
Publishing SetValued Data via Differential Privacy

Rui Chen
Concordia University

Montreal, Canada

ru che@encs.concordia.ca

Noman Mohammed
Concordia University

Montreal, Canada

no moham@encs.concordia.ca

Benjamin C. M. Fung
Concordia University

Montreal, Canada

fung@ciise.concordia.ca

Bipin C. Desai
Concordia University

Montreal, Canada

bcdesai@cs.concordia.ca

Li Xiong
Emory University

Atlanta, USA

lxiong@mathcs.emory.edu

ABSTRACT

Set-valued data provides enormous opportunities for various
data mining tasks. In this paper, we study the problem of
publishing set-valued data for data mining tasks under the
rigorous differential privacy model. All existing data pub-
lishing methods for set-valued data are based on partition-
based privacy models, for example k-anonymity, which are
vulnerable to privacy attacks based on background knowl-
edge. In contrast, differential privacy provides strong pri-
vacy guarantees independent of an adversary’s background
knowledge and computational power. Existing data pub-
lishing approaches for differential privacy, however, are not
adequate in terms of both utility and scalability in the con-
text of set-valued data due to its high dimensionality.
We demonstrate that set-valued data could be efficiently

released under differential privacy with guaranteed utility
with the help of context-free taxonomy trees. We propose a
probabilistic top-down partitioning algorithm to generate a
differentially private release, which scales linearly with the
input data size. We also discuss the applicability of our
idea to the context of relational data. We prove that our
result is (ǫ, δ)-useful for the class of counting queries, the
foundation of many data mining tasks. We show that our
approach maintains high utility for counting queries and fre-
quent itemset mining and scales to large datasets through
extensive experiments on real-life set-valued datasets.

1. INTRODUCTION
Set-valued data, such as transaction data, web search

queries, and click streams, refers to the data in which each
record owner is associated with a set of items drawn from a
universe of items [19, 28, 29]. Sharing set-valued data pro-
vides enormous opportunities for various data mining tasks
in different application domains such as marketing, adver-
tising, and infrastructure management. However, such data
often contains sensitive information that could violate indi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

vidual privacy. Such privacy concerns are even exacerbated
in the emerging computing paradigms, for example cloud
computing. Therefore, set-valued data needs to be sanitized
before it can be released to the public. In this paper, we con-
sider the problem of publishing set-valued data that simul-
taneously protects individual privacy under the framework
of differential privacy [8] and provides guaranteed utility to
data miners.

There has been some existing research [5, 16, 19, 28, 29,
34, 35] on publishing set-valued data based on partition-
based privacy models [15], for example k-anonymity [27] (or
its relaxation, km-anonymity [28, 29]) and/or confidence
bounding [5, 30]. However, due to both their vulnerability
to adversaries’ background knowledge and their determinis-
tic nature, many types of privacy attacks [20, 25, 31] have
been identified on these approaches derived using these mod-
els, leading to privacy compromise. In contrast, differential
privacy [8], a relatively new privacy model stemming from
the field of statistical disclosure control, provides strong pri-
vacy guarantees independent of an adversary’s background
knowledge, computational power or subsequent behavior.
Differential privacy, in general, requires that the outcome
of any analysis should not overly depend on a single data
record. It follows that even if a user had opted in the
database, there would not be a significant change in any
computation based on the database. Therefore, this assures
every record owner that any privacy breach will not be a
result of participating in a database.

There are two natural settings of data sanitization un-
der differential privacy: interactive and non-interactive. In
the interactive setting, a sanitization mechanism sits be-
tween the users and the database. Queries posed by the
users and/or their responses must be evaluated and may be
modified by the mechanism in order to protect privacy; in
the non-interactive setting, a data publisher computes and
releases a sanitized version of a database, possibly a syn-
thetic database, to the public for future analysis. There
have been some lower bound results [6, 8, 9] of differential
privacy, indicating that only a limited number of queries
could be answered; otherwise, an adversary would be able
to precisely reconstruct almost the entire original database,
resulting in a serious compromise of privacy. Consequently,
most recent works have concentrated on designing various
interactive mechanisms that answer only a sublinear num-
ber, in the size n of the underlying database, of queries in
total, regardless of the number of users. Once this limit is

1087

reached, either the database has to be shut down, or any
further query would be rejected. This limitation has greatly
hindered their applicability, especially in the scenario where
a database is made available to many users who legitimately
need to pose a large number of queries. Naturally, one would
favor a non-interactive release that could be used to answer
an arbitrary large number of queries or for various data anal-
ysis tasks. Blum et al. [4] point out that the aforementioned
lower bounds could be circumvented in the non-interactive
setting at the cost of preserving usefulness for only restricted
classes of queries. However, they did not provide an efficient
algorithm.
Dwork et al. [10] further propose a more efficient non-

interactive sanitization mechanism with a synthetic output.
However, the progress is not sufficient to solve the problem
of publishing set-valued data for data mining tasks for two
reasons. First, the approach in [10] is of runtime complexity,
poly(|C|, |I|), where |C| is the size of a concept class and |I|
is the size of the item universe. A set-valued dataset could
be reconstructed by counting queries (see Section 3.3 for a

formal definition). This implies a complexity of poly(2|I| −
1, |I|), which is not desirable for real-life set-valued data,
where |I| is typically over a thousand. Second, for data min-
ing tasks the published data needs to be “semantically inter-
pretable”; therefore, synthetic data does not fully meet the
publisher’s goal [35]. Similarly, the approaches of two very
recent papers [32, 33], which are designed for publishing re-
lational data by first enumerating all possible combinations
of all different values of different attributes, also suffer from
the scalability problem in the context of set-valued data.
We argue that a more efficient solution could be achieved
by taking into consideration the underlying dataset. The
solution also has a positive impact on the resulting utility
as there is no need to add noise to every possible combina-
tion. The main technical challenge is how to make use of a
specific dataset while satisfying differential privacy.
In this paper, we demonstrate that in the presence of a

context-free taxonomy tree we can efficiently generate a san-
itized release of set-valued data in a differentially private
manner with guaranteed utility for counting queries and
many other data mining tasks. Unlike the use of taxonomy
trees in the generalization mechanism for partition-based
privacy models, where the taxonomy trees are highly spe-
cific to a particular application, the taxonomy tree required
in our solution does not necessarily need to reflect the under-
lying semantics and, therefore, is context-free. This feature
makes our approach flexible for applying to various kinds of
set-valued datasets.
Contribution. We summarize our contributions as follows.
First, this is the first study of publishing set-valued data

via differential privacy. The previous anonymization tech-
niques [5, 16, 19, 28, 29, 34, 35] developed for publishing set-
valued data are dedicated to partition-based privacy mod-
els. Due to their deterministic nature, they cannot be used
for achieving differential privacy. In this paper, we pro-
pose a probabilistic top-down partitioning algorithm that
provides provable utility under differential privacy, one of
the strongest privacy models.
Second, this is the first paper that proposes an efficient

non-interactive approach scalable to high-dimensional set-
valued data with guaranteed utility under differential pri-
vacy. We stress that our goal is to publish the data, not data
mining results. Publishing data provides much greater flexi-

bilities for data miners than publishing data mining results.
We show that a more efficient and effective solution could be
achieved by making use of the underlying dataset, instead
of explicitly considering all possible outputs as used in the
existing works [4, 10, 32, 33]. For a set-valued dataset, it
could be done by a top-down partitioning process based on a
context-free taxonomy tree. The use of a context-free taxon-
omy tree makes our approach applicable to all kinds of set-
valued datasets. We prove that the result of our approach is
(ǫ, δ)-useful for counting queries, which guarantees the use-
fulness for data mining tasks based on counts, e.g., mining
frequent patterns and association rules [17]. We argue that
the general idea has a wider application, for example, to
relational data in which each attribute is associated with
a taxonomy tree. This implies that some traditional data
publishing methods, such as TDS [14] and Mondrian [22],
could be adapted to satisfy differential privacy.

2. RELATED WORK
Set-Valued Data Publishing. Due to the nature of high
dimensionality in set-valued data, the extensive research on
privacy-preserving data publishing (PPDP) for relational
data does not fit well with set-valued data [13]. Some recent
papers have started to address the problem of sanitizing set-
valued data for the purpose of data mining [5, 11, 16, 19,
28, 29, 34, 35].

Ghinita et al. [16] and Xu et al. [34, 35] divide all items
into either sensitive or non-sensitive, and assume that an ad-
versary’s background knowledge is strictly confined to non-
sensitive items. Ghinita et al. [16] propose a bucketization-
based approach that limits the probability of inferring a sen-
sitive item to a specified threshold, while preserving correla-
tions among items for frequent pattern mining. Xu et al. [35]
bound the background knowledge of an adversary to at most
p non-sensitive items, and employ global suppression to pre-
serve as many item instances as possible. Xu et al. [34]
improve the technique in [35] by preserving frequent item-
sets and presenting a border representation. Cao et al. [5]
further assume that an adversary may possess background
knowledge on sensitive items and propose a privacy notion
ρ-uncertainty, which bounds the confidence of inferring a
sensitive item from any itemset to ρ.

Terrovitis et al. [28, 29] and He and Naughton [19] elim-
inate the distinction between sensitive and non-sensitive.
Similar to the idea of [34] and [35], Terrovitis et al. [28] pro-
pose to bound the background knowledge of an adversary
by the maximum number m of items and propose a new
privacy model km-anonymity, a relaxation of k-anonymity.
They achieve km-anonymity by a bottom-up global gener-
alization solution. To improve the utility, recently Terrovi-
tis et al. [29] provide a local recoding method for achiev-
ing km-anonymity. He and Naughton [19] point out that
km-anonymity provides a weaker privacy protection than k-
anonymity and propose a top-down local generalization so-
lution under k-anonymity. We argue that even k-anonymity
provides insufficient privacy protection for set-valued data.
Evfimievski et al. [11] propose a series of randomization op-
erators to limit the confidence of inferring an item’s presence
in a dataset with the goal of association rule mining.
Differential Privacy. In the last few years, differential
privacy has been gaining considerable attention in various
applications. Most of the research on differential privacy
concentrates on the interactive setting with the goal of ei-

1088

Table 1: A sample set-valued dataset.
TID Items

t1 {I1, I2, I3, I4}
t2 {I2, I4}
t3 {I2}
t4 {I1, I2}
t5 {I2}
t6 {I1}
t7 {I1, I2, I3, I4}
t8 {I2, I3, I4}

ther reducing the magnitude of added noise [18, 26] or re-
leasing certain data mining results [2, 3, 12, 21]. Refer to
[7] for an overview of recent works on differential privacy.
Lately, several works [4, 10, 32, 33] have started to address
the use of differential privacy in the non-interactive setting
as a substitute for partition-based privacy models. Blum et
al. [4] demonstrate that it is possible to circumvent the lower
bound results to release synthetic private databases that are
useful for all queries over a discretized domain from a con-
cept class with polynomial Vapnik-Chervonenkis dimension.
However, their mechanism is not efficient, taking runtime
complexity of superpoly(|C|, |I|), where |C| is the size of a
concept class and |I| the size of the item universe. This fact
makes their mechanism impossible for practical applications.
To improve the efficiency, Dwork et al. [10] propose a recur-
sive algorithm of generating a synthetic database with run-
time complexity of poly(|C|, |I|). As mentioned earlier, this
improvement, however, is still insufficient to handle real-life
set-valued datasets. In this paper, we propose an algorithm
that is scalable to large real-life set-valued datasets.
Xiao et al. [33] propose a two-step algorithm for relational

data. It first issues queries for every possible combination
of attribute values to the PINQ interface [23], and then pro-
duces a generalized output using the perturbed dataset re-
turned by PINQ. Apparently, this approach is computation-
ally expensive in the context of set-valued data due to the
high dimensionality, which requires issuing a total of 2|I|−1
queries. All these works [4, 10, 33] are based on the query
model. In contrast, Xiao et al. [32] assume that their algo-
rithm has direct and unconditional access to the underly-
ing relational data. They propose a wavelet-transformation
based approach that lowers the magnitude of noise than
adding independent Laplace noise. Similarly, the algorithm
needs to process all possible entries in the entire output do-
main, which causes a scalability problem for set-valued data.

3. PRELIMINARIES
Let I = {I1, I2, ..., I|I|} be the universe of items, where |I|

is the size of the universe. The multiset D = {t1, t2, ..., t|D|}
denotes a set-valued dataset, where each record ti ∈ D is a
non-empty subset of I. Table 1 presents an example of set-
valued datasets with the item universe I = {I1, I2, I3, I4}.
An overview of notational conventions is provided in Ap-
pendix A.

3.1 ContextFree Taxonomy Tree
A set-valued dataset could be associated with a single

taxonomy tree. In the classic generalization mechanism, the
taxonomy tree required is highly specific to a particular ap-
plication. This constraint has been considered a major lim-
itation of applying generalization [1]. The reason of requir-
ing an application-specific taxonomy tree is that the release

Figure 1: A context-free taxonomy tree of the sam-

ple data.

contains generalized items that need to be semantically con-
sistent with the original items. In our approach, we publish
only original items; therefore, the taxonomy tree could be
context free.

Definition 3.1 (Context-Free Taxonomy Tree).
A context-free taxonomy tree is a taxonomy tree, whose in-
ternal nodes are a set of their leaves, not necessarily the
semantic generalization of the leaves.

For example, Figure 1 presents a context-free taxonomy
tree for Table 1, and one of its internal nodes I{1,2,3,4} =
{I1, I2, I3, I4}. We say that an item can be generalized to a
taxonomy tree node if it is in the node’s set. For example,
I1 can be generalized to I{1,2} because I1 ∈ {I1, I2}.

3.2 Differential Privacy
Differential privacy requires that the removal or addition

of a single database record does not significantly affect the
outcome of any analysis. It ensures a data record owner that
any privacy breach will not be a result of participating in the
database since anything that is learnable from the database
with his record is also learnable from the one without his
record. Formally, differential privacy in the non-interactive
setting [4] is defined as follow. Here the parameter, α, spec-
ifies the degree of privacy offered.

Definition 3.2 (α-differential privacy).A privacy
mechanism A gives α-differential privacy if for any dataset
D1 and D2 differing on at most one record, and for any

possible sanitized dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (1)

where the probability is taken over the randomness of A.
Two principal techniques for achieving differential privacy

have appeared in the literature, one for real-valued out-
puts [8] and the other for outputs of arbitrary types [24]. A
fundamental concept of both techniques is the global sensi-
tivity of a function [8] mapping underlying datasets to (vec-
tors of) reals.

Definition 3.3 (Global Sensitivity). For any func-
tion f : D → Rd, the sensitivity of f is

∆f = max
D1,D2

||f(D1)− f(D2)||1 (2)

for all D1, D2 differing in at most one record.

Roughly speaking, functions with lower sensitivity are
more tolerant towards changes of a dataset and, therefore,
allow more accurate differentially private mechanisms.
Laplace Mechanism. For the analysis whose outputs are
real, a standard mechanism to achieve differential privacy
is to add Laplace noise to the true output of a function.
Dwork et al. [8] propose the Laplace mechanism which takes

1089

as inputs a dataset D, a function f , and the privacy pa-
rameter α. The magnitude of the noise added conforms
to a Laplace distribution with the probability density func-
tion p(x|λ) = 1

2λ
e−|x|/λ, where λ is determined by both the

global sensitivity of f and the desired privacy level α.

Theorem 3.1. [8] For any function f : D → Rd over an
arbitrary domain D, the mechanism A

A(D) = f(D) + Laplace(∆f/α) (3)

gives α-differential privacy.

For example, for a single counting query Q over a dataset
D, returning Q(D) + Laplace(1/α) maintains α-differential
privacy because a counting query has a sensitivity 1.
Exponential Mechanism. For the analysis whose outputs
are not real or make no sense after adding noise, McSherry
and Talwar [24] propose the exponential mechanism that
selects an output from the output domain, r ∈ R, by taking
into consideration its score of a given utility function q in a
differentially private manner. The exponential mechanism
assigns exponentially greater probabilities of being selected
to outputs of higher scores so that the final output would be
close to the optimum with respect to q. The chosen utility
function q should be insensitive to changes in any particular
record, that is, has a low sensitivity. Let the sensitivity of q
be ∆q = max∀r,D1,D2

|q(D1, r)− q(D2, r)|.
Theorem 3.2. [24] Given a utility function q : (D ×

R)→ R for a dataset D, the mechanism A,

A(D, q) =

{
return r with probability ∝ exp(

αq(D, r)

2∆q
)

}

(4)

gives α-differential privacy.

For a sequence of differentially-private computations, its
privacy guarantee is provided by the composition properties
of differential privacy, namely sequential composition and
parallel composition, which are summarized in Appendix B.

3.3 Utility Metrics
Due to the lower bound results [6, 8, 9], we can only guar-

antee the utility of restricted classes of queries [4] in the
non-interactive setting. In this paper, we aim to develop
a solution for publishing set-valued data that is useful for
counting queries.

Definition 3.4 (Counting Query).For a given item-
set I ′ ⊆ I, a counting query Q over a dataset D is defined
to be Q(D) = |{t ∈ D : I ′ ⊆ t}|.
We choose counting queries because they are crucial to

several key data mining tasks over set-valued data, for ex-
ample, mining frequent patterns and association rules [17].
In this paper, we employ (ǫ, δ)-usefulness [4] to theoretically
measure the utility of sanitized data for counting queries.

Definition 3.5 ((ǫ, δ)-usefulness). A privacy mech-
anism A is (ǫ, δ)-useful for queries in class C if with prob-
ability 1 − δ, for every Q ∈ C and every dataset D, for

D̃ = A(D), |Q(D̃)−Q(D)| ≤ ǫ.

(ǫ, δ)-usefulness is effective to give an overall estimation
of utility, but fails to provide intuitive experimental results.
Therefore, in Section 5.1, we experimentally measure the
utility of sanitized data for counting queries by relative error
(see Section 5.1 for more details.).

4. SANITIZATION ALGORITHM
We present a Diff erentially-private sanitization algorithm

that recursively Part itions a given set-valued dataset based
on a context-free taxonomy tree (DiffPart).

4.1 Partitioning Algorithm
Intuitively, a differentially private release of a set-valued

dataset could be generated by adding Laplace noise to a set
of counting queries. A simple yet infeasible approach can be
achieved by employing Dwork et al.’s method [8]: first gen-
erate all distinct itemsets from the item universe; then for
each itemset issue a counting query and add Laplace noise to
the answer. This approach suffers from two main drawbacks
in the context of set-valued data. First, it requires a total of∑|I|

k=1

(
|I|
k

)
= 2|I|−1 queries, where k is the number of items

in a query, giving rise to a scalability problem. Second, the
noise added to the itemsets that never appear in the origi-
nal dataset accumulates exponentially, rendering the release
useless for data analysis tasks. In fact, these are also the
main limitations of other non-interactive approaches [4, 10,
32, 33] when applied to set-valued data. We argue that an
efficient solution could be achieved by taking into consider-
ation the underlying dataset. However, attentions must be
paid because identifying the set of counting queries based
on the input dataset may leak its sensitive information and,
therefore, violates differential privacy.

We first provide an overview of DiffPart. It starts by cre-
ating the context-free taxonomy tree. It then generalizes
all records to a single partition with a common representa-
tion. We call the common representation the hierarchy cut,
consisting of a set of taxonomy tree nodes. It recursively dis-
tributes the records into disjoint sub-partitions with more
specific representations in a top-down manner based on the
taxonomy tree. For each sub-partition, we determine if it
is empty in a noisy way and further split the sub-partitions
considered “non-empty”. Our approach stops when no fur-
ther partitioning is possible in any sub-partition. We call a
partition a leaf partition if every node in its hierarchy cut is
a leaf of the taxonomy tree. Finally, for each leaf partition,
the algorithm asks for its noisy size (the noisy number of
records in the partition) to construct the release. Our use of
a top-down partitioning process is inspired by its use in [19],
but with substantial differences. Their approach is used to
generate a generalized release satisfying k-anonymity while
ours is to identify the set of counting queries used to publish
differentially private data.

Algorithm 1 presents our approach in more detail. It takes
as inputs the raw set-valued dataset D, the fan-out f used
to construct the taxonomy tree, and also the total privacy
budget B specified by the data publisher, and returns a

sanitized dataset D̃ satisfying B-differential privacy.
Top-Down Partitioning. The algorithm first constructs
the context-free taxonomy tree H by iteratively grouping f
nodes from one level to an upper level until a single root is
created. If the size of the item universe is not divided by f ,
smaller groups can be created.

The initial partition p is created by generalizing all records
in D under a hierarchy cut of a single taxonomy tree node,
namely the root of H. A record can be generalized to a hier-
archy cut if every item in the record can be generalized to a
node in the cut and every node in the cut generalizes some
items in the record. For example, the record {I3, I4} can be
generalized to the hierarchy cuts {I{3,4}} and {I{1,2,3,4}},

1090

Algorithm 1 DiffPart

Input: Raw set-valued dataset D; fan-out f ;
privacy budget B

Output: Sanitized dataset D̃

1: D̃ ← ∅;
2: Construct a taxonomy tree H with fan-out f ;
3: Partition p ← all records in D;
4: p.cut← the root of H;

5: p.B̃ = B/2; p.α = p.B̃/|InternalNodes(p.cut)|;
6: Add p to an initially empty queue Q;
7: while Q 6= ∅ do
8: Dequeue p′ from Q;
9: Sub-partitions P ← SubPart Gen(p′, H);
10: for each sub-partition pi ∈ P do

11: if pi is a leaf partition then

12: Npi = NoisyCount(|pi|, B/2 + pi.B̃);

13: if Npi ≥
√
2C1/(B/2 + pi.B̃)then

14: Add Npi copies of pi.cut to D̃;
15: else

16: Add pi to Q;

17: return D̃;

but not {I{1,2}, I{3,4}}. The initial partition p is added to
an empty queue Q.
For each partition in the queue, we need to generate its

sub-partitions and identify the non-empty ones for further
partitioning. Due to noise required by differential privacy, a
sub-partition cannot be deterministically identified as non-
empty. Probabilistic operations are needed for this purpose.
For each operation, a certain portion of privacy budget is
required to obtain the noisy size of a sub-partition based on
which we decide whether it is “empty”. Algorithm 1 keeps
partitioning “non-empty” sub-partitions until leaf partitions
are reached.

Example 4.1. Given the dataset in Table 1 and a fan-out
value 2, a possible taxonomy tree is presented in Figure 1,
and a possible partitioning process is illustrated in Figure 2.
Partitions {I{3,4}}, {I{1,2}, I3} and {I{1,2}, I4} are consid-
ered “empty” and, therefore, not further partitioned.

Privacy Budget Allocation. The use of the total pri-
vacy budget B needs to be carefully allocated to each prob-
abilistic operation to avoid unexpected termination of the
algorithm. Since the operations are used to determine the
noisy sizes of the sub-partitions resulted from partition oper-
ations, a naive allocation scheme is to bound the maximum
number of partition operations needed in the entire algo-
rithm and assign an equal portion to each of them. This
approach, however, does not perform well. Instead, we pro-
pose a more sophisticated adaptive scheme. We reserve B/2
to obtain the noisy sizes of leaf partitions, which are used to
construct the release, and use the rest B/2 to guide the par-
titioning process. For each partition, we independently cal-
culate the maximum number of partition operations further
needed and assign privacy budget to partition operations
based on the number.
The portion of privacy budget assigned to a partition op-

eration is further allocated to the resulting sub-partitions to
check their noisy sizes (to see if they are “empty”). Since
all sub-partitions from the same partition operation con-

Procedure 1 SubPart Gen Procedure
Input: Partition p; taxonomy tree H
Output: Noisy non-empty sub-partitions V of p

1: Initialize a vector V ;
2: Select a node u from p.cut to partition;
3: Generate all non-empty sub-partitions S;
4: Allocate records in p to S;
5: for each sub-partition si ∈ S do

6: Nsi = NoisyCount(|si|, p.α);
7: if Nsi ≥

√
2C2 × height(p.cut)/p.α then

8: si.B̃ = p.B̃ − p.α;

9: si.α = si.B̃/|InternalNodes(si.cut)|;
10: Add si to V ;
11: j = 1; l = number of u’s children;
12: while j ≤ 2l − |S| do
13: Nj = NoisyCount(0, p.α);
14: if Nj ≥

√
2C2 × height(p.cut)/p.α then

15: Randomly generate an empty sub-partition s′j ;

16: s′j .B̃ = p.B̃ − p.α;

17: s′j .α = s′j .B̃/|InternalNodes(s′j .cut)|;
18: Add s′j to V ;
19: return V ;

tain disjoint records, due to the parallel composition prop-
erty [23], the portion of privacy budget could be used in full
on each sub-partition. This scheme guarantees that more
specific partitions always obtain more privacy budget (see
Appendix F.2 for a formal proof), complying with the ratio-
nale that more general partitions contain more records and,
therefore, are more resistant to a smaller privacy budget.

Theorem 4.1. Given a non-leaf partition p with a hier-
archy cut and an associated taxonomy tree H, the maximum
number of partition operations needed to reach leaf partitions
is |InternalNodes(cut)| = ∑

ui∈cut |InternalNodes(ui, H)|,
where |InternalNodes(ui, H)| is the number of internal node
of the subtree of H rooted at ui.

Proof. See Appendix F.1.

Each partition tracks its unused privacy budget B̃ and
calculates the portion of privacy budget α for the next par-
tition operation. Any privacy budget left from the parti-
tioning process is added to leaf partitions.

Example 4.2. For the partitioning process illustrated in
Figure 2, partitions {I1, I2}, {I{1,2}, I{3,4}}, {I{1,2}, I3, I4},
and {I1, I2, I3, I4} receive privacy budget 5B/6, B/6, B/6
and 2B/3 respectively.

Sub-Partition Generation. “Non-empty” sub-partitions
can be identified by either exponential mechanism or Laplace
mechanism. For exponential mechanism, we can get the
noisy number N of non-empty sub-partitions, and then use
exponential mechanism to extract N sub-partitions by us-
ing the number of records in a sub-partition as the score
function. This approach, however, does not take advantage
of the fact that all sub-partitions contain disjoint datasets,
resulting in a relatively small privacy budget for each oper-
ation and thus less accurate results. For this reason, we
employ Laplace mechanism for generating sub-partitions,
whose details are presented in Procedure 1.

For a non-leaf partition, we generate a candidate set of
taxonomy tree nodes from its hierarchy cut, containing all

1091

Hierarchy Cut

Expand I{3,4}

Records
{ I{1,2,3,4} } t1, t2, t3, t4, t5, t6, t7, t8

t2

{ I1, I2, I3, I4 } t1, t7 3
Noisy Size

{ I{1,2}, I{3,4} }{ I{3,4} }{ I{1,2} } t3, t4, t5, t6 Ø t1, t2, t7, t8

{ I{1,2}, I4 }t1, t7, t8{ I{1,2}, I3, I4 }Ø{ I{1,2}, I3 }

{ I2, I3, I4 } t8 0{ I1, I3, I4 } Ø 0

{ I1 } t6 1 { I2 } t3, t5 3 { I1, I2 } t4 2

Figure 2: The partitioning process.

non-leaf nodes that are of the largest height in H, and then
randomly select a node u from the set to expand, generat-
ing a total of 2l sub-partitions, where l ≤ f is the number
of u’s children in H. The sub-partitions can be exhaus-
tively generated by replacing u by the combinations of its
children. For example, the partition {I{1,2}} generates three
sub-partitions: {I1}, {I2} and {I1, I2}. This technique, how-
ever, is inefficient.
We propose an efficient implementation by separately han-

dling non-empty and empty sub-partitions of a partition
p. Non-empty sub-partitions, usually of a small number,
need to be explicitly generated. We issue a counting query
for the noisy size of each sub-partition by Laplace mech-
anism. We use the noisy size to make our decision. We
consider a sub-partition “non-empty” if its noisy size ≥√
2C2 × height(p.cut)/p.α. We design the threshold as a

function of the standard deviation of the noise and the height
of p’s hierarchy cut, the largest height of all nodes in p’s
hierarchy cut. The rationale of taking into consideration
the height is that more general partitions should have more
records to be worth being partitioned. A constant C2 is
added to the function for the reason of efficiency: we want
to prune empty sub-partitions as early as possible. While
this heuristic is arbitrary, it provides good experimental re-
sults on different real-life datasets.
For empty sub-partitions, we do not explicitly generate all

possible ones, but employ a test-and-generate method: gen-
erate a uniformly random empty sub-partition without re-
placement only if the noisy count of an empty sub-partition’s
true count 0 is greater than the threshold. To satisfy dif-
ferential privacy, empty and non-empty sub-partitions must
use the same threshold. A C2 value that is slightly greater
than 1 can effectively prune most empty sub-partitions with-
out jeopardizing non-empty ones.
For a leaf partition, we use the reserved B/2 plus the pri-

vacy budget left from the partitioning process to obtain its
noisy size. To minimize the effect of noise, we add a leaf

partition p only if its noisy size ≥
√
2C1/(B/2+p.B̃). Typi-

cally, C1 is a constant in the range of [1, C2]. We argue that
since the data publisher has full access to the raw dataset,
she could try different C1 and C2 values and publish a rea-
sonably good release. We consider how to automatically
determine C1 and C2 values in future work.
We illustrate how DiffPart works in Appendix C.

4.2 Analysis
Privacy Analysis. We prove that Algorithm 1 together
with Procedure 1 satisfies B-differential privacy. In essence,
the only information obtained from the underlying dataset
is the noisy sizes of the partitions (or equivalently, the noisy
answers of a set of counting queries). Due to noise, any item-
set from the universe may appear in the sanitized release. In

the previous work [23], it has been proven that partitioning
a dataset by explicit user inputs does not violate differential
privacy. However, the actual partitioning result should not
be revealed as it violates differential privacy. This explains
why we need to consider every possible sub-partition and
use its noisy size to make decision.

Let a sequence of partitionings that consecutively dis-
tributes the records in the initial partition to leaf partitions
be a partitioning chain. Due to Theorem B.2, the privacy
budget used in each partitioning chain is independent of
those of other chains. Therefore, if we can prove that the
total privacy budget used in each partitioning chain is less
than or equal to B, we get the conclusion that Algorithm 1
together with Procedure 1 satisfies B-differential privacy.

Let m be the total number of partitionings in a parti-
tioning chain and ni the maximum number of partitionings
calculated according to Theorem 4.1. We can formalize the
proposition to be the following equivalent problem.

B ≥ B

2
· 1

n1︸ ︷︷ ︸
first partitioning

+
B

2
· (1− 1

n1
) · 1

n2︸ ︷︷ ︸
second partitioning

+ · · ·+ B

2

m−1∏

i=1

(1− 1

ni
) · 1

nm
+

B

2
︸ ︷︷ ︸

last partitioning

Subject to ni ≥ ni+1 + 1 and nm = 1.

Each item of the right hand side (RHS) of the above equa-
tion represents the portion of privacy budget allocated to a
partition operation. The entire RHS gives the total privacy
budget used in the partitioning chain. We prove the cor-
rectness of the equation in Appendix F.4. Therefore, our
approach satisfies B-differential privacy.
Utility Analysis. We theoretically prove that Algorithm 1

guarantees that the sanitized dataset D̃ is (ǫ, δ)-useful for
counting queries.

Theorem 4.2. The result of Algorithm 1 by invoking Pro-
cedure 1 is (ǫ, δ)-useful for counting queries.

Proof. See Appendix F.3.

Complexity Analysis. The runtime complexity of Algo-
rithm 1 and Procedure 1 is O(|D| · |I|), where |D| is the
number of records in the input dataset D and |I| the size
of the item universe. The main computational cost comes
from the distribution of records from a partition to its sub-
partitions. The complexity of distributing the records for a
single partition operation is O(|D|) because a partitioning
can affect at most |D| records. According to Theorem 4.1,
the maximum number of partitionings needed for the entire
process is the number of internal nodes in the taxonomy tree
H. For a taxonomy tree with a fan-out f ≥ 2, the number

1092

Table 2: Experimental dataset statistics.
Datasets |D| |I| max|t| avg|t|
MSNBC 989,818 17 17 1.72
STM 1,210,096 1,012 64 4.82

of internal nodes is |I|−1
f−1

. Therefore, the overall complexity

of our approach is O(|D| · |I|).
Applicability. We discuss the applicability of our approach
to other types of data, e.g. relational data, in Appendix D.

5. EXPERIMENTAL EVALUATION
In the experiments, we examine the performance of our

algorithm in terms of utility for different data mining tasks,
namely counting queries and frequent itemset mining, and
scalability of handling large set-valued datasets. We com-
pare our approach (DiffPart) with Dwork et al.’s method
(introduced in Section 4.1 and referred as Basic in the fol-
lowing) to show the significant improvement of DiffPart on
both utility and scalability. The implementation was done
in C++, and all experiments were conducted on an Intel
Core 2 Duo 2.26GHz PC with 2GB RAM.
Two real-life set-valued datasets, MSNBC 1 and STM 2,

are used in the experiments. MSNBC originally describes
the URL categories visited by users in time order. We con-
verted it into set-valued data by ignoring the sequentiality,
where each record contains a set of URL categories visited
by a user. MSNBC is of a small universe size. We deliber-
ately choose it so that we can compare DiffPart to Basic.
STM records the sets of subway and/or bus stations visited
by passengers in Montréal area within a week. It is of a rel-
atively high universe size, for which Basic (and the methods
in [4, 10, 32, 33]) fails to sanitize. The characteristics of
the datasets are summarized in Table 2, where max|t| is the
maximum record size and avg|t| the average record size.

5.1 Utility
Following the evaluation scheme from previous works [32],

we measure the utility of a counting query Q over the sani-

tized dataset D̃ by its relative error with respect to the ac-
tual result over the raw dataset D. Specifically, the relative

error of Q is computed as |Q(D̃)−Q(D)|
max{Q(D),s}

, where s is a sanity

bound that weakens the influence of the queries with ex-
tremely small selectivities. Selectivity is defined as the frac-
tion of records in the dataset satisfying all items in Q [32].
In our experiments, s is set to 0.1% of the dataset size, the
same as [32].
In our first set of experiments, we examine the relative

error of counting queries with respect to different privacy
budgets. For each dataset, we randomly generate 50, 000
counting queries with varying numbers of items. We call
the number of items in a query the length of the query. We
divide the query set into 5 subsets such that the query length

of the i-th subset is uniformly distributed in [1, i·max|t|
5

] and
each item is randomly drawn from I. In the following figures,
all relative error reported is the average of 10 runs.
Figure 3 shows the average relative error under varying

privacy budget B from 0.5 to 1.25 with fan-out f = 10
for each query subset. The X-axes represent the maximum

1MSNBC is publicly available at UCI machine learning
repository (http://archive.ics.uci.edu/ml/index.html).
2STM is provided by Société de transport de Montréal
(STM) (http://www.stm.info).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

20% 40% 60% 80% 100%

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Query Length

MSNBC-DiffPart

MSNBC-Basic

STM-DiffPart

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

20% 40% 60% 80% 100%

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Query Length

MSNBC-DiffPart

MSNBC-Basic

STM-DiffPart

(a) B = 0.5 (b) B = 0.75

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

20% 40% 60% 80% 100%

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Query Length

MSNBC-DiffPart

MSNBC-Basic

STM-DiffPart

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

20% 40% 60% 80% 100%

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Query Length

MSNBC-DiffPart

MSNBC-Basic

STM-DiffPart

(c) B = 1.0 (d) B = 1.25

Figure 3: Average relative error vs. privacy budget.

query length of each subset in terms of the percentage of
max|t|. The relative error decreases when the privacy bud-
get increases because less noise is added. The error of Ba-
sic is significantly larger than that of DiffPart in all cases.
When the query length decreases, the performance of Ba-
sic deteriorates substantially because the queries cover ex-
ponentially more itemsets that never appear in the origi-
nal dataset and, therefore, contain much more noise. In
contrast, our approach is more stable with different query
lengths. It is foreseeable that queries with a length greater
than max|t| result in less error. In addition to better utility,
DiffPart is more efficient than Basic, which fails to sanitize
the STM dataset due to its large universe size.

Due to the space limit, we report more experimental re-
sults on utility in Appendix E.

5.2 Scalability
We study the scalability of DiffPart over large datasets.

According to the complexity analysis in Section 4.2, dataset
size and universe size are the two factors that dominate the
complexity. Therefore, we present the runtime of DiffPart
under different dataset sizes and universe sizes in Figure 4.
Figure 4.a presents the runtime of DiffPart under different
dataset sizes. We randomly extract records from the two
datasets to form smaller test sets and set B = 1.0, f =
10. As expected, the runtime is linear to the dataset size.
Figure 4.b studies how the runtime varies under different
universe sizes, where B = 1.0 and f = 10. Since MSNBC
is of a small universe size, we only examine the runtime of
DiffPart on STM . We generate the test sets by limiting
STM ’s universe size. After reducing the universe size, the
sizes of the test sets also decrease. We fix the dataset size
under different universe sizes to 800,000. It can be observed
again that the runtime scales linearly with the universe size.
In summary, our approach scales well to large set-valued
datasets. It takes less than 35 seconds to sanitize the STM
dataset, whose |D| = 1, 210, 096 and |I| = 1, 012.

1093

0

5

10

15

20

25

500K 600K 700K 800K 900K

R
u
n
ti
m

e
 (
s
e
c
)

Dataset Size

MSNBC-DiffPart

STM-DiffPart

0

5

10

15

20

25

200 400 600 800 1000

R
u
n
ti
m

e
 (
s
e
c
)

Universe Size

STM-DiffPart

(a) Runtime vs. |D| (b) Runtime vs. |I|

Figure 4: Runtime vs. different parameters.

6. CONCLUSIONS
In this paper, we propose a probabilistic top-down par-

titioning algorithm for publishing set-valued data in the
framework of differential privacy. Compared to the existing
works on set-valued data publishing, our approach provides
stronger privacy protection with guaranteed utility. The
paper also contributes to the research of differential privacy
by demonstrating that an efficient non-interactive solution
could be achieved by carefully making use of the underly-
ing dataset. Our experimental results on real-life datasets
demonstrate the effectiveness and efficiency of our approach.

7. ACKNOWLEDGMENTS
We sincerely thank the reviewers for their insightful com-

ments. The research is supported in part by the new re-
searchers start-up program from Le Fonds québécois de la
recherche sur la nature et les technologies (FQRNT), Dis-
covery Grants (356065-2008) and Canada Graduate Schol-
arships from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

8. REFERENCES
[1] C. C. Aggarwal and P. S. Yu. A condensation approach to

privacy preserving data mining. In EDBT, pages 183–199,
2004.

[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry,
and K. Talwar. Privacy, accuracy, and consistency too: A
holistic solution to contingency table release. In PODS,
pages 273–282, 2007.

[3] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta.
Discovering frequent patterns in sensitive data. In
SIGKDD, pages 503–512, 2010.

[4] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In STOC,
pages 609–618, 2008.

[5] J. Cao, P. Karras, C. Raissi, and K.-L. Tan. ρ-uncertainty
inference proof transaction anonymization. In VLDB, pages
1033–1044, 2010.

[6] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[7] C. Dwork. A firm foundation for private data analysis.
Communications of the ACM, 54(1):86–95, 2011.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
Theory of Cryptography Conference, pages 265–284, 2006.

[9] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of lp decoding. In STOC, pages
85–94, 2007.

[10] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and
S. Vadhan. On the complexity of differentially private data

release: Efficient algorithms and hardness results. In
STOC, pages 381–390, 2009.

[11] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. Inf. Syst.,
29(4):343–364, 2004.

[12] A. Friedman and A. Schuster. Data ming with differential
privacy. In SIGKDD, pages 493–502, 2010.

[13] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu.
Privacy-preserving data publishing: A survey of recent
developments. ACM Computing Surveys, 42(4):14:1–14:53,
2010.

[14] B. C. M. Fung, K. Wang, and P. S. Yu. Anonymizing
classification data for privacy preservation. TKDE,
19(5):711–725, 2007.

[15] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith.
Composition attacks and auxiliary information in data
privacy. In SIGKDD, pages 265–273, 2008.

[16] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization
of sparse high-dimensional data. In ICDE, pages 715–724,
2008.

[17] J. Han and M. Kamber. Data mining: Concepts and
Techniques. Morgan Kaufmann, San Francisco, 2006.

[18] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. In VLDB, pages 1021–1032, 2010.

[19] Y. He and J. F. Naughton. Anonymization of set-valued
data via top-down, local generalization. In VLDB, pages
934–945, 2009.

[20] D. Kifer. Attacks on privacy and deFinetti’s theorem. In
SIGMOD, pages 127–138, 2009.

[21] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas.
Releasing search queries and clicks privately. In WWW,
pages 171–180, 2009.

[22] K. LeFevre, D. J. Dewitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. In ICDE, page 25, 2006.

[23] F. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In SIGMOD,
pages 19–30, 2009.

[24] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, 2007.

[25] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE Symposium on Security
and Privacy, pages 111–125, 2008.

[26] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In STOC, pages 765–774, 2010.

[27] L. Sweeney. k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):557–570, 2002.

[28] M. Terrovitis, N. Mamoulis, and P. Kalnis.
Privacy-preserving anonymization of set-valued data. In
VLDB, pages 115–125, 2008.

[29] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and
global recoding methods for anonymizing set-valued data.
VLDBJ, 20(1):83–106, 2011.

[30] K. Wang, B. C. M. Fung, and P. S. Yu. Handicapping
attacker’s confidence: An alternative to k-anonymization.
KAIS, 11(3):345–368, 2007.

[31] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei.
Anonymization-based attacks in privacy-preserving data
publishing. TODS, 34(2):8:1–8:46, 2009.

[32] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. In ICDE, pages 225–236, 2010.

[33] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data
release through multidimensional partitioning. In VLDB
workshop on SDM, pages 150–168, 2010.

[34] Y. Xu, B. C. M. Fung, K. Wang, A. W. C. Fu, and J. Pei.
Publishing sensitive transactions for itemset utility. In
ICDM, pages 1109–1114, 2008.

[35] Y. Xu, K. Wang, A. W. C. Fu, and P. S. Yu. Anonymizing
transaction databases for publication. In SIGKDD, pages
767–775, 2008.

1094

APPENDIX

A. NOTATIONAL CONVENTIONS
The table below provides a summary of the notational

conventions used in this paper.

A Privacy mechanism

B, B̃ Privacy budget, unused privacy budget
C Concept class

D, D̃ Raw dataset, sanitized dataset
f Fan-out
I Item universe
H Context-free taxonomy tree
N Noisy count
p Partition
Q Counting query
t Record in a dataset
u Taxonomy tree node

|D|, |D̃|, |I| Raw dataset size, sanitized dataset size,
universe size

B. COMPOSITION PROPERTIES
For a sequence of computations, its privacy guarantee is

provided by the composition properties. Any sequence of
computations that each provides differential privacy in iso-
lation also provides differential privacy in sequence, which
is known as sequential composition [23]. The implication is
that differential privacy is robust to collusions among adver-
saries.

Theorem B.1. [23] Let Ai each provide αi-differential
privacy. A sequence of Ai(D) over the dataset D provides
(
∑

i αi)-differential privacy.

In some special cases, in which a sequence of computations
are conducted on disjoint datasets, the privacy cost does not
accumulate, but depends only on the worst guarantee of all
computations. This is known as parallel composition. This
property could and should be used to obtain good perfor-
mance.

Theorem B.2. [23] Let Ai each provide αi-differential
privacy. A sequence of Ai(Di) over a set of disjoint datasets
Di provides (max(αi))-differential privacy.

C. AN EXAMPLE OF APPLYING ALGO

RITHM 1
This section provides an example of applying Algorithm 1

and Procedure 1 on the sample dataset in Table 1.

Example C.1. Given the sample dataset in Table 1, a
fan-out value 2, and the total privacy budget B, DiffPart
works as follows (see Figure 2 for an illustration). It first
creates the context-free taxonomy tree H illustrated in Fig-
ure 1 and generalizes all records to a single partition with
the hierarchy cut {I{1,2,3,4}}. A portion of privacy bud-
get B/6 is allocated to the first partition operation because
there are 3 internal nodes in H (and B/2 is reserved for leaf
partitions).
The algorithm then creates three sub-partitions with the

hierarchy cuts {I{1,2}}, {I{3,4}}, and {I{1,2}, I{3,4}} respec-
tively by replacing the node I{1,2,3,4} by different combina-
tions of its children, leading t3, t4, t5, and t6 to the sub-
partition {I{1,2}} and t1, t2, t7 and t8 to the sub-partition

{I{1,2}, I{3,4}}. Suppose that the noisy sizes indicate that
these two sub-partitions are “non-empty”. Further splits
are needed on them. There is no need to explore the sub-
partition {I{3,4}} any more as it is considered “empty”.

The portions of privacy budget for the next partition op-
erations are independently calculated for the two partitions.
For the partition {I{1,2}}, there is at most one more par-
tition operation and, therefore, it gets the privacy budget
B/3; for the partition {I{1,2}, I{3,4}}, B/6 is allocated as
there are still two internal nodes in its hierarchy cut. A fur-
ther split of {I{1,2}} creates three leaf partitions, {I1}, {I2},
and {I1, I2}. For the partition {I{1,2}, I{3,4}}, assume that
I{3,4} is randomly selected to expand. This generates three
sub-partitions: {I{1,2}, I3}, {I{1,2}, I4}, and {I{1,2}, I3, I4}
with t2 in {I{1,2}, I4}, and t1, t7, t8 in {I{1,2}, I3, I4}. As-
sume that the partition {I{1,2}, I3, I4} is considered “non-
empty”. One more partition operation is needed and B/6
privacy budget is allocated.

After the last partitioning, we get three more leaf par-
titions with the hierarchy cuts {I1, I3, I4}, {I2, I3, I4} and
{I1, I2, I3, I4}. For all leaf partitions, we use the reserved
B/2 plus the privacy budget left from the partitioning pro-
cess to calculate their noisy sizes. This implies 5B/6 for
{I1}, {I2}, and {I1, I2}, and 2B/3 for {I1, I3, I4}, {I2, I3, I4}
and {I1, I2, I3, I4}.

One interesting observation is that with the partitioning pro-
cess, the hierarchy cuts of the sub-partitions resulted from
the same partition operation become more similar. For this
reason, to some extent the effect of noise for counting queries
is mitigated (recall that the mean of noise is 0).

D. DISCUSSION OF APPLICABILITY
It is worthwhile discussing the applicability of our ap-

proach in the context of relational data. The core of our idea
is to limit the output domain by taking into consideration
the underlying dataset. In the paper, we propose a prob-
abilistic top-down partitioning process based on a context-
free taxonomy tree in order to adaptively narrow down the
output domain. For relational data, (categorical) attributes
are usually associated with taxonomy trees. Therefore, a
similar probabilistic partitioning process could be used. The
difference is that the partitioning process needs to be con-
ducted by considering the correlations among multiple tax-
onomy trees. In this case, exponential mechanism could be
used in each partition operation to choose an attribute to
split. Different heuristics (e.g. information gain, gini in-
dex or max) could be used as the score function. Following
the idea, we maintain that our idea could adapt existing
deterministic sanitization techniques, such as TDS [14] and
Mondrian [22], to satisfy differential privacy. This approach
would outperform existing works [4, 10, 32, 33] on publish-
ing relational data in the framework of differential privacy
in terms of both utility and efficiency for the same reasons
explained in this paper. We consider it in our future work.

E. ADDITIONAL EXPERIMENTS
In this section, we present additional experimental results

of the utility of sanitized data for counting queries and fre-
quent itemset mining.
Counting Query. We continue to study the effect of fan-
out, universe size and dataset size on relative error.

1095

0.0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Fan-out f

MSNBC-DiffPart

STM-DiffPart

0.0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Fan-out f

MSNBC-DiffPart

STM-DiffPart

(a) B = 0.5 (b) B = 0.75

0.0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Fan-out f

MSNBC-DiffPart

STM-DiffPart

0.0

0.1

0.2

0.3

0.4

3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Fan-out f

MSNBC-DiffPart

STM-DiffPart

(c) B = 1.0 (d) B = 1.25

Figure 5: Average relative error vs. fan-out.

Figure 5 illustrates the average relative error under differ-
ent values of fan-out f with privacy budget B ranging from
0.5 to 1.25 while fixing the query length to be 60% ·max|t|.
In general, DiffPart generates relatively stable results for
different fan-out values. For smaller fan-out values, each
partitioning receives less privacy budget; however, there are
more levels of partitionings, which increases the chance of
pruning more empty partitions. The fact makes the relative
error of smaller fan-out values comparable to that of larger
fan-out values. The insensitivity of our approach to different
fan-out values is a desirable property, which makes a data
publisher easier to obtain a good release.
Figure 6 presents the average relative error under different

universe sizes with privacy budget B varying from 0.5 to
1.25. We set the fan-out f = 10 and fix the query length
to 10 (we deliberately choose a small length to make the
difference more observable). Since MSNBC is of a small
universe size, we only examine the performance of DiffPart
on STM . We generate the test datasets in a similar setting
to that of Figure 4.b. To make a fair comparison, we fix the
dataset size under different universe sizes to 800,000. We
can observe that the average relative error decreases when
the universe size becomes smaller, because there is a greater
chance to have more records falling into a partition, making
the partition more resistant to larger noise. We can also
observe that the datasets with smaller universe sizes obtain
more stable relative error under varying privacy budgets.
This is due to the same reason that smaller universe sizes
result in partitions with larger sizes, which are less sensitive
to varying privacy budgets.
In theory, a dataset has to be large enough to obtain good

utility under differential privacy. We experimentally study
how the utility varies under different dataset sizes on the two
real-life set-valued datasets. We generate the test datasets in
a similar setting to that of Figure 4.a and present the results

0.0

0.1

0.2

0.3

0.4

200 400 600 800 1000

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Universe Size

STM-DiffPart

0.0

0.1

0.2

0.3

0.4

200 400 600 800 1000

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Universe Size

STM-DiffPart

(a) B = 0.5 (b) B = 0.75

0.0

0.1

0.2

0.3

0.4

200 400 600 800 1000

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Universe Size

STM-DiffPart

0.0

0.1

0.2

0.3

0.4

200 400 600 800 1000

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Universe Size

STM-DiffPart

(c) B = 1.0 (d) B = 1.25

Figure 6: Average relative error vs. universe size.

in Figure 7, where B varies from 0.5 to 1.25, f = 10, and
the query length is 60% ·max|t|. It can be observed that the
two datasets behave differently to varying dataset sizes. The
relative error of MSNBC improves significantly when the
privacy budget increases, while the change of STM ’s error
is small. This indicates the fact that when the dataset size is
not large enough, the distribution of the underlying records
is key to the performance. In addition, we can observe that
when the privacy budget is small, the error is more sensitive
to the dataset size. It is because the number of records
in a partition needs to be greater than the magnitude of
noise (which is inversely proportion to the privacy budget)
in order to obtain good utility.
Frequent Itemset Mining. We further validate the util-
ity of sanitized data by frequent itemset mining, which is
a more concrete data mining task. Given a positive num-
ber K, we calculate the top K most frequent itemsets on

the raw dataset D and the sanitized dataset D̃ respectively
and examine their similarity. Let FK(D) denote the set of

top K itemsets calculated from D and FK(D̃) the set from

D̃. For a frequent itemset Fi ∈ FK(D), let sup(Fi, FK(D))

denote its support in FK(D) and sup(Fi, FK(D̃)) denote its

support in FK(D̃). If Fi /∈ FK(D̃), sup(Fi, FK(D̃)) = 0. We
define the utility metric to be

1−

∑
Fi∈FK(D)

|sup(Fi, FK(D))− sup(Fi, FK(D̃))|
sup(Fi, FK(D))

K
,

where 1 means that FK(D) is identical to FK(D̃) (even the
support of every frequent itemset); 0 means that FK(D)

and FK(D̃) are totally different. Specifically, we employ
MAFIA 3 to mine frequent itemsets.

3A maximal frequent itemset mining tool, available at
http://himalaya-tools.sourceforge.net/Mafia/

1096

0.0

0.2

0.4

0.6

100K 200K 300K 400K 500K

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Dataset Size

MSNBC-DiffPart

STM-DiffPart

0.0

0.2

0.4

0.6

100K 200K 300K 400K 500K

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Dataset Size

MSNBC-DiffPart

STM-DiffPart

(a) B = 0.5 (b) B = 0.75

0.0

0.2

0.4

0.6

100K 200K 300K 400K 500K

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Dataset Size

MSNBC-DiffPart

STM-DiffPart

0.0

0.2

0.4

0.6

100K 200K 300K 400K 500K

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

Dataset Size

MSNBC-DiffPart

STM-DiffPart

(c) B = 1.0 (d) B = 1.25

Figure 7: Average relative error vs. dataset size.

In Figure 8, we study the utility of sanitized data for fre-
quent itemset mining under different privacy budgets and
different K values with f = 10. We observe two general
trends from the experimental results. First, the privacy bud-
get has a direct impact on frequent itemset mining. A higher
budget results in better utility since the partitioning process
is more accurate and less noise is added to leaf partitions.
The differences of the supports of top K frequent itemsets

between FK(D) and FK(D̃) actually reflect the performance
of DiffPart for counting queries of extremely small length
(because the top-K frequent itemsets are usually of a small
length). We can observe that the utility loss (the difference

between FK(D) and FK(D̃)) is less than 30% except the case
B = 0.5 for STM . Second, utility decreases when K value
increases. WhenK value is small, in most cases the sanitized
datasets are able to give the identical top-K frequent item-
sets as the raw datasets, and the utility loss is mainly caused
by the differences of the supports. When K value becomes
larger, there are more false positives (itemsets wrongly in-
cluded in the output) and false drops (itemsets mistakenly
excluded), resulting in worse utility. Nevertheless, the util-
ity loss is still less than 22% when K = 100 and B ≥ 1.0 on
both datasets.

F. PROOFS

F.1 Proof of Theorem 4.1
THEOREM 4.1. Given a non-leaf partition p with a hier-

archy cut and an associated taxonomy tree H, the maximum
number of partition operations needed to reach leaf partitions
is |InternalNodes(cut)| = ∑

ui∈cut |InternalNodes(ui, H)|,
where |InternalNodes(ui, H)| is the number of internal node
of the subtree of H rooted at ui.

Proof. Given a partition p, our algorithm selects one
non-leaf taxonomy tree node from its hierarchy cut to ex-

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

U
ti
lit

y

K Value

MSNBC-DiffPart

STM-DiffPart

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

U
ti
lit

y

K Value

MSNBC-DiffPart

STM-DiffPart

(a) B = 0.5 (b) B = 0.75

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

U
ti
lit

y

K Value

MSNBC-DiffPart

STM-DiffPart

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

U
ti
lit

y

K Value

MSNBC-DiffPart

STM-DiffPart

(c) B = 1.0 (d) B = 1.25

Figure 8: Utility for frequent itemset mining.

pand at a time. Our algorithm stops when every non-leaf
taxonomy tree node in p’s hierarchy cut is specialized to a
leaf node. For a non-leaf node u in the hierarchy cut, in the
worst case, it will be replaced by the combination containing
all its children. If the children are not leaf node, they need
to be split, and in the worst case again, it will be replaced
by the combination containing all its children. That is, we
need to go through all internal nodes of the subtree of H
rooted at u. Therefore, in order to make all non-leaf nodes
in p’s hierarchy cut to leaf nodes, we need, in the worst
case,

∑
ui∈cut |InternalNodes(ui, H)| partitionings (parti-

tion operations).
Take the dataset in Table 1 as an example. Consider

a partition with the hierarchy cut {I{1,2,3,4}}. After the
first partitioning, the sub-partition with the hierarchy cut
{I{1,2}, I{3,4}} represents the worst case. Suppose I{1,2} is
selected to split, the sub-partition with the hierarchy cut
{I1, I2, I{3,4}} presents the worst case. After that, we need
one more split on I{3,4}. Therefore, in the worst case, the
total number of partition operations required is 3, which
is the number of internal nodes of the taxonomy tree in
Figure 1.

F.2 Proof of Adaptive Privacy Budget Alloca
tion Scheme

We prove that our adaptive allocation scheme always as-
signs more privacy budget to more specific partitions below.
Let ni be the maximum number of partition operations cal-
culated according to Theorem 4.1. Let B

2

∏m−2
i=1 (1− 1

ni
) ·

1
nm−1

be the privacy budget assigned to a partition and
B
2

∏m−1
i=1 (1− 1

ni
)· 1

nm
the privacy budget assigned to its sub-

partitions, which are more specific. We have ni ≥ ni+1 + 1
because the maximum number of partition operations fur-
ther needed for a partition is always one more than that of
its sub-partitions (we need at least one more partition op-

1097

eration to split it to its sub-partitions). We can observe the
following.

B

2

m−1∏

i=1

(1− 1

ni
) · 1

nm
=

B

2

m−2∏

i=1

(1− 1

ni
) · nm−1 − 1

nm−1
· 1

nm

≥ B

2

m−2∏

i=1

(1− 1

ni
) · nm

nm−1
· 1

nm

=
B

2

m−2∏

i=1

(1− 1

ni
) · 1

nm−1

Using transitivity, we conclude that more specific parti-
tions always receive more privacy budget.

F.3 Proof of Theorem 4.2
THEOREM 4.2. The result of Algorithm 1 by invoking

Procedure 1 is (ǫ, δ)-useful for counting queries.

Proof. Given any counting query Q that covers up to m
distinct itemsets in the entire output domain, the accurate
answer of Q over the input dataset D is Q(D) =

∑m
i=1 Q(Ii),

where Ii is the itemset covered by Q; the answer of Q over

D̃ is Q(D̃) =
∑m

i=1(Q(Ii)+Ni), where Ni is the noise added
to Ii. By the definition of (ǫ, δ)-usefulness, to prove Theo-
rem 4.2 is to prove that with a probability 1− δ,

|Q(D̃)−Q(D)| = |
m∑

i=1

(Q(Ii) +Ni)−
m∑

i=1

Q(Ii)|

= |
m∑

i=1

Ni|

≤
m∑

i=1

|Ni|

≤ ǫ

We have the following observations.

• For Ii such that Ii /∈ D ∩ Ii /∈ D̃, Ni = 0. Let the size
of such Ii be m′ ≤ m.

• For Ii such that Ii ∈ D ∩ Ii ∈ D̃, Ni ∼ Lap(1/B̄),

where B̄ = B/2 + B̃.

• For Ii such that Ii /∈ D ∩ Ii ∈ D̃, Ni ∼ Lap(1/B̄),

where B̄ = B/2 + B̃.

• For Ii such that Ii ∈ D ∩ Ii /∈ D̃, Ni ∼ Lap(1/β) +
γ, where β = B/(2 · |InternalNodes(H)|) ≤ B̄ (the
smallest privacy budget used in the entire partitioning
process) and γ =

√
2C2 logf |I|/β is introduced by the

threshold in Algorithm 1 and Procedure 1.

Therefore, we need to prove that with probability 1− δ,

m∑

i=1

|Ni| =
m−m′∑

i=1

|Ni| ≤
m−m′∑

i=1

(|Yi|+ γ)

≤
m−m′∑

i=1

|Yi|+ (m−m′) · γ

≤ ǫ

where Yi is a random variable i.i.d from Lap(1/β). If every
|Yi| ≤ ǫ1 where ǫ1 = ǫ

m−m′ − γ, we have
∑m

i=1 |Ni| ≤ ǫ. Let

us call the event that any single |Y i| > ǫ1 a FAILURE. We
can calculate

Pr[FAILURE] = 2

∫ ∞

ǫ1

β

2
exp(−βx)dx = exp(−βǫ1)

Since every Yi is independent and identically distributed,
we have

Pr[
m∑

i=1

|Ni| ≤ ǫ] = Pr[

m−m′∑

i=1

|Yi| ≤ ǫ− (m−m′) · γ]

≥ (1− Pr[FAILURE])m−m′

≥ (1− exp(−βǫ1))m−m′

In [33], it has been proven that

(1− exp(−βǫ1))m−m′ ≥ 1− (m−m′)exp(−βǫ1)
Therefore, we get

Pr[
m∑

i=1

|Ni| ≤ ǫ] ≥ 1− (m−m′)exp(−βǫ1)

≥ 1− (m−m′)exp(βγ − βǫ

m−m′
)

This completes the proof.

F.4 Proof of Privacy Analysis
The equation needed to prove in Section 4.2 can be rewrit-

ten as the following equivalent equation:

1

n1
+

m−1∑

i=1

(
i∏

j=1

(1− 1

nj
) · 1

ni+1
) ≤ 1

Subject to ni ≥ ni+1 + 1 and nm = 1.

We add one more non-negative item
∏m−1

i=1 (1− 1
ni
)·(1− 1

nm
)

to the left hand side of the above equation. We obtain the
following.

1

n1
+

m−1∑

i=1

(
i∏

j=1

(1− 1

nj
) · 1

ni+1
) +

m−1∏

i=1

(1− 1

ni
) · (1− 1

nm
)

=
1

n1
+

m−2∑

i=1

(
i∏

j=1

(1− 1

nj
) · 1

ni+1
) +

m−1∏

i=1

(1− 1

ni
) · 1

nm

+

m−1∏

i=1

(1− 1

ni
) · (1− 1

nm
)

=
1

n1
+

m−2∑

i=1

(
i∏

j=1

(1− 1

nj
) · 1

ni+1
) +

m−1∏

i=1

(1− 1

ni
)

=
1

n1
+

m−2∑

i=1

(

i∏

j=1

(1− 1

nj
) · 1

ni+1
)

+

m−2∏

i=1

(1− 1

ni
) · (1− 1

nm−1
)

= · · ·
= 1

This completes the proof.
Since nm = 1, we can get that the item added above∏m−1
i=1 (1− 1

ni
) · (1− 1

nm
) = 0. This indicates that our allo-

cation scheme makes full use of the total privacy budget.

1098

