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ABSTRACT
This tutorial provides a comprehensive overview of recent
research progress on the important problem of approximate
search in string collections. We identify existing indexes,
search algorithms, filtering strategies, selectivity-estimation
techniques and other work, and comment on their respective
merits and limitations.

1. MOTIVATION
Text data is ubiquitous. Management of string data in

databases and information systems has taken on particular
importance recently. This tutorial focuses on the following
problem: Given a collection of strings, efficiently identify
the ones similar to a given query string. Such a query is
called an “approximate string search.” This problem is of
great interest for a variety of applications, as illustrated by
the following examples.

Data Cleaning: Information from multiple data sources of-
ten have numerous inconsistencies. For example, the same
real-world entity can be represented in slightly different for-
mats, such as “PO Box 23, Main St.” and “P.O. Box 23,

Main St”. Errors can also be introduced due to irregular-
ities in the data-collection process, from human mistakes,
and many other causes. For these reasons, one of the main
goals of data cleaning is to find similar entities within a col-
lection, or all similar pairs of entities across a number of
collections.

Query Relaxation: Often enough, users might pose SQL
queries to a DBMS that contain selection predicates that
do not match all of the relevant data within the database
exactly. The reasons are possible errors in the query, in-
consistencies in the data, limited knowledge about the data,
and more. By supporting query relaxation, the DBMS can
return data of potential interest to the user, based on query
predicate similarity (e.g., returning “Steven Spielberg” as
an answer to the query “Steve Spielberg”).

Spell Checking: Given an input document, a spell checker
finds potential candidates for a possibly mistyped word by
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performing an approximate string search in its dictionary.
Interactive Search: A very recent important application is

to provide answers to query results in real-time, as users are
typing their query (e.g., a Google search box with a drop-
down suggestion menu that updates as users type). Such
interactive-search boxes are ubiquitous and have shown to
be very important in practice, because they limit the num-
ber of errors made by users and also reduce the number
of query reformulations submitted in order to find the one
that will yield satisfying results. The drawback of almost
all existing, interactive techniques is that they support only
prefix or substring matches, without regard for fuzzy, ap-
proximate searching; if users make a spelling mistake, they
are presented with an empty suggestion box. One reason is
that interactive approximate string search has attracted lit-
tle attention and is not a trivial problem to solve, given the
expensive nature of string similarity functions and ranking
techniques.

These applications require approximate-string-search al-
gorithms with a high real-time performance. For instance,
consider a spell checker such as those used by Gmail, Hot-
mail, or Yahoo! Mail, which need to be invoked numerous
times per second, in order to support the millions of concur-
rent users using these services. Each spell checking request
needs to be processed as fast as possible. Clearly, higher
throughput allows the server to serve a much larger number
of users seamlessly. Another example is a business search on
a local-search engine (e.g., YellowPages, Yahoo! Local, and
Superpages). It is very often the case that users misspell
business names (e.g., “Wall-mart” instead of “Wal-mart”),
and hence approximate string search in the context of local-
search is essential. Performing approximate string search-
ing efficiently over the very large string collections present
in these applications is fundamental in order to be able to
sustain thousands of user requests per second.

A closely related problem is that of selectivity estima-
tion for approximate-string-matching queries. It is of great
interest to be able to efficiently and accurately evaluate
the selectivity of selection queries for the purpose of query
optimization (in order to design efficient query-execution
plans). Clearly, the selectivity of approximate string match-
ing queries depends highly on the similarity function used.
Hence, a variety of selectivity-estimation algorithms have al-
ready been proposed in the literature, for different similarity
functions and based on a diverse number of techniques (e.g.,
histograms, sampling, and clustering).



2. TUTORIAL OUTLINE
First, we will motivate the problem by using real examples

and industrial-strength demos of approximate-search queries
and various similarity functions. Then, we will focus on list-
merging search algorithms [26, 21, 11] and variable-length
grams [22, 29]. Next, we will focus on the emerging prob-
lem of interactive approximate search [14, 9]. Then, we will
present a detailed explanation of filtering techniques for ef-
ficient candidate generation [10, 28, 6, 1, 4]. The final part
of the tutorial will be devoted to selectivity-estimation tech-
niques [16, 19, 20, 24, 12]. We will conclude the tutorial by
outlining other related work [2, 3, 13, 23].
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