schema S2 (with integrity con-
straints IC2) by issuing a sequence M of SMOs and ICMOs. In or-
der to adapt legacy queries and updates designed to work on (S1,IC1)
to operate on (S2,IC2), the system semi-automatically generates an
inverse sequence M ′ conceptually migrating data back. SMOs and
ICMOs in the inverse M ′ determine the semantics of the rewriting.

Extending the rewriting engine to handle integrity constraints, up-
dates and query with negation and functions proved to be a ma-
jor technical challenge. We devote this section to the problems of
rewriting queries through ICMOs and rewriting updates through IC-
MOs and SMOs. For lack of space, we relegate the extension to
handle negation and user defined functions of our prior work on
chase-based query rewriting [11] to Appendix B. This extension is
important not only to cover a larger set of queries, but also to handle
mixed sequences of SMOs and ICMOs, that, as we will show in the
following, can potentially introduce negation in any input query or
update.

4.1 Query Rewriting through ICMOs
We focus here on ICMO-based evolution steps, where no struc-

tural changes occur. When the DBA tightens the set of existing in-
tegrity constraints, by introducing a new constraint k, the DBMS
will enforce in the new schema S2 a set IC2 = IC1 + k of integrity
constraints that implies the old ones, IC2 |=M′ IC1. Old queries
and updates can, therefore, be executed as-is under IC2, with no
need for any rewriting8. Therefore, tightening integrity constraints
(difficult for data migration) becomes trivial for rewriting.

On the contrary, relaxing the integrity constraints, e.g., issuing an
ICMO removing a constraint k, requires a great deal of attention. In
fact, queries and updates that assume k is enforced need to be modi-
fied to compensate for the lack of such constraint in the new schema.
This is formalized by specifying the enforcement policy of the vir-
tual ICMO (the inverse) that re-introduce the removed constraints
k—different enforcement policies determine different compensation
effects for the missing constraint.

The system provides three policies (selected when specifying the
inverse ICMO) that support the most common scenarios found in
[10]—they correspond to special cases of the general view-update
theory that have great practical appeal:
IGNORE9: the system ignores whether the instance I2 satisfies the
integrity constraint k or not. The effect on rewriting is that of execut-
ing the original queries and updates unmodified on the new schema.
Within the view-update literature this means allowing side effects[5].
While there are clear risks associated with this policy, it must be in-
cluded to support a very common practice. The system provides
appropriate feedback and warnings to the DBA. The subsequent op-
tions are stricter and provide stronger guarantees.
8Note that some of the updates will now fail due to the stricter con-
straints. This is unavoidable to maintain the DB instance I2 con-
sistent with IC2, and is in general well accepted consequence of
tightening constraints.
9This policy, is only available for rewriting purposes, i.e., for in-
verses of ICMOs, since the use for data migration would lead to an
inconsistent DB instance: I2 6|= IC2.

120

Table 2: Query-equivalence-based representation of updates
SQL statement query before the update query after

SELECT "1","2","3","4","5"
INSERT INTO exon UNION = SELECT *
VALUES(1,2,3,4,5) SELECT id,type,region,start,end FROM exon

FROM exon
INSERT INTO exon SELECT a,b,c,d,e FROM some table
(SELECT a,b,c,d,e UNION = SELECT *
FROM some table) SELECT id,type,region,start,end FROM exon

FROM exon
DELETE FROM exon SELECT id,type,region,start,end = SELECT *
WHERE id =1 FROM exon WHERE id !=1 FROM exon

SELECT id,type,region,start,"342"
UPDATE exon FROM exon WHERE id =1 = SELECT *
SET end="342" UNION FROM exon
WHERE id =1 SELECT id,type,region,start,end

FROM exon WHERE id !=1

CHECK: the rewriting engine checks that the DB instance I2, sat-
isfies the removed constraint k, e.g., in the first step of Example 2.1
if we apply CHECK policy the system would verify that the exon ta-
ble still satisfies the primary key that has been removed. The original
query/update is executed if the condition is evaluated positively and
an error is returned otherwise—these conditions are implemented as
probe queries, as shown later in Section 4.3 for updates. This policy,
as opposed to the previous one, is very conservative and guarantees
that queries and updates will operate under the exact same assump-
tions under which they were designed (i.e., that the constraint k is
valid in the DB instance). This is common in scenarios in which
the enforcement of some integrity constraints is moved to the ap-
plication level (e.g., some of the foreign keys in the CERN physics
databases [10]). The new applications are designed to enforce the
constraint, while the old applications rely on the DBMS for that.
ENFORCE: the system introduces conditions in the WHERE clause

of queries (and updates) to limit the scope of their actions to the
canonical repair Isat

2 of the DB instance I2 with respect to the re-
moved constraint—no violating tuples are returned in the query an-
swer (or affected by the update execution). This policy allows the
DB instance to partially violate the removed constraint k, limiting
the access of legacy queries and updates to the valid portion of the
instance (as defined by our canonical, non-minimal repair discussed
in Section 3). Let us demonstrate this, concentrating on the first
operator of Example 2.1 that relaxes the primary key pk1 of table
exon. The system semi-automatically generates the inverse ICMO
that virtually re-introduces the primary key as shown in Figure 2.
The DBA is offered to select the enforcement policy for the inverse
ICMO, ENFORCE in Figure 2. The query will be answered on the
portion of table exon still satisfying the removed primary key pk1.
This is achieved by introducing an extra condition, i.e., the NOT
EXISTS clause, in the WHERE clause to exclude from the query an-
swer all the tuples violating the primary key. The algorithm embeds
the constraint check in the query. The automatic generation of such
conditions is possible given the knowledge of the schema and the
constraint being edited, and is rather fast—in our implementation
takes less than 1ms. This policy has wide applicability in many evo-
lution steps we investigated, in which the old applications operate
correctly only when assuming k, while new ones need to violate k.

During the design of the evolution the DBA, based on his/her un-
derstanding of the application needs, selects one of these policies for
each inverse ICMO, this gives the DBA completely control on how
queries and updates will be rewritten through each evolution step.

4.2 Update Rewriting through SMOs
We introduce update rewriting through SMOs by means of the ex-

ample in Figure 3, which demonstrates update rewriting through an
evolution step decomposing table exon10. Figure 3 shows how the

10Note that the evolution is information preserving: (forward) thanks
to the primary key on id, and (inverse) since the system automat-
ically declares the integrity constraints valid in the output schema
(two primary keys on the id columns, and two cross foreign keys)

UPDATE exon SET end="342" WHERE id=1

SELECT id,type,region,start,end
FROM exon

UPDATE eregion r,etype t SET r.end = "342"
WHERE r.id=1 AND r.id = t.id

DECOMPOSE TABLE exon
INTO eregion(id,region,start,end),
 etype(id,type);

logical mapping

SELECT id,type,region,start,"342"
FROM exon WHERE id=1
 UNION
SELECT id,type,region,start,end
FROM exon WHERE id!=1

=

SELECT r.id,type,region,start,end
FROM eregion' r, etype' t WHERE r.id = t.id

SELECT r.id,type,region,start,"342"
FROM eregion r,etype t WHERE r.id =1 AND r.id = t.id
 UNION
SELECT r.id,type,region,start,end
FROM eregion r, etype t WHERE r.id !=1 AND r.id = t.id

=

Chase each
query separately

chase-based
rewriting

inverse

JOIN TABLE eregion,etype
WHERE eregion.id=etype.id

derive mapping

update to query rep

query to update rep

be
fo
re

af
te
r

be
fo
re

af
te
r

Figure 3: Update Rewriting through SMO.

PRISM++ system, in order to rewrite SQL updates: (i) represents the
input SQL update in an internal format based on queries, a “trick”
that is crucial in allowing us to capitalize on query rewriting technol-
ogy, (ii) rewrites this internal representation through SMO evolution
steps, and (iii) converts the rewriting of the internal representation
back to a regular SQL update.

The query-based representation of updates completely character-
izes the semantics of the update by stating the equivalence of a query
posed on the DB instance before the update with a query posed on
the DB instance after the update. Such equivalence describes the
relationship between the table contents before and after the update.

The before/after equality of Figure 3 states that a scan of the table
after the execution of the update should produce the same answer of
the union of two subqueries posed on the table before the update,
returning the tuples not affected by the update as they are, and the
tuples being updated with functions/constants in the target list cap-
turing the SET action of the update. This kind of representation can
be obtained from any SQL update as shown in Table 2.

The rewriting step (ii) transforms this internal representation valid
on the old schema, to an equivalent one valid on the new schema, by
means of an algorithm we named UpdateRewrite.

Algorithm 1: The rewriting algorithm: UpdateRewrite

Input: U1,M ′

Output: U2

foreach equivalence R ∈ U1 do
Rl = left(R);
Rr = right(R);
R′l=QueryRewrite(Rl,M ′);
R′r=QueryRewrite(Rr ,M ′);
if R′l = ø or R′r = ø then

fail();
end
U2 = U2 ∪ (R’l = R′r)

end

UpdateRewrite rewrites each query in the equivalence indepen-
dently, by means of QueryRewrite (the extension handling nega-
tion of our query rewriting algorithm, summarized in Appendix B),
and produces a similar representation valid under the new schema.
Algorithm UpdateRewrite assumes U1 to be expressed as a set
of equivalences between queries on DB instances, and produces an

121

equivalent U2 in the same format.
The final step (iii) translates this internal representation back to

an SQL update statement. This process consists in analyzing the
target lists, FROM and WHERE clauses of the queries and reconstruct
the corresponding SQL DDL statement(s) valid on the new schema
show in Figure 3—details in Appendix D.3. The resulting update
satisfies the semantics from view-update literature [5, 12]:

DEFINITION 4.1. An equivalent rewriting U2 under schema S2

(with integrity constraints IC2) of the original update U1 under
schema S1 (with integrity constraints IC1) satisfies the following
property: U1(M ′(I2)) = M ′(U2(I2))

Thanks to the invertibility of both M and M ′, this leads to a con-
structive definition of the update on S2 as follows:

U2 = M(U1(M−1(I2))).
Based on it, we can make the following claim about algorithm

UpdateRewrite (in short, we say that UpdateRewrite is sound):
THEOREM 4.1. Let M denote a mapping between schemas S1

and S2, with inverse M ′. Then, for every update U1 under schema
S1, a successful execution of UpdateRewrite on U1, M and M ′

produces an update U2 under S2 such that: U2 = M ◦ U1 ◦M ′.
See Appendix C for the proof of Theorem 4.1.

4.3 Update Rewriting through ICMOs
Once again, tightening of integrity constraints is not challeng-

ing for rewriting (since the DBMS enforces a stricter set of con-
straints IC2 = IC1 + k), while relaxing integrity constraints re-
quires attention—legacy updates need to be rewritten to operate on a
database for which the DBMS only enforces less restrictive integrity
constraints (IC2 = IC1 − k). Update rewriting through ICMOs is
similar to the rewriting of queries described early in this section. The
key difference is that on top of the conditions checked for queries,
updates require extra conditions to verify the compliance of the DB
instance with the (old) constraints after the statement is executed. In
the following, we refer to Iviol

2 as the portion of the DB instance I2

that violates the (dropped) constraint k.
We discuss here only the extra conditions introduced for updates

for each enforcement policy:
IGNORE: no checks are performed, and the update statement is

executed as-is on the new schema, i.e., Iviol
2 might be not empty,

and might be affected by the update. This implies potential side
effects, the semantic of update execution is not the original one. In-
tuitively this represents the “natural” extension of the update effect
on the new schema. The DBA is warned and instructed by the sys-
tem interface on the effect of this policy. This scenario is common in
practice, where changes to the integrity constraints are not reflected
into changes to updates, and is thus a must-have in our system.
CHECK: PRISM++ checks that the constraint k is satisfied by the

DB instance also after the update execution, i.e., U2(I2) |= k. This
is done by issuing queries before the update execution that check
both conditions, and executing the update only if both are satisfied.
As an example, consider Figure 4, where we rewrite an INSERT
statement through the same evolution of Figure 2, but with CHECK
policy for the inverse ICMO. The system checks pre and post con-
ditions, automatically derived by analyzing the input statement, to
guarantee that the content of table exon respects the primary key,
both before and after the execution of the update.
ENFORCE: The system checks that the set of tuples violating the

constraints is not change by the execution of the update. This check
is performed issuing boolean queries generated by analyzing the in-
put statement, in a fashion similar to what was discussed above for
CHECK. The formal requirement verified by the system is that:

Iviol
2 = U2(I2)viol.

INSERT INTO exon VALUES (1,2,3,4,5)

ICMO
rewriting

ALTER TABLE exon
DROP PRIMARY KEY pk1

inverse

ALTER TABLE exon
ADD PRIMARY KEY pk1(id)
CHECK

@pre = SELECT * FROM exon e,exon e2
 WHERE e.id=e2.id AND e.rank=e2.rank AND
 (e.type!=e2.type OR e.start!=e2.start OR e.end!=e2.end);
@post = SELECT * FROM exon e WHERE e.id=1;

IF(isempty(@pre)&& isempty(@post)) INSERT INTO exon VALUES(1,2,3,4,5)
ELSE RETURN ERROR;

Figure 4: Update Rewriting through ICMO: CHECK.

5. OPTIMIZATION AND EVALUATION
The PRISM++ system has been implemented in Java and is loosely

based on our prior system [11], but the rewriting engine has been
completely redesigned to handle updates, integrity constraints and
queries with negation and functions. The rewriting time perfor-
mance of our system is a critical metric for success in practical sce-
narios. Significant effort has been devoted to speed-up the rewriting
time for updates, and for schema containing many foreign keys.

PRISM++ computes the rewriting of queries and updates by ap-
plying the combination of algorithms described in this paper. While
the newly introduced rewriting through ICMOs is really fast, the
rewriting through SMOs of both queries and updates relies on the
procedure called the chase [13], that even in the very optimized im-
plementation we use [14] is intrinsically expensive. The execution
time of the chase is dominated by the size of its input, which in-
cludes the integrity constraints from each schema version and a log-
ical mapping between schemas that PRISM++ derives automatically
from our operators. Thus, to achieve performance we try to contain
the size of the chase input.

The key optimizations that make PRISM++ practical include: i)
an adaptation of the mapping compression approach of [11] (exploit-
ing composition to reduce the size of the chase input), ii) a mapping
pruning technique, extending the basic principle sketched in [29],
that removes from the input to the chase mappings and integrity con-
straints not relevant for the rewriting of a given query/update, iii) an
optimization of the basic UpdateRewrite algorithm we presented,
that caches partial rewritings of the various queries it processes, and
iv) a more sophisticated caching technique that caches rewritings for
user queries/updates whenever they share a template (i.e., when they
have similar structures but different parameters). These optimiza-
tions are discussed in details in Appendix D, while their impact on
performance is discussed next.

In the following, we report an evaluation of the system against ac-
tual evolution histories from [10] and synthetic cases—Appendix E
provide more details on all of these experiments. Among the many
evolution histories we selected the two representative test cases of
Wikipedia and Ensembl DB. The choice was due to: i) their pop-
ularity and ii) to the fact that for these two systems we have the
complete databases and real workloads—a log of 10% of the access
to the actual Wikipedia website for almost 4 months, and a complete
log of the workload generated by hundreds of biologists against the
Ensembl DB [15] for over 2 months11.

To test the practical relevance of our system, we tested a set of
120 SQL statements (queries and updates) from the actual work-
loads of Wikipedia and Ensembl, (i) against each operator (SMO
and ICMO), (ii) through short artificial sequences of operators and
(iii) through portions of the evolution histories of Wikipedia and
Ensembl. The system found a correct rewriting, whenever one ex-

11We release the two datasets at: http://db.csail.
mit.edu/wikipedia/ and http://db.csail.mit.edu/
ensembldb/

122

Figure 5: A) Rewriting scalability vs schema connectivity, B)
Averaged update rewriting time on Ensembl schema evolution

isted, in all our tests.
Rewriting time for updates. An important measure of perfor-

mance of our system is the rewriting time for updates (which sub-
sumes that of queries). This has been the target of various opti-
mization efforts. In Figure 5A, we present the rewriting time of a
typical set of update statements (a mix of updates, deletes, and in-
serts) against a portion of Ensembl evolution history. The test is
performed on the most recent portion of the history, which contains
some of the most relevant evolution steps, and that corresponds to
some of the a public copy of the database [15] that we monitored.

The figure depicts: (i) a baseline approach (which already ac-
counts for the compression technique, and the optimized version of
the UpdateRewrite algorithm), (ii) the effect of our Pruning tech-
nique, (iii) the averaged impact of the template-based cache, and (iv)
the results of applying all of these optimizations. This combination
of optimizations deliver up to 4 orders of magnitude of improvement.

Effect of chains of foreign keys. The newly introduced support
for integrity constraints introduces a new challenge to the scalability
our approach. Schemas containing large number of foreign keys pre-
vent us from pruning aggressively since larger portion of the schema
(the one reachable via foreign keys) might be relevant for the rewrit-
ing. This leads to larger input (constraints+mappings) to the chase.

We set up a synthetic scenario in which we artificially increase
the number of foreign keys, and thus the number of tables reachable
from the query footprint—multiple schema layouts have been tested
as discussed in Appendix E.

Figure 5B shows how the rewriting time grows for increasing lev-
els of connectivity of the schema. The chase-engine we use for
rewriting is also used to optimize the output query (by means of
a procedure known as back-chase [14]). The goal is reducing of the
rewritten query/update execution time. We show the running time of
the system with and without the optimizer turned on. Both solutions
are acceptable for the typical schemas from [10] (typical average
connectivity <5), while the price of optimization becomes evident
for highly connected schemas.

End-to-end validation. We assess the practical applicability of
our system and the effectiveness of our caching scheme on the work-
load of Wikipedia. The experiment is based on the actual work-
loads from the Wikipedia on-line profiler—details in Appendix E.
The system achieves an average overhead of rewriting of about 1ms
thanks to: i) the various optimizations of the rewriting engine, ii)
a cache hit time of < 1ms, and iii) an extremely high hit/miss ra-
tios (> 5k for updates and > 500k for queries) due to the fact
that queries/updates are automatically instantiated by the applica-
tion from a small number of templates. This allows the system to
amortize the cost of rewriting across many query/updates executions.
In order to measure the relative overhead of our solution with re-
spect to execution time, we randomly selected 3000 instances of 3
of the most common queries from the Wikipedia workload, and test
their running time on a locally installed copy of english Wikipedia—
about 3.6TB of data.

Table 3 shows that the overhead of rewriting queries is negligi-

Table 3: Overhead of rewriting
Statements execution time rewriting time overhead
S1 77.37 ms 1 ms 1.29%
S2 21.674 ms 1 ms 4.6%
S3 48.2 ms 1 ms 2.07%

ble, and thanks to longer execution times and comparable rewrit-
ing times the impact on updates is even less significant (typically
<0.1%). This shows that our system delivers performance that are
usable even for latency-critical systems such as Wikipedia.

Finally, as an informal evaluation of usability, we tested with a
group of 3 master students using our operators to model the evolu-
tion histories of several real-world systems. Within a few hours the
student were able to learn the SMO-ICMO language and to precisely
model tens of evolution steps from real-world systems.

6. RELATED WORK
Our work shares its motivation with research on inverting [17, 18]

and composing [25, 16] schema mappings: inversion is needed to
virtually migrate data back from the current schema to the old one,
and composition is needed to do so over several steps in the evolution
history. The main difficulty in these works stems from the expres-
sive power of schema mappings, which leads to the non-existence
of a unique migrated database. This requires evaluating queries un-
der the certain answer semantics over all possible ways to migrate
the database. This evaluation requires materializing a representative
of these possible databases (known as a universal solution), and thus
does not scale to the long evolution histories in our scenarios. In con-
trast, our approach forces a unique way to migrate the database (both
forward and backward) by asking the DB administrator at evolution
time to pick a migration/inversion policy. This allows standard query
answering semantics, and better yet, it allows us to evaluate legacy
queries and updates without migrating data back, by using rewriting
instead. [17, 18] do not consider updates and integrity constraints.

Other related research includes mapping adaptation [32, 33] and
rewriting under constraints [13, 14]. However, these works do not
consider update rewriting, or integrity constraint editing.

Different approaches have addressed the schema evolution prob-
lem from several vantage points. An incomplete list includes: the
methodology of [30], based on the use of views to decouple multiple
logical schemas from an underlying physical schema that has mono-
tonically non-decreasing information capacity—this is not suitable
for our scenario since it is not compatible with evolution steps where
integrity constraints are tightened, nor with changes to the schema
aiming at improve performance by reorganizing schema layout; the
unified approach for propagating changes from the applications to
the database schema of [20], focusing mainly on tracing and syn-
chronizing the changes between applications and database, this meth-
odology requires a significant commitment from DBAs and develop-
ers, which is in contrast to the evolution transparency that we seek in
our work; the application-code generation techniques developed in
[9], that, instead of shielding the applications from the evolution as
we do, aim at propagating the changes from the DB to the applica-
tion layer in a semi-automatic fashion; the framework for metadata
model management [26, 6], that exploits a mapping-like approach
to address various metadata-related problems including schema evo-
lution. None of the above addresses updates under schema and in-
tegrity constraints evolution.

The difficult challenges posed by update rewriting, first elucidated
in classical papers on view update [5, 12], have recently received re-
newed attention. In [8], new approaches were proposed, based on
the notion of DB lenses. Recently, [22] proposed a new approach
to support side-effect-free updating of views. The proposed solution
is based on decoupling the physical and logical layer of a DBMS.
This approach extends the class of updates that can be supported,

123

but (i) requires an extension of existing RDBMS, and (ii) support up-
dates not implementable in the target DB. These two characteristics
make it inappropriate to our goals. Our structural evolution operators
(SMOs) can be broadly construed as views, which is why the notion
of equivalent update can be adopted, but our performance gains are
due to exploiting the actual semantics of SMOs; a reduction to the
view-based treatment of these works would lead to having to solve
an unnecessarily general case, which is notoriously hard. Moreover,
none of the above works considers “views” given by editing integrity
constraints, giving no guidance on how to handle ICMOs.

To handle the cases in which the original data violate target in-
tegrity constraints, classical theory on query answering prescribes to
(virtually) migrate the original instance into a set of possible worlds,
each satisfying the additional constraint and corresponding to a “re-
pair” of the inconsistent original [3]. Repairs are usually defined to
be as economical as possible, by adding/deleting the minimal num-
ber of tuples required to achieve consistency. Queries are then an-
swered under so-called certain answer semantics, which is an at-
tempt to completely automate the query answering process, by treat-
ing all minimal repairs as equally desirable and accepting only those
query/update results supported by all repairs.

One of our contributions enabling a pragmatic system is the de-
sign decision to part with the classical set-of-repairs / certain an-
swers semantics. For one, viewing all repairs as equally desirable
is not always appropriate in practice, depending on the application.
Moreover, query answering under certain answer semantics is in-
tractable in most cases (co-NP-hardness in the size of the database
is a frequently occurring lower bound in various flavors of the prob-
lem [1, 3, 4]). Therefore, PRISM++ allows the database administra-
tor to pick from a list of pre-defined repair policies that are prefer-
entially employed in practice. Each policy yields a single canonical
repair. The canonical repair may not be minimal, but it is prevalent
in practice, and supports query answering under standard, tractable
semantics. We show how to solve the query and update rewriting
problems for the canonical repair semantics, for expressive queries
and updates. This required proving new formal results, as existing
work only pertains to the certain-answer semantics.

Several administration tools are available today to support com-
mon management tasks. None of them supports schema evolution
completely, as we show in a side-by-side comparison in Appendix F.

7. CONCLUSIONS
PRISM++ advances the state of the art in schema evolution by

supporting (i) integrity constraints evolution, and (ii) automatic query
and update rewriting through structural schema changes and integrity
constraints evolution.

The language of SMOs+ICMOs proves to be sufficiently expres-
sive to capture long evolution histories of representative real-life ap-
plications (EnsembleDB and Wikipedia). ICMOs are key to this re-
sult, since integrity constraint editing turns out to constitute a large
percentage of the evolution steps in these applications. Our evolution
language provides the DB administrator with a fine-grained evolu-
tion control mechanism, and allows us to solve the update rewrit-
ing problem in a controlled setting, using a divide-and-conquer ap-
proach, thus avoiding the notoriously intractable general cases of
view update studied in the literature.

A robust and efficient prototype has been built and its soundness
and performance tested on a large schema evolution testbed [10].

8. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries

using materialized views. In PODS, pages 254–263, 1998.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases.

Addison Wesley, 1995.

[3] F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent
databases: algorithms and complexity. In ICDT, pages 31–41, 2009.

[4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. In PODS, pages 68–79, 1999.

[5] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Trans. Database Syst., 6(4):557–575, 1981.

[6] P. A. Bernstein. Applying model management to classical meta data
problems. In CIDR, 2003.

[7] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Implementing
mapping composition. VLDB J., 17(2):333–353, 2008.

[8] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a
language for updatable views. In PODS, pages 338–347, 2006.

[9] A. Cleve and J.-L. Hainaut. Co-transformations in database
applications evolution. In GTTSE, pages 409–421, 2006.

[10] C. Curino, M. Ham, F. Moroni, and C. Zaniolo. Pantha rei data set :
http://data.schemaevolution.org/. 2009.

[11] C. Curino, H. J. Moon, and C. Zaniolo. Graceful database schema
evolution: the prism workbench. PVLDB, 1(1):761–772, 2008.

[12] U. Dayal and P. A. Bernstein. On the correct translation of update
operations on relational views. ACM Trans. Database Syst.,
7(3):381–416, 1982.

[13] A. Deutsch, A. Nash, and J. Remmel. The chase revisited. In PODS,
pages 149–158, 2008.

[14] A. Deutsch and V. Tannen. Mars: A system for publishing xml from
mixed and redundant storage. In VLDB, pages 201–212, 2003.

[15] Ensembl development team. Ensembl Genetic DB
http://www.ensembl.org, 2009. [Online].

[16] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing schema
mappings: Second-order dependencies to the rescue. ACM Trans.
Database Syst., 30(4):994–1055, 2005.

[17] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Quasi-inverses of
schema mappings. In PODS, pages 123–132, 2007.

[18] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Reverse data
exchange: coping with nulls. In PODS, pages 23–32, 2009.

[19] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: A
semi-automatic tool for schema mapping. In SIGMOD, page 607,
2001.

[20] J.-M. Hick and J.-L. Hainaut. Database application evolution: a
transformational approach. Data Knowl. Eng., 59(3):534–558, 2006.

[21] R. Hull. Non-finite specifiability of projections of functional
dependency families. Theor. Comput. Sci., 39:239–265, 1985.

[22] Y. Kotidis, D. Srivastava, and Y. Velegrakis. Updates through views: A
new hope. In ICDE, page 2, 2006.

[23] M. Lenzerini. Data integration: A theoretical perspective. In PODS,
pages 233–246, 2002.

[24] Y. Liu, S. ren Zhang, and M. qi Fang. Ecological analysis on evolution
of information systems. In I3E (2), pages 308–315, 2007.

[25] J. Madhavan and A. Y. Halevy. Composing mappings among data
sources. In VLDB, pages 572–583, 2003.

[26] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming
platform for generic model management. In SIGMOD, pages 193–204,
2003.

[27] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use of
information capacity in schema integration and translation. In VLDB,
pages 120–133, 1993.

[28] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema
equivalence in heterogeneous systems: bridging theory and practice.
Inf. Syst., 19(1):3–31, 1994.

[29] H. J. Moon, C. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo.
Managing and querying transaction-time databases under schema
evolution. PVLDB, 1(1):882–895, 2008.

[30] Y.-G. Ra. Relational schema evolution for program independency.
Intelligent Information Technology, pages 273–281, 2005.

[31] J. D. Ullman. Information integration using logical views. Theor.
Comput. Sci., 239(2):189–210, 2000.

[32] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adaptation under
evolving schemas. In VLDB, pages 584–595, 2003.

[33] C. Yu and L. Popa. Semantic adaptation of schema mappings when
schemas evolve. In VLDB, pages 1006–1017, 2005.

124

Figure 6: The general framework

APPENDIX
A. FORMALIZING IC IMPLICATION

With reference to Figure 6 let ic be an integrity constraint for
schema S2, while I1 and I2 are instances of S1 and S2 respectively.
The notion of constraints implication can be introduced as follows:

DEFINITION A.1. Let IC1 be a set of integrity constraints over
schema S1, and M a mapping from S1 to S2, then we write:
IC1 |=M ic iff ∀I1, I2(I2 = M(I1) ∧ I1 |= IC1 =⇒ I2 |=ic)

The above definition says that the integrity constraint ic on schema
S2 is implied by IC1 under M , if and only if: for every instance
I1 of S1 and I2 of S2 obtained as the mapping of I1 through M ,
the following holds: if I1 satisfies IC1 then I2 satisfies ic. 12 The
notion of closure is naturally obtained as:

DEFINITION A.2. The closure of IC under M is defined:
ICM := {ic | IC |=M ic}

Thus, ICM is the set of all integrity constraints implied on S2 by
IC under M . Using this notion of closure, we define the set of all
the integrity constraints IC2 valid on schema S2 as IC2 = ICM

1 .
Applying this definition to each of the structural SMOs defined in
Table 1, we obtain a precise characterization of the impact of struc-
tural SMOs on integrity constraints.

We exploit the modularity offered by the SMOs to achieve iden-
tical results in a programmatic way. In fact, thanks to the indepen-
dence of the actions performed by each SMO in a sequence, we
can derive output constraints observing one SMO at a time, (and
its input constraints). This reduces the general problem to the one
of generating the correct set of output integrity constraints for each
SMO type (and each input set of IC), which is easy to achieve in
practice, thanks to the atomicity of SMOs.

Consider as an example the following input schema S1 with in-
tegrity constraints IC1:

S1 : V (a, b, c)

IC1 : V (a, b, c), V (a, b′, c′) =⇒ b = b′, c = c′

And a forward SMO:

DECOMPOSE V INTO V1(a,b), V2(a,c)

Which transforms schema S1 into the following schema S2:

S2 : V 1(a, b), V 2(a, c)

By applying the Definition 2.2 to IC1 under the logical mapping M
corresponding to the above SMO, we can determine the set of output

12Note that we apply the definition only for the case when M is a
functional mapping. This suffices in our context since we force evo-
lution operators to be invertible (as explained below). In general
however, classical schema mappings [19] may associate several pos-
sible S2-instances with a given S1-instance.

SELECT description
FROM gene g, g_descr gd
WHERE g.id=gd.id AND
 g.region=1;

SELECT description
FROM gene g
WHERE g.region=1;

mapping (S2-S3) chase-based
rewriting

rewritten query
(on S3)

input query
(on S2)

 JOIN TABLE gene,g_descr
 INTO gene
 WHERE gene.id=g_descr.id

inverse

DECOMPOSE TABLE gene
INTO g_descr(id,description),
 gene(id,type,region,start,end);

derive mapping

Figure 7: Query Rewriting through SMO.

integrity constraint IC2 to be the following:

IC2 : V 1(a, b), V 1(a, b′) =⇒ b = b′

V 2(a, c), V 2(a, c′) =⇒ c = c′

V 1(a, b) =⇒ ∃cV 2(b, c)

V 2(b, c) =⇒ ∃aV 1(a, b)

B. QUERY REWRITING THROUGH SMOS
In order to rewrite queries and updates through SMO-based evo-

lution steps, the PRISM++ system: (i) inverts SMO sequences13,
(ii) translates each SMO into an equivalent logical schema mapping
expressed in the language of Disjunctive Embedded Dependencies
(DED) [14], and (iii) rewrites queries using these DEDs by means
of a chase-based algorithm named chase&backchase (C&B) [14].

The C&B algorithm reformulates a query on a schema S1 to an
equivalent query on a schema S2 when the schemas are related by
a schema mapping given as a set of DEDs, and when the integrity
constraints on the two schemas are expressed as DEDs. DEDs are
sufficiently expressive to capture key, foreign key, and all other types
of constraints declared in SQL’s DDL. This process is an extension
of the one discussed in [11], and we only illustrate it by means of
the example in Figure 7.

Figure 7 shows an example of rewriting through operator 3 of
Example 2.2 (i.e., a JOIN SMO). The system automatically inverts
the operator by means of a DECOMPOSE SMO, and derives a logical
mapping between schema versions expressed as DEDs. The DEDs
are fed into the C&B rewriting engine [13] to rewrite the input query
into an equivalent one operating on the new schema, according to
the following semantics:

DEFINITION B.1. A query Q2 on schema S2 is an equivalent
rewriting of query Q1 on S1 if for every instance I2 of S2 the fol-
lowing holds: Q2(I2) = Q1(M ′(I2)).

Here, M ′ is the logical mapping derived from the inverse of the in-
put SMO (e.g., the DECOMPOSE SMO of Figure 7) that conceptually
migrates the instance I2 back to schema S1. In PRISM++, every
SMO step is guaranteed to be information-preserving, thus the in-
verse SMO exists and an M ′ mapping I2 to I1 can easily be derived
as in [11].

We can show the following (which extends the results in [11] to
incorporate integrity constraints on the schemas:

13This process is semi-automatic, and the user is guided by the sys-
tem in the selection –at evolution time, not at query rewriting time–
of the inverse for each SMO [11].

125

THEOREM B.1. If Q1 is a union of conjunctive queries, the for-
eign key constraints on both schemas S1, S2 are acyclic, and the
SMO operator is information-preserving, then an equivalent rewrit-
ing Q2 of Q1 always exists, and the C&B algorithm of [14] is guar-
anteed to find one.

The acyclicity of a set of foreign keys is a classical concept [2],
and a special case of the notion of weak acyclicity of a set of em-
bedded dependencies [19]. In essence, it rules out cycles in the de-
pendency graph constructed as follows: the nodes of the graph are
the attribute names of all tables in the schema (prefixed by the table
name to avoid confusion). For every equality of key attribute K in
table R to foreign key attribute F in table S (as asserted by some
foreign key constraint) an edge is added from R.K to S.F . This
acyclicity condition is satisfied by a majority of practical scenarios,
and widely accepted in the literature as having significant practical
impact. Acyclicity (as well as its generalization to weak acyclic-
ity) suffices to guarantee the termination of the chase procedure [2],
which the C&B algorithm [14] relies on.

Theorem B.1 follows from the facts that (i) the C&B algorithm is
guaranteed to terminate when the foreign key constraints are acyclic,
(ii) the C&B algorithm is complete (i.e. finds a rewriting when-
ever one exists) for rewriting unions of conjunctive queries across
schemas when the schema mapping is defined by DEDs, and (iii)
the sanitized, information-preserving versions of SMOs can be cap-
tured using DEDs.

B.1 More Expressive Query Classes
PRISM++ completely automates the rewriting process through

mixed sequences of SMOs and ICMOs, by means of a chain of
invocations of the chase-based rewriting (for SMOs) or the ICMO
rewriting algorithm. The C&B algorithm of [14] was implemented
for unions of conjunctive queries (with no negation). For PRISM++,
the C&B algorithm is extended to a larger class of queries, which in-
clude negation and functions (built-in aggregates and user-defined).

In the example of Figure 2 we show how negation (e.g., NOT
EXISTS) might appear in the rewritten query as a consequence of
ICMO based evolution steps. This introduces a new challenge, since
even the chase extensions of [13] cannot deal with this type of nega-
tion. To this end we devised the QueryRewrite algorithm, that
extends the C&B algorithm. Even if the input queries and updates
come from the class the C&B can handle, this extension is key to
PRISM++, being needed for rewriting queries that contain the type
of negation introduced by ICMO rewriting.

The key idea behind the QueryRewrite algorithm is to break
the input query Q into its components, which are maximal query
fragments containing no negation or function calls. Each compo-
nent is rewritten using the standard C&B algorithm, then the rewrit-
ten components are re-assembled, preserving the nesting of negation
and function calls.

We can prove that QueryRewrite is a sound rewriting algorithm
even when queries contain negation, or user-defined functions.

Note however that this algorithm suffers a loss of completeness,
that manifests itself as follows: it may be the case that not all of
Q’s components have an equivalent rewriting in isolation (and there-
fore none is found by the C&B), yet there is one for the entire
query Q, which therefore will be missed by QueryRewrite. The
loss of completeness is unavoidable due to the undecidability of the
rewriting existence problem in the presence of negation and function
calls. Nonetheless, the QueryRewrite algorithm succeeded in all
the practical scenarios from [10] we tested, delivering a significant
improvement with respect to the state of the art.

C. PROOFS

M'
I2I1

I1' I2'

U1 U2

Q1

Q1'

Q2

Q2'

=

=

= =

M

M'

M

Figure 8: Update rewriting

Proof of Theorem 4.1 We refer to Figure 8. We start from an
update U1, defined in terms of queries Q1 and Q′1 as follows:

U1(I) = I ′ ⇐⇒ Q1(I) = Q′1(I ′).

Let Q2, Q
′
2 be the rewritings of Q1, Q

′
1 via the C&B algorithm. We

want to show that the update U2, defined by

U2(I2) = I ′2 ⇐⇒ Q2(I2) = Q′2(I ′2)

is an equivalent rewriting of U1, i.e.

U2(I2) = M(U1(M ′(I2))).

Denote U2(I2) = I ′2, I1 = M ′(I2), and I ′1 = M ′(I ′2). Since M ′

is the inverse of M , we have I2 = M(I1), and I ′2 = M(I ′1).
From Theorem B.1 we know that the C&B yields equivalent rewrit-

ings, i.e. Q2(I2) = Q1(M ′(I2)), and Q′2(I ′2) = Q′1(M ′(I ′2)).
Let

U2(I2) = I ′2.

By definition of U2, this yields

Q2(I2) = Q′2(I ′2)

which by Theorem B.1 gives

Q1(M ′(I2)) = Q′1(M ′(I ′2))

which, by notation, is equivalent to

Q1(I1) = Q′1(I ′1)

which in turn, by definition of U1, holds iff

U1(I1) = I ′1. (1)

This immediately implies our claim, since

U2(I2) = I ′2 = M(I ′1)
(1)
= M(U1(I1)) = M(U1(M ′(I2))).

�

D. IMPLEMENTATION AND OPTIMIZATION

D.1 Speeding up rewriting
The translation from update statements to set of queries and back,

and the preprocessing steps of the QueryRewrite algorithm have
limited impact on the overall rewriting time. However, in order
to complete the rewriting QueryRewrite invokes the C&B proce-
dure for positive and negative portions of each queries produced in
the translation. To reduce the cost of rewriting we re-implemented
the mapping-compression technique presented in [11]. Compression
works by composing long chains of logical mappings into a single
mapping connecting directly distant schema versions. This reduces
the size of the input of the C&B procedure leading to a significant

126

Table 4: Experimental Environments
Environment Description
CPUs Quad-Core Xeon 1.6GHz (x2)
Memory 4GB
Hard Disk 3TB (500GB x6), RAID-5
OS Distribution Linux Ubuntu Server 6.06
OS Kernel Linux 2.6.15-54 server
Java Sun Java 1.6.0-b105
CPUs Quad-Core Xeon 2.26GHz (x2)
Memory 24GB
Hard Disk 6TB (2TB x6), HW RAID-5
OS Distribution Linux Ubuntu Server 9.10
OS Kernel Linux 2.6.31-19 server
Java Sun Java 1.6.0 20-b02

speed up. The effect of this technique is included in the baseline
performance in Section 5, since present in prior literature.

Another significant performance improvement is obtained by an
extended version of the pruning technique appeared in [29]. We re-
fer to query footprint as the portion of the schema required to answer
the query. Pruning operates by analyzing the input query footprint
and removing from the input of the C&B procedure all the logical
mappings that are not necessary for the rewriting (i.e., predicates
about portions of the schema not included in the query footprint).
In addition, pruning removes all the schema versions from a schema
history not required (e.g., prior to the schema version used in the
query). The optimization technique implemented in PRISM++ is a
significant extension of the one sketched in [29]. Our implementa-
tion can, in fact, also operate under presence of foreign keys (i.e., by
extending the notion of query footprint to all the tables directly or
indirectly reachable via foreign keys from the initial footprint) and
can manage update statements, by extending the analysis component
to deal with update syntax. It is thus presented as an optimization in
our experimental Section 5.

Furthermore, the actual implementation of the algorithms pre-
sented here has been subject to further optimization. In fact, some of
the queries produced by the translation steps (to represent an update)
have identical portions. Whenever possible we avoid invocations to
the C&B rewriting procedure by reusing results produced for simi-
lar queries (this is also part of our baseline performance). A more
general-purpose caching technique is presented next.

D.2 Caching
Observing the workloads from Wikipedia, Ensembl and the other

information systems from Table 5 we noticed that it is very common
for the workload of a system to be based on a rather limited num-
ber of query/update templates, which are parametrized and reused
multiple times (this is natural, since most queries are issued by ap-
plications, in which they are hard-coded as prepared SQL queries).
PRISM++ exploits this fact by employing a caching strategy imple-
mented as follows: (i) given an input statement (query or update),
PRISM++ extracts a template (by parametrizing it, as for prepared
SQL statements), (ii) look-up in an hash-map structure for a match-
ing input template, (iii) retrieve the rewritten template if available,
and (iv-a) substitute the parameters with the original input values. In
case of a cache miss (iv-b) the query/update is rewritten and the sys-
tem extracts a template from the rewritten query/update and stores it
in the cache for later use. Testing with the Wikipedia workload we
also noticed that many templates we extracted only differed in the
name of the DB they were targeting (Wikipedia has many DB shar-
ing an identical schema). To this purpose we adapted the template
extraction to be able to cache templates across multiple DBs sharing
the same schema. This simple feature (that can be turned on or off)
proved very effective in the case of Wikipedia, almost doubling the
effectiveness of the cache.

Table 5: Evolution histories of popular IS in our dataset
System System # of schema lifetime
Name type versions (years)
ATutor Educational CMS 216 5.7
CERN DQ2 Scientific DB 51 1.3
Dekiwiki CRM, ERP 11 1.11
E107 CMS 16 5.4
Ensembl Scientific DB 412 9.8
KT-DMS CMS 105 4
Nucleus CMS CMS 51 6.7
PHPWiki Wiki 18 4.11
SlashCode (slashdot.org) News Website 256 8.10
Tikiwiki Wiki 99 0.9
Mediawiki (Wikipedia.org) Wiki 242 6.2
Zabbix Monitoring solution 196 8.3

D.3 Back and Forth from SQL
The last question that remains to be answered is how to translate

back and forth between the SQL and query-equivalence-based rep-
resentation of updates. For insert SQL statement this operation is
trivial, since both representations positively state what should ap-
pear in the DB after the execution of the statement, and the transla-
tion is purely syntactical. For delete, there is a mismatch between
SQL and the query-based representation, where in SQL we specify
what to remove, in the mapping-based representation we described
the complement, i.e., what to keep. Update shares the same issues
of delete, where tuples are not removed but modified. Both trans-
lations are, therefore, based on inverting the conditions (potentially
involving joins with other tables), while propagating the tables to be
removed/updated. The system completely automates this process as
discussed in Section 5.

E. EXPERIMENTAL SETTINGS
The experiments have been conducted on a system with the HW/SW

configuration shown in Table 4. The more powerful machine has
been used to evaluate the overhead of query rewriting w.r.t. to query
execution. Table 5 reports the complete set of evolution histories
that we used from [10].

E.1 Effect of foreign key on rewriting time
The results reported in Figure 5B are based on the following ex-

periment. We tested with five simple queries (results for updates
are derived since they rely on the same algorithm) averaging the re-
sults for each structural SMOs (ICMO rewriting is not based on the
chase and is thus not affected by the foreign keys). We first ver-
ified how the actual schema layout is not relevant to the rewriting
performance, i.e., having N tables directly reachable with a single-
hop from the query footprint or N tables reachable through a long
chains of foreign keys will lead to the same rewriting performance.
We then synthetically generated several schemas with mixed proper-
ties (few long chains and few directly reachable tables) but with in-
creasing numbers of tables reachable from the query footprint. The
number of reachable tables directly influence the size of the map-
ping, expressed as DEDs, that we feed into the chase engine MARS.
Rewriting time are presented for both the scenario in which we use
back-chase to improve the output query quality and the rewriting
time when no query optimization is performed. Thanks to the na-
ture of the backchase-based optimizer we utilize [14] it is possible
to achieve partial optimization by using a subsets of the available
constraints, thus achieving a trade-off between output query opti-
mization and rewriting time.

E.2 Wikipedia Queries
The total number of query and update templates is typically rather

small (less than a thousand for Wikipedia), therefore, the cache sub-

127

Table 6: Caching the Wikipedia workload
Statement type number of avg hit/miss max hit/miss

templates ratio ratio
update 142 5,661.21 80,870
select 1294 248,005.41 88,740,689
select* 610 526,096.72 88,740,689

*with improved template extraction factorizing DB names.

stitution policy (configurable and LFU by default) is not central for
performance since all of the templates typically fit in main-memory.
The cache hit/miss ratio (shown in Table 6) and cache hit time we
measured (< 1ms) for the Wikipedia dataset are very encourag-
ing. This results are derived from the online profiler of Wikipedia
http://tinyurl.com/wikipediaprofiler.

Below we report the 3 queries used for testing execution perfor-
mance.

S1: The query fetching the textual content of an article:

SELECT old_text,old_flags
FROM text
WHERE old_id = "x"
LIMIT 1;

S2: The query fetching all the metadata of a certain revision of
an article):

SELECT rev_id,rev_page,rev_text_id,
rev_timestamp,rev_comment,
rev_user_text, rev_user,
rev_minor_edit,rev_deleted,
rev_len, rev_parent_id,
page_namespace,page_title,
page_latest

FROM page,revision
WHERE (page_id=rev_page) AND

rev_id = "x"
LIMIT 1;

S3: The query fetching the current revision of a page and its meta-
data given the page title):

SELECT rev_id,rev_page,rev_text_id,
rev_timestamp,rev_comment,
rev_user_text, rev_user,
rev_minor_edit,rev_deleted,
rev_len, rev_parent_id,
page_namespace,page_title,
page_latest

FROM page,revision
WHERE page_namespace = "10" AND

page_title = "x" AND
(rev_id=page_latest) AND
(page_id=rev_page)

LIMIT 1;

Table 7: Schema Evolution Tools Comparison

D
B

2
C

M
E

xp
er

t

O
ra

cl
e

C
M

Pa
ck

M
yS

Q
L

W
or

kb
en

ch

ID
E

R
A

SQ
L

C
M

E
m

ba
rc

ar
de

ro
C

M

R
ed

G
at

e

D
T

M
D

B
Su

ite

Sw
is

SQ
L

L
iq

ui
ba

se

PR
IS

M
++

Doc 3 ? 3 3 3 3 ? 3 3 3
Schema Predict 3 3 5 3 ? ? 3 5 5 3

Transform 3 3 3 3 3 3 3 3 3 3
Reverse 3 3 3 3 3 3 ? 3 3 3

Doc ? ? 3 5 5 3 ? 3 3 3
Data Predict 3 3 ? 5 5 ? 3 5 5 3

Transform 3 3 3 5 5 3 3 3 3 3
Reverse ? ? 3 5 5 3 ? ? 3 3

Query Predict 5 5 5 5 5 5 5 5 5 3
Transform 5 5 5 5 5 ? 5 5 5 3

Update Predict 5 5 5 5 5 5 5 5 5 3
Transform 5 5 5 5 5 5 5 5 5 3

Indexes, Triggers Predict 5 5 5 5 5 5 5 5 5 5
Store Proc., etc. Transform 5 5 5 5 5 5 5 5 5 5

F. SOFTWARE TOOLS COMPARISON
In Table 7 we report a comparison with some of the most popular

tools. The table reports the capabilities of each system to document
(Doc) changes to the various DB objects (schema, data, queries, up-
dates, indexes, etc..), estimate (Predict) what will be the impact of
an evolution step on them, automatically adapt (Transform) various
DB objects to reflect the evolution step, invert the evolution process
(Reverse), e.g., migrating data back or generating inverse schema
transformations. Question marks indicate feature/system combina-
tions for which we could not find enough evidence on whether they
are supported or not. As shown in the table, the existing approaches
support some of the basic features, but fail in providing a complete
end-to-end support. In particular, all the existing tools provided by
DBMS vendors or open source efforts are focused on documenting
and supporting the schema definition and the data migration, but fail
short at supporting queries and updates. The documentation and data
migration capabilities of PRISM++ (not discussed in this paper) are
similar or superior to the one provided by some of the other tools,
while the query and update rewriting technology is not available in
any system we were able to test.

128

