
Private Analysis of Graph Structure

Vishesh Karwa Sofya Raskhodnikova Adam Smith Grigory Yaroslavtsev
Computer Science and Engineering Department

Pennsylvania State University
University Park, Pennsylvania 16802

vishesh@psu.edu, {sofya, asmith, grigory}@cse.psu.edu

ABSTRACT
We present efficient algorithms for releasing useful statistics
about graph data while providing rigorous privacy guaran-
tees. Our algorithms work on data sets that consist of re-
lationships between individuals, such as social ties or email
communication. The algorithms satisfy edge differential pri-
vacy, which essentially requires that the presence or absence
of any particular relationship be hidden.

Our algorithms output approximate answers to subgraph
counting queries. Given a query graph H, e.g., a triangle,
k-star or k-triangle, the goal is to return the number of edge-
induced isomorphic copies of H in the input graph. The
special case of triangles was considered by Nissim, Raskhod-
nikova and Smith (STOC 2007), and a more general inves-
tigation of arbitrary query graphs was initiated by Rastogi,
Hay, Miklau and Suciu (PODS 2009). We extend the ap-
proach of [NRS] to a new class of statistics, namely, k-star
queries. We also give algorithms for k-triangle queries using
a different approach, based on the higher-order local sensi-
tivity. For the specific graph statistics we consider (i.e., k-
stars and k-triangles), we significantly improve on the work
of [RHMS]: our algorithms satisfy a stronger notion of pri-
vacy, which does not rely on the adversary having a partic-
ular prior distribution on the data, and add less noise to the
answers before releasing them.

We evaluate the accuracy of our algorithms both theoret-
ically and empirically, using a variety of real and synthetic
data sets. We give explicit, simple conditions under which
these algorithms add a small amount of noise. We also pro-
vide the average-case analysis in the Erdős-Rényi-Gilbert
G(n, p) random graph model.

Finally, we give hardness results indicating that the ap-
proach NRS used for triangles cannot easily be extended to
k-triangles (and hence justifying our development of a new
algorithmic approach).

1. INTRODUCTION
Data privacy has become a fundamental problem of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

modern information infrastructure. Increasing volumes of
personal and sensitive data are collected and archived by
social networking systems, health networks, financial orga-
nizations, search engines, intrusion detection systems, retail-
ers and other enterprises. Many of the resulting databases
contain information not only on individuals, but also on re-
lationships between them, e.g., personal contacts, financial
transactions, and romantic relationships and electronic com-
munication. The potential social benefits from analyzing
these databases are enormous, but access to the informa-
tion they contain is constrained by privacy concerns.

We study the problem of releasing useful statistics on net-
works while protecting against disclosure of relationships
they contain. All our algorithms for releasing graph statis-
tics satisfy differential privacy [4], a notion that provides
meaningful privacy in the presence of a strong, realistic ad-
versary. It makes assumptions neither about what kind of
attack might be perpetrated against the released statistics
nor about what additional information the attacker might
possess. It limits the incremental information the attacker
might learn in addition to what he knew before seeing the
released statistics. It guarantees that databases that differ
in one entry—in our case, graphs that differ in one edge1—
induce similar distributions on the statistics released by our
(randomized) algorithms. (See Section 2.)

Our algorithms output approximate answers to subgraph
counting queries. Given a query graph H, e.g., a trian-
gle, the goal is to return the number of edge-induced (not
necessarily vertex-induced) isomorphic copies of H in the in-
put graph. We exclude automorphisms2, e.g., in a complete
graph on 3 vertices, our triangle count is 1, not 3!.

In addition to triangles, we consider k-triangles and k-
stars. A k-triangle consists of k triangles, all of which share
a common edge. A k-star consists of a central vertex con-
nected to k other vertices. Note that we count a copy of a
subgraph, even if it is not induced. For instance, each node
of degree d ≥ k contributes

`
d
k

´
to the k-star count. See

Figure 1 for examples. The number of triangles, k-stars and
k-triangles in the input graph G is denoted by f�(G), fk�(G)
and fk�(G), respectively.

1 We call this privacy guarantee edge privacy, to distinguish
it from node privacy (see [5]), which protects each node to-
gether with all its adjacent edges instead of protecting each
edge. It is open whether any nontrivial graph statistics can
be released with node differential privacy—a qualitatively
stronger privacy guarantee than edge differential privacy.
2Including automorphisms would simply change the count
by a factor independent of the input graph, namely, the
number of automorphisms of the query graph.

1146

An example graph G

Subgraph Name & Abbrv. Count in G

Triangle � 3

2-star 2� 18

3-star 3� 12

2-triangle 2� 2

3-triangle 3� 0

Figure 1: Example subgraphs and counts.

Importance of subgraph counts. Analysis of social net-
works is a rapidly growing field, and new models of network
data are constantly being proposed. Subgraph counts play
a prominent role in many of these models. For example, the
subgraph counts f2�, f3�, and f�, as well as the number of
edges, fedge, are sufficient statistics for several popular ex-
ponential random graph models (ERGM) (e.g., [11, 12, 6]).
Moreover, many descriptive statistics of graphs are func-
tions of subgraph counts (e.g., the clustering coefficient is
the ratio 3f�/f2�).

Previous Work. Dwork et al. [4] showed that, to ensure
differential privacy when releasing a query function f of a
data set, it suffices to perturb the value of f with random
noise of magnitude proportional to the global sensitivity of
f—the maximum amount by which changing one database
entry (in our case, an edge) can change the query answer.
(See Section 2.1.) This implies that one can release the num-
ber of edges in a graph with constant additive perturbation,
since adding or removing an edge alters the number of edges
by 1. However, the counts of subgraphs with more than one
edge have high global sensitivity: there are contrived graphs
on which the query answer changes tremendously if a single
edge is added.

Nissim et al. [9] (“NRS”) introduced the idea of instance-
dependent noise. They defined the local sensitivity of a
query at a particular data set (in our case, a graph G) to
be the amount by which the query answer can change if an
edge is added to or removed from G. Unfortunately, they
showed that adding noise proportional to the local sensitiv-
ity is not, in general, differentially private. However, they
proved that one can instead use the smooth sensitivity of the
query, which upper bounds the local sensitivity and which is
very close to the local sensitivity as long as the query func-
tion varies smoothly in a neighborhood of the input graph.
(See Definition 2.5.) NRS gave algorithms for computing
the smooth sensitivity of statistics in a variety of domains.
In the context of subgraph counts, they showed how to effi-
ciently compute the smooth sensitivity of the number of tri-
angles. (Details appear in the online full version [9].) How-
ever, they left open whether one can compute this quantity
efficiently for other subgraph counts.

Rastogi et al. [10] (“RHMS”) considered releasing general
subgraph counts. They studied a relaxed version of edge
differential privacy, called (edge) adversarial privacy, which
considers a Bayesian attacker; the presence or absence of any
given edge is concealed as long as the attacker’s prior distri-

bution on the graph comes from a specified family of distri-
butions. Rastogi et al. gave a general algorithm for releas-
ing the count of any specified subgraph assuming, roughly,
that the adversary’s prior admits mainly negative correla-
tions between edges (i.e., the presence of a set of edges does
not make other edges more likely to be present). Their al-
gorithm works by first computing a high-probability upper
bound on the local sensitivity (before looking at the data)
and then adding noise proportional to that bound.

RHMS are able to release vastly more general graph statis-
tics than NRS (who only deal with triangles). However, the
RHMS results suffer from two limitations. First, as we show
in this paper, the NRS method is much more accurate on the
specific problems to which it applies. Second, assumptions
about an attacker’s prior limit the applicability of a privacy
definition. Social networks generally have positive correla-
tions between edges (e.g., people who share a friend are more
likely than random to be friends). Thus, considering attack-
ers who think of correlations as mainly negative limits the
settings in which the privacy definition makes sense. Our
results can be seen as extending the basic approach of NRS
(along with its advantages of better accuracy and stronger
privacy guarantees) to a much wider class of graph statistics.

Finally, Hay et al. [5] gave a differentially private algo-
rithm for releasing an approximation to the degree distribu-
tion of a graph. Their algorithm is a clever combination of
the global sensitivity approach of [4] with post-processing of
the released output to remove some of the added noise. The
number of k-stars in a graph can be expressed as a function
of the degree distribution, and so the algorithm of [5] implies
an algorithm for releasing the number of k-stars. In terms
of error, the resulting algorithm is incomparable to our algo-
rithm for releasing k-stars. However, our algorithm is never
worse by more than a constant factor, and on some graphs
is much more accurate (by a factor of Ω(

√
n)). A detailed

comparison is deferred to the full version of this paper.

1.1 Our Contributions
We give new algorithms for releasing subgraph counts dif-

ferentially privately and evaluate them and the NRS algo-
rithm for releasing triangle counts both theoretically and
empirically. Our algorithms apply to two key families of sub-
graphs: k-stars and k-triangles. We significantly improve on
the work of RHMS [10] for these subgraphs: our algorithms
satisfy a stronger notion of privacy, which does not rely on
the adversary having a particular prior distribution on the
data, and give more accurate answers.

Algorithms. We give two new algorithms for releasing
graph counts with instance-dependent noise.

� We extend the approach of NRS to k-star queries. Specif-
ically, we give an algorithm for computing the smooth sensi-
tivity of the number of k-stars, denoted S∗

k�,β(G), on a given
input graph. Our algorithm runs in time O(n log n + m),
where n is the number of nodes and m is the number of edges
in the input. Following the general framework of NRS, one
can release the number of k-stars after adding random noise
(from, e.g., the Gaussian, Laplace or Cauchy distribution)
with expected magnitude proportional to S∗

k�,β(G).

� We use a different approach, based on the higher-order
local sensitivity, to give a differentially private algorithm
for releasing k-triangle counts. Our approach is inspired
by the “propose-test-release” framework of Dwork and Lei
[3]. Specifically, we develop a two-phase algorithm. First, it

1147

finds a differentially-private estimate of the local sensitivity
of the query function on the input graph G. Second, it re-
leases the query answer plus random noise with expected
magnitude proportional to this estimate. Our algorithm
runs in time O(md) in graphs of degree at most d.

Computational Hardness. We show that computing the
smooth sensitivity is NP -hard for two subgraph counts: 2-
triangles and cycles of length 4. Thus, the approach we
used for releasing k-stars cannot be extended directly to k-
triangles unless P = NP .

Evaluation. Any differentially private (or adversarially pri-
vate) algorithm must be randomized and cannot always re-
turn an exact answer to the query. Evaluating the useful-
ness of a differentially private algorithm therefore requires
understanding how much distortion it introduces. The NRS
triangles algorithm and our two algorithms add instance-
dependent noise to the value of the query before releasing
it and satisfy differential privacy; we henceforth refer to all
three algorithms in this group as instance-dependent.

The instance-dependent and RHMS algorithms aim, in
different ways, to add noise close in magnitude to the local
sensitivity of a query. We therefore seek to understand both
the difference between a given algorithm’s noise bounds and
the local sensitivity and also the overall relative error (the
ratio of noise magnitude to the value of the query function).
The instance-dependent algorithms are especially hard to
evaluate since their worst-case accuracy differs sharply from
their accuracy on “typical” inputs. NRS provided no eval-
uation of the accuracy of their triangle algorithm. One of
our contributions is to evaluate their algorithm.

� We give explicit, simple conditions under which the
instance-dependent algorithms add noise proportional to the
local sensitivity of the input. These conditions provide a
sense of the inputs for which the algorithms are most useful.

� We analyze the accuracy of the instance-dependent algo-
rithms in the Erdős-Rényi-Gilbert G(n, p) model, in which
each edge in a graph appears independently with probabil-
ity p. For moderately dense graphs, that is, for distributions
where p = ω(1/

√
n), we show that the instance-dependent

algorithms are “useful” in that they have vanishing relative
error (roughly 1/n2p) with high probability. For triangles
and two-triangles, we extend this result to much sparser
graphs (where np ≥ log2 n).

� We analyze and compare the instance-dependent and
RHMS algorithms empirically, using synthetic graphs and
real data sets. RHMS provided no empirical evaluation. We
consider four subgraphs: 2- and 3-stars, triangles, and 2-
triangles.

On both real and synthetic data, we found that the
instance-dependent algorithms have noise magnitude close
to their “target”, the local sensitivity. Moreover, the local
sensitivity of 2- and 3-stars (and hence the added noise)
was always small relative to the query answer. Thus,
the instance-dependent algorithms for 2- and 3-stars seem
broadly applicable.

For triangles and 2-triangles, the picture was more nu-
anced. In relatively dense graphs, we found the local sen-
sitivity was low relative to the query answer, making the
algorithms useful. In very sparse graphs, however, the lo-
cal sensitivity was sometimes higher than the query answer
(the phenomenon was less acute for triangles than for 2-
triangles). It means that any algorithm which adds distor-

tion on the order of the local sensitivity (and this is necessary
for differential or adversarial privacy) basically erases the
query answer. Of course, it also means that in such graphs
the counts of triangles and (especially) 2-triangles are highly
sensitive to small perturbations in the input, making anal-
yses based on these counts non-robust.

Evaluating the RHMS algorithm is delicate since their pri-
vacy guarantee makes sense only when the adversary’s prior
distribution on graphs has expected average degree approx-
imately log n and (mostly) nonpositive correlations between
edges. For comparisons we therefore used graphs drawn
from Erdős-Rényi-Gilbert distributions with p = log(n)/n
(which would be valid prior distributions) and various val-
ues of n. For all four subgraphs, we find that the instance-
dependent algorithms perform better than the RHMS algo-
rithm. For 2-stars, both algorithms have low relative error.
For the three other subgraphs, however, the RHMS noise
magnitude dwarfs the actual statistic. Thus, the instance-
based algorithms are preferable to (the current formulation
of) the RHMS algorithm: they satisfy a stricter notion of
privacy and perform better or as well as the RHMS algo-
rithm for all subgraph queries to which they apply.

1.2 Discussion
Our results, together with those of [9, 10], raise several in-

teresting questions beyond those mentioned so far. First, the
techniques developed here proceed one statistic at a time.
Because the amount of distortion increases as more statis-
tics are released (see Lemma 2.1), these techniques are not
appropriate for releasing a large number of statistics simul-
taneously (such as the edgewise shared partner distribution
used by [6]).

Hay et al. [5] discuss algorithms for releasing the degree
distribution, but their techniques do not apply to more
complicated vectors of statistics. Releasing synthetic data
that reflects many different statistics is, potentially, an even
harder task. As noted in “Previous Work”, above, the algo-
rithm of [5] implies an algorithm for releasing the number
of k stars whose performance is incomparable to that of our
algorithms. See the full version for a detailed comparison.

Along different lines, one might ask for a qualitatively
stronger privacy guarantee, such as node privacy (discussed
in Footnote 1). Our algorithms do not apply directly to
node privacy, but the general technique developed for our
k-triangles algorithm offers some promise.

Other Related Work. The general topic of privacy in so-
cial networks has been studied extensively, and we do not
attempt to summarize the literature here. See [13] for a sur-
vey of techniques for anonymizing social networks that work
along the lines of k-anonymity (and do not carry the strong
semantics of differential privacy). Attacks on anonymized
social network data are studied, for example, in [1, 8].

1.3 Organization of This Paper
After a brief introduction to differential privacy and noise

addition, we present our algorithms (Sections 3 and 4) and
our experimental results (Section 5). Results on the hard-
ness and average-case analysis of our algorithms are deferred
to Appendices A and B, respectively.

2. PRELIMINARIES
In this work, a statistical database is a graph G on n ver-

tices, representing relationships between n individuals. The

1148

database is held by a trusted curator who answers users’
queries about the database. A user query is a function
f : Gn → R to be evaluated on the database G, where Gn is
a set of all n-vertex (undirected) graphs. In response to each
query f , the curator runs an algorithm Af on the database
G and sends back Af (G). For example, Af (G) could be
f(G) with random noise added according to some agreed
upon distribution or a pair of values, specifying an approxi-
mation to f(G) and the magnitude of the added noise. Our
goal is to make Af (G) (or, in the second example, the first
component output by Af (G)) as close to f(G) as possible,
thus enabling the users to learn their target value as accu-
rately as possible, while preserving the privacy of individuals
whose information is stored in the database.

Definition 2.1. The distance between n-vertex graphs G
and G′, denoted d(G, G′), is the number of edges on which
they differ. Graphs G and G′ are neighbors if d(G, G′) = 1.

A randomized algorithm is private if neighboring databases
induce nearby distributions on its outcomes:

Definition 2.2. (Differential Privacy, [4, 2]) Let ε
and δ be small constants. A randomized algorithm A is
(ε, δ)-differentially private if for all neighboring databases
G, G′, and for all sets S of possible outputs, Pr[A(G) ∈
S] ≤ eε Pr[A(G′) ∈ S] + δ. The probability is taken over
the random coins of A. When δ = 0, the algorithm is ε-
differentially private.

Differential privacy “composes” well, in the sense that pri-
vacy is preserved (albeit with slowly degrading parameters)
even when the adversary gets to see the outcome of multiple
differentially private algorithms run on the same data set.

Lemma 2.1. (Composition, post-processing [7, 3]) If
an algorithm A runs t randomized algorithms A1, ...,At,
each of which is (ε, δ)-differentially private, and applies an
arbitrary randomized algorithm g to their results (that is,
A(G) = g(A1(G),A2(G), ...,At(G))), then A is (tε, tδ)-
differentially private. This holds even if for each i > 1,
Ai is selected adaptively, based on A1(G), . . . ,Ai−1(G).

2.1 Calibrating Noise to Sensitivity
Output Perturbation. One method for obtaining ef-
ficient differentially private algorithms for approximating
real-valued functions is based on adding a small amount of
random noise to the true answer. In this paper, we use
two families of random distributions to add noise: Laplace
and Cauchy. A Laplace random variable with mean 0 and
standard deviation

√
2λ has density h(z) = 1

2λ
e−|z|/λ. We

denote it by Lap(λ). A Cauchy random variable with me-
dian 0 and median absolute value λ has density h(z) =

1
λπ(1+(z/λ)2)

. We denote it by Cauchy(λ).

Global Sensitivity. In the most basic framework for
achieving differential privacy, Laplace noise is scaled accord-
ing to the global sensitivity of the desired statistic f .

Definition 2.3. (Global Sensitivity, [4]) The global
sensitivity of a function f : Gn → R is:

GSf = max
G,G′neighbors

|f(G) − f(G′)| .

Theorem 2.2 (Laplace Mechanism, [4]). The algo-
rithm A(G) = f(G)+Lap(GSf/ε) is ε-differentially private.

Local Sensitivity. The magnitude of noise added by the
Laplace mechanism depends on GSf and the privacy pa-
rameter ε, but not on the database G. For all functions
considered in this paper, this approach yields high noise,
not reflecting the function’s typical insensitivity to individ-
ual inputs. NRS [9] proposed a local measure of sensitivity:

Definition 2.4. (Local Sensitivity, [9]) For a func-
tion f : Gn → R and a graph G ∈ Gn, the local sensitivity
of f at G is LSf (G) = maxG′ |f(G) − f(G′)|, where the
maximum is taken over all neighbors G′ of G.

Note that, by Definitions 2.3 and 2.4, GSf = maxG LSf (G).
One may think of the local sensitivity as a discrete analogue
of the magnitude of the gradient of f .

An algorithm that releases f with noise magnitude pro-
portional to LSf (G) on input G is not, in general, differ-
entially private [9], since the noise magnitude can leak in-
formation. The question becomes: when can one release an
approximation to f(G) whose error is close to LSf (G)?

Smooth Sensitivity. NRS propose the following approach:
instead of using the local sensitivity, select noise magnitude
according to a smooth upper bound on the local sensitiv-
ity, namely, a function S that is an upper bound on LSf at
all points and such that ln(S(·)) has low global sensitivity.
The tightest such bound is called the smooth sensitivity of
f . Roughly, the smooth sensitivity is the maximum local
sensitivity attained among graphs “near” to G. More pre-
cisely, it is the maximum over all possible graphs G′ of a
“scaled down” local sensitivity, in which the scaling factor
shrinks exponentially with the distance d(G, G′) (the num-
ber of edges on which G and G′ differ). The level of smooth-
ness is parametrized by a number β (where smaller numbers
lead to a smoother bound) that is usually comparable to ε.

Definition 2.5 ([9]). The β-smooth sensitivity of f at

G is S∗
f,β(G) = max

G′∈Gn

“
LSf (G′) · e−βd(G,G′)

”
.

One can add noise proportional to the smooth sensitivity
using a variety of distributions. We state here the simplest
version, based on the Cauchy distribution.

Theorem 2.3. ([9]) Let f : Gn → R be a real-valued
function and let S∗

f,β be its β-smooth sensitivity. If β ≤ ε
6
,

the algorithm A(G) = f(G) + Cauchy(6S∗
f,β(G)/ε) is ε-

differentially private.

To compute smooth sensitivity efficiently, one can break
down the expression defining it into tractable components.
For every distance t, consider the largest local sensitivity
attained on graphs at distance at most t from G. The local
sensitivity of f at distance t is:

LS(t)(G) = max
G′∈Gn: d(G,G′)≤t

LSf (G′) .

Lemma 2.4. (Computing smooth sensitivity, [9])

The smooth sensitivity can be expressed in terms of LS(t):

S∗
f,β(G) = max

t=0,1,...,(n
2)

e−tβLS(t)(G) .

We can further break down the expression for smooth sen-
sitivity by separately considering graphs G′ that differ from
G on a particular edge. Specifically, the local sensitivity of

1149

f over an edge (i, j) is LSij(G) = |f(G) − f(G′)|, where
G′ is obtained from G by flipping (adding or deleting) the
edge (i, j). Then LSf (G) = maxi�=j LSij(G). The local
sensitivity of f over an edge (i, j) at distance t is defined
analogously:

LS
(t)
ij (G) = max

G′∈Gn: d(G,G′)≤t
LSij(G

′).

2.2 Graph Statistics We Consider
Our algorithms output approximate answers to subgraph

counting queries. Given a query graph H, e.g., a triangle,
k-star or k-triangle, the goal is to return an approximation
to the number of edge-induced isomorphic copies of H in the
data set graph G. The number of triangles in a graph G is
denoted by f�(G), and the corresponding local sensitivity
and smooth sensitivity functions (see Definitions 2.4 and 2.5)
are denoted by LS�(G) and S∗

�,β(G), respectively.
Similarly, we denote the number of edge-induced sub-

graphs of G isomorphic to a k-star by fk�(G), and the
number of edge-induced subgraphs of G isomorphic to a
k-triangle by fk�(G). As in the notation for sensitivity
functions of f�, we omit f from the names of sensitivity
functions of fk� and fk�: e.g., LSk�(G) and LSk�(G).

Our algorithms rely on the following simple statistics
about the neighborhood of individual edges. Below, [n] de-
notes the set {1, 2, . . . , n} and [a, b] denotes {a, a+1, . . . , b}.

Definition 2.6. (Edge statistics, [9]) Consider an
undirected graph on n nodes, represented by a (symmet-
ric) adjacency matrix X = (xij), where xii = 0 for all
i ∈ [n]. Let aij denote the number of common neigh-
bors shared by a particular pair of vertices i, j, that is,
aij =

P
�∈[n] xi� · x�j. Let bij denote the number of ver-

tices connected to exactly one of the two vertices i, j, that is,
bij =

P
�∈[n] xi� XOR x�j.

If an edge (i, j) is present, then aij denotes the number
of triangles involving that edge. One can think of bij as the
number of “half-built” triangles involving the edge (i, j),
since adding one more edge completes a triangle.

Given the adjacency matrix X, we can compute the
matrices of values aij and bij in time O(M(n)), where
M(n) is the time needed to multiply two n × n matri-
ces, since the matrix with entries aij is equal to X2 and
bij = degree(i) + degree(j) − 2aij − 2xij . In sparse graphs
(represented as adjacency lists), one can compute the list
of all non-zero values aij in time O(m · dmax), where dmax

is the maximum degree in the graph and m is the number
of edges. The values bij can be then be computed in time
O(n2).

2.3 Asymptotics
We state the performance of our algorithms in terms of the

parameters of the input graph. Our asymptotic statements
hold for every infinite sequence of graphs of size n = 1, 2, ...;
the asymptotic notation (O, Ω, o, ω, Θ) is defined with re-
spect to n. Other parameters (such as subgraph counts or ε
and δ of differential privacy) are implicitly functions of n.

3. COMPUTING SMOOTH SENSITIVITY
In this section, we present and analyze algorithms that

use the smooth sensitivity framework of [9] to release graph
statistics. We state efficient algorithms for computing the

smooth sensitivity of the triangle count, f�(G), and the
k-star count, fk�(G). These algorithms can be used, in
conjunction with Theorem 2.3, to obtain efficient differen-
tially private algorithms for releasing these statistics. We
also formulate explicit conditions that imply that the local
sensitivity of the count is equal to its smooth sensitivity.
Under these conditions, the resulting differentially private
algorithms add noise proportional to the local sensitivity of
the graph counts.

3.1 Triangles
In Theorem 3.1, we state known facts, from the full version

of [9], about computing the local sensitivity and the smooth
sensitivity of f�. Theorem 3.2 (proved in Appendix C.1)
highlights when these quantities are equal.

Theorem 3.1. (Full version of [9]) The local sensitiv-
ity of f� is LS�(G) = maxi,j∈[n] aij. The local sensitivity

of f� at distance t is LS
(t)
� (G) = maxi�=j;i,j∈[n] cij(t), where

cij(t) = min
“
aij +

j
t+min(t,bij)

2

k
, n − 2

”
. The β-smooth

sensitivity of f� is computable in time O(M(n)).

We show that the β-smooth sensitivity of f� is at most
the maximum of 1/β and the local sensitivity of f�.

Theorem 3.2. For a given graph G, if LS�(G) ≥ 1
β
,

then S∗
�,β(G) = LS�(G).

3.2 k-Stars
In this section, we explain how to compute the local sen-

sitivity and the smooth sensitivity of fk�(G) and highlight,
in Theorem 3.6, when these two quantities are equal.

Recall that fk�(G), the number of k-stars in G, is equal
to
P

i∈[n]

`
di
k

´
, where di is the degree of node i, for all k ≥ 2.

The following lemma is easy to verify.

Lemma 3.3. The local sensitivity of fk� is

LSk�(G) = max
i�=j;i,j∈[n]

di − xij

k − 1

!
+

dj − xij

k − 1

!!
.

The following lemma (proved in Appendix C.2) gives a
formula for computing the local sensitivity of fk� at dis-
tance t.

Lemma 3.4. Let C(a) denote
`

a
k−1

´
. Let d′

i = di − xij,

Bi = n − 2 − d′
i, and define d′

j and Bj analogously. Then

LS
(t)
k� (G) = max(i,j) : di≥dj

LS
(t)
ij (G), where LS

(t)
ij (G) is the

local sensitivity of fk� at distance t over an edge (i, j). If

di ≥ dj then LS
(t)
ij (G) is8><>:

C(d′
i + t) + C(d′

j) if t ≤ Bi,

C(n − 2) + C(d′
i + t − Bj) if t ∈ (Bi, Bi + Bj),

2C(n − 2) if t ≥ Bi + Bj .

In Appendix C.2, we use Lemma 3.4 to give an efficient
algorithm for computing the smooth sensitivity of fk�. Next,
we state its performance.

Theorem 3.5. Given a graph G with n nodes and m
edges, S∗

k�,β(G) can be computed in time O(n log n + m).

The final theorem of this section, proved in the full ver-
sion, shows that the local sensitivity and the smooth sensi-
tivity of the k-star count are equal in graphs with moder-
ately large maximum degree (roughly, at least k−1

β
).

1150

Theorem 3.6. Let dmax be the the largest degree in G. If
dmax ≥ max{k, (k − 1)(1−β

β
)}, then S∗

k�,β(G) = LSk�(G).

4. BOUNDING LOCAL SENSITIVITY OF
LOCAL SENSITIVITY: k-TRIANGLES

The approach of Section 3 does not extend to k-triangles
even for k = 2, since computing the smooth sensitivity of
this statistic is NP-hard (Theorem A.1). In this section, we
present a different approach that yields an efficient (ε, δ)-
differentially private algorithm (Algorithm 1) for releasing
the number of k-triangles with a small amount of Laplace
noise, together with the magnitude of the added noise.

The main idea behind Algorithm 1 is that one can get
differential privacy by adding noise proportional to a differ-
entially private upper bound on the local sensitivity (instead
of a “smooth” upper bound, as in NRS). We show this in
Lemma 4.4. The better a differentially private bound we get
on the local sensitivity, the more accurate our final answer.
If LSk� were itself an insensitive function, we could release
it using the Laplace mechanism (Theorem 2.2) and add a
small offset to it to get a (high-probability) upper bound.
Unfortunately, LSk� has high global sensitivity. Instead,
we consider LS′, the local sensitivity of LSk�. Just as we
may think of LS as a discrete derivative, we may think of
LS′ as a second order derivative. We show that LS′ is a
deterministic function of a quantity with global sensitivity
1, which we can release with little noise using the Laplace
mechanism. That allows us to compute an accurate and pri-
vate approximation to LS′. We use this approximation in
turn to add noise to LSk�(G) and finally we use the noisy
version of LSk�(G) to release fk�(G).

To analyze the privacy and performance of Algorithm 1,
we first give closed form expressions for the local sensitivity
of the k-triangle count and for a simple upper bound on the
second-order sensitivity LS′ (Lemmas 4.1 and 4.2). Next, we
prove the key privacy lemma, 4.4, which states that adding
noise proportional to a differentially private bound on LS is
indeed differentially private. This allows us to prove that the
algorithm is differentially private (Theorem 4.3). Finally,
Theorem 4.5 shows that the algorithm has low relative error
for a wide range of inputs. The missing proofs of the results
below are collected in Appendix D.

Computing Local and Second-order Sensitivity. Let
Nij be the set of common neighbors of vertices i and j in
graph G, that is, Nij = {� ∈ [n] | xi� · x�j = 1}. Using the
notation of Definition 2.6, |Nij | = aij .

Lemma 4.1. The local sensitivity of fk� is LSk�(G) =
max

i,j∈[n];i�=j
LSij(G), where LSij(G) is

aij

k

!
+
X

�∈Nij

ai� − xij

k − 1

!
+

a�j − xij

k − 1

!!
. (1)

Lemma 4.2. Let LS′ denote the local sensitivity of
the local sensitivity function LSk�(G) and let amax =

max
i,j∈[n];i�=j

ai,j. Then

LS′(G) ≤ 3

amax

k − 1

!
+ amax

amax

k − 2

!
. (2)

Our Algorithm and Privacy Analysis. Our algo-
rithm (see Algorithm 1) releases fk�(G) and the amount
of Laplace noise that was added to it.

Algorithm 1 (ε, δ)-Differentially Private Algorithm for Re-
leasing fk�(G)

Input: graph G, parameters ε, δ and k.

1: Set ε′ = ε/3 and δ′ = δ/3; let amax = max
i,j∈[n];i�=j

aij .

2: ãmax = amax + Lap(1
ε′) + ln(1/δ′)

ε′ .

3: fLS = LSk�(G)+Lap(B(ãmax)
ε′)+ ln(1

δ′) · B(ãmax)
ε′ , where

B(a) = 3
`

a
k−1

´
+ a
`

a
k−2

´
is the expression from (2).

4: return (fk�(G) + Lap(
gLS
ε′), fLS)

Theorem 4.3. For all ε ∈ (0, 3
2

ln(3
2
)] and δ ∈ (0, 1), Al-

gorithm 1 is (ε, δ)-differentially private.

Our proof of Theorem 4.3 relies on the following lemma,
inspired by the “propose-test-release” framework of [3].

Lemma 4.4. Let B be an (ε1, δ1)-differentially private al-
gorithm, such that Pr(B(x) ≥ LSf (x)) > 1 − δ2 for all x.
Consider the algorithm A that runs B(x) to obtain an esti-

mate fLS of the local sensitivity, and releases both fLS and a
noisy estimate of f ,

A(x) = (fLS, f(x) + Lap(fLS/ε2)), where fLS = B(x)

and where Lap(λ) is a Laplace random variable with mean
0 and scale parameter λ. Then A is (ε1 + ε2, δ1 + eε1δ2)-
differentially private.

To apply Lemma 4.4 to Algorithm 1, we argue that the

values ãmax and fLS it computes are indeed high-probability
upper bounds on the quantities they approximate, amax and
LSk�(G). See Appendix D for details.

Error/Time Analysis. The error of our algorithm de-
pends on the specific instance, and it is difficult to give a
clean characterization of the inputs on which it performs
well. We show, however, that the error closely tracks the lo-
cal sensitivity of the number of k-triangles as long as some
pair of vertices has a reasonable number of common neigh-
bors (significantly larger than log(1/δ)/ε). Specifically:

Theorem 4.5. Let f̃k� be the approximation to fk� re-
turned by Algorithm 1. Set ε′ = ε/3 and amax = maxi�=j aij.
With probability at least 1 − δ/3, the scale parameter of the

Laplace noise added to fk� in order to get f̃k� is at most`
LSfk�(G)/ε′

´ · (1 + o(1)), as long as ln (1/δ)
ε

= o(amax).

The asymptotic statements in the theorem should be inter-
preted as in Section 2.3.

Finally, we note that Algorithm 1 can be implemented to
run in time O(m ·d1) on graphs with m edges and maximum
degree d1. (See Appendix D.)

5. EXPERIMENTAL EVALUATION
Our experiments have two goals: (1) to compare instance-

dependent algorithms (namely, the triangles algorithm of [9]
and our algorithms for k-stars and k-triangles) with the al-
gorithm from [10] (“RHMS”) and (2) to evaluate the perfor-
mance of the instance-dependent algorithms on an absolute

1151

scale. Along the way, we examine the relationship between
the magnitude of noise added and the quantity LS

ε
. The

subgraph counts included in our experiments are the num-
ber of triangles, 2-triangles, 2-stars and 3-stars.

We measure the accuracy of the algorithms on a given
graph G by the median absolute error, that is, the median
of the random variable |A(G) − f(G)|, where A(G) is the
released value and f(G) is the query answer, and by the
median relative error, which is the median absolute error
divided by f(G).

5.1 Algorithms Used in Our Experiments
Instance-Dependent Algorithms. Given a statistic for
which one can compute the smooth sensitivity, Theorem 2.3
states that it suffices to add Cauchy noise scaled up by a

factor of 6S∗(G)
ε

, where S∗ is the ε
6
-smooth sensitivity of f .

The median absolute value of the Cauchy distribution is 1,

so the median absolute error of this approach is 6S∗(G)
ε

. We
use it for releasing f�, f2� and f3�.

To release f2�, we run Algorithm 1 (from Section 4). We
do not have a closed form expression for the median error
of this approach, but it is easy to evaluate numerically.

RHMS Algorithm. The RHMS algorithm (see Algo-
rithm 2 in the appendix), roughly speaking, adds noise pro-
portional to λ

ε
, where λ is a high-probability upper bound

on the local sensitivity, taken over the adversary’s prior dis-
tribution (which is assumed to come from a known class).
The algorithm’s median absolute error is about λ√

2ε
, but is

tricky to state precisely. The proof of the following claim is
deferred to the full version of this paper.

Claim 5.1. The median absolute error M of Algorithm 2

satisfies − λ√
2ε

ln
0.5

1 − θ
≤ M ≤ − λ√

2ε
ln

0.5 − θ

1 − θ
, where the

parameters θ and λ are those used in Algorithm 2.

Setting Parameters. The instance-dependent algorithms
and the RHMS algorithm satisfy different definitions of pri-
vacy. The smooth-sensitivity-based algorithms (for releasing
f�, f2� and f3�) satisfy ε-differential privacy. Algorithm 1
for 2-triangles satisfies (ε, δ)-differential privacy, a relaxation
with similar semantics. One can think of δ as the probabil-
ity of a significant privacy compromise. In contrast, RHMS
provide a different relaxation, (ε, γ)-adversarial privacy for
(log(n)/n, log n)-bounded adversaries, which has a similar
interpretation to differential privacy, but requires specific
assumptions on the attacker’s prior beliefs about the data
set (see [10, Theorem 2.6]). When γ = δ = 0, the two relax-
ations coincide with ε-differential privacy, but the algorithms
are meaningless in that case. When γ and δ are nonzero, the
definitions are incomparable (but both get weaker as γ and δ
increase). For concreteness, we set γ = δ = 0.1 and ε = 0.5.

5.2 Graphs Used in Our Experiments
We performed three sets of experiments. In the first two

sets, we used synthetic graphs drawn from the Erdős-Rényi-
Gilbert model G(n, p), in which each edge in a graph appears
independently with probability p.

The first set was used to compare the RHMS algorithm
with instance-dependent algorithms, as well as to evaluate
the instance-dependent algorithms on sparse graphs. The
RHMS algorithm assumes that the attacker’s prior distri-
bution on the data has expected average degree at most

Nodes

M
ed

ia
n

R
el

at
iv

e
E

rr
or

 �
 lo

g
sc

al
e

100

101

102

103

104

105

200 400 600 800 1000

�
� � � � � � � � �

Triangles

100

102

104

106

108

1010

1012

200 400 600 800 1000

�

� � � � � � � � �

2�Triangles

10�2

10�1

10�0.5

100

200 400 600 800 1000

�

�

�
�

�
�

� � � �

2�Stars

10�1

100

101

102

103

104

200 400 600 800 1000

�
�

� � � � � � � �

3�Stars

RHMS Upper

RHMS Lower

Instance�Dependent
LS

�f(G)

Relative Error = 1

� � �

Figure 2: Comparison of instance-dependent algorithms

and RHMS for G(n, p) with p = log n
n . Upper and lower

bounds for the median relative error of RHMS in red

(plus signs/circles), the median relative error of instance-

dependent algorithms in blue (squares), and LS
εf(G) in green

(triangles).

Nodes

M
ed

ia
n

R
el

at
iv

e
E

rr
or

 �
 lo

g
sc

al
e

10�3

10�2

10�1

100

200 400 600 800 1000

Triangles

10�3

10�2

10�1

100

101

102

200 400 600 800 1000

2�Triangles

10�4

10�3

10�2

10�1

100

200 400 600 800 1000

2�Stars

10�4

10�3

10�2

10�1

100

200 400 600 800 1000

3�Stars

Instance�Dependent
LS

�f(G)
Relative Error = 1

Figure 3: Evaluation of instance-dependent algorithms on

G(n, p) graphs for p = 0.1. Relative median error in blue

(squares), and LS
εf(G) in green (triangles).

log n (see discussion in Section 1.1). In order to test the
algorithm on data consistent with the attack model, we set
p = log n/n. (The algorithm fares worse on sparser graphs,
so we chose the densest distribution consistent with the
model.) The number of vertices, n, varied from 100 to 1000
in steps of 100. The results are plotted in Figure 2.

The second set was used to evaluate the instance-
dependent algorithms on synthetic graphs for ranges of pa-
rameters where the RHMS guarantees do not apply. We
generated graphs from the Erdős-Rényi-Gilbert model with

1152

p varying from 0.1 to 0.8 in steps of 0.1 and n between 100
and 1000 in steps of 100. We report on all experiments in
the full version. Figure 3 shows the results only for p = 0.1,
since they are representative of the results for larger values
of p.

In the third set, we evaluated the instance-dependent
algorithms on 5 collaboration networks “GrQc”,“HepTh”,
“CondMat”, “HepPh”,“AstrpPh” and 1 email network,
“Enron”, obtained from the Stanford Large Network
Dataset Collection. The results (and the graphs’ parame-
ters) are shown in Figure 4, with additional details in Ta-
ble 1. We did not include the RHMS algorithm for compar-
ison in the latter two sets because the graphs do not satisfy
the average degree condition discussed above.

5.3 Results
Evaluation of Instance-Dependent Algorithms. On
both real and synthetic data, we find that the instance-
dependent algorithms have noise magnitude close to their
“target”, the value LS/ε. (They were farthest apart for 2-
triangles. The gap reflects the fact that the differentially
private upper bound on LS used by the algorithm is nec-
essarily loose.) Understanding the accuracy of these algo-
rithms therefore comes down to understanding how sensitive
different graph statistics are on various types of graphs.

The local sensitivity of 2- and 3-stars was always small
relative to the query answer, except for one setting (n =
100, p = log n

n
for 3-stars), reflected by the fact that the

green lines (with triangles) in Figures 2 and 3, representing
LS

εf(G)
, are lower than 1 and close to 0. These results suggest

that the instance-dependent algorithms for 2- and 3-stars
are broadly applicable.

For triangles and 2-triangles, the picture was more nu-
anced. In relatively dense graphs (the second set of exper-
iments, where p = 0.1), we found the local sensitivity of
triangles was low relative to the query answer. This was
also true for 2-triangles, except for n = 100. In very sparse
synthetic graphs (p = log(n)/n), the local sensitivity was
generally higher than the query answer for both triangles
and 2-triangles, which means that all of the algorithms con-
sidered here are doomed to fare poorly on such data. Finally,
in the real data sets (which are fairly sparse), the triangle
counts were fairly insensitive on all the data sets considered,
and the noise magnitude reflects this fact. The sensitivity of
2-triangle counts, in contrast, varied substantially between
data sets (the relative local sensitivity ranged from 1.6% to
25%, see Table 1 in the appendix). The fact that the counts
of 2-triangles are sensitive on sparse graphs means that re-
leasing them privately, at least on sparse graphs, requires a
significantly different approach. It also means that in sparse
graphs, regardless of privacy, analyses based on the counts
of triangles and 2-triangles may be highly skewed by even
small errors in the data.

Comparison of Instance-Dependent Algorithms with
RHMS. For all four subgraphs, the instance-dependent al-
gorithms perform better than the RHMS algorithm (see Fig-
ure 2).

For 2-stars, both algorithms have low relative error and
add noise close to LS/ε. For the other three subgraphs, the
RHMS noise magnitude dwarfs both the local sensitivity
and the query value. In contrast, the noise magnitude of
the instance-dependent algorithms remains close to the local
sensitivity. (They are still ineffectual for triangles and 2-

triangles on such sparse graphs since the local sensitivity is
itself quite high.)

The results indicate that with its current formulation, the
RHMS approach is of limited use, though perhaps the ap-
proach can be modified (say based on tighter probabilistic
bounds and more careful characterization of adversarial pri-
ors) to add less noise.

Alternatively, it may be possible to extend the approach
we use for k-triangles, based on the higher-order local sen-
sitivity, to get (ε, δ)-differentially private algorithms for a
much broader class of subgraphs, thus combining the gener-
ality of the RHMS results with the more robust definitions
and performance of our approach.

Acknowledgments
This research was supported in part by National Science
Foundation awards CCF-0729171, BCS-941553, and CCF-
0747294. We thank Ishan Behoora for contributing initial
ideas on the NP-hardness proofs. We are grateful to David
Hunter, Dan Kifer, Gerome Miklau, Vibhor Rastogi and a
VLDB shepherd for helpful comments.

6. REFERENCES

[1] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art
thou r3579x? anonymized social networks, hidden patterns,
and structural steganography. In Proc. 16th Intl. World
Wide Web Conference, pages 181–190, 2007.

[2] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In EUROCRYPT, pages 486–503, 2006.

[3] C. Dwork and J. Lei. Differential privacy and robust
statistics. In Symp. Theory of Computing (STOC), pages
371–380, 2009.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284. Springer, 2006.

[5] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate
estimation of the degree distribution of private networks. In
Int. Conf. Data Mining (ICDM), pages 169–178, 2009.

[6] D. Hunter. Curved exponential family models for social
networks. Social Networks, 29(2):216–230, 2007.

[7] F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the net. In
Symp. Knowledge Discovery and Datamining (KDD),
pages 627–636. ACM New York, NY, USA, 2009.

[8] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In IEEE Symp. Security and Privacy, pages
173–187, 2009.

[9] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In Symp.
Theory of Computing (STOC), pages 75–84. ACM, 2007.
Full paper: http://www.cse.psu.edu/~asmith/pubs/NRS07.

[10] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: output perturbation for queries with joins. In
Symp. Principles of Database Systems (PODS), pages
107–116, 2009.

[11] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An
introduction to exponential random graph (p*) models for
social networks. Social Networks, 29(2):173–191, 2007.

[12] S. Wasserman and G. Robins. An introduction to random
graphs, dependence graphs, and p*. Models and methods in
social network analysis, pages 148–161, 2005.

[13] B. Zhou, J. Pei, and W. Luk. A brief survey on
anonymization techniques for privacy preserving publishing
of social network data. SIGKDD Explor. Newsl., 10:12–22,
December 2008.

1153

APPENDIX

Algorithm 2 RHMS Output Perturbation

Input: data graph G with n vertices, query graph H =
(VH , EH), parameters γ and ε.

1: Set λ = (8(|VH | + 1)|EH |2 log n)|EH |−1.

2: With probability θ = |EH |
nγ

, return a uniformly random

element from {0, 1, . . . , n|VH |}.
3: With the remaining probability,

return fH(G) + Lap(λ√
2ε

).

Data set

M
ed

ia
n

R
el

at
iv

e
E

rr
or

 −
 lo

g
sc

al
e

10−3

10−2

10−1

100

ca−GrQc
 n=5,242
 m=28,980

ca−HepTh
 n=9,877
 m=51,971

ca−CondMat
 n=23,133
 m=186,936

ca−HepPh
 n=12,008
 m=237,010

Email−Enron
 n=36,692
 m=367,662

ca−AstroPh
 n=18,772

 m=396,160

2−triangles
3−stars
triangles

2−stars
Relative Error=1

Figure 4: Relative median error of instance-dependent al-

gorithms on several real, sparse data sets. The lines are to

help readability; they are not meant to imply a trend. For

each data set, n and m denote the number of vertices and

edges. For triangles and 2- and 3-stars, LS(G) = S∗(G) for all

data sets G, so the median absolute error was 6LS(G)/ε. For

2-triangles, error and LS(G)/ε are compared in Table 1.

A. COMPUTATIONAL HARDNESS
In this section, we show that computing the smooth sen-

sitivity of some graph statistics, e.g., the number of 2-
triangles, is NP -hard. Thus, the NRS approach used here
to release the counts of k-stars and triangles does not extend
directly to k-triangles even for k = 2 (unless P = NP).

For query graphs H with 3 or fewer vertices, the smooth
sensitivity of fH can be computed efficiently. (This was
shown in Section 3 for 2-stars and triangles. The other con-
nected graph on ≤ 3 vertices consists of a single edge. The
local sensitivity of the number of edges is 1 on all input
graphs, hence its smooth sensitivity is always 1 for all β.)
In contrast, we show that computing the smooth sensitivity
is hard for some graphs on four vertices, namely, 4-cycles and
2-triangles. Specifically, for a fixed subgraph H, consider the
NP language SmoothSensH = {〈G, β, ν〉 | S∗

H,β(G) ≥ ν}.
Let Ck denote the cycle of length k.

Data set
LS2�
εf2�

Error
f2�

ε·Error
LS2�

ca-GrQc 0.031 0.140 4.47
ca-HepTh 0.163 0.988 6.06

ca-CondMat 0.505 1.987 3.93
ca-HepPh 0.007 0.017 2.58

Email-Enron 0.104 0.298 2.86
ca-AstroPh 0.042 0.123 2.92

Table 1: Further details on the performance of the 2-

triangles algorithm on real data sets.

Theorem A.1. SmoothSens2� and SmoothSensC4

are NP-complete.

We prove Theorem A.1 in the full version of this paper.
Here we present a proof of a weaker statement (Lemma A.2),
demonstrating some of the ideas used to prove Theorem A.1.

We show that computing LS
(t)
ij (G) for given distance t, edge

(i, j) and graph G is hard. Specifically, let EdgeDistLSH =
{〈G, t, (i, j), ν〉 | the local sensitivity of fH at distance t over
edge (i, j) on graph G is at most ν}.

Lemma A.2. EdgeDistLS2� and EdgeDistLSC4 are
NP-complete.

We prove the lemma above separately for 2-triangles and
4-cycles in the next two sections.

A.1 Proof of Lemma A.2 for 2-triangles
We show NP-hardness of computing LS

(t)
ij (G) by giving a

reduction from Clique. Given an instance 〈G, k〉 of Clique,
where G is an undirected graph and k is an integer, we
produce a new graph G′ by adding two new isolated vertices
(numbered, say, 1 and 2) to G. The reduction outputs G′

together with t = 2k, (i, j) = (1, 2) and ν = 5
`

k
2

´
. It can

easily be implemented to run in polynomial time.
The reduction’s correctness follows from the next claim.

The idea is to show that the local sensitivity at distance t =
2k over the edge (1, 2) would be maximized by connecting
vertices 1 and 2 to all the vertices of a k-clique inside of
G if one existed. Testing if the local sensitivity over (1, 2)
at distance 2k achieves its maximum is thus equivalent to
testing for a clique in G.

Claim A.3. For every graph G, if G′ is obtained by

adding isolated vertices 1, 2 to G, then LS
(2k)
1,2 (G′) ≤ 5

`
k
2

´
.

Moreover, equality holds if and only if G contains a k-clique.

Proof. Let G = (V, E) and let G′ = (V ′, E) with V ′ =
V ∪ {1, 2}. Consider some graph G′′(V ′, E′′) at distance 2k
from G′.

Recall that LS1,2(G
′′) is the number of 2-triangles in G′′

that would contain (1, 2) if it were present. This number is
maximized when the original graph G is complete (that is,
a clique of size |V |).

Let a be the number of vertices in V connected to vertex
1 but not 2, b be the number of vertices in V connected to
both 1 and 2 and c, the number of vertices in V connected to
2 but not 1. By (1) from Section 4, the local sensitivity over
(1, 2) is then

`
b
2

´
+ b(a + b− 1 + c + b− 1) = 5

`
b
2

´
+ b(a + c) .

The local sensitivity is maximized by setting b = k and
a = c = 0, that is, by connecting vertices 1 and 2 to the
same set of k vertices in the original graph G. The local
sensitivity over (1, 2) is thus at most 5

`
k
2

´
.

1154

The bound is achieved if 1 and 2 are both connected to
a k-clique. Moreover, the proof of the upper bound shows
that equality can only be achieved if 1 and 2 are connected
to the same set of size k, and all possible edges within that
set are present.

A.2 Proof of Lemma A.2 for 4-cycles
This is very similar to the proof of the previous section,

except that we give a reduction from the balanced complete
bipartite subgraph problem, which we call Biclique. A
k-biclique is a complete bipartite graph with k vertices in
each part. Biclique = {〈G, k〉 | G is a bipartite graph that
contains a k-biclique}. Given an instance 〈G, k〉 of Biclique,
we construct a graph G′ = (V ′, E) as before, by adding two
isolated vertices 1 and 2. The reduction outputs G′ together
with t = 2k, (i, j) = (1, 2) and ν = k2.

Claim A.4. For every graph G, if G′ is obtained by

adding isolated vertices 1, 2 to G, then LS
(2k)
1,2 (G′) ≤ k2.

Moreover, equality holds if and only if G contains a k-
biclique.

Proof. Let G = (V, E) and let G′ = (V ′, E) with
V ′ = V ∪ {1, 2}. As for 2-triangles, consider some graph
G′′(V ′, E′′) at distance 2k from G′ and note that LS1,2(G

′′)
is maximized when G is a clique of size |V |.

As before, let a, b, c denote the vertices connected to only
vertex 1, both 1 and 2, and only vertex 2, respectively. The
number of 4-cycles involving (1, 2) is then a(b+c)+b(b+c−
1) = ac+b(2k−b−1). Unlike in the case of 2-triangles, this
expression is maximized only when a = c = k and b = 0,
that is, when 1 and 2 are connected to disjoint sets.

The resulting upper bound of k2 is achieved when 1 and
2 are each connected to one size of a k-biclique. Moreover,
the bound can only be achieved in that case since all edges
are necessary to get k2 cycles.

B. AVERAGE-CASE ANALYSIS
There is currently no single, parsimonious family of prob-

ability models that seems to describe the behavior of a broad
range of real-world networks. Thus, an average-case analy-
sis of our algorithms is necessarily limited by the choice of
probability model. Nevertheless, such analysis provides a
crude prediction of how performance depends on the graph
parameters which the model incorporates.

In this section, we analyze our algorithms in the Erdős-
Rényi-Gilbert G(n, p) model. This provides a simplistic pre-
diction of how our algorithms’ accuracy might depend on the
density of a network (quantified in the model by the param-
eter p).

We first show that the relative error of our algorithms is
very low in moderately dense random graphs, where p grows
faster than 1/

√
n.

Theorem B.1. (Moderately Dense Graphs) Suppose
an undirected graph G on n vertices is selected by including
each possible edge independently with probability p. If the ex-
pected average degree np is ω(

√
n log n) and if ε is o(log n)

(as n goes to ∞) then the algorithms we describe for releas-
ing f� (from [9]),f2�, f3� and f2� (from this paper) with
high probability have relative error

|AH(G) − fH(G)|
fH(G)

= O

„
1

εn2p

«
= O

„
1

εn3/2 log n

«
, where

fH is the number of occurrences of H as a subgraph in G
and AH is the corresponding differentially private algorithm.

We defer a detailed proof to the full version. The in-
tuition behind the proof is that two basic phenomena co-
incide in the regime where p � 1/

√
n. First, for all the

statistics we consider, the statistic and its local sensitiv-
ity are each highly concentrated around their means. For
a query graph H = (VH , EH), the expected value of the

statistic is Θ(n|VH |p|EH |), since there are Θ(n|VH |) possible
images for the vertices of H and each one contains a copy
of H with probability p|EH |. Similarly, the expectation of
the local sensitivity LSij(G) for any given vertex pair (i, j)

is Θ(n|VH |−2p|EH |−1), since fixing the edge (i, j) effectively
“pins down” two vertices and one edge from H. The fact
that the subgraph count and its local sensitivity are both
near their means with high probability implies that the ra-
tio of the local sensitivity to the statistic, LSH

fH
, is on the

order of n|VH |−2p|EH |−1/(n|VH |p|EH |) = 1/(n2p).
Second, when p � 1/

√
n, the noise added by our algo-

rithms is proportional to LSH/ε with high probability. This

means that the ratio LSH
εfH

is a good estimate of the relative

error of the algorithm. Putting these statements together,
we see that the relative error is O(1

εn2p
).

In sparser graphs, the performance of the algorithms
is harder to analyze theoretically, but we can nonetheless
get meaningful (if messier) statements for relatively sparse
graphs, e.g., with polylogarithmic expected degree.

Theorem B.2. (Sparse Graphs) If the expected aver-
age degree np is Ω(log2 n) (as n goes to ∞) then the al-
gorithms we describe for releasing f� (from [9]) and f2�
(from this paper) with high probability have relative error

O(max
n

1
ε2n3p3 , 1

εn2p

o
).

C. MISSING PROOFS FROM SECTION 3

C.1 Triangles
Proof of Theorem 3.2. Let cij(t) be as in Theo-

rem 3.1. Let U (t)(G) = t + maxi�=j;i,j∈[n] aij = LS�(G) + t.

Then LS
(t)
� (G) ≤ U (t)(G) for all t, since cij(t) ≤ aij + t.

Thus, by Lemma 2.4, the smooth sensitivity S∗
�,β(G) is at

most

Sβ(G) = max
t∈[0,(n

2)]
e−tβU (t)(G) = max

t∈[0,(n
2)]

e−tβ(LS�(G) + t).

We can obtain an upper bound on Sβ by taking the max-
imum over all real numbers in the interval [0,

`
n
2

´
] instead

of only integers. For any number A, consider the function
h(t) = e−βt(A+t). Its derivative, h′(t) = e−βt(1−β(A+t)),
tells us that h is strictly concave and has a unique maximum
at t = 1

β
− A. When A ≥ 1

β
, the function h is decreasing

on [0,∞). Thus, when LS�(G) ≥ 1
β
, the maximum in the

expression for Sβ(G) is attained at t = 0, and is equal to
LS�(G), so Sβ(G) = S∗

�,β(G) = LS�(G).

C.2 k-Stars
Proof of Lemma 3.4. First, recall that, by definition

of LS
(t)
k� (G) and LS

(t)
ij (G) (at the end of Section 2.1),

LS
(t)
k� (G) = max(i,j) : di≥dj

LS
(t)
ij (G). Using the notation in

1155

Lemma 3.4, the expression for the local sensitivity LSk�(G),
stated in Lemma 3.3, becomes max

i�=j;i,j∈[n]
C(d′

i) + C(d′
j), i.e.,

LSij(G) = C(d′
i) + C(d′

j). (3)

In order to understand LS
(t)
ij (G) for positive t, we modify t

edges in G to obtain a graph G′ with maximum LSij(G
′).

The only modification to G that increases LSij(G) is the
addition of edges adjacent to either i or j. (Note that the
presence of an edge (i, j) does not affect LSij(G).) Adding
an edge adjacent to i (resp., j) increments d′

i (resp., d′
j).

Thus, G′ should be obtained from G by adding t edges, and
it remains to decide how to allocate them between nodes i
and j.

Recall that we assumed d′
i ≥ d′

j . Since
`

a+1
k−1

´ − ` a
k−1

´
=`

a
k−2

´
for all integer a ≥ 0 and k ≥ 2 and since the binomial

coefficient
`

a
k−2

´
is monotonically increasing in a, we incre-

ment d′
i greedily for every unit of t, while possible, i.e., while

d′
i ≤ n − 2. This ensures the largest increase in (3) and the

largest increases for subsequent increments. This gives rise
to the three cases in Lemma 3.4: (a) If t ≤ Bi then d′

i is
increased by t. (b) If t ∈ (Bi, Bi + Bj) then d′

i is increased
until it becomes the maximum possible, n− 2, and then the
remaining t − Bi edges are used to increase d′

j . (c) Finally,
if t ≥ Bi + Bj , we increase both d′

i and d′
j to n − 2, the

attaining maximum possible local sensitivity LSij(G
′) with

Bi and Bj edge modifications.

Proof of Theorem 3.5. To compute the smooth sensi-
tivity of fk�, we start by expressing it as the maximum of the
local sensitivities at distance t over edges in G, as suggested
in Lemma 2.4 and the subsequent discussion. We get:

S∗
k�,β(G) = max

t∈[0,(n
2)]

e−tβLS
(t)
k� (G)

= max
t∈[0,2n−2]

e−tβ max
(i,j) : di≥dj

LS
(t)
ij (G).

In the last line, we can take the maximum only over t ≤
2n − 2 because, by Lemma 3.4, the value of LS

(t)
ij (G) is the

same for all t ≥ 2n − 2.
Suppose that the vertices of G are numbered in the or-

der of non-increasing degree, i.e., d1 ≥ . . . ≥ dn. (Sort-
ing them takes time O(n log n).) Consider the expression

max(i,j) : di≥dj
LS

(t)
ij (G) for LS

(t)
k� (G). Lemma 3.4 implies

that if x12 = 0 then for all t, the maximum of this expres-
sion is attained on (1, 2) because d1 − x12 ≥ di − xij and
d2 − x12 ≥ dj − xij for all pairs of nodes (i, j) with di ≥ dj .

Now consider the case when x12 = 1. We will show that
the maximum of this expression must be attained on one of
three pairs of vertices. Let D1 be the set of vertices of degree
d1 and D2 be the set of vertices of the second largest degree.
If the maximum is not attained on (1,2) then d1 − x12 <
di − xij or d2 − x12 < dj − xij for some pair (i, j) with
di ≥ dj . If d1 − x12 < di − xij then i ∈ D1 and xij = 0. If
d2 − x12 < dj − xij then j ∈ D2.

Define v1 to be a vertex with maximum degree dv1

such that there is a vertex u1 ∈ D1 not adjacent to
v1 (if v1 and u1 exist). Define v2 and u2 analogously
with respect to D2. Then the maximum of the expres-

sion max(i,j) : di≥dj
LS

(t)
ij (G) is attained on (1, 2), (u1, v1)

or (u2, v2). This gives:

S∗
k�,β(G) = max

t∈[0,2n−2]
e−tβ max

(i,j)∈{(1,2),(u1,v1),(u2,v2)}
LS

(t)
ij (G).

We use this formula to compute S∗
k�,β(G). It remains to

prove that it takes O(m + n log n) time.
Once the vertices are sorted by degree, we can find sets D1

and D2 in time O(n). The vertices v1 and v2, if they exist,
can be found in time O(m) by scanning the list of edges
and counting for each vertex the number of adjacent edges
reaching D1 and D2. Once we know (u1, v1) and (u2, v2),

we can compute LS
(0)
12 (G), LS

(0)
u1v1(G), and LS

(0)
u2v2(G) in

time O(1). Using Lemma 3.4, computing LS
(t)
ij (G) from

LS
(t−1)
ij (G) for any pair (i, j) takes time O(1), and taking

the maximum over t ≤ 2n−2 requires time O(n). Thus, the
total time is O(m + n log n).

D. MISSING PROOFS FROM SECTION 4
Proof of Lemma 4.1. We start by analyzing LSij(G).

When we add a new edge (i, j) to G, we form
`

aij

k

´
k-

triangles with base (i, j). In addition, for each node � ∈ Nij ,
we form

`
ai�
k−1

´
new k-triangles with base (i, �) and

` a�j

k−1

´
new

k-triangles with base (�, j). No other new k-triangles are
formed. Thus, the change in the number of k-triangles is
given by (1) with xij = 0. The case when an edge (i, j) is
deleted from G is symmetric. Taking the maximum over all
LSij(G), by definition, gives LSk�(G).

Proof of Lemma 4.2. Note that for every pair (i, j),
flipping (that is, adding or removing) the edge (i, j) does
not change LSij(G). If some edge adjacent to either i or j
is flipped, suppose w.l.o.g. that this edge is adjacent to i.
Then aij = |Nij | changes by at most one and, consequently,
at most one vertex (say, v) is added to Nij . Also, for each
� ∈ Nij , where Nij is the set of common neighbors of i
and j before flipping the edge, ai� changes by at most one.
Overall, LSij(G) changes by at most

aij + 1

k

!
−

aij

k

!
+

aiv − xij

k − 1

!
+

avj − xij

k − 1

!

+
X

�∈Nij

ai� + 1 − xij

k − 1

!
−

ai� − xij

k − 1

!!

≤

aij

k − 1

!
+

aiv

k − 1

!
+

avj

k − 1

!
+
X

�∈Nij

ai�

k − 2

!

≤ 3

amax

k − 1

!
+ amax

amax

k − 2

!
.

Finally, if an edge (�1, �2) adjacent to neither i nor j is
flipped then LSij(G) changes by at most

X
u∈{i,j}

v∈{�1,�2}

auv + 1 − xij

k − 1

!
−

auv − xij

k − 1

!!

=
X

u∈{i,j}
v∈{�1,�2}

auv − xij

k − 1

!

≤4

amax

k − 2

!
≤ 3

amax

k − 1

!
+ amax

amax

k − 2

!
.

Proof of Lemma 4.4. Consider two neighboring data

1156

sets x and y. We wish to compare the random variables

A(x) = (fLSx, f(x) + Lap(fLSx/ε2)) and

A(y) = (fLSy, f(y) + Lap(fLSy/ε2)),

where fLSx = B(x) and fLSy = B(y). We consider a hy-

brid random variable Amix = (fLSx, f(y) + Lap(fLSx/ε2)).
Let Px, Py and Pmix be the probability distributions of
A(x),A(y) and Amix, respectively.

First, consider the difference between A(y) and Amix.

They differ only in the initial estimate fLS (either B(y) or
B(x)). Since B is (ε1, δ1)-differentially private and since,
by Lemma 2.1, post-processing does not affect differential
privacy, it follows that for every event E,

Py(E) ≤ eε1Pmix(E) + δ1 . (4)

Second, consider the difference between Amix and A(x).

Both random variables use the same estimate fLSx = B(x)

for the local sensitivity. Let F be the event that fLSx >
LSf (x). By hypothesis, Pr(F) ≥ 1 − δ2. Conditioned on
F , changing the argument of f from y to x increases the
probability of any event by at most eε2 (this follows from the
differential privacy of the Laplace mechanism (Theorem 2.2)
and the fact that |f(x) − f(y)| < LSf (x)). Thus, for every
event E, we have: Pmix(E|F) ≤ eε2Px(E|F). Since the
probability of F is the same under both Pmix and Px, we
can strengthen this to Pmix(E ∧ F) ≤ eε2Px(E ∧ F). Since
Pr(F̄) ≤ δ2,

Pmix(E) ≤ Pmix(E ∧ F) + Pmix(E ∧ F̄) ≤
eε2Px(E ∧ F) + Pmix(E ∧ F̄) ≤ eε2Px(E) + δ2 .

Putting this together with (4), we get: Py(E) ≤
eε1Pmix(E) + δ1 ≤ eε1+ε2Px(E) + eε1δ2 + δ1 , as desired.

Proof of Theorem 4.3. Before proving the theorem,
we establish that the sensitivity bounds computed in Al-
gorithm 1 are indeed high-probability upper bounds on the
appropriate quantities.

Lemma D.1. With probability at least 1 − δ′
2
, the values

computed by Algorithm 1 satisfy ãmax ≥ amax and fLS ≥
LSk�(G).

Proof. Taking λ = 1/ε′ and t = ln(1/δ′)
ε′ in Theorem E.2

gives that ãmax < amax with probability δ′/2. Similarly,

taking λ = B(ãmax)
ε′ and t = ln(1/δ′) · B(ãmax)

ε′ gives thatfLS < LSk�(G) with probability δ′/2.

We now prove the theorem. Let A1 and A2 be the al-
gorithms that output B(ãmax) and (B(ãmax), LSk�(G) +

Lap(B(ãmax)
ε′)), respectively. First, note that the global sen-

sitivity of amax is 1. Hence, by Theorem 2.2, the algorithm
that releases amax + Lap(1/ε′) is ε′-differentially private.
Consequently, by Lemma 2.1, so is A1.

Second, observe that if ãmax ≥ amax then, by Lemma 4.2,
B(ãmax) ≥ B(amax) ≥ LS′(G). By Lemma D.1, this occurs

with probability 1 − δ′
2

. Hence, Lemma 4.4 implies that A2

is (2ε′, eε′ δ′
2

)-differentially private.

Finally, by Lemma D.1, fLS ≥ LSk�(G) with probabil-

ity 1 − δ′
2

. Then Lemma 4.4 implies that Algorithm 1 is
(3ε′, eε′δ′/2 + e2ε′δ′/2)-differentially private. Since ε′ = ε/3,
δ′ = δ/3 and ε ≤ 3

2
ln(3

2
), we get

eε′δ′/2 + e2ε′δ′/2 ≤ 2e2ε′δ/3 ≤ δ

and, hence, Algorithm 1 is (ε, δ)-differentially private.

Proof of Theorem 4.5. By Theorem E.2, ãmax ≤
amax + 2 ln (1/δ′)

ε′ with probability 1 − δ′
2

and also fLS ≤
LSfk�(G)+ 2 ln (1/δ′)

ε′ B(ãmax) with probability 1− δ′
2

, where

B(a) = 3
`

a
k−1

´
+ a

`
a

k−2

´
. By a union bound, with prob-

ability at least 1 − δ′ both of these inequalities hold. By
monotonicity of B,

fLS ≤LSfk�(G) +
2 ln (1/δ′)

ε′
B(ãmax)

≤LSfk�(G) +
2 ln (1/δ′)

ε′
B
`
amax +

2 ln (1/δ′)
ε′

´
. (5)

For constant k, we have B(amax) = Θ
`
ak−1
max

´
and

LSfk�(G) = Θ
`
ak
max

´
. Then the theorem follows, because

if ln (1/δ)
ε

= o(amax), then also 2 ln (1/δ′)
ε′ = o(amax) and so

the right-hand side of (5) is o(ak
max), which is LSk�(G)·o(1).

Therefore the scale parameter of the Laplace noise added,

which is fLS/ε′, is at most (LSk�(G)/ε′) · (1 + o(1)).

Runtime Analysis of Algorithm 1. We can compute aij

for all i, j ∈ [n] in time O(f2�(G)) = O(n(m + n)). After
that, amax and fk�(G) can be computed in time O(n2),
using the formulas amax = maxi,j∈[n],i�=j aij and fk�(G) =P

(i,j)∈E

`
aij

k

´
. We can compute LSk�(G) in O(n(m + n))

time, using Lemma 4.1, since for all pairs (i, j), the first and
the second terms of (1) can be computed in total time O(n2)
and O(f2�(G)) = O(nm), respectively. The remaining steps
of Algorithm 1 take time O(1).

E. USEFUL CONCENTRATION BOUNDS
We make repeated use of several standard tail bounds.

Theorem E.1. (Chernoff Bounds) Let X1, . . . , Xn be
i.i.d. Bernoulli random variables with Pr[Xi = 1] = μ. Then
for every φ ∈ (0, 1],

Pr

»P
i Xi

n
≥ (1 + φ)μ

–
≤ exp

„
−φ2μn

3

«
and

Pr

»P
i Xi

n
≤ (1 − φ)μ

–
≤ exp

„
−φ2μn

2

«
.

Theorem E.2. (Tail bounds for Laplace) Let z be
drawn from the Laplace distribution with scale parameter λ
and mean 0, denoted Lap(λ). Then for all t > 0,

Pr(z > t) = Pr(z < −t) =
1

2
e−t/λ.

1157

