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ABSTRACT

We address the problem of publishing a Naive Bayesian ifikss
(NBC) or, equivalently, publishing the necessary viewdbigitding
an NBC, while protecting privacy of the individuals who pided
the training data. Our approach completely preserves thigracy
of the original classifier, and thus significantly improvesooirrent
approaches, such as randomization or anonymization, veipth
cally degrade accuracy to preserve privacy. Current quieny-se-
curity checkers address the question of ‘Is the view safeldigh?’
and are computationally expensive (oftdfj-complete). Here in-
stead, we tackle the question of ‘How to make a view safe te pub
lish?’ and propose a linear-time algorithm to publish saf&CN
enabling views.

We first show that a simple measure that restricts the rages b
tween the published NBC statistics is sufficient to prevegt@each
of privacy. Then, we propose a linear-time algorithm to ecéahis
measure by producing perturbed statistics that assure(Batidli-
viduals’ privacy, and (ii) a classifier that behaves in theeavay
as the NBC trained on the original data. By carefully exgress
the derived statistics using rational numbers, we canyepiduce
synthetic (sanitized) datasets. Thus, for any given dgtegepro-
duce another dataset that is secure to publish (w.r.t. anumiprior)
and achieves the same classification accuracy. Finally,xiene
our results by providing sufficient conditions to cope withitrary
(non-uniform prior) distributions, and we validate theffeetive-
ness in practice through experiments on real-world data.

1. INTRODUCTION

Recent advances in digitized information has led to escalaff
global concerns on individuals’ privacy [3, 2, 1]. Privayeserving
Data Mining (PPDM) has been proposed to address these cmncer
However, we are now facing conflicting goals: On one handtade p
tect the privacy of the individuals whose sensitive infotiom is
present in our database, we should not disseminate sudbedata
On the other hand, many other legitimate users/applicaittam
benefit from such data. For example, studying and mining medi
cal records, consumers’ behavior or insurance history layyats
can often lead to invaluable statistical knowledge whichdbiés
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the society at large. PPDM methods seek to achieve theséitene
without compromising privacy.

Scenarios.Privacy-preserving methods can be applied during (i)
the data collection phase, (ii) the data publishing phasgiithe
data mining phase:

(i) Individuals may not trust any parties except themsebes
therefore they perturb their sensitive data before subgitt
it to the server that does the publishing or the mining.

(ii) In a database-publishing scenario, a trusted partdsthe
individual records, and it either performs some pertudrati
over the raw data before publishing it, or it only publishes
parts (views) of it.

(iii) The trusted party that holds individuals’ data comgmithe
mining models locally; then, instead of publishing the erig
inal data or even an anonymized/perturbed version of it, the
trusted party only publishes the mining results—while mak-
ing sure that the publication of these results does not com-
promise privacy.

While our work uses several techniques adapted from sae(igyri
its objectives are aligned with (iii), as illustrated by tielowing
example.

Privacy breaches when publishing NBCsConsider a database
schemdl’ = (Adr, Age, Sal), where the address field can be ei-
ther Westwood Blvd. ) or Palms St. P), and age is eithed0 or
40. The sensitive attribute is annual salary, which is eiffidrK’
or $70K. Assume that we want to publish (or train) an NBC over
this database, such that giveadr, Age) the model can predict the
person’s salary; this means viewddr, Sal) and(Age, Sal) must
be releaseld—or alternatively, the counts of all such pairs from
which these views can be built. The views in question are show
in Figure 1(a). The intended users will invoke the NBC foraul
(see eq.(2) in Section 3) to build a Bayesian classifier. Hewe
malicious user Bob, who is trying to breach the privacy ofcAli
(she was part of the training data), will instead generdt@ad-
sible instances that are consistent with his additionairimftion
that Alice lives on Westwood and that she is in H6&?. Thus,
Bob will obtain instancesd; to d1o, shown in Figure 1(a).Then,
for eachd;, Bob counts the ratio of the tuple$l’, 40, 70K) over
those that havélv, 40) in their first two columns (all possible tu-
ples that match his info about Alice). Thus, Bob gét$ for d;,
3/4 for d2, ds, ds, ds, and1 for all the others (i.eds to d1o). Fi-
nally, by averaging thesH) different ratios, Bob infers that with a
probability of 15(4/5 + 4 x 3/4 + 5 x 1) = 88% Alice earns a

!We call such views NBC-enabling views—Section 3.

2In general, Bob does not need to know all the attributes afeAli
to breach her privacy.



Published Views

All consistent instances with

7TAd7',Sa,l(T1) y WAge,Salary(Tl) dy da d3 dy ds

W, 70K 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W,30, 70K

W,70K 40, 70K W, 40, T0K W, 40, T0K W, 40, T0K W, 30, 70K W, 40, 70K

W,70K 40, 70K W, 40, 70K W, 40, 70K W, 30, 70K W, 40, 70K W, 40, 70K

W, 70K 40,70K W,40, 70K W,30, 70K W,40, 70K W,40, 70K W,40, 70K

P, 70K 30,70K P,30, 70K P,40, 70K P,40, 70K P,40, 70K P,40, 70K

W,50K 40,50K W,40, 50K W, 40, 50K W, 40, 50K W,40, 50K W, 40, 50K

P,50K 30,50K P,30,50K P,30,50K P,30,50K P,30,50K P,30,50K

ds dr ds do dio

W, 40, 70K W, 40, 70K W, 40, 70K W, 40, 70K W, 30, 70K

W,40, 70K W,40, 70K W,40, 70K W, 30, 70K W,40, 70K

W, 40, 70K W, 40, 70K W, 30, TOK W, 40, 70K W, 40, 70K

W, 40, 70K W, 30, T0K W, 40, 70K W, 40, 70K W, 40, 70K

P,30, 70K P, 40, 70K P, 40, 70K P, 40, 70K P, 40, 70K

W, 30, 50K W, 30, 50K W, 30, 50K W, 30, 50K W, 30, 50K

P, 40, 50K P, 40, 50K P, 40, 50K P, 40, 50K P, 40, 50K

(a) View setl; and all its possible worlds
Published Views All consistent instances with,
7 adr,5al(T2) , Tage,5a1(T2) d'y ds d's dy d's d's

W, 70K 40,70K W, 40, 70K W, 40, 70K W, 30, 70K W, 40, 70K W, 40, 70K W, 30, 70K
W, 70K 40,70K W, 40, 70K W, 30, 70K W,40, 70K W,40, 70K W,30, 70K W,40, 70K
P, 70K 30,70K P,30, 70K P, 40, 70K P, 40, 70K P,30, 70K P, 40, 70K P, 40, 70K
W,50K 40,50K W,40,50K W,40, 50K W,40,50K W,30,50K W,30,50K W, 30,50K
P,50K 30,50K P,30,50K P,30,50K P,30,50K P,40,50K P,40,50K P,40,50K

(b) View setV> and all its possible worlds

Figure 1: NBC-enabling views for two tiny databases and theicorresponding worlds

70K salary. Bob could have a prior knowledge, e.g. he knew the on some individuals. The goal is to publish an NBC model (Whic

overall distribution of salaries, but not the dependencsatdry on
other attributes This assumption is solely for the sake isfakam-
ple. In general, we do not restrict Bob’s prior knowledgeu3 hf

his prior belief on Alice earninG0K was% = 71%, after seeing
those views, there would be a significant breach of Alicelgguy

(from 71% to 88%).

consists of NBC-enabling views or counts, described iniSe®),
such that the privacy of the individuals who provided oumtirey
data is protected. The privacy guarantees that we provictedre
the well-known notions of no privacy breach [14] andoseness [24],
which we reformulate for the case of view publishing.

Attack model. The computational power of the attacker consists

Now instead, suppose that the views in question were the onesof considering all possible worlds that are consistent withset of
shown in Figure 1(b), and Bob did the same exhaustive computa published views, and then counting the number of tupledibahe

tion over all possible instances, showndasto d’s in Figure 1(b).

In this case, the ratio of the tupléB/, 40, 70K) over all the tuples
having(WV, 40) averaged ovet'y, - -- ,d's is £ (2/3+1/2+1/2+
14+ 1+ 1) = 78%. Comparing these two sets of NBC-enabling
views, clearly the latter case was safer to publish as it ordyed
Bob'’s prior knowledge fron71% to 78% instead 088% in case of
the former set of views. As discussed later, privacy breadh i

a measure that limits the amount of additional knowledge ttia
attacker can obtain from the published data.

The key observation to be made is that although these twokets
viewsV; andV; (Figure 1) are so different in terms of privacy, the
two NBCs built from them, will still return the same results finy
tuple to be classified. For example if the test inpu{#530), the
NBC built on'V; predicts the class label 89K because&z 1 <
211, The prediction from the second classifier (built &) is

again50K because3i: < 211 (A review of NBC formula is

is interested in, to compute the probability of the desinatijzate.

Previous work has focused on the privacy breach risk tha-is i
herent in publishing a black-box predictor, i.e., proviglihe pub-
lic with the functionality of making predictions, while cqietely
concealing the mechanisms and statistics by which they are d
rived (see discussion in [17], and Section 2). Here, we agsum
the risk of publishing a black-box predictor was deemed jatece
able, but then the black box proved impractical (e.g., ccatmn-
ally intractable[16]). Therefore, this paper tackles thestion of
whether, rather than the mythical black box, we can instéadge
the simplest of classifiers, i.e., an NBC, and still offer saene pri-
vacy guarantees.

Contributions. By reformulating the notion of privacy breach
in the context of view publishing, we derive sufficient cdialis
that are independent from (i) the predicate that the attaiskaf-
ter, and (ii) the amount of his prior knowledge about the it

given in Section 3, see eq. (2) ). The reader can also check theual’s attributes. Said conditions also guarantee thatttiaeler can

consistency of these two classifiers for all other possipeis.
Despite its simple formulation, NBC has proved to be one ef th
most effective classifiers in practice and in theory [12]widger, as
suggested by the above example, given an unsafe NBC, it &-pos
ble to find an equivalent one that is safer to publish. In shiogtob-
jective of this paper is determining whether a set of NBChkéing
views are safe to publish (against the aforementioned ctatipn
by Bob), and if not, how to find a secure database that prodhees
same NBC model.
Problem statement. In this paper, we assume a single trusted
party who has a dataset containing sensitive personalniaoon

3A brute-force decision procedure for checking the equivedeof
two classifiers is exponential, but later we proposed a titieze
algorithm that guarantees their equivalence.

never gain knowledge on an individual's sensitive-attigb{class
label) in excess of the specified privacy limit. Thus, for NBC
enabling views, we show that total privacy (i.e., elimioatiof
privacy breaches) can always be enforced when the backgroun
knowledge is uniform, while retaining perfect utility irrtes of the
NBC accuracy. We extend our results by providing sufficiemt-c
ditions to cope with arbitrary (non-uniform) distributignand we
validate their effectiveness in practice through expenitaen real-
world data. We propose a simple and efficient (i.e., lingae}
algorithm for transforming a given set of NBC-enabling véeiwto
another set of views that (i) guarantees the required prilael,
(i) imposes no accuracy loss in terms of building an NBC il
general-purpose techniques, such as randomizatioh-andnymity).
Overview of the paper. The rest of this is organized as fol-
lows. After reviewing related work in Section 2, we providbraef



background on NBC in Section 3. In Section 4 we reformulage th
notion of row-level privacy breach [14] to suit view publisg,
followed by our results on safety conditions in Section 5r @nst
algorithm for uniform distributions is proposed in Sect@mwhich

is extended for arbitrary distributions in Section 7. Fipéh Sec-
tion 8, we validate the effectiveness of our algorithms af-veorld
data. We conclude in Section 9.

2. RELATED WORK

We briefly discuss closely related lines of prior work to iflar
the context of our result—for a more general survey see [8d] a
references within.

Perturbation Methods. Such methods come in two flavors.

1. General-purpose approachesnclude but are not limited to
randomization [4, 15, 25, 13k-anonymity [33],/-diversity [26].
Here, the goal is to guarantee the requested privacy levgehy
eralization, obfuscating, randomizing, permutation,mapsion or
sanitization while minimizing the information loss. Sealeat-
tacks have been proposed against such approaches(e.gfof26]
k-anonymity, [19, 18, 30] for randomization), and they faéie e
ciency issues as well (e.g. [27] féranonymity and [5] for ran-
domization). However, generic information-theoretic sweas of
error in the raw data are sufficient but not necessary camditfor
high accuracy of particular mining models. Thus, while therfer

is not possible in some cases [32], the latter might be stilsible.
As a usual trade-off, accuracy loss is a downside of aforéoresd
general-purpose methods—see Section 8.2.

2. Ad-hoc methodsare designed for a particular mining algorithm.
They suppress or sanitize those parts of the model thattgipla
vacy before publishing it. For example [7, 36] are for freofue
pattern mining.

Query-View safety checking.A pioneering work here is [28]
that addressed the query-view security problem, consigettie
sensitive information as a set of secret views (or querids)se
safety must be checked once other views or query resultsuire p
lished. However, their measure of perfect security is verigts
requiring that prior and posterior knowledge of the attaakest
remain exactly the same after publishing the views whichlttig/s
many practically acceptable cases. Similar problems ftaldese
publishing and integration systems have been studied inJ1JL
In particular, the ‘Guarantee 3’ in [31] is more similar toras-
sumption, as it ensures that an attacker who lacks othernexte
knowledge about the possible sources cannot learn anytinang.
Violation of k-anonymity in view publishing was studied in [39]. In
such approaches the complexity is usually prohibitive, derid-
ing this problem for conjunctive views I$5-complete [28]. More-
over, their result is a ‘safe/unsafe’ answer, and does rmtige a
method for making the view safe to publish without loosinfpin
mation. In this paper we consider simpler views (NBC-emapli
views) but provide an efficient algorithm to make them safe.

Privacy breach. We extend the existing notion of privacy breach
introduced by Evfimievski et al. [14], which relates the ek&x’'s
prior/posterior beliefs before/after seeing the pertdrtata. Ev-
fimievski et al. assume that each individual publishes her taw
ple after applying some perturbation methods. However,un o
context, individuals have trusted a single data publisiveg is in
charge of perturbing the entire database before publishiAgso,
our algorithms are deterministic, while they exploit prbitiatic
methods (e.g, randomization). However, there is still a&loon-
nection between the two. In particular, our Lemma 2 corredpo
to Statement 1 in [14], where thejrcorresponds to oys. Fur-
thermore, previous work on prior/posterior informatiooyed that
no anonymization can achieve both privacy and utility whiea t

attacker’s prior knowledge is already too large [32].

Mining result privacy. Reference [17] addresses the question
of ‘when can a classifier be published (to be freely invokedhw
out violating privacy?’. However, it assumes that the dfasscan
be published as a black-box whose inside representatiarotae
seen. Similarly, [16] proposes a multi-party approach iy
a separate rule for all possible tuples. Representing an A&
rule-based classifier involves an exponential number esrulhile
our method uses linear time and memory (in input size).

3. NOTATIONS

Let the original databasg be an instance of a relatibdefined
asR = (Ai1,---,An, C) inwhich A;'s are (the domains of ) the
attributes and”' is (the domain of) the class label. Each tuple is
associated with an individual. For example, in Figure 1sslabel
is the salary while address and age 4drés. In order to build an
NBC, the only views that need to be publishedare ¢ (T") for all
1 < ¢ < n,andrc(T). We user for relational projection, andll
to denote productAlso, since throughout this paper we allow du-
plicate tuples, one can reconstruct these projection vilgwksiow-
ing how many times each pair of values have occurred togeiter
other wordsgquivalentto publishing these views, one can instead
publish the following counts. For < i < n,Vt € A;,c € C,
define:

Ni. = |oa,=tnc=c(T)|

alsoVc € C define:
Pe = |oc=c(T)|

For example, in Figure 1(a)Viy%ox = 4, Psox = 2 and so on.

In practice, NBCs are usually published using these couwitisef
normalized as ratios or in their absolute value) due to theiter
memory efficiency over the view representation. Throughbist
paper we shall switch between these two equivalent repiatsams
as needed to simply the discussion.

Using these counts, we can express the NBC's probability est
mation as follows. For alt = (¢1,--- ,t,) € A1 X --- x A, and
forall c € C, the NBC’s prediction is:

Ni
5 L ()
loai=tiA-nan=t, (T)|/IT]

Since the NBC goal is to comparer[Class(7) = ¢| and
Pr[Class(t) = '] whenc # ¢/, we can further simplify eq. (1)
by ignoring those terms which are independent of the cldss,la
and only compare

Pr[Class(t) =] = (1)

@)

N; -
ti,c t;,c
c

Xre=P- ] —= and X, o = P - 5

For simplicity, in this paper we assume ttfatcounts are always
non-zero, and therefore eq. (2) is always well-defined.PAsand
Nt’ﬂc counts are sufficient for building an NBC, we use the pair
(P, N) as the signature for each NBC . Thus, the problem (or input)
size isO(Y7, [C] - | Aql).

In real-world datasets, there can be multiple sensitivibates.
Moreover, different individuals can have different priyaoncerns,
e.g. some people may consider their age more sensitive fieém t
salary. For simplicity, in this paper we assume thais the only
sensitive information ifT” for the following reasons. It can be eas-
ily shown that all (non-class) attributes will benefit frohetsame
or greater level of privacy that our results provide for thess label

i

“Throughout this paper we use the terms ‘database’, ‘talid’ a
‘relation’ interchangeably.



Notation | Explanation

Ai (domain of):-th atiribute In eq. (3) and (4)P[d] is the probability that the original table

C (domain of) the class Tabel , _ wasd, while P[d|V (d) = Vy] is the conditional probability of the

gtz.c z 8; :ﬂg:gz mm :gg:ﬁv and valug for thei-th attribute| same event, knowing that the answer of a viéwon d wasV.

(P, N) | NBC-enabling viewset composed £fand N counts DEFINITION 1 (PRIVACY BREACH FORVIEWS). LetQ be any

Xre NBC score for tuple(r, c) property on the sensitive class lal@l For a given tablel’ and a

f:o ?A?Igg,g)qygjg'?;r}tmer _(set of) view(sy/, whose answer ovér is Vo, we say that publish-

D allinstances that have at least one tuple Wits I, ing V(T') = Vo causes a privacy breach with respect to a pair of
given constants < L1 < Lg < 1, if either of the following holds:

Table 1: Notation summary. 1. UpwardL;-to-Lo: PO < Ly < Lo < PR,

o . . . . AT QL QI
C. Intuitively, this is due to the fact that in NBC-enablingewis, 2. DownwardLy-to-L1: P37 < Ly < Lo < Pr7°.

we always release more information abéuthan about any other

A;’s, asC appears im views while each4; appears in only one Returning to our example in Section 1 the first set of vieWg-(F
view. Informally, this means that knowing the values for soai ure 1(a)) caused an upwads1-to-0.8 privacy breach, as the prior
the A;’s associated with Alice, after seeing the NBC, Bob can learn @nd posterior wer&0% and 88%, respectively. With respect to
more about her class label rather than her unknewa. Further-  the same privacy level (i.el; = 0.51 and L, = 0.8), the sec-
more, multiple (sensitive or non-sensitive) class labals always ond set of views (Figure 1(b)) would be safe to publish, ag the
be combined together to form a single class label. prior/posterior were&s0% and 78%, respectively. However, if we

had a more strict privacy policy, sdyy = 0.5 andL» = 0.6, none

of those viewsets would be safe to be published. Roughlyképga

4. PRIVACY BREACH FOR VIEWS the notion of privacy breach reflects the degree to which agha
In this section, we adapt the notion of privacy breach [14] to in the adversary’s prior knowledge is tolerated.

our context, where views are published by a single publi¢iee In Sections 4 through 6, we assume a uniform distribution of

Section 2). We define a quasi-identifieras a non-empty subset  the database instances, wherebylatl D are equally likely in the

of A; attributes, whose values for Alice are known to Bob. We absence of any views. Also, after seeing the view(s), ahimses in

refer to the tuple made of these valued@sor simply sayl/ = Io. S are equally likely, whereS = {d € D|V (d) = V,} contains all

For instance, ifl = (A1, As), any (t1,t3) € A1 x A3 can be instances satisfying the given view(s). This assumpticsirislar

a possiblely. Also let D denote the family of all table instances  to that in [35]. We will remove these uniformity assumptidns

whose projection o containsl, as atuple, thatish = {d | 3t € Section 7. Thus, we have the following reSult

d,t.I = Io} wheret is a tuple and! is a table instance. Table 3,

summarizes our notation. STATEMENT 1. Let Iy be the value of a given quasi-identifier
Privacy breach relates the adversary’s prior and postkniow!- I, and letV;, be the value of a given vieW(T). If there exist some

edge about some propery : C — {True, False} of the class ma,ma > 0 such that for allc € C:

label C' in a tuplet, namelyQ(¢t.C'). For example, one possible

Q(c) can bec = HIV V ¢ = Cancer, where the domain is the mo 1 Z p6 < 122 (5)
disease types in a hospital. Here, we are overloadifne domain ICl = IS ics IC|

of class labels) to also denote the class label of a tupl€hus,

Q(t.C) is defined ag)(c) whent.C' = ¢ for somec € C. Let where; = P[t.C = c|t € d,t.1 = Io], then for any property)
PQTo and P be respectively the adversary’s prior and poste- @nd any pair ofZ;, L > 0 publishingV” = Vo will not cause any

rior knowledge on a given propert, defined as: upward or downward privacy breaches w.i; and L2, provided
that the following amplification criterion holds:
PR =¥ PQ(tO)t€dt. =1o]-Pld  (3) ms _ L 1L ©)
deD mi1 — L1 1— Lo
P(2:2,IO _ Z PIQ(L.C)|t € d,t.I = I] - P[d|V(d) = Va] (4) Intuitively, Statement 1 implies that a vieW should not be too

specific toward a particular class label. Publishing a vieayses
many table instances to be ruled out, and therefore the nfehe o
P values for theremainingones, must beelatively closeto the
mean of3; values forall instances. This closeness, is determined
by constraints (5) and (6) which are functions of the givecuse
rity requirements (i.e.L.1,L2). Moreover, the same closeness must
hold for all class labels € C.

Note that although Statement 1 provides a sufficient caiti
for a view publishing to be safe, finding suety , m» that satisfy
the constraints (5) and (6) requires computii§ values for all
d € S, andc € C. However, the following lemma introduces
yet another condition that is sufficient to satisfy thosesta@ints,

5 . . but only requires computing the meansf, values for different
is!nkr?ol;/(\)/\r,]\l-l)%\g Fi)tléblcl:zwtré%tsi%epg:e%l[el(i] tﬂg\,fé’\v,re'ﬁr igf Oeuarcga;c()ew(a ¢ € C. An efficient algorithm for enforcing this new condition Wil

table-levelpublishing scenario) the attacker also has souesi- be proposed in Section 6.
identifier of the victim(s) that helps him restrict all the possible
rows in the table to a few. 5This, and other omitted proofs can be found in [29].

deD
Here, P[Q(¢t.C)|t € d,t.I = Io] is the probability that, in the
table instancel, property@ is true for the class label of a tuple
t that is consistent with Bob’s quasi-identifier about Ali¢el (=
Iv). Note that Bob knows that one such tuple must be associated
with Alice®. For example, if there are two tuples drthat satisfy
t.I = Io, but@ is only true for one of them, Bob knows that
given d, with a probability of50%, the property@ holds for the
class label of Alice. Moreover, sineé € D, there exists at least
one such tuple (i.e., Alice) satisfyingl = I, and therefore, this
conditional probability is always well-defined.




LEMMA 2. For a given quasi-identified = I, a given view
V(T') = V, is safe to publish against ardy; -to-L- privacy breaches,
if there existy > 1 such that the following conditions hold:

p+p(ICI-1) Ly 1-L
p<+|(7|—»1 1— Lo

Ly
andforalle, ¢ € C:

@)

2acs Pa
E:desgng
PROOF We prove by showing that the conditions above imply

Statement 1. To do that, we need to find numbersm. for which
conditions(S) and (6) hold. By means of (8) foralt’ € C:

Z‘ﬁd < Z‘Bd<P Z‘Bd
des des des
Using this observation and the fact that:

> (g o) =

ceC desS

<p (8)

it can be proved by contradiction that for ale C:

1
- - q} < —
T (01— 1) = |S| Z "< Ter
1 IC] p-1C|
R S B q} < JRL S D E—
D ZS ‘= |C|p+|0|—1
Therefore, by choosingw; = % andmg = pf“‘cﬁll

condition (5) is satisfied. Also condition (6) holds, be@ascord-
ing to (7):

-|C
me _ GO _ 14p(CI=1) L 1-L
= __jer < - -
mi 00— 1+ (1/p)(IC] = 1) Ly 1—-1L
O

Condition (8) is similar to the notion of amplification in @dom-
ization methods for the row-level publishing scenario [1#hus,
we use their terminology, referring f@ as amplification. Notice
that for everyp > 1:

me _ e __1+p(C1-1)
g V([
Also,
S ey ([o/ R VR

p—1t 1+ (1/p)(IC] = 1)

These imply that for any givep > 1, we can find g > 1 such
thatz—j < g. On the other hand, by definitidh< L; < Lo < 1.

So we have:z2 - =f > 1. Therefore for any giverL.., L, by
choosingg =

f—j . }:2 > 1 we can select the largest possible
p for which 22 < g and then only check whether condition (6)

holds, since condition (7) is automatically satisfied.

Hence, Lemma 2 allows us to recast our privacy goal as that of

checking/enforcing condition (8) for a givenassuming that max-
imum allowed amplification is determined by formula (7), e

5. SAFETY CONDITION FOR NBC VIEWS

While checking for condition (8) on an arbitrary set of views
might not be an easy task, in Lemma 3 we provide a sufficient con
dition for NBC-enabling views. In Section 6, we prove thasth
condition can always be achieved by replacing the origimals
with synthesized/sanitized ones that both satisfy comuli¢8) and
result in the same classification behavior. Below and in és¢ of
this paper, we refer to NBC-enabling views simply as viewseid
use their( P, N) representation.

LEMMA 3. With respect to a givelfi, as the value of a quasi-
identifier I, and a given amplification ratip, the viewsef P, N)
is safe to publish, if for alk, ¢’ € C,1 < i < nandt € A; the
following conditions hold:

O ‘ ]]\\]]tc < u\y—

t,c

)

Lemma 3 is a sufficient criterion that ensures the safety of a
viewset publication, only when @parameter and a quasi-identifier
are both given. However, in practice the same privacy gueean
must be provided for all individuals and for all possible sjua
identifiers (i.e., all non-empty’s and,’s). To resolve this issue
we make the following observation.

Since the condition (9) is a function ¢f|, and not ofI or Iy,
all quasi-identifiers that have the same cardinality (hamber of
attributes) can be blocked at the same time, once we ensigre th
condition for one particular pair of and I,. Moreover, note that
1 <|I| <nand

VP "< <P
Thus, all privacy breaches for all quasi-identifiers of aagdinality

can be blocked by simply blocking the one with largest caalitiy)
namelyn. Therefore, we have the following corollary.

COROLLARY 4. With respect to a given amplification ratjg
the viewse{ P, N) is safe to publish, if foralt, ¢’ € C,1 <i<n
andt € A; the following conditions hold:

P, NL
< n
P NL — \/ﬁ

t,c

(10)

Next, we show how this leads us to an efficient algorithm for
transforming viewsets.

6. FROM UNSAFE VIEWS TO SAFE ONES

The previous section provided the sufficient conditionsfaid-
ing any privacy breach with respect to a given Now the next
question is ‘what if condition (10) for NBC-enabling view$ &
particular database does not hold?’. To address this questie
provide a linear-time algorithm that enables us to tramsftine
original set of views into a safe set of views which satisftes t
safety condition of Corollary 4, and has the ‘same quality’ the
purpose of building an NBC. We next clarify this notion ofrisa
quality’ more formally.

6.1 Equivalent views in building NBCs

In this section, we define the notion of equivalent sets ofvsie
(or counts) in terms of building an NBC. As mentioned in Sec-

L, and L, are the privacy parameters specified by the user. Al- tion 3, the class prediction for a tupteis determined by th&(; .

though this check is a sufficient and not a necessary condibio
avoiding privacy breaches related to a giyenit is still a weak-
enough condition to allow us to publish any classifier withaioy
accuracy loss (after some transformation, Sections 5 and 6 )

values in the following way. If there is a class lakglsuch that
forallc € C\{co}, X7, > X, Obviously the classifier’s pre-
diction will be ap. However, to break the ties, there is also a pre-
assigned precedence order among class labels. Namaly, if=



X, . then the classifier prediction goes to the one that has atighe Algorithm SafetyTransform(V, p)

precedence. In this paper, for the sake of presentation dhd w Input:

out loss of generality, we assume that the class labels anbens V is the given view consisting o¥; .'s and P.’s;
from 1 to |C/|, and the larger the class label the higher the prece- p amplification ratio (see Lemma 3)

dence. For example, & = {1,2,3} and X, 1 = X;2 = X, 3, Description:

the classifier's prediction will be class lat#l In case of a recom- Stepl(V): Replace all thoséV; .'s that are0 to non-zero
mendation system where we need an ordered prediction frem th StepZ(V,pﬁ): Scale down awti’c,s to new rational

classifier, the order would bBfirst,2 next andl last. numbers that satisfy the given amplification ratio

DEFINITION 2 (NBC-EQUIVALENCE). Let f and f’ be two Step3(/): Adjust the numbers such that ag@Ni,c =P,
functions that map each elemenfiéfl; x C to a non-negative real

t
Step4(/): Normalize the numbers or turn them into integers
number. We callf and f NBC-equivalentif V7 € T1A4;,Vc, ¢’ € Return V
C,oe<cd:
fre) < f(r,d) & f(r,0) < f(7,¢) (11) Figure 2: High-level steps for moving an unsafe view towarda
f(r,e)> f(r.c) & fi(r,e) > fi(r,d)  (12) safe one.

Itis easy to show that NBC-equivalence is in fact reflexiyens
metric, and transitive. The real value that an NBC assigreatd
(1,¢) € IIA; x Cis its estimation ofPr[Class(7) = ¢] which is
computed using equations (1) or (2). Informally, Definit®m-
plies that we are interested not in the actual values buEsegwing
the totalorderamong them, namelf(r, c1), f (7, c2), f(7,¢3),- - -
for all possibler.

Notice that in many contexts, the classifier prediction ieede
mined only by the label that has the highest associated pildlpa
which means that all those classifiers whose first predidiien,
ArgMax{ X . }) is the same, have the same effect. However, there

provably NBC-equivalent. The output from each step is giasn
the input to the next step. Thus, due to the transitivity ofONB
equivalence, at the end of these four steps (when the lastete
is safe to be published w.r.t. a givei, the resulting NBC is still
equivalent to the original one. Next, we present each stejetail
and prove their correctness separately (For a running eeanegber
to [29]).

6.2.1 Stepl

The pseudo code f@tep 1is given in Figure 3. In each iteration
of the main loop (Line 2), a zero is replaced with a positivenber.
are some applications such as recommendation systems thleere Therefore, at the end, there will be no zeros left (Rementimm
entire ranking matters. Thus, our notion of equivalent sifess values were positive, Section 3). Also, by a careful impletaton,
(Definition 2) preserves the entire ranking as well. Line 2.1 will only take constant time. Therefore, the total running

. . . time for the main loop (Line 2) and the initialization (Ling i
6.2 Transformation algorithms for unsafe views p ( ) (Ling

linear, with respect to the problem input size. Thus, aff teenains
So far, we established the safety of publishing a viewsetwie to be proved is that the output &tep lis NBC-equivalent to its
sufficient condition holds (see (9) in Lemma 3 and (10) in Goro  input viewset, formally stated below.

lary 4). Now the next problem is what if the original viewseked

not satisfy this condition? In the following, we present igoathm
that solves this problem by transforming an arbitrary vietato
an NBC-equivalent one that is safe to publish. A high-lewsyzo
code of this algorithm consists of four successive stepu(ei2),

where each step is a linear-time computation. The main gart o
this algorithm takes place i&tep 2which makes the viewset safe

to publish, by lowering the ratio between the counts ungytkat-
isfy eq. (10). The key idea of this step, is the following atvasion.

Raising all the counts to the same power does not changeabsicl

fication; In other words a set of NBC-equivalent viewsetdased
under exponentiation. For example, one could raise alRrend
N values in eq. (2) to a fixed power, sqﬁ—, without changing
the order betweeX - . and X, .- for all 7,c andc’. Therefore,

by choosing a small-enough power, the ratio between thétirggu

numbers goes down while the original classifier does notghan

However, the initial viewset might contain zero counts viahic

will result in undefined ratios (i.ex0). Thus, before applyinGtep

2, in Step 1we carefully replace all those zeros with small-enough

positive numbers in such a way that none of the existing ialtigs
are affected. Moreover, after raising all the numbers tostmae
power the following condition will no longer hold:

Pc - Z Nti#c
teA;

This issue will be resolved i8tep 3 Finally, in Step 4we normal-
ize the counts before publishing them.

In Figure 2, each step takes a viewgEt N) as input and returns
a new viewset which will be denoted 1§, N); These viewsets are

Algorithm Stepl1(P, N)
Input:
(P, N) is the given viewset;
Description:
1: For eache € C,
For each4;,
M — Max{Nj, |t € A;}
me — Min{N{ . >0,+o00 |t € A;}
M. «— [[ M}

4 .
me «— [[me

2: For each:le C in descending order,

For each4;,
For eacht € A,
If N{.=0,

Sie=Min{F - M | ¢ € C\{c}}
N; . < s, where0 < s < Sj .
2.1 UpdateM¢,mi, M. andm. accordingly
ElseN; . «— N/,
Return (P, N)

Figure 3: Step 1 - Removing zeros.

STATEMENT5 (STEP11S NBC-PRESERVING. After
algorithmStep 1 (P, N) and (P, N) are NBC-equivalent.

PROOF ’ Since non-zero counts have not changed, we only

"As we usedTHIS font to denote the output from each step, let



Algorithm Step2((P, N), p)
Input:
(P, N) is the given viewset;
p > 1is the requested amplification ratio (Corollary 4)

Description:
. Max{N} ,,P; | 1<i<n,t€A;,ceC}
1w~
Min{N; ..P; | 1<i<n,teA;,ceC}

2: Choose & such thate > ”ﬁf’ﬁ
3: Foreack € C,
For eachA;,
P, — VP,
For each € A;,
Ni,c — v Ng,c
4: Express th@. andNj . values using rational numbers,

with enough precision.
Return (N, P).

Figure 4: Step 2 - Enforcing the amplification condition.

need to consider those= (t1, - - - , tn, ) € (I1A;) x C for which

i, NZ“c = 0. For all suchr, X, . = 0. Thus, we need to show
that for anyc’ for which X, ., > 0, we will have:X, . < X, . =
X, .. Also, for any other’ > c whereX, ., = 0, we must show:
Xr,c <X, . To show this, notice that at any point in timé. and
m. represent the maximum and minimum possible values of non-
zero factors inX- .’s and X, ./'s, respectively. Thereforeﬁ'ﬁ,c is
the maximum value that can be assignedfitq such that the NBC
inequality still holds. For the equality case,Xfr,¢’) = 0 then
because of the descending ordercsfin removing zeros (Line 2)
we are guaranteed thfitr, ') > 0, for all ¢ > ¢ when processing
c. And in the case of’ < ¢, since in(P, N) their corresponding
counts were both zero, anrdhas precedence ovef, any positive
number forN;c in (P, N) will not change the classifier.[]

6.2.2 Step2

The pseudo code fdstep 2is given in Figure 4. Note that per-
forming k*" root (Line 3) preserves the NBC-equivalence. More-
over, since this operation scales down the numbers, theifampl
cation requirement will be satisfied if is chosen carefully.k is
chosen (Line 2) such that the largest ratio between eacloptie
original counts will be less than Also, w in Line 1 is always de-
fined, as no zero count is left aft8tep 1 Thus, one can show that:

LEMMA 6. At the end of Line 3 in Step 2P, N) and (P, N)
are NBC-equivalent and for all, ¢ € C,1 <i < nandt € A,
we have:

P. Nic _ .

7. < ¢/p and O<N;c/§\/ﬁ
However, the more important challenge here is how to apprate
the new numbers with rational numbers such that NBC-ecgrivad
is not violated (We need them to be rational if we want to turn
them into another synthesized database—see Section.@r2the
following, Z denotes a rational number approximationcoflo see
why an arbitraryfixed precision may cause trouble, consider the
following example.

Preserving ties.Suppose that the number of attributesis= 2
and that for some, ¢/, originally we hadV;' , xNﬁy1 =4x4=16

0< = (13)

X, be similarly defined by formula (2) whet¥ is replaced with
X, N with N and P with P.

andN{, x N2 2 = 2 x 8 =16. Assuming that’, = P, = 100,
the original NBC would predict the class labelas= 2, because
of the tie and the precedence of class= 2 over classc = 1.
Now, in case ofc = 2 (i.e., \2/), if we used a precision ofl0~2
we would haveN; ; x N7, | =2 x 2 =4 andN;, x N} , =
1.41 x 2.83 = 3.9903. AlsoP; = P, = 10. Thus, the new
NBC would predict the class label as= 1 which is inconsistent
with the original NBC. Our solution to this issue is to usdeliént
precisions for the counts associated with different ckessgch that
the magnitude of the error goes in favor of the higher-prened
classes. In other words, df> ¢/, over-approximat@li,c andNi’C/
suchthad < N; , — Ni , < Ni . — N} .. By doing the opposite
to P. values, we can ensure that wheneveéy,. = X, ./, then
X, > X, However, this can cause another issue, described
next.

Preserving inequalities.Forc > ¢, since the over-approximation
of the N; . values was larger than that ¥, ., (and the opposite
direction’ for]P’) for somer it can happen that we originally had
X;o > X7 but nowXT o < XT <. This results in a different
classification. To address both of these issues we use tbwiiog
result, which can be derived from the theory of Taylor series

STATEMENT 7. Arealk > 0, a naturaln > 1, and finite sets
Yi,-o Y, € INVF = {g]2" € 17\7} are given. For any > 0,
there exists a serie@ < \. < \,. < --- < A} < A1 for which
we can find a rationalr for eachz € U Yz, such that for any

1<i#j<r (x1,---,xn) € Y”and( S yn) €Y
n n n - n -
fi<yj: Moo= My, = 7 < Ty (14
e< Mo, My = 7> 17, (15)
Alsoforanyz; € V;,1 <i<r:
Zi+)\/li<z;<zi+)\i (16)

Notice that Statement 7 only preserves those original iakittps
whose differences were at leastln order to preserve all inequal-
ities, the following statement provides a lower bound orhsaice
for our special case.

STATEMENT 8. Let M = Maz{Nj Jc € C;1 <i < n,t €
A;}. Ifthere exist(ty, - - - ,tn) € A1X--- Ap Such that_f[thli,c +

then for anyk > 1:

A {3

.l;lthli,c’
A symmetric approximation faP. values can be derived in the op-
posite direction, but is omitted here for lack of space. Alsing a
similar technique useq iBtep 1we can ensure that the amplifica-
tion condition betweei; ., andP. values still holds.

6.2.3 Step3

The purpose o8tep JFigure 5) is to assert that eakh is actu-
ally equal to the sum of its correspondiiy . values, a condition
that could have been violated Btep land 2. In the following

’
el

n 1
I N}
i=1 K

1
| 2 n(k—1)
%

a7

8The same problem can happen even for much higher precisions,
as long as it is a fixed precision.



Algorithm Step3(P, N)
Input:
(P, N) is the given viewset;
Description:
1: Foreachke € C,
For each4;,

For each4;,

13 Rf— Hle

2: For each?”., '

2.1: P «— RS- P.
For eachVy .,

22N} .« R{-Nj,

Return (P, N)

Figure 5. Step 3 - Adjust the numbers such that again

Zt %4,4: == IP>c

statement, we also show the degree to which the amplificediim
can change as a result of this step, and that the NBC-equosle
still preserved.

STATEMENT 9. Given a viewsetP, N), the new view gener-
ated by algorithmStep 3 say(P, N), has the following three prop-
erties:

a. Realistic viewve € C,1 <i<n,P. =3, N ..

b. Classification preserving¥c € C,7 € [[, Ai, X;c =

Xre.

c. Amplification ratio: If3p > 1 s.t. () Vz,y € {FPclc
C}0 < 2 < pand (i) Vz,y € {N[c € C,1 <
n,t € A;},0< f < p, then we have:

(i) Va,y € {Pclc € C},0 < £ < p*"** and (v)Vz,y €
{(NiJeeC,1<i<nteA},0<2<p?t?

IA M

6.2.4 Step4

After Step 3 N/ .'s and P.’s are positive rational numbers that
are (i) NBC-equivalent to the original counts and (ii) sadeptib-
lish. Now these rational numbers can be turned into integgam
in Step 4in a straightforward manner. Having these positive in-
tegers (Niyc’s andP.’s), they can easily be used to make a new
synthesized database. Based on the users’ preference weélwan
publish the views (the tuples in each view will be permuted in
dependently), or solely publish their corresponding iatezmpunts,
namely(P, N). Another choice is to always normalize these counts
before publishing them, as such counts are enough for hgilain
NBC even without revealing the actual size of the origindhtase.

6.3 Uncertainty and Indistinguishability

Two important aspects of any privacy technique are uncgytai
and indistinuishability [38, 37]. Indistinuishability éefined as the
inability of telling the difference among individuals in eogip. Un-
certainty requires that the attacker cannot tell the sgasialue of
an individual among a group of values. Non-probabilisticem
tainty is often based on whether the sensitive value can iogiefy
inferred from the released data [22, 8, 20, 7] while prolisiil
uncertainty concerns whether the cardinality of the setoskible
sensitive values inferred for an individual is large enoagtd is
often based on data distribution [39, 26, 14, 4, 28]. Ournapke
provides a high degree of both uncertainty and indistiritabdity.

Uncertainty. The output of our algorithm is practically indistin-
guishable from the original data. The generated viewsétsldike
a real database, and in fact it is the original database & safe
in the first place, i.eSafetyTransforrbecomes an identity transfor-
mation. Thus, the adversary cannot tell whether he is dgalith
the origanl (safe) database or with a transformed one. Mereo
the adversary cannot uniquely find the original viewset e
ing our algorithm for the following reasons. Similar to [Hafety-
Transformintroduces several layers of uncertainty throughout the
transformation:

1. In Stepl, Line 25 values can be arbitrary/randomely chosen
from the specifies interval.

2. In Step2, Line 2, any: value that satisfies the inequation can be
arbitrary chosen.

3. In Step4, the final cardinality of the published databasebean
arbitrary chosen.

Although theSafetyTransfornalgorithm is known to the adver-
sary, the data publisher does not need to announce the spetifi
ues chosen for the choices mentioned above. Next, we farmall
state whySafetyTransformalso provides indistinguishability.

Indistinguishability. More strict notions (such as polynomial
indistinguishability) are often used in cryptography, inthe database
literature more practical metrics are usually appliedhsag sym-
metric indistinguishability [38, 37], defined next.

DEFINITION 3 (SIND). Consider a tablel" defined over a
schemd” = (PA, SA), whereP A andS A are the public and sen-
sitive attributes. A transformatiof/() is said to provide symmet-
rically indistinguishable (SIND) if for any table instande where
M(d) = M(T), and for any two tupleép:, s1), (p2, s2) € dthere
exists another instanc& such that:

1. M(d')=M(T),
2. (p1,s1), (p2,s2) ¢ d',and

3. <p1782>7 <p2731> S d'.

Note that we do not publish but publish both/ () and its result
onT', namelyM (T'). Intuitively, SIND requires that one can swap
the sensitive attributes between any two tuples, and thdtires
table will still be a possible instance, i.e. it will be costeint with
the published information that i8/(7"). In our case,M () con-
sists of the NBC-enabling views followed & fetyTrans form
algorithm.

One can easily show that SIND is an equivalence binary oalati
and thus, it will induce a partition on the set of tuples idgimg
SIND equivalence classes. SIND requires all the tuples io bee
same class, while a more practical notion can be similarfinee.

DEFINITION4  (K-SIND). We say a transformatioi/ () pro-
videsk-SIND, if each SIND equivalence class has a cardinality of
at leastk.

Notice thatk-anonymity is a special case #fSIND property.
Next result shows thaBafetyTransfornalso provides such indis-
tinguishability guarantees.

LEMMA 10. TheSafetyTransformalgorithm providesi-SIND,

where
k= MincccP:

PROOF Note that any two tuples that have the same class la-
bel, can swap their sensitive attribute (i.e, their clabsllewithout
changing any of the NBC-enabling views. Thus, since thetinpu
viewsets are the sam8afetyTransfornwill also create the same
output. Therefore, all tuples with the same class label f@i®iND
equivalence class. The smallest cardinality of such ctassthe
smallestP, value. [



7. ARBITRARY PRIOR DISTRIBUTIONS

In Statement 1 and Lemmas 3 and 2, we assumed that the prior

knowledge of the adversary is a uniform distribution ovéickss
labels. In this section we extend our results to arbitratsicfty-
positive) distributions.

For simplicity, we assume that the prior knowledge of the ad-
versary is in the form of a pmf (probability mass functioh)that
assigns non-zero probabilities to each class label. Inrgenée
adversary’'s knowledge can be more specific, e.g. the prityabi
of each class label given some quasi-identifiers, but hergonet
discuss such cases.

According to [28], for any given set of views that contain an
aggregate function, there exists a prior knowledge distidn that
will change after publishing the views. Note that NBCs aspal
aggregate functions. Therefore, we make the assumptidrititba
prior knowledge of the adversary (i.e%) is known to us, as the
data publisher. This is a common assumption in the field [24, 9
which according to the above mentioned results (proven &j)[2
cannot be easily avoided in the view publishing context. ST
practice, in order to protect privacy under the worst-casaario,
our publisher must assume that the adversary has accesstiegh
publicly available knowledge about the application domaktor
instance, in the case of medical data, a publisher must a&sthah
the adversary knows the most recent statistics of diffedlemgtases
and thus can accurately estimafe Hence,F(HIV) = 0.001,
F(Cancer) = 0.004 and F(Cold) = 0.995 might be a reason-
able choice if the statistics show that on averagés of patients
(say, in US) have HIV and so on. Thus, the posterior knowledge
that the adversary obtains after seeing the data publishadtsA
hospital should be as close as possibl®.id%, for HIV cases at
that hospital. This policy minimizes the additional infation that
our Bob will acquire about the hospital and patients such lazA
(who was treated there).

We next introduce a strong privacy measure that capturesthi
tion of closeness between the prior and the posterior digtdans,
while the related algorithm is given in Section 7.2.

7.1 r-Closeness
We now introduce the notior-closeness as follows:

DEFINITIONS5  (r-CLOSENESY. Forr > 1, we say that pub-
lishing V' (T') = Vj satisfies--closeness w.r.t. a given prior knowl-
edge distributionF, if for all I = I, and any propertyQ(c) of the
class labele, we have:

LPgh

r P‘lQ

<r (18)

WhereP2Q"IO is the adversary’s posterior knowledge defined in eq.
(4) and,P‘f is his prior knowledge of propert§, now defined as:

PR =" F(o)

Q(e)

(19)

Note that the above definition is consistent with the intuitthat
the smaller- is, the more similar the posterior distribution is to the
prior one. That is, when = 1, the two distributions meet. The no-
tion of r-closeness is semantically similar to that-afloseness [24],
which instead requires that the distance (either variatidistance
or KL distance) between the prior and posterior does notezkce

In our r-closeness, the distance is defined by the maximum ratio

of the two distributions on each possible class label. Thsisyn-
tactic definition is similar to the concept of ‘Amplificatiorj14],
which in turn corresponds to oyr in Lemma 2. Analogous to
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(a) (b) (c) (d) (e)

Figure 6: Visual demonstration of EST. () is the prior distri-
bution of class labels, whose ratios are 1:2:3, proportiony.
(b) is the original view of the data that deviates from the prior.
Thus, (e) is the published view that must be more similar to(a)
while still NBC-equivalent to (b).

Lemma 2 for privacy breach, the following result providesuiis
cient condition to guaranteecloseness. Notice that;closeness is
a stronger form of privacy breach. In other words, onggoseness
is guaranteed, no privacy breach can occur w.r.t. any pdir of -
Whereﬁ—f > 7.

STATEMENT 11. PublishingV'(T') = V; satisfiesr-closeness
w.r.t. a prior distributionF, if for all I = Iy and alle, ¢’ € C we
have:

1 F(e)
r F(c)

c,Ip
P2

c’ Iy
Py

< <r (20)

This sufficient condition enables us to use the algoriafety-
Transform(Section 6.2) as a subroutine for enforcingloseness
(if possible) w.r.t. an arbitrary strictly-positive prialistribution
that is available to the adversary. This is discussed next.

7.2 Enforcing r-closeness

We first explain the general idea of the algorithm using the ti
example of Figure 6. For each one of the original class laipels
6(b), we create several new sub-labels, shown(i#) 6 The num-
ber of sub-labels assigned to each original label is prapmat to
its prior probability, 7. Here, the prior ratio between HIV, Cancer,
and Migraine was assumed to be 2 : 3 resp., shown in G).
Then, we substitute the label of each tuple {ih)Bwith one of its
sub-labels, in &). Each sub-label of a label gets the same share of
the tuples that initially had that label, e.g. the tuplegw@ancer in
6(b) are equally split between new lab&ld andC2. Now, pro-
vided that such a split is allowed (explained later), we aams@er
all these sub-labels (i.ef1,C'1,C2,M1,M2,M3 in 6(c)) as hew
labels which now have a uniform prior distribution. Therefathe
required assumption for applyir®@gfety Transforrholds. In the re-
sulting view of this algorithm, shown in(@), the probabilities of
different class labels are ‘somewhat’ close. Finally, bygirgg all
class labels that were sub-labels of the same original lgbgl,
the counts of”'1 andC2 become somehow ‘combined’ as the new
counts forCancer in 6(e)), the new probabilities will be ‘some-
what’ similar to the prior. This is because the number of kliels
for each label was chosen accordingfo

There are several technical difficulties that need to belvedo
before such an algorithm works. In general, splitting andgne
ing class labels are not necessarily NBC-preserving. Again-
sider the tiny example in Figure 6. For a givenin 6(b) we may
have X; cancer > Xr mrv, but X- c1 < X- g1 in 6(c), as the
counts for labels”'1 andC2 are now half the counts fat'ancer.
Likewise for merging: X- a2 < Xr 1 in 6(d) may change to
X7 Migraine > Xr,cancer IN 6(€). The algorithm which resolves



Algorithm EST( (P, N), F, r)
Input:
(P, N) is the given viewset;
F is the given pmf over the class labels;
r is the requested value forcloseness;
Description:
1:Resolving the ties:such that/c, ¢’, 71 Xr.c # X, o
2:Split((P, N),F): Scale upN; . and P. values; then split
each class label according taF (c)
3:SafetyTransform((P, N),r): Run the algorithm on new
(sub) labels as if their prior distribution was uniform

4:Merging((P, N)): See if the new class labels can be mergea"

back to the original labels, otherwigeturn FAIL.
Return (P, N) as the output from the last step

Figure 7: Steps in EST

this problem, calleST(Extended Safety Transform), is provided
in Figure 7. In the following, we explain each step of EST sepa
rately and address the aforementioned issues.

Resolving the ties. As we see later in Lemma 12, we need to
first resolve all possible ties in the original NBC, i.e. fdr-aand
c#dc, X # X .. This can be easily done using the following
simple technique. Find a small enoughb- 0 such that adding it to
all the counts of any of the class labels does not change atheof
original inequalities. Finding such a number can be donéear
time, by a technique similar to that used in Section 6.2.2wNo
consider an arbitrary seri€s< e; < --- < €j¢j—1 < €| = €,
and adde; to all the counts of the-th class label. Since the
th class label has priority over theth label,i < j, all ties will
be broken towards the higher precedence label while nonkeof t
original inequalities are affected. Thus, NBC-equivateie still
preserved.

Before presenting the rest of this algorithm, we formall§iruz
the following operations on NBCs.

DEFINITION 6  (SPLIT, MERGING). LetV (with P.'s andNt’ﬂc’s)
andV (withP.'s andNiyc’s) be two NBCs defined over the same set
of attributes but with two different classes, .41, -, A,,C)
and (Ay,---, A, C) respectively. Also consider a mappifg :

C — C for which¥~!(c) # ¢ for all c € C. We callV a split of
Vifforall c € Cand allt, i:
; 1 ; 1
Nige=—— N/ and P = ———
T e T )
wherec = ¥(c). Likewise, we call/ a merging ofV if for all
c e Candallt,:

Nl =¥ c)|- Mi icland Po= |0t
tc | (C)| \P(C%ZC{Nt’C} |

P,

Min {P
(o) Min {Pc)
A split (or merging) is called NBC-preserving when for aland
all ¢, ¢’ € C, the following holds:X..- < X, . ifand only if there
existe, ¢’ € C such that¥(c) = ¢, ¥(c¢') = ¢ andXc¢,» < Xer »

The following result provides a sufficient condition for disfor
merging) to be NBC-preserving.

Thus, when there are no ties, '§T_, # 1, we have:

Mm{ Xre > 1} > %1
2

T,c,¢! ¢!

Mo
M,

and Mam{ Xre

T,c,c! ¢!

<1} >—

Referring toMI’1 asSy, Lemma 12 implies that one can multiply
all the counts ofa partlcular class label by any constaas long as
itisin the |nterval— < s < Sa- Another interesting observation
is that by exponentlatlng all the countslinto the same powet,
we can enlarge this interval arbitrarily from either sidec@ll that
exponentiation is always NBC-preserving). That$ss — oo
hené — oo, or equivalentlyc~ — 0" when# — 07. This is
the main idea behind th@plit step, described next.

Split. Let us assume théf(c) values are either rational numbers
or are given in a precise-enough rational representatika the
method used in Section 6.2.2). Thus, we can find their greates
common divisor, sayf. That is, for allc € C, F(c) = F - F
for some positive integef.. Now for eachc € C, we create
new sub-labels;, - - - , cp, that are all mapped to label Let F' =
]\C4eacx{Fc}. In order for the this split to be NBC-preserving, we first

raise the original counts to a big enough powdyefore applying
the split. More precisely, for an§ >> %4 the conditions
of Lemma 12 will be satisfied, since after raising the couothé

power of6), we will haveS}, = Sy’ > I whereS’, denotes the
new value.

SafetyTransform subroutine and Merging. As previously men-
tioned, after performing a split, the new class (sub)lalelsne
from a uniform distribution. This allows us to apply algbrit
SafetyTransform after which a merging operation is perémras
follows. For eachc € C, all sub-labelsy, - - -, cp, are mapped
back toc (new NBC counts are determined according to Defini-
tion 6). Assuming that such a mapping is possible (laterteSta
ment 14 determines when it is possible), we have the follgwin
analysis. After SafetyTransform (according to the resultSec-
tion 6.2), for all quasi-identifierdo, all ¢,¢’ € C and all¢; €

—1 / —1 /.
U (c),c; € U (c):
¢y I c; I
P‘L 0 F..P 240
1< 2+ <r = 1FE o Zeta  <ple
r = o — rF,, — ¢’ I —  F
PJ ¢ F, Py’ ¢
c 2
1 F pylo F
—zc K -2 < r=<
= T3F5 = PCT T STE,

Therefore, the required conditions for Statement 11 haldyipg
thatr-closeness is satisfied once the merging step is possib&e. Th
following lemma summarizes the properties of this alganith

LEMMA 13. EST runs in linear time, and when returning a
view V' for a given prior distributionF, a privacy levelr (for
r-closeness) and the original view, V' is safe to publish w.r.tr,
yet is NBC-equivalent to".

Lastly, we provide a closed form to determine the beslbseness
(i.e., smallest’) that our algorithm can enforce without losing any
accuracy.

STATEMENT 14. For agivenV and a prior distribution of class
labelsF , EST generates an NBC-equivaléfitthat guarantees-

LEMMA 12. LetW be the maximum number of sub-labels mappedloseness w.r.tF, if there exists a large enoughfor which the

to a single label, i.e¥ = Max{|\I/*1

ther V- nor V has a tie. A spllt defined ovelr is NBC-preserving
if O < %l , WhereM; and M, are the first and the second largest
N{.in V. Similarly, a merging defined ovdr is NBC-preserving

if U < %;, whereM; andM, are the first and the second largest

N; cinV.

(¢)|}. Also assume that nei-

following condition holds:

SQ
F< (=&

log 1
) (2n2+3n)(0-log & +10g F)

(1)

wheren, m, M are the number of attributes ifr, the minimum
count inV (after removing zeros), and the maximum coun¥in
respectively.
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Figure 8: Achievedr-closeness on Adult dataset.

Taking the limit a®) — oo, the condition simplifies to

logr
2 . A
(2n243n)-log &

F <8y

It is worth mentioning that for uniform distributions = 1, and
this was why SafetyTransform could achieve any level ofgayw
Moreover, note that Statement 14 is a sufficient but not assecg
condition. However, in practice, tighter analysis%f; is possible
which can lead to smaller values for Also, as shown in Sec-
tion 8.1, the SafetyTransform algorithm provides much rejes
amplification ratios than the requestediue to its conservative ap-
proach. This means that in practice EST can call SafetyToems
with a much lower than what is guaranteed by Statement 14, and
still achieve the same or bettercloseness than what was initially
requested. Thus, the applicability of EST depends on beathiéa
viation of the actual data frot and the requested privacy level
(for r-closeness). If the distribution of the underlying dataides
too much from(F'), apparently no one can guarantee a very small
r without losing accuracy.

Moreover, another possibility is to trade-off accuracyslagainst
privacy (i.e., smaller’s) by performing the merging step (regard-
less of being NBC-preserving) witH that ranges in < r’ < r”,
wherer is the required privacy level and’ is the smallest value
for r-closeness that satisfies Statement 14. At the extremess-cho
ing »* = r completely ignores the accuracy loss, while= "
preserves the accuracy, ignoring the requested privacyddNet
discuss such possible trade-offs here, as in this papereus finly
on the accuracy preserving case (whenever it is consistiémtive
requested privacy level, nametf < r).

8. EXPERIMENTS

The goal of our experiments is to evaluate (i) the effectdgsn
of our algorithms in practice (Section 8.1) and (ii) the aecy
loss imposed by other general-purpose techniques on NB&s (S
tion 8.2).

By running SafetyTransform for < p < 283, we measured the
actualr-closeness that is achieved by EST for this dataset, plotted
in Figure 8. The actual-closeness was measured by using combi-
natorial counting of all possible instances (that after$pét step,
were assumed equally likely). As shown in Figure 8, the dotua
closeness is much better than the theoretical worst caseidpd

by Statement 14). This is due to the conservative upper bdend
rived from Lemma 3. This implies that, in practice, for a resjed
level of r-closeness, we can call SafetyTransform with that is
much higher tham, and still preserve both NBC-equivalence and
privacy level. This is because SafetyTransform achievesuehm
lower amplification guarantee thart. We have repeated this ex-
periment with a different number of attributes, and alsoswn-
thetic datasets (both uniform and non-uniform distribagipand
observed similar results.

8.2 NBC Accuracy

In this section, we have only focused on the effect of determi
istic privacy methods on NBCs, but apparently the randotitina
techniques will also impose accuracy loss depending on vaei
ance. Thus, we usdganonymity as an example of a well-studied,
general-purpose privacy technique, since it preservemtist ac-
curacy compared to Entrogydiversity, Recursivé-diversity, and
t-closeness (see the experiments in [26, 24]). But evenkfor
anonymity, the accuracy loss was considerable for recaBhawn
in Figure 9(b).

For anonymizing the Adult dataset we used Incognito impleme
tation [23] which is a full-domairk-anonymity algorithm. We
trained an NBC on the anonymized data (for different valules o
k) and compared the results with an NBC trained on the output of
SafetyTransform, which is equivalent to training it on thiggimal
data. For ETS, we used= 1.3 for a prior belief of75% on < 50K
label. But note that the accuracy for both ETS and Safetysfoam
are always equal to that obtained on the original data, déggss of
the chosen value for, and therefore we represent them all with the
same (red) bar in Figure 9(a),(b). Each time, we us&t of the
tuples for training and the rest for testing. The overallumacy of
NBC does not drop much usirkganonymized data (abob¥t, Fig-
ure 9(a)). However, the classification quality drops dracadly for
less common classes. Since in the Adult dataset, tuplessafigny
of > 50K are much fewer (one third) than those with50 K, the
recall for this smaller class is significantly affected, asven in
Figure 9(b). In many applications, classifying less comraeants
is much more critical, e.g. in an online recommendationesysor
search engine advertisement, the probability of a click pargicu-
lar ad is very small. Also, since our algorithms retain thaltorder
(NBC-equivalence), all metrics remain the same, such agacy,
recall, precision and F-measure.

CONCLUSION AND FUTURE WORK

, : 9.
The experiments were conducted on a P4 machine running Linux — In this paper, we reformulated privacy breach for view pslili

with 1GB RAM. Our algorithms (SafetyTransform & EST) were
implemented in C++. We used the Adult dataset [6] which is a
classic benchmark for privacy-preserving techniquess tataset
contains32, 561 tuples from US Census data. The attributes that

ing. We presented sufficient conditions that are easy toaeforce,
when the views in question are used to train Naive Bayesias-C
sifiers (NBC). Indeed, we provided algorithms that (i) rutimear-
time, (ii) guarantee the privacy of the individuals who poad the

we used were Age, Years of education, Work hours per week, andtraining data, (jii) incur zero accuracy loss in terms ofltinig an
Salary. The class label is based on salary which can be eitherNBC, (iv) work for any given database as long as the prioritist

> 50K or < 50K. The running time of EST for processing this
dataset wa®.920 seconds.

8.1 Amplification ratio and »-closeness

In the Adult dataset, the ratio of tuples with salafy50 to those
with > 50K was24720 to 7841, i.e. ' ~ 3. Moreover, in the
original dataset, the minimum (satisfying Corollary 4) wag38.

tion is uniform, or it satisfies our sufficient condition. Walidated
the applicability and effectiveness of our algorithms byesal ex-
periments on real-world datasets.

Our proposed method has a clear advantage over generasgurp
approaches, such asanonymity and randomization, that compro-
mise the accuracy of information to achieve privacy. In archte-
parture from these and other previous approaches that izmtime
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Figure 9: Drop in accuracy (a) and recall (b) of NBC when trained with k-anonymized data.

information loss in terms of the average error, we showetlftra
NBCs, a perfectly accurate mining model may still be achiva
even if the average utility of a perturbation method is pobhis
promising finding, also calls for more efforts in designingdeal-
specific privacy-preserving approaches optimized for i§ipeain-

[18] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On tiapy
preserving properties of random data perturbation tectasigin
ICDM, 2003.

[19] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Randiata
perturbation techniques and privacy-preserving datangit{now!.
Inf. Syst, 2005.

ing methods of wide usage. In the end, this could deliver more [20] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatableliing. In

concrete benefits than seeking general-purpose techniguies
have proven to be computationally complex and practicaileal-
istic [32].

NBCs are widely used in many successful classification anxd re

ommendation systems. Moreover, we are currently extenalimg
techniques to general Bayesian networks. In fact, sevecdd-p
lems including sensitivity analysis [10] on Bayesian netgocan

be reformulated using our notion of amplification. Some meta
algorithms such as bagging can be accommodated in a straight

forward manner. Moreover, we are investigating the extensif
our approach to augmented NBCs [21], decision trees buaith fr
NBCs, and incremental publication of NBCs over a data stream
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