
Column-oriented Database Systems
Daniel J. Abadi

Yale University
New Haven, CT, USA

dna@cs.yale.edu

Peter A. Boncz
CWI

Amsterdam, The Netherlands

p.boncz@cwi.nl

Stavros Harizopoulos
HP Labs

Palo Alto, CA, USA

stavros@hp.com

ABSTRACT
Column-oriented database systems (column-stores) have attracted
a lot of attention in the past few years. Column-stores, in a
nutshell, store each database table column separately, with
attribute values belonging to the same column stored
contiguously, compressed, and densely packed, as opposed to
traditional database systems that store entire records (rows) one
after the other. Reading a subset of a table’s columns becomes
faster, at the potential expense of excessive disk-head seeking
from column to column for scattered reads or updates. After
several dozens of research papers and at least a dozen of new
column-store start-ups, several questions remain. Are these a new
breed of systems or simply old wine in new bottles? How easily
can a major row-based system achieve column-store performance?
Are column-stores the answer to effortlessly support large-scale
data-intensive applications? What are the new, exciting system
research problems to tackle? What are the new applications that
can be potentially enabled by column-stores? In this tutorial, we
present an overview of column-oriented database system
technology and address these and other related questions.

1. INTRODUCTION
The intended audience of the tutorial is database system
researchers, designers, and practitioners with a keen interest on
database system architecture and performance, and on database
system support for large-scale, data-intensive applications
(especially data warehousing and business intelligence). The
expected main learning outcomes are: (a) increased understanding
of column-based data management system architectures, and in
what situations and domains they are suitable for large-scale data
analysis, (b) in-depth coverage of advanced storage and
processing techniques (several of which have not yet been
transferred into commercial systems) and of promising avenues
for academic and industrial research, and (c) surveying the state-
of-the-art in today’s academic and commercial offerings, along
with promising applications enabled by those systems. We
organize the tutorial into three parts which are described next.

2. PART A
Fundamentals, application areas, and performance tradeoffs

The roots of column-store DBMSs can be traced in the 1970s,
when transposed files were first studied, followed by
investigations on vertical partitioning as a form of a table attribute
clustering technique. By the mid 1980s, the advantages of a fully
decomposed storage model (DSM — a predecessor to column-
stores) over NSM (traditional row-based storage) were
documented [5] and subsequent research on join and projection
indices further strengthened the advantages of DSM over NSM.
Despite the suitability of the DSM layout for analytical queries,
market needs and non-favorable technology trends helped row-
based database systems maintain their foothold. It was not until
the 2000s that column-store research and commercial systems
took off. We trace the history of column-stores and examine in
detail those technology and application trends that lead to the
resurgence of research and commercialization of column-stores.

A columnar data layout dictates much of the basic architectural
design in a column-store. Each column is stored contiguously on a
separate location on disk, typically using large disk pages (or
large read units) to amortize disk head seeks when scanning
multiple columns on hard drives. To improve read efficiency,
columnar values are typically densely packed, foregoing the
explicit storage of record IDs, and using light-weight compression
schemes whenever possible (e.g., [7]). Column scan operators
differ from row-scanners in that they are responsible for
translating value position information into disk locations and for
combining and reconstructing (when needed) partial or entire
tuples out of different columns. Join operators can either rely on
column-scanners for receiving reconstructed tuples, or they can
operate directly on columns by first computing a join index and
then fetching qualifying values [8]. We cover architectural
considerations and implementation of basic query processing
mechanisms that are common across column-stores.

We then provide an overview of the application areas for column-
stores. We first cover the traditional areas like data warehousing,
business intelligence and data mining, and discuss the trends in
these, such as personal data marts (MS Gemini) and the need for
on-line updates and loads. Another promising direction is
scientific data management, where we showcase some of the
results with MonetDB on the Sloan Digital Sky Survey. Finally,
we describe recent work in addressing alternative data models,
such as object data models, array data models, XML and RDF
using column-stores.

We conclude the first part with an examination of performance
tradeoffs in row, column, and hybrid data representations, both on
disk and in main memory. The resurgence of on-disk columnar

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.



storage was preceded by interest in investigating in-memory data
layouts for addressing the growing speed disparity between CPU
and RAM in the late 1990s. The main-memory advantages of
DSM were extensively demonstrated in the MonetDB and PAX
projects. The recent growing popularity of full-blown column-
stores has sparked an interest in understanding performance
tradeoffs of read-optimized databases that utilize columnar
representation and efficient compression schemes (e.g., [6]).

3. PART B
Column-store internals & advanced query processing techniques

One of the most-often cited advantages of column-stores is data
compression. The intuitive argument for why column-stores
compress data well is that compression algorithms perform better
on data with low information entropy (high data value locality).
We discuss some compression algorithms that work particularly
well in column-store databases, and how one can architect a query
executer to operate directly on compressed data (so that the
system can achieve the I/O performance benefits of compression
without paying the CPU cost of decompression) [1, 9]. We also
discuss some recent work that argues that much of the
compression benefits of column-stores are not necessarily unique
to columns-stores; if fact, they can also be applied to row-stores.

Two of the most-often cited disadvantages of column-stores are
write operations and tuple construction. Write operations are
generally considered problematic for two reasons: (a) inserted
tuples have to be broken up into their component attributes and
each attribute must be written separately, and (b) the dense-
packed data layout makes moving tuples within a page nearly
impossible. We discuss some of the techniques that column-stores
use to mitigate their fundamental write issues, such as in-memory
buffering, tuple moving, and partition-merging. Tuple
construction is also considered problematic since information
about a logical entity is stored in multiple locations on disk, yet
most queries access more than one attribute from an entity.
Further, most database standards (e.g., ODBC and JDBC) access
results entity-at-a-time (not column-at-a-time). Thus, at some
point in a query plan, data from multiple columns must be
combined into ‘rows’ of information about an entity. We discuss
techniques developed to reduce such construction costs (e.g., [2]).

To provide a better understanding of some of the distinguishing
features of the internals of column-stores, we discuss some recent
work that attempts to simulate column-stores inside row-stores
(e.g., [3]). This work isolates some of the key techniques that
result in performance gains for column-store databases, and
motivates an effort, both in research and industry, to build various
types of hybrid systems, and achieve some convergence between
column-store and row-store technologies. We also discuss some
open research problems in the context of column-store systems,
including physical database design, indexing techniques, parallel
query execution, replication, and load balancing.

4. PART C
Case study and review of column-store products

We illustrate many of the techniques outlined, by taking an in-
depth look at the architecture of MonetDB/X100, which is, in
fact, two different column-stores, developed at CWI. Both X100
[9] and MonetDB [4], apart from pursuing columnar storage from

a data access point of view, focused on exploiting column-wise
data processing as a way to improve the computational efficiency
of database engines, in particular as a way to better exploit the
features of modern processors. In the case of MonetDB, column-
wise query processing was realized by a physical column algebra
— the idea being that the simplicity of columnar algebras provide
opportunities for more efficient execution primitives (similar to
RISC vs. CISC). We explain these opportunities in detail,
covering improving instruction throughput in pipelined CPUs,
CPU branch prediction efficiency and CPU cache efficiency, and
also exploiting SIMD instructions and GPU hardware.

In X100, the benefits of the column algebras were conserved, but
extended with pipelined query processing in its vectorized query
processing model. We elaborate on the challenges and
opportunities of vectorized query processing and also cover
X100’s new vectorized columnar compression schemes, as well as
its innovations in column-store updates. Finally, we discuss the
tension between magnetic disk capabilities and data access needs
of data warehousing and column-stores, and outline work on
intelligent I/O scheduling for column-stores (e.g., in the area of
data clustering and cooperative scans [10]). This discussion also
covers the potential impact of solid state drives (SSD) technology
on column storage (e.g., [8]).

We conclude the tutorial with a comprehensive review of
commercially available column-stores, including Kdb, MonetDB,
VectorWise, Vertica/C-Store, Sybase IQ, Infobright, Exasol,
ParAccel, the SAP BI accelerator, and Kickfire.

5. REFERENCES
[1] Abadi, D.J., Madden, S.R., and Ferreira, M.: Integrating

compression and execution in column-oriented database
systems. In Proc. SIGMOD, 2006.

[2] Abadi, D.J., Myers, D.S., DeWitt, D.J., and Madden, S.R.:
Materialization strategies in a column-oriented DBMS. In
Proc. ICDE, 2007.

[3] Abadi, D.J., Madden, S.R., and Hachem, N.: Column-stores
vs. row-stores: how different are they really? In Proc.
SIGMOD, 2008.

[4] Boncz, P.A. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. Ph.D. Thesis, Universiteit van
Amsterdam, Amsterdam, The Netherlands, May 2002.

[5] Copeland, G.P., Khoshafian, S.N.: A Decomposition Storage
Model. In Proc. SIGMOD, 1985.

[6] Harizopoulos, S., Liang, V., Abadi, D.J., and Madden, S.:
Performance tradeoffs in read-optimized databases. In Proc.
VLDB, 2006.

[7] Stonebraker, M. et al.: C-Store: A Column-oriented DBMS.
In Proc. VLDB, 2005.

[8] Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L.,
and Graefe, G.: Query processing techniques for solid state
drives. In Proc. SIGMOD, 2009.

[9] Zukowski, M., Heman, S., Nes, N., and Boncz, P.A.: Super-
scalar ram-cpu cache compression. In Proc. ICDE, 2006.

[10] Zukowski, M., Heman, S., Nes, N., and Boncz, P.A.
Cooperative Scans: Dynamic Bandwidth Sharing in a
DBMS. In Proc. VLDB, 2007.


