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ABSTRACT

Mining frequent subtrees in a database of rooted and labeled trees is
an important problem in many domains, ranging from phylogenetic
analysis to biochemistry and from linguistic parsing to XML data
analysis. In this work we revisit this problem and develop an archi-
tecture conscious solution targeting emerging multicore systems.
Specifically we identify a sequence of memory related optimiza-
tions that significantly improve the spatial and temporal locality
of a state-of-the-art sequential algorithm — alleviating the effects
of memory latency. Additionally, these optimizations are shown
to reduce the pressure on the front-side bus, an important consid-
eration in the context of large-scale multicore architectures. We
then demonstrate that these optimizations while necessary are not
sufficient for efficient parallelization on multicores, primarily due
to parametric and data-driven factors which make load balancing
a significant challenge. To address this challenge, we present a
methodology that adaptively and automatically modulates the type
and granularity of the work being shared among different cores.
The resulting algorithm achieves near perfect parallel efficiency on
up to 16 processors on challenging real world applications. The op-
timizations we present have general purpose utility and a key out-
come is the development of a general purpose scheduling service
for moldable task scheduling on emerging multicore systems.

1. INTRODUCTION

The field of knowledge discovery is concerned with extracting
actionable knowledge from data efficiently. While most of the early
work in this field focused on mining simple transactional datasets,
recently there is a significant shift towards analyzing data with
complex structure such as trees and graphs. This article focuses
on mining tree structured data that is useful in a wide range of ap-
plication domains. For example, the secondary structure of a RNA
molecule is often represented as a rooted ordered tree [46]. Uncov-
ering common substructures from a database of such trees helps
in discovering new functional relationships among corresponding
RNAs [11]. These substructures are known to be useful in predict-
ing RNA folding [15] and in functional studies of RNA process-
ing mechanisms [24]. Similar techniques are also applicable for
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studying glycan molecules which are responsible for many cellular
processes [13], and phylogenies which denote evolutionary rela-
tionships among different organisms [25, 42].

In case of web log mining, the visitor accesses to a website can
be modeled (with some approximations) as trees [42]. Frequent
patterns extracted from these trees can help in making recommen-
dations, in web personalization, and in better organization of web
pages [26]. Frequent tree mining is also found to be useful in an-
alyzing XML repositories [44], in designing caching policies for
XML indices [41], in designing automatic language parsers [8], in
examining parse trees [4], and in many other applications. The
essential problem in these instances can be abstracted to the one
that of discovering frequent subtrees from a set of rooted ordered
trees [3, 10, 18, 22, 28, 31, 32, 35, 42] - the focus of this article.

The current explosion in the availability of information necessi-
tates the development of efficient and scalable data mining algo-
rithms which can deal with gigabytes of data. An important strat-
egy here is to leverage recent advancements in computer architec-
ture which are making the computer cycles cheap and abundant.
For instance, multicore or chip multiprocessor (CMP) systems, pri-
marily motivated by power and energy considerations, are becom-
ing extremely common-place. The general trend has been from
single-core to many-core: from dual-, quad-, eight-core chips to the
ones with tens of cores . For such systems, it is becoming increas-
ingly evident that a memory conscious design is critical to obtain
good performance. There is both a need to alleviate the problem of
memory access latency as well as to reduce the bandwidth pressure
since technology constraints are likely to limit off-chip bandwidth
to memory as one scales up the number of cores per chip [14].
Equally important, it becomes imperative to identify scalable and
efficient parallel algorithms to deliver performance commensurate
with the number of cores on chip. A fundamental challenge is to en-
sure good load balance in the presence of data and workload skew
pointing to the need for an adaptive design strategy.

We contend, and later demonstrate through a detailed perfor-
mance study, that extant tree mining algorithms require significant
changes to meet these challenges. The rationale is as follows. First,
they all trade space for improved execution time by employing sev-
eral potentially large data structures. Such strategies developed for
unicore systems with large memory are likely to be inefficient on
multicores where the premium on off-chip memory accesses is ex-
pected to be very high. Additionally, parallel instantiations of such
algorithms will require shared access to large data structures and
often dictate housing additional redundant information thereby re-
ducing the overall efficiency. Second, even if the first issue can
be resolved through appropriate memory conscious designs, one
still needs to develop an effective parallelization strategy account-
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ing for workload skew. Moreover, there is also a need to expose
and subsequently exploit a fine-grained parallelism on such archi-
tectures [23]. In this article we address these challenges and make
the following contributions.

e \We propose several generic memory conscious optimiza-
tions which alleviate the problem of memory access latency as well
as reduce the bandwidth pressure on the front side bus. Specif-
ically, optimizations that limit the pointer use, leverage a novel
compressed representation of the problem space, and enable com-
putational chunking have been designed.

e Through a detailed characterization, we demonstrate that our
optimizations reduce the memory usage by up to 366-folds while
improving the run time by four times when compared to state-of-
the-art. Through a novel bandwidth measurement strategy, we also
show that they make uniform and small sized memory requests, re-
sulting in a reduced bandwidth pressure on the front side bus.

e \We empirically show that these optimizations are necessary
but not sufficient for efficient parallelization on multicores. We
then present a multi-level parallel algorithm that automatically
and adaptively modulates the type and granularity of the work, as
dictated at run time by the input parameters and data set properties.
Our algorithm leverages a general purpose scheduling service we
have developed for emerging multicore systems.

e \We show, on a dual quad core CMP system and on a 16-
processor SMP system, that our load balancing strategies achieve
near perfect parallel efficiency on challenging real world data
sets.

The rest of the article is organized as follows. We first define the
problem and show the limitations of existing works in Section 2.
We then present our memory optimizations in Section 3. Section 4
describes both our parallelization strategies and our scheduling ser-
vice designed for multicores. Results from empirical evaluation are
shown in Section 5 and Section 6 demonstrates the broader appli-
cability of our contributions in the paper.

2. BACKGROUND AND CHALLENGES

DEFINITION 2.1. Frequent SubtreeMining: Given a database
of rooted ordered trees, enumerate the set of all frequent embedded
subtrees (|FS]) i.e., the subtrees whose support is greater than a
user defined minimum support threshold.
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Figure 1: Example database and patterns

The minimum support (minsup) can be expressed either as a
percentage or as an absolute number of database trees. There are
two ways to define the support of a subtree (or pattern) S — transact-
ion-based and occurrence-based. The former counts the number of
trees in which S occurs, and the latter counts the total number of
embeddings (or matches) in the database. If S occurs twice in a
given tree then its transaction support is 1 whereas its occurrence
support is 2. In this article, we use the transaction-based definition.

TreeMiner | iMB3-T | Trips
Working set’ (KB) 256 128 64
Memory usage” (GB) 7 32 4

10n Treebank data set at minsup=45K (85%) — see Section 5
2Maximum memory footprint observed in all our experiments in Section 5

Table 1: Characterization of Tree Mining Algorithms

In Fig. 1, P, has one embedding (matching) in each of T; and T,
whereas P> occurs only in T with 2 embeddings. If minsup=2
then only P; considered frequent. A variant of this problem mines
for induced, as opposed to embedded, subtrees 2.

Any mining process has two phases, candidate generation and
support counting. The first one generates candidate subtrees which
are evaluated for their frequency in the second one. The challenges
in two phases are to efficiently traverse the search space and to
perform subtree isomorphisms, respectively. We employ a pattern-
growth approach where a frequent subtree .S is repeatedly grown
with new edges to yield new candidate subtrees. The new edge
is called an extension, and the extension process is called point
growth. An equivalence class of S (denoted as [S]) contains all
subtrees generated from .S through one or more point growths. If
S is a single node v then [S] has all the subtrees whose root is v.
Related Work: A majority of extant tree mining algorithms em-
ploy special data structures called as embedding lists (EL) to store
extra state with which they avoid repeated executions of expensive
subtree isomorphism checks. All matches of a frequent subtree S
are stored in its EL so that the matches for subtrees grown from
S can be found easily. TreeMiner, proposed by Zaki, stores the
matches in scope-lists whose entries (in a worst case) are of size
equal to the pattern size [42]. They usually occupy a lot of mem-
ory due to redundant information (see Table 1), especially when the
number of overlapping matches is high — a common case in most
real-world data sets. New subtrees are generated by joining these
large lists, resulting in expensive run time performance.

iMB3 proposed by Tan et al. uses occurrence lists to store the
embeddings [28]. It also maintains a dictionary for representing
the data and descendant lists to track all descendants of a frequent
node, which are persistent across entire execution. The memory us-
age is thus very high even at moderate support values (see Table 1).
They recently developed a similar method that uses transaction-
based support, which hereinafter, is called as iMB3-T.

Wang et al. proposed Chopper and XSpanner [35]. Chopper
recasts the subtree mining into sequence mining but suffers from
large number of false positive subsequences. XSpanner, in con-
trast, employs recursive projections which are often too complex
and result in pointer-chasing [31], amounting to poor performance.

Researchers have also proposed methods like CMTreeMiner [10]
and PathJoin [39] which reduce the output size by mining closed
and maximal subtrees. They however address only induced sub-
trees. Another method by Termier et al. [33] assume that no two
sibling nodes can have the same label — an unrealistic assumption.
There exist several other algorithms which differ in the type of sub-
trees that they mine [3, 18, 22, 25]. Please refer to the survey by
Chi et al. for more details [9].

In this work we present our memory optimizations in the context
of Trips [31]. Of all the algorithms discussed thus far it has the
smallest memory footprint and working set (see Table 1), and is
most efficient (see Section 5). While these numbers appear quite
reasonable for Trips, at lower supports, they can still be much too
large. We next briefly describe Trips as Algorithm 1.

2 An induced subtree preserves parent-child relationships whereas an embedded sub-
tree preserves ancestor-descendant relationships.
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Figure 2: (a) Framework of our MCT algorithm (b) Example database tree, pattern, R-Matrix

Trips [31]: It encodes each database tree T' as two sequences:
Numbered Priifer Sequence NPSt; and Label Sequence LSr.
They are constructed iteratively based on post-order traversal num-
bers (PON). In every iteration, the node (say, v) with the smallest
PON is removed. The label of v is appended to LS+, and the PON
of v’s parent is added to N PSt (see Fig. 2b). Note that this repre-
sentation is different from a similar ordering used by Rao et al. [21].
The differences are detailed elsewhere [30].

Algorithm 1 Trips Algorithm
Input: {T1,T%,...,Tn}, minsup
(D, Fy) =Transform(T;): 1 <: < N
for each fin Fy do
mineTrees (NULL, (f, —1), D)
mineTrees (pat, extension (lab,pos), tidlist)
1: newpat «— pat + (lab, pos) /I pattern extension
2: output newpat
3: for each T'in tidlist do
4: if (lab, pos) is an extension point for pat inT" then
5
6
7
8

update the embedding list of T"i.e., EL(T)
: add T to newtzdlist // indicates newpat occurs in T’
. H=NULL
for each T in newtidlist do

for each node v in T do
10: for each match m in EL(T) do
11: if v is a valid extension to m then
12: add the extension point to H

13: for each ext in H do
14:  if extis frequent then
15: mineTrees (newpat, ext, newtidlist)

Given database is first transformed into sequences (D) and all
frequent nodes (F4) are found. For each f € Fi, mineTrees is
called to mine subtrees from its equivalence class [f]. mineTrees
is a recursive procedure with three inputs: a pattern pat, an ex-
tension (lab, pos), and a projected database ¢idlist. An extension
(lab, pos) of pat defines a new subtree newpat (in line 1) obtained
by attaching a node with label lab to a node in pat whose PON is
equal to pos — each extension uniquely identifies a subtree grown
from a given pattern. The projected database (PD) tidlist contains
the list of trees in which pat has at least one embedding.

Initially, EL(T) contains all matches of pat in T'. Lines 3-5 trans-
form EL(T) into a list for newpat by appending the positions in T’
at which (lab, pos) match — equivalent of finding isomorphisms
of newpat in tidlist. Line 6 builds the new projected database
newtidlist. When mineTrees returns, the newly appended entries
are deleted so that only the matches of pat remain in EL(T).

For every T' € newtidlist, we evaluate each node in T" against
all embeddings of newpat in EL(T) to discover new extensions

(lines 8-10). Resulting extensions are hashed into H which records
their frequencies (lines 11-12). Lines 13-15 process the frequent
extensions for producing larger subtrees. Note that each extension
in H denotes a unique subtree that is grown from newpat.

Parallelization of semi-structured data mining algorithms is seve-
rely limited by the existence of embedding lists (see Section 5.3).
Therefore, simple parallel algorithms developed for itemsets [43]
(which do not involve such lists) are not generalizable for trees and
graphs. Buehrer et al. have parallelized graph mining workloads
on CMPs but their focus was primarily on harnessing the tradeoff
between time and space [6], which is critical for graph mining since
the subgraph isomorphism is very expensive. In contrast, our opti-
mizations improve both the run time and memory performance of
Trips (see Section 5). Furthermore, our parallel strategies operate
at much finer level of granularity than the ones used by Buehrer
et al. Other parallel algorithms developed for data mining tasks
like clustering [20] and classification [45] focus on shared mem-
ory SMP systems and shared-nothing cluster systems, and they are
not readily applicable to CMPs. The research on exploiting mul-
ticores for data analysis is still in its early stages and much needs
to be done. We believe that this is the first attempt to parallelize
tree mining workloads on any type of architecture. Further, we de-
velop a fine-grained strategy that finds matches from a single tree,
in parallel — a first of its kind, to the best of our knowledge.

Recently, several software frameworks like Google’s Map/Reduce,
open source Hadoop, and Microsoft’s Dryad have been proposed
for scalable analysis of large amounts of data on clusters of com-
puters. They primarily address data-parallel applications and may
not be suitable for a variety of highly irregular data mining ap-
plications where a combination of task-parallel and data-parallel
approaches is essential. In the advent of multicores, there is some
effort in designing new libraries, programming languages, compil-
ers, and tools like Intel’s TBB 2 and Microsoft’s PCP “. They do
not address the same problem as we do. For example, Intel’s TBB
and related libraries in PCP (designed for Visual Studio) provide
new programming interfaces similar to pthreads and OpenMP for
easier development of scalable and portable applications. They do
not quite support the type of adaptive scheduling service that we
describe in Section 4.5.

Before we present our algorithms, we briefly discuss the chal-
lenges in dealing with CMP systems. First, applications must con-
trol the memory usage as large footprints not only force OS to rely
on virtual memory but also increase the bus contention — likely to
be severe on CMPs since all cores share a common memory bus.
Second, algorithms must exhibit good cache locality and maintain
small working sets because in future multicore systems the con-
tention for on-chip caches is likely to increase [14]. Achieving
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good spatial and temporal locality in pattern mining algorithms
is very difficult because of pointer-based data structures and huge
search space, respectively. Third, one must efficiently address the
issue of load balance for good scalability. Highly irregular nature
of pattern mining workloads makes the task estimation very diffi-
cult. There is also a need for algorithms which expose and sub-
sequently exploit fine-grain parallelism for multicore systems [23].
We now present our memory optimizations and load balancing tech-
niques to address these challenges.

3. MEMORY OPTIMIZATIONS

Though embedding lists (EL) are designed to trade space for im-
proved execution time, they can grow arbitrarily in size, especially
at low support values. Consider the embedding lists in Trips (see
Algorithm 1). Assume a worst case scenario of a chain tree (a path)
of size n, where every node has the same label (say, A). For a sin-
gle node pattern, EL would contain exactly (’;) =n entries. When

it is extended to an edge A-A, the list will contain () + (3) =

2t entries. Similarly, when the pattern has n nodes (i.e., the
complete path), the number of entries in EL is equal to }_7_, (7;)
= 2™ — 1, even though there is exactly a single embedding for the
pattern. The size of EL thus increases proportionally with the num-
ber of matches, which is exponential in a worst case. Such cases
often occur in real-world data sets (see Section 5).

The architecture of our Memory Conscious Trips (MCT) is shown
in Figure 2. Tree database D is first transformed into sequences
(T(D)) — see Section 2. Infrequent nodes are then pruned from
T(D) to produce T'(D) (see [29] for details). Both T’(D) and the
set of frequent nodes F'1 are fed to the mining block with three
phases: on-the-fly embedding lists OE' L (see Section 3.1), candi-
date generation C'G, and support counting SC. Instead of storing
the embedding list, CG invokes O E L to compute the matches on-
demand (see Section 3.3). Produced matches are processed by CG
and SC to produce frequent extensions. Generated extensions are
fed back to the mining block to yield larger patterns.

3.1 On-the-fly Embedding Lists (NOEM)

In MCT, instead of storing embedding lists (EL) explicitly, we
adopt a strategy that dynamically constructs the list, uses it, and
then de-allocates it. In graph-theoretic terms, constructing a dy-
namic EL is equivalent of finding the set of all (embedded) subtree
isomorphisms of a given pattern in the database — a core problem
in XML indexing. We construct EL on demand by employing a
dynamic programming based approach that is inspired by recent
research in XML indexing [30, 47]. There are however some im-
portant differences — (¢) in XML indexing, there is no notion of
embedding lists which are employed to save time on repeated sub-
tree isomorphisms, (éi) each mining run here comprises of many
tree matching queries, and our subsequent optimizations. Unlike
in XML indexing, a straight application of these techniques in fact
increases the run time (see Section 5). We devise techniques to im-
prove the performance by reorganizing the computation (see Sec-
tion 3.3). Note that dynamic list construction affects only the lines
3-6 of Alg. 1 — correctness of the algorithm is still intact.

Say, we need to find matchings of subtree S=(LSs, NPS5s) in
atree T=(LSt, NPSTt). Let |S| = m and |T'| = n. Prifer se-
quences, due to the way they are constructed, possess an important
property that if .S is an embedded subtree of T then the label se-
quence LS is a subsequence of LSr. i.e., being a subsequence is
a necessary but not sufficient condition for subtree isomorphism.

First, we check if LSs is a subsequence of LSt or not by com-
puting the length of their longest common subsequence (LCS) us-

Algorithm 2 On-the-fly embedding list construction
Input: P = (LSp, NPSp), T = (LSt, NPSr)
R «— computeLcsMatrix(LSp, LST);
say m < |LSp|, n — |LSt|
if R[m][n] '=m then return
else processR (m, n, 0)
processR (pi, t;j, L)
1. if p;=0 or ¢;=0 then return
2: if L =m then
if SM]J..] corresponds to a subtree then
4 update EM List[T] with SM
5. return
6: if LSp [pz] =LSr [tj] then
7:
8

SM[m — L] « t;

processR (p; — 1,t; — 1, L+ 1)
9:  processR (ps, t; — 1, L)
10: else if R[pi,t; — 1] < R[p; — 1,t;] then
11:  processR (ps, t; — 1, L)

ing a traditional dynamic programming approach [34] (see Alg. 2).
It constructs a matrix R using Equation 1 so that the length of LCS
is given by the matrix entry R[m,n]. If R[m,n] # m then we
conclude that S is not a subtree of T (see Fig. 2b).

R[i, j]

0, ifi=0,7=0
=<{ R[li—1,7-1]+1, if LSs[i] = LSr[j]
maz(R[i — 1, 7], Rli,j —1]),if LSs[i] # LSr[j]
)

Second, if LSs is a subsequence of LSt then we enumerate
all subsequence matches of LSs in LSt by backtracking from
R[m,n] to R[1,1] (lines 6-11 in Alg. 2). A subsequence match
SM is denoted by (i1,...,im), Where i’s are the locations in T at
which the match occurs i.e., LSp[k]=LSt[ix] for1 < k < m (see
Fig. 2b). It is worth noting that, unlike in classical sequence match-
ing problem, here we are interested in obtaining all matches. Since
backtracking is performed in backwards, the matches are generated
from right-to-left.

Third, we filter the false positive subsequences by matching the
structure (given by N PS) of SM=(i1,...,im) With that of S (Line
3 in Alg. 2). Such a structural match (rmap) maps every parent-
child relation in S into an ancestor-descendant relation in SM i.e.,
in T'. We first set map[m|=i,, (root node). For k = m-1...1, we
check if map[NPSslk]] is either equal to N PSr[ix] or is a near-
est mapped ancestor of N PSr[ix] — i.e., parent of k" node in S
is mapped to an ancestor of i} node in 7. Since nodes are consid-
ered in reverse post order, structure match is also established from
right-to-left (i.e., root-to-leaf). Resulting match is finally added to
the dynamically constructed embedding list (Line 4 in Alg. 2).

Example: InFig. 2b, only M1, M2, and M4 are subtree matches.
For M3: at k=3, the root node is mapped to node i3=9 in T i.e.,
map[3]=9. At k=2 (NPSs[k]=3), we set map[2]=i,=2 because
map[3]=N PSrl[ir]. However at k=1 (ix=1), map[3] # NPSr[ix]
and map][3] is not the nearest mapped ancestor of ¢; in 7. Since the
check fails, M3 is declared as a false positive. For M5 and M6,
the check fails at k=1 and k=2, respectively.

3.2 Tree Matching Optimizations

The following three optimizations reduce the amount of redun-
dant computations in Alg. 2. The first two reduce the recursion
overhead incurred while backtracking whereas the third one re-
duces the overhead due to false positives.



1) Label Filtering (LF): Before constructing the R-matrix, we
remove those nodes in 7" which do not appear in S. In Figure 2b,
the columns corresponding to nodes D, F, and F' can be safely
deleted as they do not help in establishing the subsequence match.

2) Dominant Match Processing (DOM): Observe that a subse-
quence match is established only at the entries (called as domi-
nant matches) where both LSs and LS+ match (condition 2 in
Eqg. 1). Backtracking on rest of the entries is redundant and must be
avoided. In Fig. 2b, dominant matches are encircled. For example,
RJ[2, 6] and R[1, 3] are dominant and all the other shaded cells sim-
ply carry LCS value from one to the other. Recursion from R|[2, 6]
can directly jump to R[1, 3] avoiding all the other shaded cells.

3) Simultaneous Matching (SIMUL): Here, we leverage the fact
the both subsequence and structure matching phases operate from
right-to-left in reverse post order. Therefore, instead of performing
the structure matching after generating all subsequence matches,
we can do both the matchings simultaneously. As soon as a subse-
quence match is established at position k, we perform the structure
match at that position. Such an embedding of structural constraints
into subsequence matching detects the false positives as early as
possible and never generates them completely.

3.3 Computation Chunking (CHUNK)

Since the size of EL is proportional to the number of matches,
the dynamic embedding lists can grow exponentially, in the worst
case. This optimization completely eliminates the lists by coalesc-
ing both tree matching and tree mining algorithms. It operates in
three steps: loop inversion, quick checking, and chunking. The
computation in Algorithm 1 is reorganized by inverting the loops
in lines 9-10 i.e., T is scanned for each match m instead of pro-
cessing m for each node in 7. The second step Quick checking
notes that the extensions associated with two different matches m;
and m; (i < j) are independent of each other. Thus, m; need
not wait till m; is generated and thus it need not be stored explic-
itly in EL. Finally, chunking improves the locality by grouping a
fixed number of matches into chunks. The tree T is then scanned
for each chunk instead of for each match m. Once the extensions
against all the matches in one chunk are found, we proceed to the
next chunk. This optimization implicitly leverages all the other op-
timizations described above. Even though it appears to be similar
to tiling [38], there are several fundamental differences [29]. In our
empirical study, we define chunks to contain 10 matches.

The complete Memory Conscious Trips (MCT) is shown as Al-
gorithm 3. Since it always keeps a fixed number of matches in
memory, MCT maintains a constant-sized memory footprint through-
out the execution. Further, chunking localizes the computation to
higher level caches, improving both locality and working sets.

Complexity analysis: Like other pattern mining algorithms, MCT
belongs to #P complexity class as it has to count and enumerate
all frequent subtrees. mineTrees in Algorithm 3 is invoked exactly
once for every frequent pattern (pat+e) that is discovered. For a
given S and T (of sizes m and n), the maximum number of recur-
sions on processR (¢, ) can be approximated as follows [30]:

n—m-+1 .
e =4 LT I enmta), ifn>mo o,
’ n, ifn=mvm=1
¢m,n has a closed form of (, "*% ). The branch conditions in
lines 12 and 14 take constant time and the run time of lines 2-10 is
governed by the number of matches for S'in 7.

4. ADAPTIVE PARALLELIZATION

We now consider the parallelization of MCT for multicore sys-
tems. Note that directly parallelizing Trips algorithm is the first

Algorithm 3 Memory Conscious Trips (MCT)
mineTrees (pat, extension e, tidlist)
A: for each T in tidlist do
B:  construct R-Matrix for 7" and newpat
C: processR (m, n, m)
D: for each ext in H do
E: mineTrees (newpat, ext) recursively
processR (pi, t;, L)
1: if p; =0 or ¢t; = 0 then return
2: if L=0then
3:  add SM to EM List and add T to newtidlist
4:  if [EM List| % 10 = 0 then
5 for each match m in EM List do
6: for each node v in T do
7:
8

if v is a valid extension with m then
: add the resulting extension to H
9: EMList — null

10:  return
11: for k=t¢;to 1 do
12:  if R[ps][k] is dominant & R[p;][k]=L then
13: SM[k] — (LST[tj],NPST[t]‘])
14: if agreeOnStructure (P, SM, k) then
15: processR (p; — 1,¢t; — 1, L — 1)

approach we considered. However, embedding lists led to a large
memory footprint resulting in significant contention overhead and
pressure on the front-side bus. The inherent dependency structure
of lists pose difficulties in sharing them, leading to a coarse grained
work partitioning and poor load balance (see Section 5.3). Essen-
tially, parallelization without identifying the memory optimizations,
presented in the previous section, is extremely inefficient.
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Figure 3: Schematic of different job granularities

Our parallel framework employs a multi-level work sharing ap-
proach that adaptively modulates the type and granularity of the
work that is being shared among threads. Each core C; in the CMP
system runs a single instantiation (i.e., a thread) of our parallel al-
gorithm. Henceforth, the terms core, thread, and process are used
interchangeably, and are referred by C;. A job refers to a piece of
work that is executed by any thread. The set of all threads consume
jobs from a job pool (JP) and possibly produce new jobs into it.
The jobs from a job pool are dequeued and executed by threads on
a “first come first serve” basis.

Control flow: As pointed out by Leung et al. [16], if the threads
are allowed to share the work asynchronously then detecting a global
termination would be non-trivial — since the jobs could be shared
while a termination detection algorithm is being executed. Instead,



we implement a simple lock-based algorithm that is driven by the
amount of remaining work in the system. Whenever a thread C;
finds the job pool to be empty, it votes for termination by joining
the thread pool (TP), and detaches itself (i.e., blocks itself) from
execution. Each thread monitors TP at pre-set points during its run
time, and if it is not empty then it may choose to fork off new jobs
onto JP, and notify the threads waiting in TP. The mining process
terminates when all threads vote for termination. We implemented
TP using simple locks (akin to semaphores) and condition vari-
ables. Similar strategy can be used when multiple job pools are
maintained based on thread groups (e.g., distributed and hierarchi-
cal job pools) — job pools here act as implicit channels for commu-
nication between running and waiting threads.

In our multi-level approach, threads operate in three different
levels. Each level corresponds to a different execution mode, which
dictates the type and granularity of the jobs in that mode. The
three execution modes are task-parallel, data-parallel, and chunk-
parallel. The first one exploits the parallelism across different por-
tions of the search space. The data-parallel mode parallelizes the
work required to mine a single pattern. Finally at the finest level of
granularity, the chunk-parallel mode obtains the matches of a pat-
tern within a single tree in parallel. For a simpler design, we used
different job pools for different modes: task pool (JPr), tree pool
(JPp), and column pool (JPc), respectively °. Shared access to
these pools is protected using simple locks. Jobs in these job pools
are uniquely identified by job descriptors. Each job descriptor J is
a 6-tuple as shown below.

J = (J.t, Ji, J.f, Je, Jo,Jr)

task, if JeJPr
Jt = data, if JeJPp
chunk, if Je&€ JPc

Job type J.t corresponds to the execution mode, and it defines

Algorithm 4 Parallel Tree Mining

1: initialize() // 11

2: identifyGranularities() // 13, 14, 15
3: while true do

4: if JPrisempty then

5 if JPp isempty then

6: if JPc isempty then
I
8
9

vote for termination

block itself from execution

: if { all threads voted } break
10: else

11: process J P I/ chunk-parallel (18, sync)
12: else

13: process J Pp // data-parallel (18, sync, 19)
14:  else

15: mine a task from J Pr // task-parallel (18, 19)

16: finishUp() // 12

the remaining entries. Given J, a thread starts with the inputs J.i,
applies the function J.f to produce an output J.o. The control is
then returned to the job that created J if return flag J.r is set to true.
A condition J.c is evaluated at pre-set points to determine whether
or not to spawn new jobs from J.

J.t also determines the type of new jobs which J can spawn. A
task-level job can either create new tasks or a single job of type
data. A chunk-level job in JPc can only be created by a data-
parallel job in J Pp. And, jobs in .J Pc can not create new jobs i.e.,

5Alternatively, one can implement it as a single job pool with prioritized jobs.

VJ € JPc, J.c = false. The granularity of jobs in JPr is more
than that in JPp, which in turn is greater than the granularity of
jobs in JPc. We integrate different execution modes and termina-
tion detection as shown in Alg. 4. Such a design adaptively adjusts
the granularity by switching between the execution modes.

4.1 Task-parallel mode

In this mode, each thread processes jobs from the task pool J Pr
where each task corresponds to the process of mining full or a por-
tion of an equivalence class [S]. Therefore, every job J € JPr is
associated with a subtree J.4=S. The output J.o is the set of sub-
trees produced from S by invoking J.f (mineT'rees in Alg. 3).
Further, J.r is always set to false in this mode.

Each strategy in this mode differs in the way the search space
is partitioned into tasks. A naive strategy is to partition the space
by equivalence classes — EQ in Figure 3, and schedule different
classes (F1 in Alg. 1) on different cores. More precisely,

JPr = {J | J.iis a seed pattern A\ J.c = false}

Since J.c is set to false, each job is processed till its completion to
produce all subtrees from the equivalence class of seed pattern .J..
Such a coarse grained strategy, which is referred to as Equivalence
class task partitioning (EqP) [43], likely to perform poorly be-
cause most real-world data sets are highly skewed and the variance
in |J.o|’s is usually high.

Another strategy is to partition the search space such that each
pattern is treated as a different job — P in Figure 3. Each extension
that is produced is enqueued into the job pool as new tasks (i.e.,
J.cis a tautology). Such a technique is referred to as Pattern-level
task partitioning (PaP) [43]. It can be formally denoted as:

JPpr ={J| Jiisa frequent subtree A J.c = true}

Here, JPr is initialized with frequent nodes from F'1. If |[F1| <
|C| then it is initialized with frequent edges. One can continue to
mine in levels until |J Pr| is sufficiently greater than |C'|. For better
efficiency, the projected database of the subtree is also included in
J.i. This strategy suffers from locality issues since the subtrees
may not be mined at the place they were created. Also, aggressive
job sharing often results in memory management and computation
overheads, motivating the need for an adaptive approach.

In an adaptive task partitioning (AdP) strategy, the search space
is partitioned on demand. New tasks are created only when there
are idle threads waiting (for work) in the thread pool T'P. Unlike
EqP and PaP, this method adaptively modulates the task granularity
at run time. It can be described as:

J | Ji=a frequent subtree A }

JPT:{ Je= (TP #®A|Ext| > 1)

|[Ext| is the number of extensions that are yet to be processed. Note
that, TP # ® implies that the job pool is empty i.e., new jobs are
created only if the job pool is empty and some threads are in wait
state. Instead, one can choose to spawn new jobs when the size of
the job pool falls below a pre-defined threshold value. The spawn-
ing condition in this strategy is evaluated before processing each
extension, between lines D-E of Alg. 3. Since it dynamically mod-
ulates the task granularity, it not only achieves good load balance
but also exhibits good locality since extensions are mined, when-
ever possible, on the processor that created them.

4.2 Data-parallel mode

The task partitioning strategies primarily process the search space,
in parallel. They do not take the underlying data distribution into
account. For example in case of a website, one access pattern P;



can be more dominant and popular than another pattern P.. Task-
parallel strategies can not exploit this difference as they implicitly
assume that all patterns are of similar complexity. Efficiency can
be improved by dividing the work associated with the popular i.e.,
more expensive pattern P;.

We parallelize the job of mining a single subtree S by looking at
its projected database PDg, 8-12 in Alg. 1 (PD in Figure 3). We
treat each tree in P Dy as a different job, and schedule them on to
different cores. The pool of database trees J Pp can be denoted as:

JPp ={J|Ji=T:T € PDs A Jc= false \ J.r = true}

Note that all jobs in JPp (unlike J Pr) are defined in the context
of a subtree (S) that is currently being mined. The treesin PDs are
processed simultaneously by multiple cores. Each core produces a
subset of extensions, which are then combined to produce a final
set of extensions for S — J.r is set to true.

We devise an adaptive strategy by combining this basic method
that takes the data distribution into consideration with the best task
partitioning strategy AdP. It is called as Hybrid work Partitioning
(HyP). Here, a core C; that is currently mining a task-level job
J € JPr with J.4=S forks off new jobs on to JPp only when
it finds any idle threads while finding extensions from S. Once
all trees in JPp are processed, the core C; performs a reduction
operation to combine the partial sets of extensions. If needed, J
may now proceed to create new tasks according to AdP. Therefore,
a task-level job may either create new tasks or new jobs of type
data — spawning condition thus needs to be augmented as follows.

vJ e JPr,
7 { add tasks to JPr, ifTP # ®A|Ext| > 1 }
c=

add jobs to JPp, ifTP# &AL <6

While the first condition is evaluated between lines D-E of Alg. 3
(same as AdP), the second one is checked between lines A-B. The
second condition governs the creation of data-parallel jobs and it
depends on the amount of work that is remaining to complete the
task J.i. A rough estimate for the amount of remaining work is
given by jgjj} where ¢(J.7) is the number of matches found so
far and s(J.4) is the support of J.i (known from line 14 in Alg. 1).
If this ratio is smaller than a threshold 6 (we use & = 20% in our
evaluation) then it means that there is a lot of work to be done,
and can be shared with others. Such a method essentially decides
whether it is worth dividing the work into jobs of finer granularity.

Once the tree pool is created, we sort the trees in the decreasing
order of their size. This is similar to classical job scheduling where
the jobs are sorted in the decreasing order of their processing time.
We sort based on tree size because the mining time that depends on
the number of matches in a given tree is likely to be proportional to
the tree size.

4.3 Chunk-parallel mode

Even the hybrid strategy HyP may not always achieve full ef-
ficiency in practice. This is because the trees themselves can be
skewed. For example in Bioinformatics, one Glycan or RNA struc-
ture may be very large when compared to the other. Such large
trees and the trees with large number of matches will introduce
load imbalance while using HyP. To deal with such a skew, the
job of mining a single tree i.e., the process of finding matches and
corresponding extensions from a given tree should be parallelized.
This fine grain parallelism is obtained by parallelizing at the level
of chunks, which are generated in lines 3-4 of Alg. 3. Since chunks
are created from individual columns of the R-matrix, we treat each
column as a separate job and schedule them on to different cores.

This mode is entered only when all the available parallelism in
data-parallel mode is fully exploited. A job of type data in JPp
switches to this mode based on the following condition:

vJ € JPp,
J.c= { spawn jobs onto JPc, if TP # ® }

One can also design J.c based on pattern size, number of matches
found so far, and the portion of R-matrix that is yet to be explored.
This condition is evaluated between lines 13-14 of Alg. 3.

For each job J in column pool JPc, the input is a column from
R-matrix, and the partial match that is constructed so far (by J’s
parent job in JPp). J.f backtracks from the input column to dis-
cover the remaining part of the match, and extensions from that
match (J.0). J.r in this mode is always set to true so that exten-
sions generated from different column jobs can be combined at the
parent job. Also, J.c is always set to false.

4.4 Cost analysis

A key factor to the performance of our parallel framework is the
amount of overhead incurred in creating, sharing, and managing
jobs and job pools. This overhead is minimal due to following
reasons: (i) we avoid any type of meta data structures, making it
is easy to fork off new jobs from current computation; (74) all jobs
have very small sized inputs (a small pattern, a tree id, or a column
id), and so it is easy to create and share them; (i) all jobs are
shared using simple queueing and locking mechanisms; and (iv)
all job spawning conditions can be evaluated in constant time.

Another source of overhead is the number of context switches
between different execution modes. We now develop some theo-
retical bounds on that number by analyzing various job spawning
conditions. Let N (t,.S) be the number of times the spawning con-
dition that results in jobs of type ¢ is evaluated to true, while pro-
cessing S. Similarly, let N(S) be the number context switches (of
any type) while mining S, and N be the total number of context
switches during entire execution. We now have,

N(S) = N(task,S)+ N(data,S) + N(chunk,S)
N = 2sN(9)

We now construct the worst case bounds for N(¢,.S) for each ¢.
While mining .S, new tasks are created only through adaptive task
partitioning. It is performed only after all extensions are produced
from S (see Section 4.1). Any subtree can thus produce new tasks
at most once. We now have,

VS, N(task,S) <1: Y N(task,S) <> 1=|FS| (3)
S S

where F'S is the set of all frequent subtrees. When a task J spawns
jobs onto tree pool, each unexplored tree in .J.i’s projected database
is created as new joh. Once the tree pool is processed, it is guaran-
teed that all trees in the projected database are processed for exten-
sions. Thus for any subtree, the switch from task parallel mode to
data parallel mode can happen at most once.

VS, N(data,S) < 1: Y N(data,S) < |FS| )
s
Finally, N(chunk, S) is equal to the number of trees in S’s pro-
jected database which spawn the chunk-level jobs. From Section 4.3,
jobs of type chunk are created only when TP is empty. We can thus
infer that N (chunk, S) is always less than the number of cores. If
N(chunk, S) > |C| then TP can not be empty. Therefore,

VS, N(chunk,S) < |C|-1: ZN(chunk, S) < |FS|x(|C]-1)
5
®)



From Equations 3- 5,

N =3 sN(9)
= > ¢ N(task,S)+ > 5 N(data, S) + Y4 N(chunk, S)
S|ES|+|FS[+ |FS]« (IC] = 1)
<|FS|*(|C]+1)

Thus, the number of context switches per pattern is bounded by a
constant, and the total number N is in the order of |F'S|. How-
ever in practice, these numbers are very very small since the al-
gorithm moves to a lower granularity only when the parallelism
at current granularity is completely exploited. For example, many
subtrees would have already been enumerated by the time the first
data-parallel job is created i.e., >° 4 N(data, S) < |FS]|.

4.5 Scheduling Service

A key outcome of our efforts in adaptive parallelization is a
scheduling service that has been ported to two multicore chips and
one SMP system. We believe that such services will be ubiqui-
tous as systems grow more complex and are essential to realize
performance commensurate with technology advances. For sim-
plicity, we limit our discussion to the basic interface shown in Al-
gorithm 5. Functions 11 and 12 are basic start and clean-up rou-
tines. Jobs in our system are implemented using job descriptors
(see above). Once the service is started, 13 specifies the list and the
order among different granularities which the application wants to
exploit. It also creates different job pools and other data structures
used for scheduling. gOrder determines the order in which the
job pools are accessed. For each granularity, 14 defines an applica-
tion handle that is invoked to execute the the job of that granularity.
15 (optionally) registers a synchronization callback handle that is
used for jobs whose return flag is set to true. 16 is responsible for
scheduling and completing all jobs by performing context switches,
if needed (similar to Alg. 4). 17 and 18 are invoked for the creation
and execution of jobs. 19 is a check point function used to evaluate
whether or not to switch between different granularities.

Algorithm 5 Prototype interface for scheduling service

11 void startService ()

12 void stopService ()

13 int register (int *granularities, int size, int *gOrder )
14 int bind (int gran, void (*callback) (void *) )

15 int finalize (\int gran, void (*sync) (void *) )

16 void schedule ()

17 int createJob ( int gran, void *inputs )

18 int executeJob (job *j);

19 bool evaluateForSpawning ( job *j )

The way we invoke different routines from the interface is shown
in Alg. 4. Different granularities are set up by invoking 13, 14, and
15 in line 2. Lines 11 and 13 call the sync from 15 since the jobs
at data and chunk level require coordination. Entire scheduling of
jobs i.e., lines 3-15 make up the implementation of 16.

In this article we have specifically employed this service for the
task of tree mining but we expect it to be useful for a range of pat-
tern mining tasks (from itemsets to graphs) as well as more broadly
for other data-intensive applications. For example, one can easily
parallelize famous algorithms like FPGrowth [12] and gSpan [40]
using our service (see Section 6). The current implementation is
limited to CMPs and SMPs but we are in the process of extending
this service for cluster systems comprising of multicore nodes. We
also plan to implement this service on top of Intel’s TBB and other
related libraries for portability, as opposed to current pthreads im-

plementation. As we show later in Section 5.3, our service is capa-
ble of producing some useful performance statistics. We leverage
this feature in designing a performance monitoring tool that pro-
vides real time feedback to applications. It can be used in a variety
of applications running on CMP architectures.

5. EMPIRICAL EVALUATION

We evaluate our algorithms using two commonly used real-world
data sets, Treebank (TB) © and Cslogs (CS) [42] — derived from
computation linguistics and web usage mining, respectively. The
number of trees and the average tree size (in number of nodes) in
CS and TB are (59691, 12.94) and (52581, 68.03), respectively.
We use a 900 MHz Intel Itanium 2 dual processor system with
4GB RAM, and if more memory is required (typically by extant
algorithms), we use a system with 32GB RAM (same processor)
instead of relying on virtual memory.
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Figure 4: Change in NM and NFP as a function of minsup

We consider two data set characteristics which affect the perfor-
mance — number of frequent patterns NFP (affects the run time),
and average number of matches per frequent pattern NM (affects
the memory usage). While NFP depends on minsup, we find that
many frequent patterns found in both datasets have a large number
of matches in the data. While the trees in TB possess a very deep
recursive structure, the tree nodes in CS exhibit a high variance in
their label frequencies. This high variance makes NM to increase
at a much faster rate in CS as we decrease the support (see Fig. 4).
We will pinpoint the influence of these properties when discussing
the relevant experimental results. Hereafter, D.S-minsup denotes
an experiment where DS is a data set and minsup is the support.

5.1 Sequential Performance

Effect of optimizations: We highlight the benefits from our op-
timizations in Figure 5 by considering the run time and memory
usage of Trips as the baseline. Note that the Y-axis in 5b & 5d
is shown in reverse direction to indicate the reduction in memory
usage. The memory footprint of algorithms is approximated as its
resident set size (RSS) obtained from the “top” command. The re-
sults shown for each optimization include the benefits from all the
other optimizations presented before that. So, CHU N K refers to
fully optimized Algorithm 3 (MCT).

Even though the dynamic lists from NOEM decrease the mem-
ory consumption of Trips, they add to the run time overhead due to
redundant recursions in Alg. 2. In case of TB-40K 7 alone, NOEM
slowed down Trips by 3.6 times — due to 10 billion recursions in
finding just 413 million subsequences, which include about 289
million false positives (i.e., about 7 out of 10). While LF and DOM
streamline the backtracking process to reduce the number of recur-
sions to mere 554 million, SIMUL eliminates all 289 million false
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"We chose high supports for TB as the data set is highly associative.
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Figure 6: Results on real-world data sets (a&b) Cslogs (c&d) Treebank

positives — giving a 23% run time improvement over Trips. More
importantly, these optimizations improve the run time without af-
fecting the memory benefits from NOEM. Subsequently, CHUNK
(or MCT) by reorganizing the computation, improves the locality
and reduces the working sets resulting in a very good run time and
memory performance. When compared to Trips, on TB — 30K,
MCT performs 24% faster and uses 45-times lesser memory. Sim-
ilarly on C'S-600, our optimizations improve the memory usage by
366-folds and run time by 3.7-em times.

Comparison with TreeMiner: The performance of TreeMiner is
limited by the number and the size of scope-lists, which depend
upon the data set properties like NM (see Fig. 4). For example,
when a frequent edge in Cslogs is grown into a 6-node pattern,
the number of matches increased sharply from 11, 339 to 141, 574
to 2,337,127 to 35,884, 361 to 474, 716, 009 — resulting in large
scope-lists which are later used in expensive joins. Due to such
patterns, as the support is changed from 1000 to 800, the mem-
ory and run time performance degraded by more than 300 times
and 18.5 times, respectively (see Figure 6). In contrast, MCT al-
ways maintains a constant sized footprint — 10.72MB on Cslogs &
34MB on Treebank — irrespective of the support threshold. Since
chunking keeps a fixed number of matches in memory at any given
point in time, MCT is able to regulate the memory usage — a signif-
icant result for CMPs where the bandwidth to memory is precious.
On C'S-700, while TreeMiner ran for more than 100 hours with a
footprint that is larger than 7GB, MCT took about 50sec exhibiting
a 7200-fold speedup along with 660-fold reduction in memory us-
age. Even if we factor out the algorithmic benefits from Trips, the
benefits from our optimizations are quite significant.

In case of Treebank, the deep recursive structure among trees
limits the performance of TreeMiner (see Figures 6¢c & 6d). As a
result, even a small change in support (from 50K to 35K) degrades
the performance significantly (by more than three orders). On T'B-
35K alone, MCT exhibits more than 400-fold speedup and 120-
fold smaller memory footprint.

Comparison with iMB3-T: iMB3-T takes a parameter “level of
embedding” (L) that controls the type of subtrees that are mined.

When L is left unspecified, it mines embedded subtrees — Fig-
ure 6 obtained using this setting. Multiple large data structures
and apriori-style mining of iMB3-T results in very large mem-
ory footprints. Note that, its memory is affected by both NM and
NFP, which increase exponentially with the decrease in support (see
Fig 4). On CS-700, memory and run time performance of MCT
is better than iMB3-T by 66-times and 2, 300-times, respectively.
iMB3-T is aborted at C'S-600 as its memory usage exceeded 32GB
—no corresponding data point in Fig. 6a. It stores the set of all de-
scendants for every frequent node, and hence the deep recursive
structure in TB results in very large footprints even at high support
values (e.g., 8.5GB at 50K support). On T'B=40K, MCT is 780-
times faster than iMB3-T while using 480-times lesser memory.

5.2 Characterization study for CMP architec-
tures

We now show that our optimizations are suitable for multicores
by collecting several hardware performance counters using PAPT
toolkit 8. To this purpose, we run a T'B-45K experiment on a
system with 1.4GHz Itanium 2 processor and 32GB memory °.

Analysisof cache performance: We demonstrate the effect of all
our optimizations, measured in terms of number of cache misses,
in Fig. 7a by taking NOEM in Alg. 2 as the baseline. Tree match-
ing optimizations improve the cache performance by more than 19
times — while LF shrinks R-matrices, DOM and SIMUL reduce
the number of data accesses, thereby improving L2 and L3 misses.
Added to that, CHUNK localizes the computation to higher level
caches, and improves the L1 misses of NOEM by a factor of 1, 442.
A step-by-step effect of various optimizations on run time is shown
in Fig. 8d. Overall, simultaneous matching and especially compu-
tation chunking help in achieving very good cache performance.

Analysis of bandwidth pressure: Since all the cores of a CMP
system share a single memory bus, memory bandwidth becomes a
key factor to application performance. We devise a novel and sim-

8http://i cl.cs. utk. edu/ papi/index. htm
9On—chip caches: 16KB L1-data; 16KB L1-instruction; 256KB L2; and 3MB L3.



ple method to approximate the memory bandwidth by observing
the amount of traffic on the front side bus (i.e., off-chip). We first
divide the execution time (X -axis in Fig. 7b-d) into small one msec
slices —a coarse-grained analysis. Then the amount of off-chip traf-
fic during each slice (Y -axis) is approximated to be the product of
L3 line size and the number of L3 misses in that slice (recorded by
PAPI).

Figures 7b-d show the variations in off-chip traffic for TreeM-
iner, Trips, and MCT, respectively. iMB3-T is not considered here
due to its poor run time and memory performance. Initial spikes in
these figures denote cold L3 misses incurred while bootstrapping
(e.g., reading the data set). Frequent accesses to large memory-
bound scope-lists result in very high off-chip traffic for TreeMiner.
Each cluster of points in Figure 7¢ denotes the traffic seen while
mining a single subtree. The spikes followed by sudden dips indi-
cate the non-uniform nature of computation in Trips. In contrast,
the well-structured computation of MCT results in more uniform
and small sized memory requests. On an average, accesses made by
MCT are well below 200KB per msec whereas the accesses made
by TreeMiner and Trips are sized more than 1100KB and 600KB
per msec, respectively. This difference is even more while mining
the patterns with large number of matches — compare small spikes
around 6000 msec in Fig. 7d with the large ones around 8000 msec
in Fig. 7c. From this coarse-grained study it appears that each core
in TreeMiner, and to a lesser extent in Trips, aggressively attempts
to access main memory (due to embedding lists). For instance, on
a dual quad-core system from Section 5.3, we observed a sustained
cumulative bandwidth of 1.5GB per sec. With 1100KB per msec
accesses (i.e., 1GB per sec per core) by TreeMiner, the bandwidth
is likely to saturate it is executed on multiple cores. Overall, our
optimizations reduce the off-chip traffic and its variability, making
them viable for CMPs.

Analysisof working set size: We empirically examined the work-
ing sets maintained by different algorithms using Cachegrind °.
We monitored the change in L1 miss rate by varying the L1 size
from 2KB to 256KB (L2 size and its associativity is fixed). We
found that L1 miss rate of MCT reduced sharply between 8KB
and 16KB and stayed constant for L1 size > 16KB. This suggests
that the working set size is between 8KB and 16KB. As shown in
Table 1, other algorithms maintain relatively larger working sets.
This is an encouraging result with respect to CMPs as the amount
of cache available for each core is likely to be small [14].

5.3 Parallel Performance

We evaluated our parallel algorithms on a dual quad-core E5345
Xeon processor system ! — see Figure 8a. Our adaptive load bal-
ancing strategies achieve near-linear speedups up to 7.85-folds on
CS and 7.43-folds on TB, when all 8 cores are used. We also con-
sidered a 16-node SMP system *2 to test the scalability of our tech-
niques. As shown in Figure 8b, the speedup continues to increase
with the number of processors, giving a 15.5-fold speedup with all
16 processors. Load balance achieved by individual strategies for
T B-45K is demonstrated in Figure 8c.

An important observation from Figure 8b is that the need for
fine-grained strategies increases as one increases the number of
processors. For C'S-600, the performance of hybrid strategy (HyP)
reaches its plateau at 12 processors (“CS-600 Hybrid” in Fig. 8b)
due to a 6-node pattern that has up to 33 million matches in a sin-
gle database tree, whose mining took about 45sec. Amdahl’s law
suggests that HyP can never perform better than 45sec since it is

10http: //val grind.org/info/tools. htni
116GB RAM, 8MB shared L2, and 1333 MHz bus speed.
2 sG1 Altix 350 system with 16 1.4GHz Itanium 2 processors and 32GB memory.

Cores(IC]) 1|2 |4] 8 |16
N 0|4 |7]|26]48
Ny 0|2|2]10|11
N, 000|919

Table 2: Cost analysis on T'B-35K, |F'S|=451

on T'B-45K | Cores 1 2 4 6 8

EqP | 1.00 | 1.61 | 1.94 | 1.95 | 2.01
AdP | 1.00 | 1.77 | 2.23 | 2.25 | 2.30
EgP | 1.00 | 1.61 | 1.94 | 1.95 | 2.01
AdP | 1.00 | 1.77 | 2.23 | 2.25 | 2.30

Trips

TreeMiner

Table 3: Parallelization of Trips and TreeMiner

limited by the job of mining a single tree. Thereafter the efficiency
can only be improved by employing more fine-grained strategies
such as the one in Section 4.3. Similarly for T'B-35 K, the speedup
from HyP saturates at 16 processors.

The average number of context switches taken over 10 runs of
T B-35K is shown in Table 2. For a given granularity g, >~ 4 N(g, S)
is denoted as Ny in the table. When |C|=1, there are no context
switches as the work is not shared at any level. As |C| increases,
we see more and more context switches at fine-grain level reflecting
the fact that our strategies adaptively also automatically exploit the
parallelism at all levels of granularity. It is worth noting that these
numbers are much lower than their theoretical upper bounds from
Section 4.4: N;=48 < |F'S|=451; Nq=11 <« 451; and N.=19 <
451*(|C|-1), where |C'| is number of cores. Similar results on C'S-
600 can be found in our technical report [29].

Note that the performance numbers in Table 2 are directly ob-
tained from our service. We designed an interesting performance
monitoring tool by leveraging the capability of our service to pro-
duce such useful numbers and our light-weight mechanism to ap-
proximate achieved memory bandwidth (see Section 5.2). Such a
tool not only is capable of providing real time feedback to applica-
tions but is also useful to understand the performance characteris-
tics of many applications on CMPs.

The results in Fig. 8 are obtained using a global job pool. How-
ever, our service can handle distributed or hierarchical job pools.
Further, we expect the contention overhead due to global job pools
to be very small as the locking on CMPs is likely to be cheap 3.

Parallel speedups of Trips and TreeMiner using our task-level
methods are shown in Table 3. The rationale for these results is
as follows. Inherent dependency structure in embedding lists and
scope-lists make it difficult to apply more fine-grained strategies
to Trips and TreeMiner, respectively. Since these lists are main-
tained on per-pattern basis, data partitioning methods like HyP,
which construct the lists in parallel incur significant synchroniza-
tion overhead. Further, excessive use of dynamic data structures in
TreeMiner serializes the heap accesses, affecting the parallel effi-
ciency — as |C| is changed from 1 to 8, the system time (from the
“time” command) increased by more than 4 times. Techniques like
memory pooling are ineffective here as these data structures grow
arbitrarily in size. These results re-emphasize the following mantra
for good parallel efficiency: reduce the memory footprints; reduce
the use of dynamic data structures; and reorganize the computation
so that more fine-grained strategies can be applied.

We next discuss the broader outcomes of our study, directions
for future research and highlights key results.

13http://downl oad. intel.con technol ogy/ architecture/sma.
pdf



52000 = 20 20
1 e a o - %)
e (@) . (b) TreeMiner € (c) Trips € (@) mMCT
L3 @ | ° °
3 2 160 1600] 2 1600
10 8 2
2 @ 140 1400 B 1400,
< I S
c 51200 1200¢ 51200
g 10 g g
3 S 100 1000 T 1000
=] hel =l
E 5 800 5 800 5 800
E 600 E 600 E 600
=]
£ 400 £ 400 £ 400
<
e 200 200 200
e : [ e o
BASIC LF+DOM SIMUL CHUNK 4 6 8 0 12 0 2000 4000 _6000 8000 10000 12000 01000 2000 3000 4000 5000 6000 7000 8000 9000
Type of optimization Time (ms) x10* Time (ms) Time (ms)
Figure 7: Characterization of optimizations
deal | —— g 16 [cS600 Chunk  —e— 10"
leal (a) Dual quad-core AN un (b) SMP TB-45K e (d)
7LCs600 e ¢ 14 | TB35K Chunk A Z I 755K on 8 Processors] TBAOK —i—
CS-600 Hybrid —&—
TBIK A A 1o | TB-35K Hybrid
6 Ideal _ o
)
Ss ER £ v
E H ~ :
3 4 Q8 P £
[ ) - <
3 6 o H
4
2
1 2 ot
1 2 3 4 5 6 7 8 ) 4 6 s 10 12 14 ybiid BASIC LF DOM SIMUL  CHUNK

Number of cores Number of processors

0
Eq.Class-level Patiern-level  Adapiive
Load Balancing Strategy

Type of optimization

Figure 8: (a, b, ¢) Parallel performance; (d) Effect of optimizations

6. DISCUSSION

Memory optimizations: Improving locality (spatial or tempo-
ral) continues to be important, but in addition, bandwidth must also
be considered when designing data-intensive algorithms for emerg-
ing CMPs. The traditional trade-off between time and space, and its
implications for parallelism need to be examined carefully in this
light. All our memory optimizations target the above challenges.
Each optimization may not amount to a significant improvement
on its own but the specific orchestration applied when combining
them yields significant savings — L1 misses reduced by up to 1, 442
times, memory footprints reduced by a factor of 366, bandwidth
pressure reduced significantly by making uniform small-sized ac-
cesses to main memory, and overall run time reduced by a factor of
four on sequential execution.

These optimizations have a broader applicability in many do-
mains. We briefly mention some of the important ones. NOEM es-
sentially improves the mining by computing the required matches
on-demand instead of storing extra state. Such a technique is evi-
dently useful in mining other types of patterns such as graphs, se-
quences. Techniques similar to NOEM are also useful in searching
bioinformatic databases [36] and XML repositories [47].

The tree matching optimizations (LF, DOM, SIMUL), though
appear to be specific to Priifer sequences, have a general purpose
utility. They can easily be adapted to algorithms which rely on a
depth first encoding. They can also be used to reduce the over-
head in other dynamic programming based approaches — mining
time series [5]; establishing maximal matchings between glycan
structures [2]; code generation techniques [1]; (multiple) sequence
alignment [17]; and computing consensus and agreement of phylo-
genetic trees [27]. This list by no means is an exhaustive one.

Computation chunking captures the general notion of breaking
the computation into smaller pieces so that they can be handled effi-
ciently. Such an approach have a general purpose utility in database
query processing [19] and also in mining other structures such as
graphs, DAGs, induced subtrees, and sequences. In gSpan [40],
instead of finding children for each occurrence of a subgraph sepa-

rately, one can group a set of occurrences and find the one-edge

growths collectively. When applied to induced subtree mining,

these optimizations exhibit a speedup of 15-folds against FreqT [29].
They can also potentially be leveraged for answering reachability

queries on directed graphs — a direction of research that we are ac-

tively pursuing.

Applications seldom realize peak memory bandwidth numbers
quoted in product specifications [37]. These numbers often assume
that the references are uniformly distributed across the memory
system, and avoid conflicts for banks and front side bus — a rare
case, in practice. It is thus very important to look at achieved band-
width, especially for CMPs where the memory bus is shared among
all cores. The method from Section 5.2, though an approximate
one, provides an easy and quick way to study the memory behavior
of algorithms at individual core level. We believe that this light-
weight mechanism to measure the bandwidth is widely applicable
to several other data mining and database applications [19].

Out-of-core performance: The out of core performance of our
optimizations has not been evaluated in this article. This is primar-
ily because the focus of this work is on multicore performance and
also due to limits on space. However, since the reader may be in-
terested in this question we would like to note that our algorithms,
primarily due to the memory optimizations, easily translate to a
reasonably good out-of-core implementations. In fact a straight-
forward realization results in an out-of-core implementation that is
about six times slower than the in-core algorithm for the evaluations
described in this paper. Once the dataset exceeds the limits of main
memory the performance of the in-core implementation degrades
rapidly whereas the out-of-core implementation sees a much more
graceful degradation. An interesting observation here is that com-
putation chunking has an even larger role to play in our out-of-core
realization (by a factor anywhere from 5 to 10) since chunk-wise
processing localizes the computation to run in memory. We are
currently exploring more sophisticated out-of-core algorithms that
leverage hash-based data placement, in a manner similar to our pre-
vious work on out-of-core frequent pattern mining [7].

Parallel algorithms and scheduling service: With regards to



task scheduling, algorithms that can adapt and mold are essential
to achieve performance commensurate with the number of cores in
emerging CMP systems. Coarse-grained strategies are usually not
sufficient since systemic, parametric and data-driven constraints
make the workload estimation a challenging task. In such scenarios
the ability of an algorithm to adaptively modulate between coarse
grained and fine grained strategies is critical to parallel efficiency.
In fact how much an algorithm can adapt essentially dictates when
the performance plateau is reached, as we observed in our study.
Our adaptive strategy demonstrated near-perfect parallel efficiency
on both a recent CMP and a modern SMP system.

A key outcome here beyond the specific tree mining algorithm is
the realization of a general purpose scheduling service that supports
the development of adaptive and moldable algorithms for database
and mining tasks. For instance, one can parallelize a graph mining
algorithm like gSpan [40] by simply defining the task descriptors
and appropriate job spawning conditions. Rest of the details like
job scheduling, synchronization, and thread management are trans-
parently taken care by our service. This service is easily applicable
to many other pattern mining algorithms because they all employ
a pattern-growth approach and traverse the search space in depth
first order. They are also applicable to other data mining tasks like
classification using decision trees [45].
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