
Online Aggregation for Large MapReduce Jobs

Niketan Pansare1, Vinayak Borkar2, Chris Jermaine1, Tyson Condie3

1Rice University, 2UC Irvine, 3Yahoo! Research

np6@rice.edu, vborkar@ics.uci.edu, cmj4@rice.edu, tcondie@yahooinc.com

ABSTRACT

In online aggregation, a database system processes a user’s aggre-
gation query in an online fashion. At all times during processing,
the system gives the user an estimate of the final query result, with
the confidence bounds that become tighter over time. In this paper,
we consider how online aggregation can be built into a MapRe-
duce system for large-scale data processing. Given the MapReduce
paradigm’s close relationship with cloud computing (in that one
might expect a large fraction of MapReduce jobs to be run in the
cloud), online aggregation is a very attractive technology. Since
large-scale cloud computations are typically pay-as-you-go, a user
can monitor the accuracy obtained in an online fashion, and then
save money by killing the computation early once sufficient accu-
racy has been obtained.

1. INTRODUCTION
When running online aggregation (OLA) [10, 9, 11], at all times

during query processing, a database system gives a user a statis-
tically valid estimate for the final answer to an aggregate query,
along with confidence bounds of the form: “with probability p, the
actual query answer is within the range low to high”. As the com-
putation progresses, the bounds narrow, until (at query completion)
the bounds are zero-width, indicating complete accuracy. The main
benefit of OLA is that if an acceptably accurate answer can be ar-
rived at very quickly (perhaps in a tiny fraction of the time needed
to run the entire query), the query can be aborted, saving significant
computer and human time.

Though OLA has arguably had quite a bit of scientific impact
(stimulating significant subsequent research), its commercial im-
pact has been limited or even non-existent. In our view, there have
been two main reasons for this lack of adoption:

1. First, implementing OLA within a database engine would
likely require extensive changes to the database kernel. OLA
requires some sort of statistically quantifiable randomness
within the database engine. Most OLA algorithms require
that the blocks (or tuples) in a relation be processed using
a “random” ordering, where “random” has a very stringent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

mathematical definition. Since this would require signifi-
cant changes to most kernels and would wreak havoc with
techniques widely-implemented by database vendors (such
as indexing), vendors and kernel developers have justifiably
viewed OLA with suspicion.

2. Second, the goal of saving human and computer time has
never been as compelling as one might think. A user of an
analytic database who writes a query that goes into a queue
and finally makes it out into a big, production warehouse for
evaluation has little motivation to kill the query early, even if
the user is relatively happy with the results. Ending the query
early might save some CPU cycles or disk bandwidth that
can then be used by others, but the user who killed the query
early may not benefit directly. Furthermore, the database
hardware/software/maintenance costs in a self-managed sys-
tem are not elastic, and do not decrease appreciably if many
users decide to stop their queries early.

Significantly, we feel that these two impediments to widespread
adoption of OLA may have become less important over time. The
“We can’t change the kernel” argument is less important at a time
when people are implementing all sorts of new databases or data-
oriented systems from scratch, particularly for large-scale, shared
nothing cluster environments. The “Why stop early?” argument
is also harder to make nowadays, given the current move into the
cloud. When someone other than the end-user’s organization is
managing the compute infrastructure, as a query runs, dollars are
quantifiable flowing from the end-user’s organization and into the
cloud. Now that there may be a real and observable cost associated
with every CPU cycle consumed and byte transferred, the end-user
will likely have to justify those costs to the management. It stands
to reason that being able to achieve 99% of the accuracy in 10% of
the time will become much more attractive under such a cost model.
Thus, we feel that OLA is an old idea whose time has come.

Online Aggregation for Large-Scale Computing. Given the po-
tential for OLA to be newly relevant, and given the current inter-
est on very large-scale, data-oriented computing, in this paper we
consider the problem of providing OLA in a shared-nothing envi-
ronment. While we concentrate on implementing OLA on top of a
MapReduce engine [7], many of our most basic research contribu-
tions are not specific to MapReduce, and should apply broadly.

Realizing OLA for large-scale, distributed computing is a chal-
lenging problem, and a simple extension to the classic work on
OLA will not suffice. Classic work in OLA assumes that blocks
or tuples are processed in a statistically random fashion, so that the
set of data seen at any point in the computation is a random sub-
set of the data in the system—if this is the case, then it is often
easy to estimate the final answer using classic methods from sur-

1135

vey (finite population) sampling theory [16]. The difference in a
large-scale, distributed computing environment is the importance
of elapsed time. In this type of environment, the basic unit of data
that is processed is a block, which may contain millions of tuples
and be a significant fraction of a gigabyte in size. When many
machines are working in parallel, it is natural that there would be
a lot of variation in the time taken to process each block. Some
blocks could have a lot of data, and take longer to process. It is
not unusual for machines to simply die, so they appear as if they
have been processing a block forever. This variation in process-
ing time is of tremendous importance if it is somehow correlated
with the aggregate value of the block. Such correlation is to be
expected: after all, blocks with a lot of data may have greater ag-
gregate values, and take longer to process. In such a scenario, since
those nodes that are processing large blocks with big aggregates are
more likely to spend more time on those blocks, the set of blocks
that have actually completed processing at any particular point are
more likely to have small values, leading to biased estimates. This
is an example of the well-known “inspection paradox” described
by the renewal-reward theory [6]. Dealing with this in a principled
fashion in a distributed environment is challenging, and requires
innovation both in system design and in statistical analysis.

Our Contributions. We make the following contributions:

• We propose a system model that is appropriate for OLA over
MapReduce in a large-scale, distributed environment.

• We describe in detail how we implemented our model in
Hyracks [2].

• We discuss a Bayesian framework for producing estimates
and confidence bounds within our model.

• We offer experimental evidence that our model produces ac-
curate and usable estimates very quickly.

The remainder of this paper describes a MapReduce OLA li-
brary, implemented on top of Hyracks, for providing estimates for
the aggregates: SUM, COUNT, AVG, VARIANCE, or STD DEV. To
use this library, the user writes a Hadoop-style map-reduce job
(that conforms to the programming interface discussed in the ap-
pendix B) along with a class that is called-back by the MapReduce
OLA library, every time an estimate is generated. Typically, this
class can serve as an input to other map-reduce jobs or it can also
pipe the estimates to a GUI front-end, thus providing a user in-
terface similar to the classical online aggregation systems [10]. It
is important to note that the programmer can halt the job when the
estimation has reached a satisfactory level of confidence, à la CON-
TROL [1].

2. AN OPERATIONAL MODEL FOR OLA

2.1 Why an Operational Model?
The first step to getting OLA to work in a distributed, MapRe-

duce environment is to define the abstract, operational model of the
system. This model defines how data are processed in the system,
and serves as a contract between the system implementors and the
statistical analysis that underlies the OLA estimation process.

This operational model must meet two requirements:

1. First, the model must be amenable to statistical analysis. That
is, at any point during the computation, it must be possible
to take a snapshot of the system and to use that snapshot to
predict the final output of the MapReduce program.

2. Second, the model must be amenable to implementation. It
should impose little or no overhead on the system, so that
there is little additional cost associated with running a Map
Reduce OLA program, compared to a non-OLA MapReduce
program. It should allow the actual implementation the free-
dom to deal with problems such as dead or slow machines
and fluctuating resource availability, as well as allowing the
implementation to take into account the physical placement
of data in the system when assigning data to a CPU for pro-
cessing. Furthermore, the model must be easy to implement,
requiring little in the way of change or modification to the
system it is built upon.

As discussed in the introduction to the paper, we note that that the
“classic” OLA operational model (where data are simply processed
in random order) is not directly applicable, because it ignores the
“inspection paradox.”

2.2 Our Model for OLA Over MapReduce
As such, we must define a somewhat more complicated opera-

tional model, whose key ideas are as follows.
We assume that data have been organized into storage units that

we refer to as blocks. A “block” is nothing more than an arbitrary
subset of the data in the system; typically, we would expect a block
to contain tens or hundreds of megabytes of data. We allow for
the possibility that the data may have been organized into blocks in
an adversarial fashion that the OLA software cannot control (that
is, some blocks may be very large or very small, or may contain
all of the data with the greatest aggregate values). However, all
of the methods we describe in the paper are also compatible with
the case where the data have been placed into blocks in a fully
random fashion. In that case, the aggregate values associated with
each block would likely have low variance, and so our methods
will converge much more quickly than if packed in an adversarial
fashion. But our methods apply to both cases.

At the time that the OLA computation begins, all of the blocks
are logically ordered in a statistically random fashion, into a sin-
gle queue of blocks. We assume the existence of a GetNext()
operation that iterates through the blocks in the queue in order.

As in other MapReduce implementations, we assume a central
scheduler whose job is creating mappers and reducers, supplying
them with data, and scheduling all of them on the physical system
hardware. When the scheduler decides that there are enough system
resources to process the next block, it makes a call to GetNext()
to obtain the identifier for a random block. The scheduler must
schedule the block given to it by GetNext(); it cannot schedule
the blocks out of order. After some arbitrary delay, this block is
assigned to a mapper, at which time the block is “processed” by
the mapper. This processing includes dead time while the block is
read from disk and transferred over the network, and it includes all
of the necessary processing of the actual bytes in the block. Once
the scheduler has assigned a block to some mapper, it then calls
GetNext() to obtain another unprocessed block to assign to an-
other mapper. We assume that the scheduler only assigns one block
at-a-time to each mapper, so that the processing times are indepen-
dent across each mapper.

Although the scheduler is not allowed to schedule blocks out
of order, nor can it have more than one block that has been ob-
tained from GetNext() that has not been scheduled, it may wait
as long as it wants to call GetNext(), and it may also wait as
long as it wants to schedule a block once it has been obtained by
GetNext(). This flexibility is important because it allows the
scheduler to wait for a physical mapper to become available that is
located close to some physical copy of the block.

1136

2.3 Taking a Snapshot
When it is time for the statistical analysis software to estimate the

final answer to the query, a snapshot must be taken of the system.
This snapshot consists of all of the statistics that will be used by the
software to compute its estimate. These statistics are collected on a
per block basis. For block i, they include:

1. The status of the block. This status is either done if the
block has been fully processed, processing if the block
is being processed by a physical mapper, or unassigned
if the block has been obtained by GetNext() but is waiting
to be assigned to a mapper.

2. If the block’s status is done, then for each group in the
block, the snapshot contains xi,j , which is the value obtained
by aggregating all records in the block that fall in group j.1

3. The snapshot contains tschi , which is the time taken to assign
the block to a mapper. If the block’s status is unassigned,
then a lower bound on tschi is given; this is the time elapsed
waiting for assignment.

4. If the block’s status is not unassigned, then the snapshot
contains the IP address (machine) of the mapper, as well as
where the block was physically obtained from; this takes the
value local (if the block was read from the same machine
as the physical mapper), rack (if it was read from a different
machine on the same rack), or dist (if it was read from a
machine on a different rack).

5. If the block’s status is not unassigned, the snapshot also
contains the time t

proc
i , which is the time required to process

the block. If the block’s status is processing, then t
proc
i

is the time taken since the mapper was first given the block
by the scheduler.

Why this model? Why these statistics? We end this section by
considering some of the intuition behind the operational model.

From an implementor’s point of view, the model is compelling
because it allows for a lot of freedom. The scheduler is able to pro-
cess blocks on whatever machine it chooses. It can wait to schedule
a block if no appropriate machine is available. It can ramp up the
computation over time by adding more physical mappers, or ramp
it down by simply not asking for blocks. The only real constraint
is that when the scheduler makes a call to GetNext() to obtain a
new block, it must assign the block it is given.

From a statistical point of view, the model has been designed
with one singular goal in mind: at the time that a snapshot is taken,
we wish to be able to (reasonably) view the xi values associated
with each of the blocks that have been received by some call to
GetNext() as a set of independent, identically distributed (iid)
samples from a random variable with distribution function f(xi).
As with any finite population, by randomly permuting the popu-
lation and then traversing the items in order, we produce a set of
(approximately) iid samples from a distribution where:

f(xi) =

∑

j
I(xi = xj)

n
(1)

In this expression, n is the size of the population and the function I

returns the value 1 if the boolean argument is true, and 0 otherwise.

1For simplicity and clarity in the rest of the paper, we will drop the
j and assume that all measured quantities, times, and statistics refer
to a single group for which we have decided to perform estimation.
The extensions to the multi-group case are straightforward—they
require collecting all of the statistics on a per-group basis—and
will only serve to complicate our notation.

The word “approximately” is necessary only because of the small
correlation induced by the fact that the population is finite.

If this were the entire story, then we would essentially be done:
we would obtain a set of iid samples from f(.), and hundreds of
years of statistical theory would tell us exactly how to infer the
various characteristics of f(.) and estimate the final query result.

Unfortunately, an added complication is that we have the so-
called “inspection paradox” to deal with. While the aggregate val-
ues associated with blocks that have been obtained by GetNext()
can be seen as iid samples from f(.), the aggregate values associ-
ated with the blocks that have been fully processed and have ob-
servable values cannot. That is, it may be the case that the time
taken to schedule or to process a block is correlated with its con-
tents. Thus, when we take a snapshot, some non-random set of the
blocks returned by GetNext() may not yet have completed pro-
cessing. For example, waiting for long time to schedule may, in
fact, be the result of a block having a high aggregate value—the
block may be in a busy part of the cluster and so it is difficult to
schedule, but the reason that part of the cluster is busy could very
well be that its blocks have more bytes, and hence higher aggre-
gate values. Note that even in the case where blocks are uniformly
sized, there may still be a correlation between processing time and
aggregate value—imagine, for example, that the blocks on a slow
machine tend to have a high aggregate value.

To take this into account, we allow for the scheduling and pro-
cessing times to be correlated with the actual aggregate value, and
we assume that the set of values associated with the blocks returned
by GetNext() are samples from a three-dimensional distribution
f(xi, t

sch
i , t

proc
i).

By using this three-dimensional distribution function, it will al-
low us to make predictions about the xi values that we have not
seen, but for which we have information about tschi and t

proc
i , and

hence we can deal with the inspection paradox in a principled fash-
ion. For example, if we have a particular block that has been pro-
cessed for 125 seconds, where it took 5 seconds to schedule, we
can correctly view xi as a random sample from the distribution
f(xi|t

sch
i = 5, tproci > 125), thereby neutralizing the inspection

paradox. This is precisely why all of the various timings are col-
lected during the snapshot: they must be taken into account when
estimates and confidence bounds are produced.

While this is a fairly thorough introduction to the intuition be-
hind the model and the associated statistical considerations, the ac-
tual estimation process will be described in detail subsequently.

3. IMPLEMENTING THE MODEL
In this section we describe our implementation of the OLA model

in Hyracks [2]. Hyracks is a new open source project that supports
map and reduce operations, along with higher level relational oper-
ations such as filter (selection), projection, and join. The Hyracks
architecture is similar to Hadoop—it has a single master node for
submitting jobs (queries) and housing the task scheduler, which ex-
ecutes tasks on worker nodes running in the cluster. Hyracks tasks
support read and write operations in HDFS [3], which we lever-
age to store the input to the map tasks and the output of the re-
duce tasks. Like Hadoop, when a client submits a MapReduce job,
Hyracks assigns a single map task to a given block in the input data,
and creates a configurable number of reduce tasks that are assigned
specific groups using some partitioning function.

We modified the Hyracks implementation in two ways. First,
we created a single queue containing the blocks in the input data.
The order of the blocks in the queue is uniformly shuffled using the
java.util.Collections.shuffle routine from the Java Stan-
dard Library. When Hyracks schedules a map task, it assigns the

1137

current block at the head of the queue. The map task’s execution
time includes the time to obtain its assigned block from HDFS, the
execution of the map function on each input record, and the execu-
tion of the combiner on the complete map function output. In this
work we ignore performance issues involving locality; although we
do account for block locality in our model. In future work, we plan
on investigating locality scheduling techniques reminiscent to De-
lay Scheduling [18].

Our second modification involves running the estimator in the
reduce task during the shuffle phase. In the shuffle phase, the re-
duce task is continuously receiving the output of completed map
tasks. The output of a map task includes a data file containing
the groups assigned to the reduce task and a meta-data file con-
taining timing and locality information. If the map output contains
no groups for a given reduce task then an empty data file is given
along with a complete meta-data file. The meta-data file contains
the block identifier, the time it took to schedule the block and the
block locality relative to the map task execution: machine-local,
rack-local, or distant. Also included is the map task IP address,
start time and end time. Finally, we include the time when the es-
timator is called on the reduce task. The reduce task executes the
estimator when it receives a new map output. The location of all
data and meta-data files received thus far is given to the estimator
when it is called. After the estimator completes, its output can be
written to HDFS or forwarded to a downstream operator using the
user-defined call-back class described in the introduction.

One issue that caused us some headache during the debugging
of our system is that a reasonably synchronized global time must
be maintained for the system. Since block processing times are
typically on the order of minutes, this synchronization need only
be accurate to within a few seconds. But a significant drift can
indeed cause problems. The reason is that when a block arrives at
the reducer, the total processing time is computed by subtracting
the time that the block is received from the time that estimation
began. Likewise, at estimation time, the reduce task performing
the estimation must subtract the start time for the block from the
current time to obtain a lower bound on the total processing time
for the block. Due to the way we implemented this originally, these
lower bounds were not consistent with the total processing time
recorded for each block—the bounds tended to be much too large.
Since a correlation between processing time and aggregate value
had been observed, the result was that at estimation time the system
“guessed” that the aggregate value for these unfinished blocks was
very large, and significant over-estimates routinely occurred.

4. ESTIMATION
In this section, we consider how estimates and confidence bounds

for those estimates can be obtained. As intimated previously, this
is a challenging problem, as we must take into account processing
times as well as observed aggregate values in order to circumvent
the inspection paradox.

4.1 Overview
We will apply a Bayesian approach for estimation [13]; for brevity,

this section will assume that the reader has some very basic famil-
iarity with Bayesian statistics. The Bayesian approach has several
obvious benefits for this particular problem. Most significant is the
fact that the inspection paradox “goes away” under the Bayesian
approach if one takes into account the time spent waiting for each
block to be processed as observed data.

In standard Bayesian fashion, we will first describe a stochas-
tic, parametric process that we imagine was used to produce the
“observed” as well as the “hidden” data. The “observed data” will

collectively be referred using variable X. This set includes all of
the known aggregate values and processing times. Our generative
process will also produce a set of unobserved variables collectively
referred to as Θ. Θ includes any data that is unobserved (for exam-
ple, the processing time for a block that has not yet finished)—this
data is collectively referred to as Y—as well as any unknown pa-
rameters required by the generative process (for example, the mean
aggregate value per block). In Bayesian fashion, we will then at-
tempt to infer the distribution P (Θ|X), which is referred to as a
posterior distribution for Θ. Then, given X as well as P (Θ|X), it
is possible to obtain a posterior distribution over the actual query
result, which can be used to obtain confidence bounds that are re-
ported to the user.

Note that the discussion in this section is directly applicable only
to SUM and COUNT queries, which are both evaluated by simply
summing xi values (in the SUM case, xi will contain the total ag-
gregate value for the block, and in the COUNT case, xi will contain
the tuple count for the block). Extensions to other aggregates such
as AVG, VARIANCE and STD DEV are straightforward; in general
they require that we maintain zeroth, first and second moments for
each block2.

4.2 Generative process
To obtain the data that we must analyze to produce estimates

and confidence bounds, we imagine that the following steps are
repeated, once for each of the n blocks in the system:

1. Zi ∼ Normal(µ,Σ)

2. (Xi,Yi)← PostProcess(Zi)

“∼” should be read as “is sampled from”. After this process has
been repeated n times (once for each block)—our goal is then to
infer the posterior distribution for Θ using X.

This process requires some additional explanation. We begin by
describing the vector Zi. If there are m machines being used to
execute a query, we imagine that associated with the ith block is a
vector Zi with 3m + 2 entries, which contains both observed and
hidden data. Zi takes the form:

Zi = 〈xi, t
sch
i ,t

loc
i,1 , t

rack
i,1 , t

dist
i,1 ,

t
loc
i,2 , t

rack
i,2 , t

dist
i,2 , ...

t
loc
i,m, t

rack
i,m , t

dist
i,m 〉

The vector has the following components:

1. xi is the value that is obtained when the block is aggregated.

2. tschi is the time required to schedule the block, once it has
first been selected for scheduling.

3. tloci,j is the time taken to actually process the block by a map-
per on machine j, given that the block is to be read locally
from machine j.

4. tracki,j is the time taken to process the block by a mapper on
machine j, given that the block is to be read from a machine
on the same rack as machine j.

5. tdisti,j is the time taken to process the block by a mapper on
machine j, given that the block must be read from a machine
on a different rack.

2The zeroth, first and second moments are count, sum and sum of
squares respectively.

1138

Note that Zi has (3m + 2) dimensions, rather than the three di-
mensions one might expect after reading Section 3 of the paper.
The reason is that we do not have a single processing time distri-
bution; rather, we have 3m such distributions, with three distribu-
tions for each machine, depending on where the actual data comes
from. This provides for a very fine-grained model, where process-
ing times can differ from machine to machine.

Also note that we assume that Zi is normally distributed, with
mean vector µ and covariance matrix Σ. At first glance, assuming
normality may seem questionable, but in practice this is not a par-
ticularly significant assumption because we are aggregating over
many Zi values—one for each block. Assuming normality here is
similar to appealing to the Central Limit Theorem [12] when ap-
plying more traditional, non-Bayesian methods.

Finally, note that in step (2) of the generative process, Zi is “post-
processed” to actually produce the observable data Xi that is asso-
ciated with the ith block. This removes the data from Zi that could
not/should not be observed, and puts this unobservable data into Yi.
For example, given that each block is processed only once, no one
is ever going to observe both tloci,1 and tloci,5 for a given block—we
might imagine that both values exist, but they will never be ob-
served together. Hence, Xi will never contain both of these values,
and one or the other must end up in Yi.

In fact, there are four different ways in which the “post - pro-
cessing” will be performed, depending upon the state of block i at
the time that the estimation is performed:

i in case 1: (No information) Xi = 〈〉
In this case, the block has not been chosen by the scheduler
and so no information is available. Xi is empty, and Yi = Zi.

i in case 2: (Scheduling) Xi = 〈⌊t
sch
i ⌋〉

In this case, the block is at the head of the scheduler’s queue
and is waiting for a map task to be assigned to it. Thus,
we have a lower bound on the scheduling time, denoted by
⌊tschi ⌋. This is simply the amount of time the block has been
waiting to be scheduled. Again in this case, Yi = Zi.

i in case 3: (Scheduled and processing) Xi = 〈t
sch
i , ⌊tLi

i,Wi
⌋〉

In this case, a map task has been assigned to the block and
processing has begun. Thus, we have access to an exact value
for tschi . We also have Wi, which is the identity of the ma-
chine on which the block is being processed, and Li, which
is the locality information for the block (loc, rack, or dist).
Finally, we know ⌊tLi

i,Wi
⌋, which is a lower bound on the

processing time for the block—one can view t
Li

i,Wi
as being

equivalent to t
proc
i from Section 3. In case 3, Yi contains

everything in Zi except for tschi .

i in case 4: (Scheduled and processed) Xi = 〈xi, t
sch
i , t

Li

i,Wi
〉

In this case, the map task has finished processing the data
and the aggregate value has finally arrived at the reducer.
Hence, in addition to Wi and Li, we know exact values for
the scheduling time, the processing time, and the aggregate
value for the block. Here, Yi contains everything in Zi ex-
cept for the three values in Xi.

4.3 Prior Distributions
To make our model fully Bayesian, we must supply priors on µ

and Σ. In our implementation, each µk ∼ InvGamma(1, 1) (where
k refers to the kth dimension in Zi). The inverse Gamma distri-
bution is a standard, uninformative prior for values that must be
non-negative—it makes sense to have non-negative means for all
of the time values in the Zi vector. It will also usually make sense
to have a non-negative mean for xi; if not, then another suitable,
uninformative prior can be used.

Handling the covariance matrix Σ is a bit trickier. The standard
prior distribution for a covariance matrix is the inverse Wishart dis-
tribution, because it is “conjugate” for the normal. This means that
under certain conditions, upon observing the output from a normal
distribution with an inverse Wishart prior on the covariance, the
posterior on the covariance is still inverse Wishart. Conjugacy is
convenient because it can make inference much easier. Unfortu-
nately, these “certain conditions” are not met in our application be-
cause we do not always have actual observations from the normal—
we may only know, for example, that the processing time has a
lower bound (if we are in “case three” from the previous subsec-
tion). Thus, we choose to use an application-specific prior that is
easily factorizable; that is, where we can easily write the marginal
distribution for each entry in the covariance matrix. This makes
deriving a Gibbs sampler for inference much easier (see the next
subsection). Specifically, we let σk ∼ InvGamma(1, 1), where
Σk,k = σ2

k. Then, we assume that the following process is used
to generate the rest of Σ:

while true do

for k1 = 1 to (3m+2) do

for k2 = k1 + 1 to (3m+2) do
ρk1,k2

∼ GenBeta(−1, 1, 1, 1);
Σk1,k2

= Σk2,k1
= ρk1,k2

× σk1
× σk2

;

if Σ is positive-definite then
break;

Algorithm 1: Generation of the covariance matrix Σ

Here, GenBeta(−1, 1, 1, 1) refers to a generalized Beta(1, 1) dis-
tribution, stretched to cover the range from−1 to 1 (rather than the
usual 0 to 1). What this process does is to essentially sample a cor-
relation ρ for each of the pairs of variables in Zi, and to then check
whether a valid covariance matrix has been obtained (one that is
positive definite). If it has not, then the whole process is repeated
again. The PDF for Σ can then be written as:

P (Σ) ∝

0 if Σ is not positive-definite
(

∏

k
InvGamma(σk|1, 1) ×

∏

k1,k2
GenBeta(ρk1,k2

| − 1, 1, 1, 1)

)

otherwise

(2)

4.4 Posterior Distribution
In this subsection, we tackle the problem of obtaining a formula

for the desired posterior distribution, P (Θ|X). Recall that X =
⋃

i
{Xi}, and the unobservable data set Θ contains Y =

⋃

i
{Yi},

as well as the normal parameters µ and Σ.
From elementary probability, we know that:

P (Θ|X) =
P (X|Θ)P (Θ)

P (X)
(3)

This means that there are three quantities that we must derive ex-
pressions for: P (X|Θ), P (Θ), and P (X).

We deal with P (X|Θ) first. From the generative process, we
know that P (X|Θ) =

∏

i
P (Xi|Θ). We can easily write an ex-

pression for each P (Xi|Θ), which will depend upon the case that
holds for block i:

i in case 1: (No information) P (Xi|Θ) = P (〈〉|Θ) = 1 since Xi

is empty.

i in case 2: (Scheduling) Here, we have only a lower bound on
the scheduling time. Thus, P (Xi|Θ) = P (〈⌊tschi ⌋〉|Θ) = 1
if tschi > ⌊tschi ⌋, and 0 otherwise since this is impossible.

1139

i in case 3: (Scheduled and processing) In this case, P (Xi|Θ) =

P (〈tschi , ⌊tLi

i,Wi
⌋〉|Θ) = Normal(tschi |µ,Σ,Yi) if t

Li

i,Wi
>

⌊tLi

i,Wi
⌋, and 0 otherwise since this is again impossible.

i in case 4: (Scheduled and processed) Here, we evaluate a nor-
mal distribution: P (Xi|Θ) = P (〈xi, t

sch
i , t

Li

i,Wi
〉|Θ) =

Normal(xi, t
sch
i , t

Li

i,Wi
|µ,Σ,Yi).

Now, we move onto deriving an expression for P (Θ). From the
last few subsections, we have:

P (Θ) = P (Y|µ,Σ)P (µ)P (Σ) (4)

= P (µ)P (Σ)
∏

i

P (Yi|µ,Σ)

= P (Σ)
∏

j

InvGamma(µj |1, 1)
∏

i

Normal(Yi|µ,Σ)

where an explicit formula for P (Σ) was given previously.
This gives us expressions for P (X|Θ) and P (Θ). In standard

Bayesian fashion, we ignore P (X), which would be very difficult
to compute since it would involve integrating over Θ. But since
P (X) does not depend upon Θ, it is merely a normalizing constant
that is necessary for the total mass of P (Θ|X) to be one, and is not
needed to compare the relative merits of candidate Θ values.

4.5 Putting It All Together
Since our goal is to produce estimates and confidence bounds

for the actual query result, we are not interested in the posterior
distribution P (Θ|X) for its own sake. Rather, we will use P (Θ|X)
to produce estimates and confidence bounds for the answer.

To describe how this is done, note that given a possible value for
Θ—combined with the visible data X— we have access to each and
every xi value in the database. Thus, given a particular Θ as well
as X it is very easy to compute the query answer as:

Q(Θ,X) =
∑

i

xi (5)

Then by integrating P (Θ|X) over all possible Θ, we obtain vari-
ous statistics describing the eventual query result. For example, the
following gives us the expected value of the query result:

∫

Θ

P (Θ|X)Q(Θ,X)dΘ

And we can obtain the lower end l for a 95% confidence bound on
the query result by computing Λ and l so that:

∫

Θ∈Λ

P (Θ|X)dΘ = 0.025 where (6)

maxΘ∈Λ{Q(Θ,X)} 6 l and minΘ∈Λ̄{Q(Θ,X)} > l

The upper end could be computed in a similar fashion.
Unfortunately, performing this sort of computation exactly is dif-

ficult. The difficulty is often circumvented using so-called “Markov
Chain Monte Carlo” (MCMC) methods [15] that sample directly
from a distribution such as P (X|Θ). In our case, we apply a par-
ticular MCMC method called a Gibbs sampler to the problem [4].
The samples obtained from a Gibbs sampler are easily used to com-
pute expected value and confidence bounds. For example, we can
run the sampler to produce several hundred candidate Θ values, and
then average the associated query results—this is equivalent to the
expected value computation described above. Cutting off the top
2.5% and the bottom 2.5% of the set of query results, and then tak-
ing the highest and lowest remaining results, gives 95% confidence
bounds on the query answer.

5. EXPERIMENTS
In this section, we describe a set of experiments on the software

that we have developed. Our experiments are designed to answer
the following questions: Can the confidence bounds that our system
reports be trusted? How important is it to take into account the cor-
relation between processing time and data value in both synthetic
and real data? How important is choosing blocks in a statistically
randomized order? In a realistic setting, is the system able to pro-
duce accurate results quickly?

5.1 Experiment One
Basic Setup. In the first experiment, we run our version of Hyracks
with OLA over six months of data from the Wikipedia page traffic
data set (available at http://aws.amazon.com/datasets/4182), with
the simple goal of counting the number of Wikipedia page hits on a
per-language basis over those six months. Six months of Wikipedia
data take up about 220GB (compressed), and are stored in 3,960
blocks. We run our software on an eleven node cluster, with one
master node and ten slaves. Each machine has four disks, four
cores running at 2.3 GHz, and 12GB of RAM. We use 80 mappers
and ten reducers (with one reducer available for each of the ten
languages that are to be counted). The entire MapReduce process
takes approximately 46 minutes to run to completion.

To demonstrate the relative importance of the different compo-
nents of our software, we run three different versions of our OLA
software. The first uses every method described in the paper. In the
second version, randomization of blocks is not performed by the
scheduler, so blocks are scheduled in arbitrary (but non-random)
order. In the third version, randomization is used, but the (possible)
correlation between processing/scheduling time and the aggregate
value is not taken into account by the system, leaving the software
vulnerable to the “inspection paradox” described earlier.

Results. A subset of the observed results are given in Figures 1, 2,
and 3. Figure 1 shows the posterior distribution of possible query
results computed by our system, for the English language, at vari-
ous times during the MapReduce task (we show results after 10%
of the task is complete, after 20% is complete, after 30%, and so
on). Two posterior distributions are plotted: one computed running
the first version (all features from the paper), and a second com-
puted running the second version (no randomization). Each plot
also shows the true query result for the English language. Figure
2 is similar to Figure 1, but it shows the results for the French lan-
guage. Figure 3 also shows results for the French language, but it
shows the computed posterior distribution for the query result after
a much smaller portion of the task has completed: 1%, 2%, 3%,
and so on. This plot also shows both version one of our software,
and version three (randomization, but no correlation).

Discussion. It is clear that without randomization, severe bias
is possible, and so confidence bounds obtained without a random
scheduling order are useless. With randomization, the confidence
bounds from Figures 1 and 2 seem remarkably accurate. It is sig-
nificant that the bounds obtained are quite narrow, very quickly.
Take the English language. After 10% of the blocks have been pro-
cessed, the bounds go from approximately 4.1 to 4.4×1010, which
represents a possible error of only ±3%. For many applications, it
may be acceptable to simply kill the computation with this level of
accuracy. In general, convergence could be made to happen even
more quickly by increasing the number of blocks used to store the
same data set, though this could have a negative effect on the overall
processing time of the MapReduce job. Even for this particular data
set (where the correlation between processing time and aggregate
value is quite weak) there is still a clear benefit to taking into ac-

1140

pagecounts (*10^10)

d
e

n
s
it
y

10

4.0 4.5

20

4.0 4.5

30

4.0 4.5

40

4.0 4.5

50

4.0 4.5

60

4.0 4.5

70

4.0 4.5

80

4.0 4.5

Randomized Non-Randomized

Figure 1: Posterior query result distribution for number of Wikipedia page hits over the English language, at various query comple-

tion percentages, using both a randomized and arbitrary block ordering. The actual query result is a vertical black line.

pagecounts (*10^9)

d
e

n
s
it
y

10

3 4

20

3 4

30

3 4

40

3 4

50

3 4

60

3 4

70

3 4

80

3 4

Randomized Non-Randomized

Figure 2: Identical to Figure 1, except for the French language.

count the correlation, particularly when only a very small fraction
of the data has been processed. Consider the plots corresponding to
finishing 3% and 4% of the MapReduce job. Without correlation,
the posterior distribution almost totally misses the actual query re-
sult. Taking into account the correlation, the distribution is neatly
bisected by the correct result.

5.2 Experiment Two
Basic Setup. This experiment is somewhat similar to the first, ex-
cept that our goal is to try to determine, in a systematic fashion,
how accurate the computed posterior distribution is when used to
compute 95% confidence bounds. Since testing accuracy requires
many, many repetitions of the MapReduce task, instead of actually
running the task in a real cluster, we use a simulator. In our sim-
ulation, a random aggregate value is associated with each block,
and random processing times are associated with each block as
well; the correlation between aggregate value and processing time
is set to be 0.7. Under the same setup as above (80 mappers, 3,960
blocks), we repeat the MapReduce and the estimation process 100
times. Every time that the estimation is re-run, we consider sev-
eral different task-completion percentages (1% done, 2% done, 3%
done, and so on). At each task-completion percentage, we use the
computed posterior distribution to obtain 95% confidence bounds
by “chopping off” the top 2.5% and bottom 2.5% of the posterior
distribution. We then determine whether or not the actual query re-
sult is within the 95% confidence bounds, and compute the fraction
of the time that the query result is not within the 95% confidence
bounds over each of the 100 repetitions. If our estimation process
worked perfectly, then the 95% confidence bounds would cover the
actual answer 95% of the time, with a 5% error rate. This whole
process is repeated twice: once using the full estimation process,
and a second time ignoring the possibility of correlation between
processing time and aggregate value.

Percentage of MapReduce task complete

2% 3% 4% 5% 10% 20% 30%

w corr .03 .01 .06 .05 .05 .02 .05
w/o corr .70 .63 .62 .61 .37 .22 .13

Table 1: Fraction of confidence bounds that are “incorrect”.

Results. The results are given in Table 2, and are mostly self-
explanatory. For each of the listed task-completion percentages,
the fraction of “incorrect” 95% confidence intervals is given, for
both of the software versions.

Discussion. As can clearly be seen, the confidence bounds com-
puted when taking into account correlation are accurate, coming
very close to the expected 5% throughout query execution. On the
other hand, the results obtained without taking into account the cor-
relation are very poor, particularly when only a small fraction of
the MapReduce task has been completed. This mirrors the results
shown in Figure 2, but under much more extreme circumstances.

6. RELATED WORK
OLA has been studied for some time in the context of classic,

SQL databases [10, 9, 11, 1] and more recently for peer-to-peer
systems [17]. But, in context of MapReduce, the only work that
considers OLA (without ignoring MapReduce’s open programma-
bility and fault tolerance) is the Hadoop Online Prototype (HOP)
system [5]. HOP supported OLA queries by executing reduce tasks
at data dependent intervals e.g., on 10%, 20%,. . . ,90% of the data.
The query estimate assumed a uniform sample of the input data
but made no modifications to enforce this in the Hadoop sched-
uler. This led to significant error in their estimates. To compensate,
the authors modified the query to contain extra parameters that in-

1141

pagecounts (*10^9)

d
e

n
s
it
y

1

2 3 4

2

2 3 4

3

2 3 4

4

2 3 4

5

2 3 4

6

2 3 4

7

2 3 4

8

2 3 4

Without Correlation

With Correlation

Figure 3: Posterior query result language for the French distribution, at various query completion percentages, taking into account

and ignoring correlation between aggregate value and processing time.

dicated how many samples of a particular aggregate group were
present, and scaled the estimate accordingly.

An alternative to OLA is precomputed synopsis, where the sys-
tem uses summary statistics (computed prior to the execution of the
query) to provide approximate answers [8, 14].

7. FUTURE WORK
Our current scheduling policy greedily assigns the block at the

head of the randomized queue to the first mapper available. Clearly,
this destroys locality and hence introduces overhead. However,
since we ran our tests on a single rack cluster, a performance study
measuring this overhead would be mostly uninformative. In subse-
quent work, we will study the performance impact by running the
experiments on a multi-rack cluster.

Locality scheduling in the context of online aggregation is a di-
rection that we plan to investigate further. Scheduling computation
near the data is the primary optimization in today’s MapReduce
systems [7, 2]; today’s schedulers care most about rack locality.
Indeed at Yahoo!, the performance gains of machine to rack local-
ity is negligible; others have also drawn this conclusion [18].

We would also like to take into account external constraints on
the scheduler. For example, we may wish to schedule only those
tasks from the highest priority jobs. Fortunately, it seems that we
might be able to explore such issues without changing our statistical
model for OLA, since our model allows for a block to be held for an
arbitrary amount of time before it is scheduled. Our model allows
for that scheduling time to be correlated with any properties of the
block (such as the block’s aggregate value, or its physical location).
Thus, we can implement scheduling policies that hold the block at
the head of the queue until a suitable location for processing the
block opens up; our statistical model remains valid in this case.

8. CONCLUSION
Like the earlier works on Online Aggregation, we focus on single-

table query plans involving “Group By” aggregations, which is pre-
cisely the workload targeted by MapReduce. The focus of our work
here is to develop a model that accounts for biases that can arise
when estimating aggregates in a cluster environment. This model
allows us to export “early returns” of query aggregates that are sta-
tistically robust.

Acknowledgements: Pansare and Jermaine were supported by
the NSF under award 1007062. Borkar was supported by the NSF
under award 0910989 and by a Facebook Fellowship award. The
idea for OLA over MapReduce came out of early discussions with
Joe Hellerstein and Peter Haas. We would like to thank Peter Haas
and the anonymous reviewers for providing useful suggestions.

9. REFERENCES
[1] R. Avnur, J. Hellerstein, B. Lo, C. Olston, B. Raman,

V. Raman, T. Roth, and K. Wylie. Control: continuous output
and navigation technology with refinement on-line. In
SIGMOD conference, pages 567–569, 1998.

[2] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible foundation for
data-intensive computing. In ICDE, pages 1151–1162, 2011.

[3] D. Borthakur. The Hadoop Distributed File System:

Architecture and Design, 2007.

[4] G. Casella and E. George. Explaining the gibbs sampler. The

American Statistician, 46:167–174, 1992.

[5] T. Condie, N. Conway, P. Alvaro, J. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In NSDI

Conference, pages 21–21, 2010.

[6] D. Cox. Renewal Theory. Methuen and Co, New York, 1970.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04, pages 137–150,
December 2004.

[8] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers.
SIGMOD Rec., 27:331–342, June 1998.

[9] P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In SIGMOD Conference, pages 287–298, 1999.

[10] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In
SIGMOD Conference, pages 171–182, 1997.

[11] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. In
SIGMOD Conference, pages 725–736, 2007.

[12] E. L. Lehmann and G. Casella. Theory of Point Estimation.
Springer, second edition, 1998.

[13] A. O’Hagan and J. J. Forster. Bayesian Inference. Arnold,
second edition, 2004.

[14] F. Olken and D. Rotem. Maintenance of materialized views
of sampling queries. In Proceedings of the Eighth

International Conference on Data Engineering, 1992.

[15] C. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer, second edition, 2004.

[16] C. Särndal, B. Swensson, and J. Wretman. Model Assisted

Survey Sampling. Springer, New York, 1992.

[17] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan. Distributed online
aggregations. Proc. VLDB Endow., 2:443–454, August 2009.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, pages 265–278, 2010.

1142

APPENDIX

A. OVERVIEW OF MAPREDUCE
MapReduce is a programming model for performing aggregate

computations over large data sets. The programmer specifies a map

function that processes input records and produces a list of interme-
diate key/value pairs, and a reduce function that is called once for
each distinct map output key and associated list of intermediate val-
ues. Optionally, the programmer can supply a combiner function,
which is applied to the intermediate results between the map and
reduce steps. The combiner interface is similar to reduce functions.
Combiners are typically used to perform “pre-aggregation,” which
can reduce the amount of network traffic when the map and reduce
steps are executed in a distributed environment.

The MapReduce architecture consists of a query processing layer,
that is based on a dataflow of map and reduce operations, and a
Distributed File System (DFS), which stores the input to the map
function and the output of the reduce function. The intermediate
data is typically stored on the local file system. The query pro-
cessing layer consists of a single master node and many worker

nodes [7]. The master is responsible for accepting jobs that spec-
ify the user-defined functions and automatically parallelizing those
functions into units of work called tasks. Each task is assigned a
portion of the relevant input and is individually scheduled on the
worker nodes. Worker nodes are assigned a fixed number of slots

for executing tasks (e.g., two maps and two reduces). A heartbeat
protocol between each worker and the master is used to update the
masters’ bookkeeping state of running tasks, and drive the schedul-
ing of new tasks: if the master identifies free worker slots, it will
schedule further tasks on the worker.

A map task is assigned a portion of the input file called a split.
By default, a split corresponds to a single DFS block (64MB by
default), so typically the total number of file blocks determines the
number of map tasks. The execution of a map task is divided into
two phases. The map phase reads the assigned split from the DFS,
parses it into records (key/value pairs), and applies the map func-
tion to each record. After the map function has been applied to
each input record, the commit phase executes the combiner func-
tion (if given) and registers the final output with the worker, which
will then inform the master that the task has finished executing.

The execution of a reduce task is divided into three phases. In the
shuffle phase, the reduce task receives its assigned key range from
the output of each map task. This phase typically runs concurrently
with the map tasks in a pipelined fashion. After receiving its par-
titions from all map tasks, the reduce task enters the group phase.
This is commonly performed via sorting techniques. Finally, the
reduce phase invokes the user-defined reduce function for each dis-
tinct key and associated list of values.

B. OLA PROGRAMMING INTERFACE
In this section we describe the interface that Hyracks exports for

running online aggregation (OLA) queries. We begin with the pro-
gramming interface, which is very similar to conventional Hadoop3,
except for three key differences:

1. The user’s Mapper, Reducer and Combiner classes have
to obey the contract given in appendix B.1.

2. The user can optionally write a class that implements the
EstimateReceiver interface (see appendix B.4). This
will be called whenever a new estimate is generated. We

3We will use the terms Hadoop and Hyracks interchangeably since
Hyracks supports the Hadoop API.

provide a default implementation of this interface that simply
writes the estimates to HDFS.

3. The user also needs to specify few additional properties in the
job configuration file (see appendix B.2 and B.3).

B.1 Map, Reduce and Combiner Contracts
In this subsection, we describe the input and output of the map-

per, the combiner, and the reducer in our OLA implementation. Our
system supplies default combiner and reducer implementations; the
mapper is always user-supplied.

Currently, our OLA system designed to handle computations that
are equivalent to the following SQL:4

SELECT AGG(g(y))
FROM MY TABLE AS y

GROUP BY h(y)

To implement such a query, the user would first need to supply a
mapper. The mapper would simply read in the data, and then output
a stream of 〈h(y), g(y)〉 pairs.

Now consider the combiner. For the time being, we restrict our-
selves to the case where AGG is SUM. Section 2.3 of the paper de-
scribes a number of statistics that must be collected by the system
to perform OLA over such a query. The various timing values are
hidden from the Hyracks programmer who uses our system, and are
collected automatically. Thus, assuming for a moment that the sys-
tem is restricted to handling SUM queries, the only one of these pa-
rameters that a Hyracks programmer would actually be concerned
with producing is xi,j . Recall that xi,j is the aggregate value for
group j over block i, which would be produced (along with the
group key j) by the combiner. Thus, the output of the combiner
whose input key is j and input values are 〈g(y1), g(y2), ...〉, is:

xi,j =
∑

k

g(yk) (7)

along with the key for group j.
Likewise, the reducer accepts a set of xi,j values (all having the

same group key j), aggregates them and then outputs a final aggre-
gate value along with the group key.

In our current implementation, the group key type must be Text,
and xi,j must be of type Double. These types are a bit restrictive,
and we plan to generalize this in the future.

While the prior discussion is adequate to handle SUM queries,
(and, if xi,j is binary, it suffices for COUNT queries), in order to
support AVG, VARIANCE and STD DEV we need some additional
information. Note that xi,j is the so-called “first moment” of the
distribution of the values in block i. To handle the additional ag-
gregates, we generalize xi,j to xm

i,j so that:

x
m
i,j =

∑

k

g
m(yk), (8)

where xm
i,j denotes the mth moment of the values in the block. To

support the full set of five aggregate functions described above, we
need the zero-th, first, and second moments of each block. Thus,
the user-supplied combiner does not only output xi,j (which is
equivalent to x1

i,j), it must actually output the triple 〈x0
i,j , x1

i,j ,

x2
i,j〉 in a comma separated vector (CSV) record format. This triple

is then used by the reducer to produce the final aggregate.

4Note that while this query does not contain an explicit WHERE
clause, a boolean predicate can implicitly be present in g(y) by
making this function return zero if the record in question does not
match a selection condition. We also plan to generalize beyond
such simple queries to support multiple aggregation operations, as
well as joins.

1143

Mapper Combiner Reducer

Input key N/A j j

Input value N/A yk 〈x0
i,j , x

1
i,j , x

2
i,j〉

Output key j j j

Output value yk 〈x0
i,j , x

1
i,j , x

2
i,j〉 Final value

Table 2: Mapper, Reducer, Combiner class interfaces.

The inputs and outputs for the mapper, combiner, and reducer
are summarized in the table 2.

B.2 Specifying the aggregate
Internally, our OLA library provides implementations of the com-

biner and reduce functions for the five aggregates described previ-
ously. We provide a helper class OAJobConfigurer that al-
lows the user to indicate the aggregate choice, and which asks the
Hyracks engine to use the default implementation of combiner and
reduce functions for that aggregate. Use of this class is demon-
strated in the following code snippet:

Job job = new Job();

job.setMapperClass(mapperClass);

OAJobConfigurer.configure(job, "SUM");

...

master.submitJob(job);

Listing 1: Usage of OAJobConfigurer class.

The first line creates a new job configuration object, which is
submitted to the master scheduler by the last line. The configura-
tion parameters are set by the client prior to the final submission
of the job. Here, we select the (user-defined) mapper function im-
plementation and also the (default) SUM aggregate implementation
from the OLA library. It should be noted that the clients can still
implement their own reduce (and combiner) function as long as it
conforms to contract given in the appendix B.1. This is useful,
for example, when one needs to implement a HAVING clause for a
group-by aggregate.

B.3 Configuration parameters
Next, we describe the configuration parameters exported by the

system. These parameters must be set by the client prior to the
final job submit call to the master scheduler. Our goal is to give
confidence bounds of the form “with probability p, the actual query
answer is within the range from low to high”, where the bounds are
updated each ms milliseconds during the execution of the query.5

The user can specify this using the following properties in the
job configuration file:

1. mapreduce online.estimation interval = ms

This property specifies the number of milliseconds after which
the Bayesian estimator should be called by the Hyracks en-
gine. If the value is large, the estimator is rarely called and
it improves the performance of map-reduce job. This is be-
cause the Bayesian estimator is CPU intensive code and will
compete with the map-reduce workers for CPU cycles. On
the other hand, if the value is low, the estimator is effectively
called after the processing of every block, hence giving more
estimates to the user.

2. mapreduce online.confidence interval = range

Another way to improve the performance is to ask the Hyracks

5The probability p is fixed during the execution of the query, and
the estimator outputs the confidence interval [low, high] based on
the value of p.

engine not to call the estimator code once a desired accuracy
is reached. That is, estimation is stopped once the width of
the interval returned by the Bayesian estimator is less than or
equal to the specified range. To disable this feature (i.e. to ob-
tain estimates until the end of the map-reduce job irrespective
of accuracy), the user has to set this value to 0.

A feature slated for future work, which could potentially re-
duce the cost of estimation further, is to allow the user to
switch the scheduling policy from random to a more con-
ventional locality-based scheduling, once all the groups have
reached the desired accuracy.

3. mapreduce online.confidence level = conf

The system defaults to conf = 95%.

4. mapreduce online.reduce operator = AGG

Any one of the five aggregates defined previously can be used
for AGG.

5. mapreduce online.estimate receiver.class = RC

RC gives the name of the class that will be called back by
the Hyracks engine to communicate the estimates with the
user. This class has to implement the EstimateReceiver
interface, described in the appendix B.4.

B.4 EstimateReceiver interface
Whatever mapper, combiner, and reducer are specified by the

user, the output of the various combiners is sent both to the user-
or system-supplied reducer, and to our Bayesian estimation code
which uses the combiner-supplied moments to estimate the final an-
swer to the specified aggregate query. Somehow, the system needs
to do something with these estimates. It is the EstimateReceiver
class that is tasked with accepting an estimate from the OLA engine
and processing it as necessary. The EstimateReceiver class ,
for example, might write the estimate to a file, or it might display
the result graphically in a web page so that the user can see the
progression of the computation.

The interface for this class is:

public interface EstimateReceiver {

public void Open();

// [low, high] is the confidence interval

public void NextGroup(Text key,

Double estimate, Double low, Double high);

public void Close();

public void NoMoreBlocks();

}

Listing 2: EstimateReceiver interface.

Whenever the estimator finishes processing, the Hyracks engine
calls Open function and then calls NextGroup for each group.
Finally, it calls Close to notify that there are no more groups
found in the current estimation cycle. If the job is completed (i.e.
there are no more blocks remaining to be processed) or if all the
groups have reached desired accuracy, the Hyracks engine will call
NoMoreBlocks method.

B.5 Example
To make this interface concrete, we describe the steps involved

to implement the following simple SQL query:

SELECT SUM(page hits)

FROM WIKIPEDIA LOG

GROUP BY LANGUAGE

The above SQL query uses the Wikipedia page traffic data set, that
stores each log entry in CSV format. The two fields in the log
that we are interested in, are the language of the Wikipedia page

1144

pointed to by that entry (LANGUAGE) and the number of times that
page has been viewed (page hits). The above query returns the
total number of page hits for each language in the Wikipedia data
set. This query can be implemented by a single MapReduce job.

To implement this query, the user-supplied map function parses
the data, and then outputs the language (the key) and the number of
page hits. The reduce function accepts a single language and list of
page hit values. It sums the page hit values and writes a result (key-
value) record to the output. Finally, the WikipediaMain class
stitches the job together and submits it to the master scheduler for
execution.

public class WikipediaMapper extends

Mapper<LongWritable, Text, Text, DoubleWritable> {

// Line number is the key and

// the content of the line is the value

public void map(LongWritable key, Text value, Context

ctx)

throws IOException, InterruptedException {

// LANG and PAGE_HITS are integer constants

// that depend on the format of the log entry

Array[String] fields = value.split(",");

ctx.write(fields[LANG],

Double.parseDouble(fields[PAGE_HITS]));

}

}

public class WikipediaCombiner extends

Reducer<Text, DoubleWritable, Text, Text> {

public void reduce(Text key,

Iterable<DoubleWritable> values, Context ctx)

throws IOException, InterruptedException {

double sum = 0;

for (DoubleWritable val : values) {

sum += val.get();

}

ctx.write(key, new Text("," + sum + ","));

}

}

public class WikipediaReducer extends

Reducer<Text, Text, Text, DoubleWritable> {

public void reduce(Text key,

Iterable<DoubleWritable> values, Context ctx)

throws IOException, InterruptedException {

double sum = 0;

for (Text val : values) {

Array[String] moments = val.toString().split(",");

sum += Double.parseDouble(moments[1]);

}

ctx.write(key, new DoubleWritable(sum));

}

}

public class WikipediaMain {

public static void main(String[] args)

throws Exception {

...

Job job = new Job();

job.setMapperClass(WikipediaMapper);

job.setCombinerClass(WikipediaCombiner);

job.setReducerClass(WikipediaReducer);

...

master.submitJob(job);

}

}

Listing 3: Sample Hadoop implementation of page-hit query.

To obtain online estimates for the same program, the user needs
to modify the WikipediaMain class to specify the aggregate
function (as discussed in appendix B.2) and set the job configu-
ration properties (as discussed in appendix B.3). Note, that using
this default configuration, the user need not write the reducer and
the combiner class.

The user also needs to specify an extra class
WikipediaEstimateReceiver that handles the estimates re-
turned by the OLA library.

public class WikipediaMain {

public static void main(String[] args)

throws Exception {

...

// Set job configuration properties

Configuration conf = new Configuration();

conf.setProperty("mapreduce_online.reduce_operator",

"SUM");

conf.setProperty("mapreduce_online.estimate_receiver.

class", WikipediaEstimateReceiver);

// Specify aggregate

Job job = new Job(conf);

job.setMapperClass(WikipediaMapper);

OAJobConfigurer.configure(job, "SUM");

...

}

}

public class WikipediaEstimateReceiver

implements EstimateReceiver {

...

public void NextGroup(Text key, Double estimate, Double

low, Double high) {

// Do something with estimate

// Example: display it to a GUI

}

}

Listing 4: OLA implementation of page-hit query.

1145

