
A Fair Assignment Algorithm
for Multiple Preference Queries

Leong Hou U
Department of Computer

Science
University of Hong Kong

Pokfulam Road, Hong Kong

hleongu@cs.hku.hk

Nikos Mamoulis
Department of Computer

Science
University of Hong Kong

Pokfulam Road, Hong Kong

nikos@cs.hku.hk

Kyriakos Mouratidis
School of Information Systems

Singapore Management
University

Singapore 178902

kyriakos@smu.edu.sg

ABSTRACT
Consider an internship assignment system, where at the end of
each academic year, interested university students search and ap-
ply for available positions, based on their preferences (e.g., nature
of the job, salary, office location, etc). In a variety of facility, task
or position assignment contexts, users have personal preferences
expressed by different weights on the attributes of the searched
objects. Although individual preference queries can be evaluated
by selecting the object in the database with the highest aggregate
score, in the case of multiple simultaneous requests, a single object
cannot be assigned to more than one users. The challenge is to com-
pute a fair 1-1 matching between the queries and the objects. We
model this as a stable-marriage problem and propose an efficient
method for its processing. Our algorithm iteratively finds stable
query-object pairs and removes them from the problem. At its core
lies a novel skyline maintenance technique, which we prove to be
I/O optimal. We conduct an extensive experimental evaluation us-
ing real and synthetic data, which demonstrates that our approach
outperforms adaptations of previous methods by several orders of
magnitude.

1 Introduction
Consider a system, where users (e.g., students) search and reserve
objects or services (e.g., internship positions), based on preference
functions. Typically, different users have different preferences ex-
pressed by different weights on the attributes of the searched ob-
jects (e.g., nature of the job, salary, office location, etc). For a
single user, the system returns a set of top-k results with respect
to his/her preference function. In this paper we study the problem
where multiple preference queries are issued simultaneously. In
this case, different users may compete for the same objects. For
example, an available internship position could be the top-1 choice
of many interested students, while it can only be assigned to one
of them. As a result, the system must look for a fair 1-1 matching
between the users and the objects.

As another example, consider a classroom allocation system,
where at the beginning of each teaching semester (or before the
exam period) the various instructors declare their classroom pref-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

erences in terms of the capacity of the room, the location, avail-
able equipment, etc. A central system is then called to make a fair
assignment of classrooms to instructors according to their prefer-
ences. Instances of this problem also arise in house allocation sce-
narios [12, 28]. Consider, for example, that every year a govern-
ment releases new public housing apartments. The attractiveness
of each housing option varies from person to person. Thus, inter-
ested applicants specify their preferences and a fair 1-1 assignment
needs to be made by the government. Such situations are com-
mon in countries with large government-owned estates. In China,
for instance, this problem is of great significance [27]. Other ap-
plications include assignment of students to special-interest high
schools or colleges, allocation of offices to employees, placement
of legislators to committees, etc.

Fair 1-1 assignments can be based on the classic Stable Marriage
Problem (SMP) [9, 11]. To compute a fair assignment between a
set of preference functionsF and a set of objectsO, the pair(f, o)
in F ×O with the largestf(o) value is found and established (i.e.,
the user corresponding tof is assigned too). Then,f ando are
removed fromF andO respectively, and the process is iteratively
repeated until eitherF or O becomes empty. This 1-1 matching
model based on stable pairs has been also adopted by previous work
on spatial assignment problems [25, 21].

Figure 1 illustrates an example with three linear preference func-
tions F = {f1, f2, f3} (by three users), which prioritize a set of
four internship positionsO = {a, b, c, d} with respect to the of-
fered salary (X) and the company’s standing (Y). The function
coefficients are normalized (i.e., they sum to 1, in order not to favor
any user) and they express weights of importance on the different
attributes. For example, userf1 prefers an internship of high salary
over one at a company with high standing. In a stable 1-1 matching,
position (i.e., object)c is assigned to preference functionf1 since
f1(c) = 0.68 has the highest aggregate value among all function-
object pairs. Subsequently,f1 andc are removed fromF andO
respectively. Next, objectb is assigned tof2, and, finally, userf3

takes objecta.
In practice, the functions can be computed by a real system that

asks the users to input their preferences over the different search
attributes. Table 1 illustrates an exemplary input form. After a user
has expressed his/her preferences, the system translates them to a
function; the marked preferences in the example translate to the
preference functionf1 = 0.8X + 0.2Y of Figure 1, as Salary has
weight4/5 and Standing has weight1/5.

The spatial assignment algorithms proposed in [25] and [21] can
be adapted to solve this problem. Both methods work progres-
sively, by finding a pair that is guaranteed to be in the stable as-
signment, reporting it, and iteratively finding the next one, until

best point

a

c

b

d
f1

f3

f2

(salary) X

(s
ta

nd
in

g)
 Y

f1 = 0.8X + 0.2Y
f2 = 0.2X + 0.8Y
f3 = 0.5X + 0.5Y

a=(0.5,0.6)
b=(0.2,0.7)
c=(0.8,0.2)
d=(0.4,0.4)

Users' preference functions

Positions' attributes

f2

f1f3
Coefficient - X

C
oe

ffi
ci

en
t -

Y

f2

f1

f3

Coefficient - X

C
oe

ffi
ci

en
t -

Y

1.0

1.0

3.0

3.0

1.5

1.5

0.5

0.5

f1 = 0.8X + 0.2Y

f2 = 0.2X + 0.8Y

f3 = 0.5X + 0.5Y

f1 = 3*(0.8X + 0.2Y)

f2 = 2*(0.2X + 0.8Y)

f3 = 1*(0.5X + 0.5Y)

Figure 1: Internship Assignment Example

Table 1: Example of a Preference Input Form

User 1 Lowest Highest
1 2 3 4 5

Salary X
Company Standing X

the complete stable 1-1 assignment is established. These methods
can solve our problem by incremental top-k searches, one for each
function (e.g., using the algorithm of [19]). As we elaborate in
more detail later, their burden is the large number of top-k queries
performed on the complete set of objects.

We propose a specialized technique, which greatly outperforms
adaptations of spatial assignment algorithms. Our solution is based
on the observation that only objects in the skyline [4] ofO need
to be considered at each step of the assignment process. The sky-
line of O contains all objects inO, for which there does not exist
an equal or better object inO with respect to all attributes. In the
internship assignment example (Figure 1), note that objectd is not
necessary to be retrieved before the assignment of objecta (assum-
ing that all preference functions are monotone). Thus, we can avoid
accessing and examining objects unnecessarily by maintaining the
skyline ofO. As modules of our technique, we provide an efficient
skyline maintenance algorithm and a fast method for identifying
matching pairs between the skyline ofO andF . A short outline of
our methodology appears in [20]; in this paper, the search modules
are optimized, there is an optimality proof for the skyline main-
tenance algorithm, we include and evaluate variants of the basic
problem, and study the case whereF is larger thanO.

The rest of the paper is organized as follows. Section 2 reviews
related work, and Section 3 formalizes the problem under investi-
gation. Section 4 presents the basic idea of our approach, while
Section 5 describes a number of optimizations. Section 6 stud-
ies two problem variations: assignment where objects may have
capacities (e.g., a company offers 10 identical positions with the
same salary) and de-normalized functions (e.g., problems where
users have different priority). Section 7 empirically evaluates our
solution in various settings. Section 8 concludes the paper with
directions for future work.

2 Related Work
Our problem is closely related to three types of search: spatial as-
signment problems, skyline retrieval, and top-k queries. In this sec-
tion, we review algorithms for these problems that are most related
to our approach.

2.1 Spatial Assignment Problems

The Stable Marriage Problem (SMP) is a common 1-1 assignment
problem between objects from two different datasets. The goal of
SMP is to find a stable matchingM , as in Definition 1.

DEFINITION 1. Given two datasetsA and B, a 1-1 matching
M is stable if there are no two pairs(a, b) and(a′, b′) in M , such
that a prefersb′ to b, andb′ prefersa to a′ (wherea, a′ ∈ A and
b, b′ ∈ B).

[11] describes SMP and gives detailed solutions to its variants.
SMP has been recently considered as a model for fair spatial as-
signments [21, 25]. Given two sets of spatial objects, the objective
is to find a 1-1 stable matching, considering Euclidean distance as
the preference function. That is,a prefersb′ to b if and only if
dist(a, b′) < dist(a, b). In [21], this spatial SMP is referred to
as exclusive closest pairs (ECP) join and is treated as a variant of
the closest pairs problem [7]. ECP searches for the closest pair of
objects in the cross product of the two datasets. Once the closest
pair is found, it is output, and the corresponding objects are re-
moved from their respective datasets. The process is repeated until
one set becomes empty. Each computed pair is proven to be stable.
[21] and [25] use Property 1 to solve the problem. Assuming that
pairs found to be stable are removed from the problem, at any point
during the execution of the assignment algorithm it holds that:

PROPERTY 1. A pair (a, b) is stable if and only ifa’s closest
object isb andb’s closest object isa, wherea andb are among the
unassigned (remaining) objects inA andB respectively.

Based on this property, [25] proposes the Chain algorithm, which
solves the problem by executing at most3 ·min{|A|, |B|} nearest
neighbor queries and2 ·min{|A|, |B|} deletions, assuming that the
input datasetsA andB are indexed by two main-memory R-trees.
Chain first picks a random objecta from datasetA and finds its NN
(nearest neighbor)aNN in B, usingB’s index. Then, Chain finds
the NNa′ of aNN in A (usingA’s index). If a′ 6= a, thenaNN is
pushed into a queueQ. Otherwise (i.e., ifa′ = a), pair (a, aNN)
is output as a result pair anda, aNN are removed fromA andB
respectively (by deletions performed on the corresponding spatial
indexes). The algorithm continues by de-queuing the next object
x from Q (or picks a random object fromA if Q is empty) and
testing ifx’s NN in the other dataset hasx as its nearest neighbor
(i.e., the same test described above). Depending on the result of
this test, the corresponding ECP pair is output orx’s NN is pushed
into Q. Eventually, Chain terminates after all ECP pairs have been
identified this way.

[22] solves a related spatial assignment problem, where the ob-
jective is to minimize the average distance in the assigned pairs.
This problem is significantly more complex than the stable spa-
tial assignment described above, as algorithms that derive an exact
solution have O(n3) cost, if both datasets haveO(n) size. The
methods provided in [22] exploit spatial indexes and apply approx-
imation techniques to prune the search space and to reduce the
computation cost. Still, as shown in [21], the stable assignment
achieves similar quality in terms of the average distance measure
of [22], although designed for a different problem. Given this fact,
and considering the lower complexity of the stable marriage prob-
lem, we choose to adapt Definition 1 to our function-object assign-
ment problem. We stress that our solution is fundamentally differ-
ent from [21, 25, 22], as (i) we compute an assignment between
elements of different nature (i.e., preference functions and multidi-
mensional feature vectors) and (ii) we rely on the computation and
maintenance of a skyline, a notion that is not meaningful/applicable
in the spatial assignment problems of [21, 25, 22].

2.2 Skyline Queries

Consider a setO of D-dimensional points. Pointo ∈ O is said to
dominate pointo′ ∈ O, if for all dimensionsi, 1 ≤ i ≤ D, oi

(i.e., the value ofo in dimensioni), is greater than or equal too′i
(the value ofo′ in dimensioni), and the two points do not coincide.

The skyline ofO consists of all pointso ∈ O that are not dominated
by any other point inO.

[4] is the first work on skyline computation in secondary storage,
proposing two algorithms: BNL (block nested loops) and DC (di-
vide and conquer). BNL scans the dataset once, while keeping all
non-dominated objects in the memory buffer. If during this process
the buffer overflows, objects in it are flushed to a temporary file.
After the scan, some objects in the buffer are guaranteed to be in
the skyline and output, while the rest remain in the buffer and the
process is repeated (as many times as necessary) taking the tem-
porary file as input. DC computes local skylines in partitions of
the space, and then merges these skylines recursively. LESS (lin-
ear elimination sort for skyline) [10] is an adaptation of BNL that
reduces the average-case running time by topologically sorting the
points before evaluation. SaLSa [3] adopts the idea of LESS to pre-
sort the input data, but uses an appropriate ordering and a termina-
tion condition that avoids scanning the complete ordered input.

Skyline computation is faster if the objects are indexed. [18, 15,
17] propose algorithms that rely on indexing. Branch and Bound
Skyline (BBS) [17] assumes thatO is indexed by an R-tree and
computes the skyline ofO by accessing the minimum number of
R-tree nodes (i.e., it is I/O optimal). BBS accesses the nodes of the
tree in ascending distance order from thesky point; that is the cor-
ner of the space with the largest attribute values in all dimensions,
and corresponds to the (imaginary) most preferable object possible.
Once a data object is found, it is added to the skyline and all R-tree
nodes/subtrees dominated by it are directly pruned.

We illustrate the BBS algorithm in Figure 2, whereO contains
13 objects indexed by the depicted R-tree. BBS executes an incre-
mental nearest neighbor search (INN) from the sky point. The first
NN is objecte; the right part of the figure shows the contents of
the INN search heap at the stage whene is confirmed to be NN;
the R-tree nodes accessed so far are drawn with bold contour. Ob-
jecte is guaranteed to be in the skyline and is placed into setOsky.
e dominates all objects falling in the shaded area; therefore, heap
elementsd, m1, i, andc are pruned as they are de-heaped. The
next NN found isa, which is also inserted intoOsky. Finally, heap
entriesM2 andM3 are dominated bye anda, respectively, and
pruned. BBS terminates at this point (since the INN heap becomes
empty), withOsky = {e, a}.

m5

m2

m4

M2

m3

M1

m1

a

hg

c d

i

e

j l
k

m best

best
M3

fb
M1 M2

m1 m2 m3 m4 m5

INN Heap={e, d, m1, i, c, a, M2, M3}

M3

m6

sky
m6

m7

m7

g h a c d e i j l k m b f ...

Figure 2: Example of Branch-and-Bound Skyline

For dynamic datasets, the skyline can be maintained as follows.
Each inserted objectoins is compared against the current skyline.
If it is not dominated by any object inOsky, it is included in it. If
it dominates some skyline objects, they are removed fromOsky.
Deletions are more complex to handle. Once a skyline objectodel

is deleted, the skyline is updated by considering only objects in the
region exclusively dominated byodel, calledexclusive dominance
region (EDR). We illustrate this by an example in Figure 3(a). If
objectd is removed, the skyline is updated by inserting intoOsky

the skyline of the EDR (the shaded region). A constrained version
of BBS can be used, which accesses only the entries whose MBRs

intersect the EDR (e.g.,m1). In this example, no new objects are
added to the skyline, since all objects inm1 are outside the EDR.
As a result, the updated skyline isOsky = {a, c, i}. Note that
the EDR is not a simple hyper-rectangle when the dimensionality
exceeds 2. Figure 3(b) shows a 3-dimensional EDR example; the
EDR of objectb is formed by several hyper-rectangles.

m5

m4

M2

a

h
g

c d

ij l
k

m

SKYLINE

best

best
 m1

Delete dM3

fb m6
m7

(a) 2-dimensional EDR

m5

m4

M2

a

h
g

c d

i
j

l
k

m

SKYLINE

best

be
st

M3

f

b

m1

Delete d

a
b

c

a
b

c

Delete b

(b) 3-dimensional EDR

Figure 3: Examples of Exclusive Dominance Region

BBS requires computing the EDR in response to skyline removals.
[26] shows that if we use a systematic way to decompose aD-
dimensional EDR into a set of hyper-rectangles, then the number
of rectangles is|Osky|D, whereD is the dimensionality. The worst
case of each intersection check becomesO(|Osky|D) (if the MBR
entry only overlaps with the last rectangle). In view of this poten-
tially huge number of computations, an algorithm called DeltaSky
[26] is proposed, which determines the intersection between an
MBR and the EDR without explicitly calculating the EDR itself.
The worst case complexity of the intersection check is reduced to
O(|Osky| · D). Note that, for each deletion inOsky, BBS and
DeltaSky traverse the R-tree once to process an EDR-constrained
query. If more than one skyline objects are removed at the same
time, these methods may read the same R-tree nodes multiple times,
incurring high I/O cost. As a building block of our assignment al-
gorithm, we propose a skyline maintenance technique for situations
where only deletions happen. Our method outperforms DeltaSky
and is I/O optimal.

A recent work by Wong et al. [24] studies the efficient computa-
tion of skylines on datasets with dynamic preferences on nominal
attributes. Nominal attributes do not have a pre-defined (i.e., ob-
jective) order, but a custom-based preference for their values can
be set. The skyline for such data can be computed by an index-
independent method (e.g., [3]), but index-based methods cannot be
applied because it is infeasible to maintain an index for each of
the (exponentially many) possible orderings. In view of this, [24]
proposes a technique, which precomputes and materializes the sky-
lines for a subset of the possible orderings of the nominal attributes.
Given a skyline query with arbitrary user preferences on the nom-
inal attributes, the technique computes the result efficiently from
the materialized skylines. Computing a matching in object data-
bases with nominal attributes is beyond the scope of our work; we
only consider orderings implicitly defined by preference functions
expressed by weights on the different attributes.

2.3 Top-k Search

Let O be a collection ofn objects andS1, S2, ..., SD be a set of
D sorted lists of these objects, based on their atomic scores on dif-
ferent features (i.e., dimensions). Consider an aggregate function
f , which takes as input an objecto ∈ O, and applies to theD
atomic scoreso1, o2, ..., oD of o. A top-k query, based onf , re-
trieves ak-subsetOtopk of O (k < n), such thatf(o) ≥ f(o′),
∀o ∈ Otopk, o′ ∈ O −Otopk.

Fagin et al. [8] propose a set of algorithms for top-k queries with
monotone functionsf , among which the threshold algorithm (TA)
prevails. The main idea of TA is to pop objects from the sorted
lists in a round-robin fashion. For each encountered objecto, a
random access is performed to retrieve all its atomic scores and
computef(o). The set of thek objects with the highest aggregate
scores found so far is maintained. The search terminates when the
k-th score in this set becomes greater than or equal to threshold
T = f(l1, l2, ..., lD), whereli is the last atomic value drawn in
sorted order from listSi.

BRS (branch-and-bound ranked search) [19] is an I/O optimal
top-k algorithm for datasets indexed by an R-tree. BRS visits the
R-tree nodes in an order determined by the preference functionf .
Given an MBRM , maxscore(M) is defined as the score of its
best corner and is an upper bound of the score for any object inside
M . BRS considers R-tree nodes in descendingmaxscore order,
and terminates when the score of thek-th best object encountered
is no smaller than themaxscore of the next R-tree node in this
order.

Onion [5] is a precomputation-based method for top-k queries
with linear aggregate functions, which relies on convex hull layers.
Onion computes the convex hull of the data objects and sets it as the
first layer. Then, it removes the hull objects and repeats the process
to construct the next (deeper) layers, until all data are exhausted.
Onion computes top-k results of an aggregate function by expand-
ing the convex hull layers progressively, starting from the first one
and moving inwards. The main problems of Onion are (i) it may
expand all layers ifk is large and (ii) the complexityO(nD/2) of
convex hull computations forn data objects becomes very high if
the dimensionalityD increases.

As in our method, skyline processing has been used in the past
to facilitate top-k queries; however, our work is the first to tar-
get a matching problem. [16] studies the continuous monitoring
of top-k queries over streaming multidimensional tuples in a fixed-
size sliding window. It reduces the problem to ak-skyband [17]
maintenance problem, considering the data attributes and their ex-
piration times as skyline dimensions. Thek-skyband contains the
objects that are dominated by at mostk − 1 others. Thus, for any
monotone preference function, the top-k results are contained in
thek-skyband. [23] utilizesk-skyband computation techniques to
evaluate top-k queries over peer-to-peer networks.

3 Problem Statement
Our model includes a set of user preference functionsF over a set
of multidimensional objectsO. Each objecto ∈ O is represented
by D feature valueso1 . . . oD. Every functionf ∈ F is defined
over theseD values and maps objecto ∈ O to a numeric score
f(o). F may contain anymonotonefunction; i.e., if for two objects
o, o′ ∈ O, oi ≥ o′i,∀i ∈ [1, D], thenf(o) ≥ f(o′),∀f ∈ F . For
ease of presentation, however, we focus onlinear functions; i.e.,
each function specifiesD weightsf.α1 . . . f.αD, one for each di-
mension. The weights are normalized, such that

PD
i=1 f.αi equals

1. This assures that no function is favored over another. Given an
objecto ∈ O, its score with respect to anf ∈ F is:

f(o) =

DX

i=1

f.αi · oi, (1)

Our goal is to find astable1-1 matching betweenF andO. The
desired matching is described by Definition 1, subject to the con-
vention that functionf preferso to o′ if f(o) > f(o′) and, sym-
metrically, objecto prefersf to f ′, if f(o) > f ′(o).

Similar to SMP, the matching can be computed by iteratively

reporting the(f, o) pair with the highest score inF × O, and re-
moving f ando from F andO respectively. During any process
that outputs matching pairs in this order, it holds that:

PROPERTY 2. A function-object pair(f, o) in F ×O is stable,
if there is no functionf ′ ∈ F, f ′ 6= f, f ′(o) > f(o) and there is
no objecto′ ∈ O, o′ 6= o, f(o′) > f(o), whereF andO are the
sets of the unassigned (remaining) functions and objects.

4 Algorithms
In this section, we describe a brute force solution and then sketch
our proposed approach. Both techniques areprogressive, i.e., sta-
ble function-object pairs are output as soon as they are identified.
We assume thatF is kept in memory whileO (which is typically
persistent) is indexed by an R-tree on the disk. The main concepts
of our approach, however, apply to other indexes and alternative
storage settings (discussed in Section 7).

4.1 Brute Force Search

Our assignment problem can be solved by iterative stable pair iden-
tification and removal, according to Property 2. However, unlike
finding closest pairs in the spatial version of SMP (as in [21, 25]),
identifying stable function-object pairs may require substantial ef-
fort. A brute force approach is to issue top-1 queries againstO,
one for every function inF . This will produce|F | pairs. The pair
(f, o) with the highestf(o) value should be stable, because (i)o is
the top-1 preference off and (ii)f ′(o) cannot be greater thanf(o)
for any functionf ′ 6= f (since(f, o) is the pair with the highest
score).

This method requires numerous top-1 queries to be initiated; one
for each function inF . Assuming thatO is indexed by an R-tree
RO, these queries can be implemented similarly to NN queries, as
shown in [19] and discussed in Section 2.3. In addition, after the
pair (f, o) with the highestf(o) value is added to the query result,
o must be removed fromRO, and if o was the top-1 object for
some other functionf ′ 6= f , top-1 search must be re-applied for
f ′. In the worst-case, where top-1 search must be re-applied for
all remaining functions after the identification of each stable pair,
this algorithm requires O(|F |) deletions fromRO and O(|F |2) top-
1 searches inRO. Deletions and top-1 searches have logarithmic
costs.

The performance of the algorithm can be improved if we main-
tain the search heap for each top-1 query. In this case, if the top-1
object of a functionf ′ is assigned to another functionf (because
f(o) > f ′(o)), then the search forf ′ canresume. This is possi-
ble, if an incremental top-k algorithm is used (e.g., the algorithm
of [19]). On the other hand, this solution requires a large amount of
memory, as one priority queue must be maintained for each func-
tion. We now describe a more efficient algorithm for this function-
object assignment problem.

4.2 Skyline-based Search

An important observation is that, ifF contains only monotone
functions, then the top-1 objects of all preference functions should
be in the skyline ofO. Recall that the skylineOsky of O is the
maximum subset ofO, which contains only objects that are not
dominated by any other object. In other words, for anyo ∈ O, if
o is not in the skyline, then there exists an objecto′ in Osky, such
that any functionf ∈ F would prefero′ overo.

Based on this observation, we propose an algorithm, which com-
putes and maintains the skylineOsky, while stable function-object
pairs betweenOsky andF are found and reported. Algorithm 1 is a
high-level pseudocode for thisskyline-based(SB) approach. First,
we compute the skylineOsky of the complete setO (e.g., using
the algorithm of [17], described in Section 2.2). Then, while there

are unassigned functions, the function-object pair(f, o) with the
highestf(o) score is found,f ando are removed fromF andO
respectively, andOsky is updated by consideringO − o only.

Algorithm 1 Skyline-Based Stable Assignment
SB(setF , R-treeRO)

1: Osky :=∅
2: while |F | > 0 do . more unassigned functions
3: if Osky =∅ then
4: Osky :=ComputeSkyline(RO)
5: else
6: UpdateSkyline(Osky , o, RO) . o = last deleted object

7: (f, o):= BestPair(F, Osky)
8: Output(f, o)
9: F := F − f ; O := O − o; Osky := Osky − o

We illustrate the SB algorithm using an example. In Figure 4(a),
we have 2 linear preference functions (shown as lines) and 13 ob-
jects (shown as 2-dimensional points). The top-1 object of each
function is the first one to be met if we sweep the corresponding
line from the best possible object (top-right corner of the space) to-
wards the worst possible (origin of the axes). In the figure,e is the
top-1 object for both functions.

SB first computes the skyline ofO: Osky = {a, e}. From this
fact, we know that onlya ande may be the top-1 objects forf1 and
f2. Therefore, it is only necessary to compare 4 object-function
pairs (instead of13 · 2 = 26) in order to find the highestf(o)
score. In this example, pair(f1, e) is the first stable pair output
by the algorithm.Osky is then updated toOsky = {a, c, d, i}, as
shown in Figure 4(b), and Lines 7-9 are repeated to identify the
next highest score pair(f2, d); this pair is reported as stable and
SB terminates.

best

be
st

SKYLINE

sky

f1 f2

best

be
st

SKYLINE

sky

f2

a

hg

c d

i

e

j
l

k

m

f

b

a

hg

c d

i

j
l

k

m

f

b

(a) Original Skyline

best

be
st

SKYLINE

sky

f1 f2

best

be
st

SKYLINE

sky

f2

a

hg

c d

i

e

j
l

k

m

f

b

a

hg

c d

i

j
l

k

m

f

b

(b) Updated Skyline

Figure 4: Example of Skyline-Based Stable Assignment

The efficiency of SB relies on appropriate implementations of the
BestPair and UpdateSkyline functions. In the next section, we pro-
pose optimized methods for these modules. In addition, we show
how SB can be further enhanced to report more than one stable
pairs at each loop.

5 Implementing SB Efficiently
Section 5.1 describes techniques that reduce the CPU time required
to find the object-function pair with the highest score. Section 5.2
presents an efficient skyline maintenance algorithm, and proves that
it is I/O optimal, i.e., that it accesses the minimum possible number
of disk pages throughout the SB execution. Section 5.3 discusses
how multiple stable pairs can be output in a single SB iteration,
leading to earlier termination.

5.1 Best Pair Search

At each loop, the SB algorithm seeks for the best pair in the cross
productF ×Osky. A brute force implementation of this process is

not efficient, as it requires|F | · |Osky| comparisons. This number
can be reduced by indexing eitherF or Osky. Then, we can either
(i) seek for every function inF the best object inOsky after having
indexedOsky, or (ii) seek for every object inOsky the best function
in F after having indexedF .

The indexing ofOsky is not practical for two reasons. First,
the number of updates inOsky at each loop can be large, since
many new objects may enter the skyline after the removal of an
assigned object. Second, objects inOsky are anti-correlated, so a
multidimensional index for them (e.g., R-tree) is not expected to be
effective.

Instead, we choose to indexF , since only one deletion is per-
formed in it at each loop. This set is also anti-correlated. There-
fore, organizing the function coefficients (i.e., preference weights)
with a multidimensional index is inefficient. We propose to in-
dex the functions as sorted lists, one for each coefficient. Then,
for each object inOsky we can apply areversetop-1 search on
the lists, where the roles of objects and functions are swapped, by
adapting the threshold algorithm (TA) [8]. ConsiderD ordered lists
L1, L2, . . . , LD (whereD is the dimensionality), such that listLi

holds the(f.αi, f) pairs of all functionsf ∈ F (wheref.αi is the
i-th coefficient off), sorted onf.αi in descending order.

Recall that TA, given a classic top-1 search problem, accesses
the sorted lists and performs random accesses for the encountered
objects to find their aggregate scores. If at some stage the thresh-
old T , computed by aggregating the last values seen in each list in
sorted order, is lower than the best aggregate object score found so
far, then the algorithm terminates, as it is impossible for any non-
encountered object to be better than the best already found.

A similar process can be applied to find the best preference func-
tion for an objecto ∈ Osky. Assume that we access the sorted lists
in a round-robin fashion and for each visited functionf , we com-
putef(o), while maintaining the functionfbest with the highest
aggregate score ono. Assume that the last values seen in the lists in
sorted order are{l1, l2, ..., lD}. Then, the thresholdT can be cal-
culated as

PD
i=1 li · oi. Nevertheless,

PD
i=1 li could be larger than

1, which violates our assumption that the functions should be nor-
malized (the coefficients should sum to 1). Therefore, our goal is to
find a set of coefficientsβi,∀i ∈ [1, D], such that

PD
i=i βi = 1 and

βi ≤ li,∀i ∈ [1, D], which maximize the quantity
PD

i=1 βi · oi.
This is a knapsackcombinatorial optimization problem. The

quantityβi of each itemi to put in the knapsack is a real number in
our setting, so the problem is an instance of thefractional knapsack
combinatorial optimization problem [6], which can be solved using
the following greedy algorithm.

First, we rank the dimensions in descending order based ono’s
corresponding values. Next, we consider each dimensioni in this
order. Starting withB = 1, we setβi = min{B, li}, updateB =
B−βi and proceed to the next dimension. We continue until allβi

values are set; note that if at some pointB drops to 0, we directly
set the remainingβi to 0 and terminate. TheTtight =

PD
i=1 βi · oi

threshold derived by the aboveβi coefficients is a tight upper bound
of the score for all functions that have not been encountered in any
sorted list.

The table in Figure 5 illustrates an example of three sorted pref-
erence lists (L) for five 3-dimensional preference functions (fa to
fe), shown on the right of the figure. Note that for each function,
the sum of coefficients is1, for examplefa = 0.8x + 0.1y + 0.1z.
Consider objecto = (10, 6, 8). Assume that TA is being executed
and it is accessing functions from the lists in a round-robin fash-
ion. First,fa is accessed from the first list; two random accesses to
the other two lists retrieve the complete set offa’s coefficients and
fa(o) = 9.4 is computed. Similarly,fb andfd are accessed from

the 2nd and 3rd lists respectively, andfb(o) = 6.8, fd(o) = 7.8
are computed. So far,fbest = fa. After these three accesses, we
can compute the tight thresholdTtight for any unvisited function
as follows. We rank the last seen values at each list (i.e.,l1=0.8,
l2=0.8, andl3=0.9) based on the values ofo in the corresponding
dimensions (i.e.,10, 6, and8). Therefore, the order isl1, l3, l2.
We initialize B = 1 and assign to the first dimension in this or-
der (i.e., dimension 1) coefficientβ1 = min{B, l1} = 0.8. Then
we updateB = B − 0.8 = 0.2. Now the second coefficient is
β3 = min{B, l3} = 0.2 andB is set to 0. Therefore, we have
β1 = 0.8, β2 = 0, β3 = 0.2, andTtight =

PD
i=1 βi · oi = 9.6.

SinceTtight is greater thanfbest(o), we continue and access the
next element in the sorted lists, which is functionfc in the first list.
After computingfc(o) = 8.2, fbest is still fa. We updateTtight

based on the revisedl1 = 0.5 asTtight = 0.5·10+0·6+0.5·8 = 9,
which is now smaller thanfbest(o) = fa(o) = 9.4. Therefore,
there cannot be any functionf with f(o) > fa(o), and TA termi-
nates reporting(fa, o).

L1 L2 L3

fa (0.8) fb (0.8) fd (0.9)
fc (0.5) fe (0.4) fe (0.4)
fe (0.2) fc (0.4) fc (0.1)
fb (0.2) fd (0.1) fa (0.1)
fd (0.0) fa (0.1) fb (0.0)

fa = 0.8X + 0.1Y + 0.1Z
fb = 0.2X + 0.8Y
fc = 0.5X + 0.4Y + 0.1Z
fd = 0.1Y + 0.9Z
fe = 0.2X + 0.4Y + 0.4Z

Figure 5: Example of Threshold Calculation

We now discuss some techniques that further optimize the process
of finding the best pair.

TA access order: First, TA can be accelerated if instead of ac-
cessing the lists in a round-robin fashion, we access theLi with
the highestli · oi value (whereli is the last coefficient seen in
Li). This biased list probing greedily decreasesT , leading to ear-
lier TA termination. For example, foro = (10, 6, 8), the algo-
rithm first accessesL1 (initially li = 1,∀i ∈ [1, D]) and en-
countersfa (0.8). Then,l1 = 0.8 and the list with the largest
li · oi value is still L1. Therefore,fc (0.5) is accessed. Now
Ttight = 0.5 · 10 + 0 · 6 + 0.5 · 8 = 9, and TA terminates af-
ter accessing 2 functions (instead of 4 for a round-robin order).

Resuming search:Every time we need to find the best function
for a given objecto, we execute TA from scratch. However, a cer-
tain object may have to seek for its best function multiple times,
if its top choice is assigned to another object (e.g., recall the ex-
ample above withc). In order to avoid repetitive searches for the
same object, we store the state of the previous applied search for
the objects inOsky and resume it if necessary. Specifically, for
each such objecto we maintain in a heapo.heap the scoresf(o)
for all functionsf that have been examined by TA foro. Like be-
fore, TA search terminates when the threshold is not greater than
the best function in this queue. In the next loop, if search is re-
quired again foro (because the top function in its queue has been
assigned to another object), the next function in the heap is consid-
ered as the currently best one and compared with the threshold to
verify whether search has to resume. In the latter case, search in
the lists continues from the previous state.

The drawback of this method is the extra memory required for
the queue and for keeping the previous state of TA search for all
objects inOsky (this isO(|Osky|·|F |) in the worst case). Note that
each skyline object only executes a small number of top-1 searches
before it forms a stable pair, and this number is much smaller than
the total number of functions|F |. Therefore, the queue needs not
store all seen functions. Motivated by this observation, we develop
an iterativesolution to avoid high memory usage.

First, the queue’s maximum capacity is set toΩ, whereΩ =
ω · |F | andω is a parameter (e.g.,ω = 5%). This means that
the queue only stores the top-Ω functions encountered during TA
execution. TA proceeds in the same way as the basic resuming
search. The only difference is that we have to decreaseΩ by 1 when
an element is popped from the queue. This is necessary to ensure
correctness; the queue can only guarantee top-(Ω-m) retrieval after
poppedm times. WhenΩ reaches 0, we need to re-run TA from
scratch and resetΩ to ω · |F |. This technique provides control
over the tradeoff between execution time and memory usage via
parameterω.

5.2 Incremental Skyline Maintenance

In order to minimize the tree traversal cost during skyline main-
tenance, we keep track of the pruned entries and objects during
the first run of the skyline computation algorithm. In other words,
every time an entryE is pruned during the first run of the skyline
algorithm (becauseE is dominated by a skyline objecto), E is
added to thepruned listo.plist of o. Therefore, after the computa-
tion of the skyline, each skyline object may contain a list of entries
(non-leaf entries and/or objects) that it dominates. Note that, in or-
der to minimize the required memory, each pruned entryE is kept
in theplist of exactly one skyline objecto (althoughE could be
dominated by multiple skyline objects). Consider, for example, the
skyline in Figure 2; pruned entriesd, m1, i, c, M2 are inserted into
e.plist, while M3 is included ina.plist.

Skyline maintenance now operates as follows. Once a skyline
objecto is removed, we scano.plist. For each entryE there, we
check whetherE is dominated by another skyline objecto′; in this
case, wemoveE to o′.plist. Otherwise,E is moved to askyline
candidate setScand. Note that all objects and non-leaf entries in
Scand are exclusively dominated by the removed skyline objecto
(i.e., they fall in/overlap with its EDR, as defined in Section 2.2).
The entries ofScand are organized in a heap, based on their dis-
tance to the best corner of the search space. The algorithm of [17]
is then applied, taking as inputScand and the existing skyline ob-
jects.

Algorithm 2 is a pseudocode of our incremental UpdateSkyline
technique. Figure 6 illustrates the algorithm. Assume that the cur-
rent skyline is{a, e} ande is assigned to a function and removed
from the skyline. Suppose thate.plist = {d, m1, i, c, M2}. If any
of these entries was dominated by the existing skyline objecta, it
would be moved toa.plist. None is, so the entiree.plist is placed
intoScand. Then, the skyline algorithm resumes takingScand as its
input heap; entries therein are examined in ascending distance order
from the best point (i.e., upper-right corner of the space). That is,d
is examined first, which is found to dominate entries{m1, M2} in
Scand; these entries are added tod.plist. The next entries arei and
c, which are skyline objects. Thus,Osky is updated to{a, c, d, i}.

Analytical Study: The following theorem shows that UpdateSky-
line (Algorithm 2) is I/O optimal, in the sense that (i) it visits only
nodes that intersect the EDR of the removed object, and (ii) it does
not access the same R-tree node twice during the entire stable as-
signment computation.

THEOREM 1. UpdateSkyline accesses the minimal number of
R-tree nodes for stable assignment computation.

PROOF. Each time UpdateSkyline is invoked, it only accesses
entries that are not dominated by any object in the current skyline.
Thus, each individual skyline maintenance is performed I/O opti-
mally. It remains to show that no node is accessed more than once
during the entire stable assignment or, equivalently, that each call
of UpdateSkyline does not access previously visited nodes. This

Algorithm 2 Incremental Branch and Bound Skyline
Scand := ∅
algorithm UpdateSkyline(setOsky , objecto, R-treeRO)

1: Scand:={E|E ∈ o.plist, E /∈ o′.plist, ∀o′ ∈ Osky}
2: newOsky :=ResumeSkyline(Scand, Osky)

algorithm ResumeSkyline(setScand, setOsky)
1: push all elements ofScand into Q
2: while Q is not emptydo
3: de-heap top entryE of Q
4: if E is dominated by anyo ∈ Osky then
5: addE to o.plist
6: else . not dominated by any skyline object
7: if E is non-leaf entrythen
8: visit nodeN pointed byE
9: for all entriesE′ ∈ N do

10: pushE′ into Q

11: else
12: Osky :=Osky ∪ E

m5

m2

m4

M2

m3

M1

m1

a

hg

c d

i

e

j l
k

m

SKYLINE

best

best
fb

M3
m6

m7

(a) Indexed Objects

M2

a
c d

i

e

SKYLINE

best

best
m1

M3

(b) Stored Elements

Figure 6: UpdateSkyline Example

can be seen easily; once a node is visited (Line 8 in Algorithm 2),
it is no longer inScand nor in theplist of any skyline object.

Compared to DeltaSky [26] (i.e., the state-of-the-art skyline main-
tenance algorithm), UpdateSkyline performs fewer node accesses.
DeltaSky accesses at most|4Osky| ·h nodes, where4Osky is the
set of new skyline objects after a removal andh is the height of
the R-tree [17]. This bound assumes that the BBS component of
DeltaSky has to access a complete path in the tree for each deleted
skyline object. UpdateSkyline performs only one complete tree tra-
versal, because it stores the pruned entries in theplist of existing
skyline objects. Thus, the accessed path for each new skyline ob-
ject o is only the path from the topmost MBR in theplist that
includeso, with lengthh′, whereh′ ≤ h. Thus, the node accesses
are reduced to|4Osky| · h′, indicating that UpdateSkyline never
accesses more nodes than DeltaSky. As we show experimentally,
this leads to a significant performance boost.

5.3 Finding Multiple Pairs per Loop

At each loop, SB finds the best function inF for each object in the
skyline Osky. After the best object-function pair(f, o) is identi-
fied and reported, we removeo from Osky, necessitating skyline
maintenance. We can reduce the number of loops required (and,
thus, the number of calls to the skyline maintenance module), if we
output multiple stable object-function pairs at each loop.

To achieve this, we use Property 2; if for an objecto the best
function isf ando is the best object for functionf , then(f, o)
must be stable. We take advantage of this property, as follows.
At each loop, letFbest be the subset ofF that includes for every
objecto ∈ Osky, the functiono.fbest that maximizesf(o). For

eachf ∈ Fbest, we record the objectf.obest ∈ Osky that maxi-
mizesf(o). Then, we identify and report all those pairs that satisfy
Property 2. Specifically, we scanFbest and for eachf therein, we
check whether(f.obest).fbest = f . If so, (f, f.obest) is a stable
pair and the corresponding function/object are removed fromF , O
andOsky. Note that at least one pair is guaranteed to be output
(i.e., the pair(f, o) in F × Osky with the highestf(o) score). If
more than one pairs are output, then multiple skyline objects are
removed fromOsky. This does not affect the functionality of the
UpdateSkyline module; all entries in theplist of these objects are
either placed in theplist of a remaining skyline object (if domi-
nated by it) or otherwise en-heaped and processed by Algorithm 2.
The above enhanced version of SB is summarized in Algorithm 3.
Algorithm 3 Optimized Skyline-Based Stable Assignment

SB(setF , R-treeRO)
1: Osky :=∅; Odel := ∅
2: while |F | > 0 do . more unassigned functions
3: if Osky =∅ then
4: Osky :=ComputeSkyline(RO)
5: else
6: UpdateSkyline(Osky , Odel, RO)
7: Odel := ∅
8: Fbest:=∅
9: for all o ∈ Osky do

10: find functiono.fbest ∈ F that maximizesf(o)
11: Fbest:=Fbest ∪ o.fbest

12: for all f ∈ Fbest do
13: find objectf.obest ∈ Osky that maximizesf(o)

14: for all f ∈ Fbest do
15: if (f.obest).fbest = f then
16: F := F − f ; O := O − f.obest

17: Osky := Osky − f.obest; Odel := Odel ∪ f.obest

6 Problem Variants
In this section we consider variations of our assignment problem
and the corresponding adaptations of SB. In particular, Sections
6.1 and 6.2 consider its capacitated and prioritized versions respec-
tively.

6.1 Objects and Functions with Capacities

So far, we have considered sets of distinct functions and objects. In
practice, multiple objects may share the same features (e.g., when
a company has many identical internship positions), and multiple
users may have the same preferences. The algorithms proposed
in this paper can be directly applied in such cases, as they do not
make any assumptions about the distinctiveness of the objects or
functions. Still, further optimizations are possible.

Specifically, our algorithms run faster if we replace multiple iden-
tical objects/functions by a single one, having acapacityvalue. For
example, 10 identical internship positions can be replaced by a sin-
gle oneo with capacity 10. Similarly, multiple identical functions
are replaced by a single function augmented with a capacity. Then,
the problem is solved on the distinct sets which are much smaller
than the original ones.

The necessary modifications to our solution regard capacity han-
dling. In Algorithm 3, Lines 15–17 are revised. Once a stable pair
(f, o) is identified (Line 15), the capacities off ando are reduced
by 1. Functionf and objecto are only removed fromF andO
respectively if their capacity reaches zero.

6.2 Functions with Different Priorities

Consider a booking system, where different membership levels have
different priorities. In our exemplary internship assignment system,
assume that students have different priorities depending on their se-
niority, e.g., a third year student is preferred over a second year one

when considered for the same position. To accommodate this rule,
the output of a functionf applied on an objecto (Equation 1) can
be changed to:

f(o) = f.γ ·
DX

i=1

f.αi · oi, (2)

wheref.γ is the priority of functionf (set according to its user’s
priority). Our solution works smoothly for this extended form of
the problem by making some minor changes in the best pair search-
ing (described in Section 5.1). First, allf.αi are replaced byf.α′

i,
wheref.α′

i = f.αi · f.γ. Then, to adapt the process in Sec-
tion 5.1 for Ttight calculation, the initial value ofB is changed
to maxf∈F {f.γ}. For example, in a 4-year undergraduate pro-
gramme, where students haveγ ={4, 3, 2, 1} according to their
year of study,B is initialized to 4. After these changes, our assign-
ment algorithm can be directly applied. Nevertheless, SB is not
expected to be as efficient as for the case whereγ = 1,∀f ∈ F .
The reason is thatB in the prioritized case leads to a threshold
Ttight that may not be tight for some functions, thus increasing the
number of TA iterations.

We can do better if a skylineFsky is built on the functions, us-
ing their modified coefficients (f.α′

i). Once the function and ob-
ject skylines (Fsky andOsky) have been computed, the best pair(s)
should be between elements of these two skylines. We illustrate
this technique using the example in Figure 1. First, we know that
Osky = {a, b, c}. If all functions have the sameγ value, thenFsky

contains all functions inF (as shown in Figure 7(a)) since they all
have the same sum of coefficients. In Figure 7(b), where functions
f1, f2, andf3 haveγ values 3, 2, and 1 respectively,Fsky only
contains{f1, f2} as there can be no objecto with f3(o) ≥ f1(o).
Thus, the best pair computation needs only be applied between
Fsky andOsky. Using this technique, it is faster to exhaustively
search for the best function for some object than to keep the func-
tions indexed and execute TA. The reason is thatFsky is relatively
small, but most importantly, there are frequent updates inFsky

(deletions and insertions are possible, while inF there were only
deletions) and maintaining the objects’ TA states would be costly.

best point

a

c

b

d
f1

f3

f2

(salary) X

(s
ta

nd
in

g)
 Y

f1 = 0.8X + 0.2Y
f2 = 0.2X + 0.8Y
f3 = 0.5X + 0.5Y

a=(0.5,0.6)
b=(0.2,0.7)
c=(0.8,0.2)
d=(0.4,0.4)

Users' preference functions

Positions' attributes

f2

f1
f3

Coefficient - X

C
oe

ffi
ci

en
t -

Y

f2

f1

f3

Coefficient - X

C
oe

ffi
ci

en
t -

Y

1.0

1.0

3.0

3.0

1.5

1.5

0.5

0.5

f1 = 0.8X + 0.2Y

f2 = 0.2X + 0.8Y

f3 = 0.5X + 0.5Y

f1 = 3*(0.8X + 0.2Y)

f2 = 2*(0.2X + 0.8Y)

f3 = 1*(0.5X + 0.5Y)

(a) Same Priority

best point

a

c

b

d
f1

f3

f2

(salary) X

(s
ta

nd
in

g)
 Y

f1 = 0.8X + 0.2Y
f2 = 0.2X + 0.8Y
f3 = 0.5X + 0.5Y

a=(0.5,0.6)
b=(0.2,0.7)
c=(0.8,0.2)
d=(0.4,0.4)

Users' preference functions

Positions' attributes

f2

f1
f3

Coefficient - X

C
oe

ffi
ci

en
t -

Y

f2

f1

f3

Coefficient - X

C
oe

ffi
ci

en
t -

Y

1.0

1.0

3.0

3.0

1.5

1.5

0.5

0.5

f1 = 0.8X + 0.2Y

f2 = 0.2X + 0.8Y

f3 = 0.5X + 0.5Y

f1 = 3*(0.8X + 0.2Y)

f2 = 2*(0.2X + 0.8Y)

f3 = 1*(0.5X + 0.5Y)

(b) Different Priorities

Figure 7: Effect of Function Priorities

7 Experiments
In this section we empirically evaluate the performance of our algo-
rithm. We generated three types of synthetic datasets according to
the methodology in [4]. Inindependentdatasets the feature values
are generated uniformly and independently.Correlated datasets
contain objects whose values are close in all dimensions, i.e., if
an object is good in one dimension, it is likely to be good in the
remaining ones too. On the contrary, inanti-correlateddatasets,
objects that are good in one dimension tend to be poor in the re-
maining ones. The above three types of data are common bench-
marks for preference-based queries [4, 17]. Our dataspace contains

D dimensions (in the range from 3 to 6). Additionally, we ex-
periment with two real datasets, Zillow1 and NBA 2, described in
Section 7.5. Each dataset is indexed by an R-tree with 4Kbytes
page size. We use an LRU memory buffer with default size 2% of
the tree size. The preference functions are linear with weights gen-
erated independently, except in experiments that study specifically
the effect of weight distribution.

We compare our SB assignment algorithm (after tuningΩ =
2.5%·|F |) against Brute Force and Chain. Brute Force is described
in Section 4.1. Chain is an adaptation of [25] (presented in Section
2.1), where the functions are indexed by a main memory R-tree
(built on their weights), and the nearest neighbor module to either
O or F is replaced by top-1 search in the corresponding R-tree us-
ing BRS [19]. In our SB assignment algorithm, BBS [17] is used
to compute the initial skyline, modified to keep track of pruned en-
tries and objects, as described in Section 5.2. All methods were
implemented in C++ and experiments were performed on an Intel
Core2Duo 2.66GHz CPU machine with 4 GBytes memory, running
on Fedora 8. Table 2 shows the ranges of the investigated parame-
ters, and their default values (in bold). In each experiment, we vary
a single parameter while setting the remaining ones to their default
values. We evaluate the algorithms by three factors; (i) their I/O
cost, (ii) their CPU cost, and (iii) the maximum memory consumed
by their search structures (i.e., priority queues and pruned lists of
skyline objects) during their execution. The CPU cost includes the
construction cost of any main-memory indexes (i.e., indexing the
function coefficients).

Table 2: Ranges of Parameter Values
Parameter Values

Function set size,|F | (in thousands) 1, 2.5,5, 10, 20
Object set size,|O| (in thousands) 10, 50,100, 200, 400

Dimensionality,D 3, 4, 5, 6
Capacity value,k 1, 2, 4, 8, 16

Maximum function priority,γ 1, 2, 4, 8, 16
Buffer size 0%, 1%,2%, 5%, 10%

7.1 Effectiveness of Optimizations

Before considering the Brute Force and Chain competitors, we first
evaluate the effectiveness of the optimizations proposed in Sec-
tion 5 within SB. We compare our fully optimized algorithm (SB)
against SB-DeltaSky and SB-UpdateSkyline. SB-DeltaSky is Al-
gorithm 1 using DeltaSky [26] for skyline maintenance.
SB-UpdateSkyline is Algorithm 1 using our UpdateSkyline tech-
nique described in Section 5.2, but not the other two optimizations
mentioned in Sections 5.1 and 5.3.

SB
SB−UpdateSkyline
SB−DeltaSky

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

3 4 5

I/
O

 a
cc

es
se

s

D

 1.0e1

 1.0e0

 1.0e3

(a) I/O Cost

 0.1

 1

 10

 100

 1000

 3 4 5

C
P

U
 ti

m
e

(s
ec

)

D

SB-DeltaSky
SB-UpdateSkyline

SB

(b) CPU Time

Figure 8: Effect of Optimization Techniques (Anti-Correlated,
|F | = 1000)

In Figure 8 we show the I/O cost and the CPU time of the above
SB variants for different dimensionality. We use anti-correlated
1Available atwww.zillow.com.
2NBA Statistics v2.1.
http://basketballreference.com/statsdownload.htm.

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

3 4 5 6
I/

O
 a

cc
es

se
s

D

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost (Independent)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

3 4 5 6

I/
O

 a
cc

es
se

s

D

 1.0e0

 1.0e1

 1.0e3

(b) I/O Cost (Correlated)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

3 4 5 6

I/
O

 a
cc

es
se

s

D

 1.0e0

 1.0e1

 1.0e3

(c) I/O Cost (Anti-Correlated)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 3 4 5 6

C
P

U
 ti

m
e

(s
ec

)

D

Brute Force
Chain

SB

(d) CPU Time (Independent)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 3 4 5 6

C
P

U
 ti

m
e

(s
ec

)

D

Brute Force
Chain

SB

(e) CPU Time (Correlated)

 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6

C
P

U
 ti

m
e

(s
ec

)

D

Brute Force
Chain

SB

(f) CPU Time (Anti-Correlated)

 1

 10

 100

 3 4 5 6

M
em

or
y

U
sa

ge
 (

M
B

)

D

Brute Force
Chain

SB

(g) Memory Usage (Independent)

 1

 10

 100

 3 4 5 6

M
em

or
y

U
sa

ge
 (

M
B

)

D

Brute Force
Chain

SB

(h) Memory Usage (Correlated)

 1

 10

 100

 1000

 3 4 5 6

M
em

or
y

U
sa

ge
 (

M
B

)

D

Brute Force
Chain

SB

(i) Mem. Usage (Anti-Correlated)

Figure 9: Effect of Dimensionality D

data; the relative performance of the algorithms is similar for inde-
pendent and correlated ones. DeltaSky is too slow for highD, so
we set|F | to 1000 and limit the examinedD range to [3..5] (the
remaining parameters are set to their defaults).

SB-UpdateSkyline incurs an order of magnitude lower I/O cost
than SB-DeltaSky (I/O is the dominant performance factor), veri-
fying the efficiency of our incremental skyline approach. It is also
3 times faster in terms of CPU cost, while requiring roughly the
same amount memory (SB needs at most 25% more memory than
SB-DeltaSky; the worst case is forD = 5 and anti-correlated data).

The comparison of SB with the runner-up (SB-UpdateSkyline)
confirms the effectiveness of the best pair search enhancements and
of making multiple assignments per loop; there is a 13 to 27 times
improvement in CPU time (Figure 8(b)). Note that the above two
optimizations are targeted exclusively at reducing the CPU time,
thus SB and SB-UpdateSkyline have the same I/O cost (Figure
8(a)). To summarize, the results in Figure 8 verify that the opti-
mizations in Section 5 yield significant performance improvements.

7.2 Standard Preference Queries

We now compare SB with Brute Force and Chain. We vary the
parameters shown in Table 2 and measure the I/O cost, the CPU
time, and the memory requirements of the three algorithms.

In Figure 9 we study the effect of dimensionalityD, using all
three types of synthetic data. Figures 9(a), 9(b), and 9(c) show the
I/O cost. SB incurs 2 to 3 orders of magnitude fewer I/Os than the
runner-up, i.e., Brute Force. The reason for this vast advantage of
SB is the I/O optimality of its skyline maintenance module (Up-
dateSkyline), juxtaposed with the huge number of top-1 queries re-
quired by its competitors. Brute Force, on the other hand, is more
efficient than Chain, the reason being its resuming search feature

(explained in Section 4.1). The I/O cost increases withD for all
methods, because the effectiveness of the object R-tree degrades (a
fact known as the dimensionality curse [14]).

Figures 9(d), 9(e), and 9(f) show the CPU cost as a function of
D. SB outperforms its competitors in this aspect too, due to their
numerous top-1 searches. Chain is the slowest method because
it performs even more top-1 searches than Brute Force, while the
efficiency of its function R-tree is limited, as their weights sum to
1 and are thus anti-correlated.

Figures 9(g), 9(h), and 9(i) plot the memory usage versusD.
Brute Force consumes several times the space of the other methods,
because it maintains a top-1 search heap for eachf ∈ F ; this is the
sacrifice for its ability to resume searches. SB usually requires less
memory than Chain, or slightly higher is some cases. The latter
cases are inD = 5 andD = 6; Osky contains more objects in
high dimensions, requiring storage of many object TA states. Due
to lack of space, we skip the memory usage charts for the remaining
experiments; the observed trends are similar to Figures 9(g), 9(h),
and 9(i). Also, we provide results for anti-correlated object sets
only, as (i) they capture most real scenarios (e.g., a high quality
apartment is usually expensive), and (ii) the relative performance
of the methods is similar for all three types of synthetic data.

In Figure 10 we study the effect of|F | (the number of func-
tions). The costs for all methods increase with|F |, because more
stable pairs need to be computed. However, SB scales much better.
Especially its I/O cost increases only slightly (from 4030 to 5135
disk accesses for the smallest and largestF respectively), while de-
terioration is significant for the two competitors. The reason is the
very skyline-based processing of SB. Only a few objects are fetched
into Osky, and most of them successfully form a stable pair with
some function. Therefore, only a few accesses are performed on

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

1 2.5 5 10 20

I/
O

 a
cc

es
se

s

Number of Functions, |F| (in thousands)

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

(s
ec

)

Number of Functions, |F| (in thousands)

Brute Force
Chain

SB

(b) CPU Time

Figure 10: Effect of Function Cardinality |F | (Anti-Correlated)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

10 50 100 200 400

I/
O

 a
cc

es
se

s

Number of Objects, |O| (in thousands)

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

(s
ec

)

Number of Objects, |O| (in thousands)

Brute Force
Chain

SB

(b) CPU Time

Figure 11: Effect of Object Cardinality |O| (Anti-Correlated)

the object R-tree.
In Figure 11 we investigate the effect of the object cardinality

|O|. Both the I/O cost and the CPU time increase, as top-1 and
skyline searches become more costly. In all cases, SB incurs 2
orders of magnitude fewer I/Os than the runner-up (Brute Force),
and its CPU time is several times smaller.

Next, we experiment with the preference weight distribution.
We randomly selectC independent vectors (comprisingD = 4
weights each), and treat them as cluster centers. Each function
f ∈ F randomly chooses one of these centers, and its weights
are generated by a Gaussian distribution with mean at the selected
center and standard deviation equal to 0.05. In Figure 12 we plot
the I/O and CPU costs of all methods asC varies between 1 and
9. In all cases, SB incurs 2 orders of magnitude fewer I/Os than
its competitors, and fewer computations. The most CPU-intensive
case is whenC = 1, becauseF is essentially more skewed; this
leads to more conflicts among different functions and, thus, longer
time to compute stable pairs.

In Figure 13 we examine the effect of the buffer size, varying it
from 0% to 10% of the object R-tree size. Brute Force and Chain
incur fewer I/Os for a larger buffer; they accessRO nodes multi-
ple times, and a larger buffer suppresses a higher number of these
accesses. In contrast, the I/O cost of SB is stable, because of its
I/O optimal skyline maintenance. Even for a 10% buffer size, SB
is over 60 times more efficient than either competitor.

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

1 3 5 7 9

I/
O

 a
cc

es
se

s

Number of Clusters, C

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9

C
P

U
 ti

m
e

(s
ec

)

Number of Clusters, C

Brute Force
Chain

SB

(b) CPU Time

Figure 12: Effect of Function Distribution (Anti-Correlated)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

0% 1% 2% 5% 10%

I/
O

 a
cc

es
se

s

Buffer Size

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost

 10

 15

 20

 25

 30

 35

0% 2% 4% 6% 8% 10%

C
P

U
 ti

m
e

(s
ec

)

Buffer Size

Brute Force
Chain

SB

(b) CPU Time

Figure 13: Effect of Buffer Size (Anti-Correlated)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

2 4 8 16

I/
O

 a
cc

es
se

s

Function Capacity, k

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost vs. Function Ca-
pacity

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

(s
ec

)

Function Capacity, k

Brute Force
Chain

SB

(b) CPU Time vs. Function Ca-
pacity

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

2 4 8 16

I/
O

 a
cc

es
se

s

Object Capacity, k

 1.0e0

 1.0e1

 1.0e3

(c) I/O Cost vs. Object Capacity

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

(s
ec

)

Object Capacity, k

Brute Force
Chain

SB

(d) CPU Time vs. Object Ca-
pacity

Figure 14: Effect of Function/Object Capacity (Anti-
Correlated)

7.3 Queries and Objects with Capacities

In Figures 14(a) and 14(b) we process functions with capacityk be-
tween 2 and 16, setting the remaining parameters to their defaults.
Whenk increases, both the I/O and the CPU costs increase because
more stable pairs need to be computed (i.e.,k · |F |); essentially, the
problem size grows.

In Figures 14(c) and 14(d), on the other hand, we use objects
with capacities. As the object capacity increases, all methods slightly
improve, because fewer top-1 searches and skyline updates are per-
formed. Specifically, if an object ranks high for multiple func-
tions, then its multiple instances (capacity) allow its output in mul-
tiple pairs without further object search. The results in Figure 14
verify that SB outperforms its competitors for capacitated assign-
ments too, achieving improvements of similar magnitude to the
non-capacitated case.

7.4 Preference Queries with Priorities

Next, we assign priorities to the functions, randomly chosen from
the range [1..γ]. In Figure 15 we study the effect ofγ, while includ-
ing in the charts the two-skyline version of SB, as described in Sec-
tion 6.2. The I/O cost of the algorithms is practically independent
of γ, and the disk accesses of the two SB versions are identical. The
effectiveness of the two-skyline technique becomes clear in Figure
15(b), where its CPU time is more than 3 times shorter than any
other method. The standard SB performs more computations for
largerγ, because its TA threshold becomes looser, as anticipated in

Section 6.2. We note that the memory usage of the two-skyline SB
is lower than all other methods; it only maintains the two skylines,
skipping, for example, any book-keeping information for resuming
search.

SB − Two Skylines
SB
Chain
Brute Force

 1.0e0

 1.0e5

 1.0e6

 1.0e7

 1.0e8

2 4 8 16

I/
O

 a
cc

es
se

s

Maximum Priority

 1.0e3

 1.0e2

 1.0e1

 1.0e4

(a) I/O Cost

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

(s
ec

)
Maximum Priority, γ

Brute Force
Chain

SB
SB - Two Skylines

(b) CPU Time

Figure 15: Effect of Function Priorities (Anti-Correlated)

7.5 Experiments with Real Data

In addition to synthetic datasets, we experimented with two real
ones: Zillow and NBA. Zillow is a website with real estate in-
formation, containing 2M records with five attributes: number of
bathrooms, number of bedrooms, living area, price, and lot area.
NBA includes statistics about 12278 NBA players since 1973. We
selected 5 important attributes in NBA: points, rebounds, assists,
steals, and blocks.

In Figures 16(a) and 16(b) we use as object setsO random sub-
sets of Zillow with varying cardinality|O| between 10K and 400K,
and set the remaining parameters to their default values. The I/O
cost results are similar to Figure 11, verifying the generality of SB.
Interestingly, the improvements in CPU time are even larger; Zil-
low is highly skewed and this worsens the performance of Brute
Force and Chain (due to their top-1 searches), but not that of SB
(due to its skyline-based nature).

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

10 50 100 200 400

I/
O

 a
cc

es
se

s

Number of Objects, |O| (in thousands)

 1.0e0

 1.0e1

 1.0e3

(a) I/O Cost (Zillow)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

(s
ec

)

Number of Objects, |O| (in thousands)

Brute Force
Chain

SB

(b) CPU Time (Zillow)

SB
Chain
Brute Force

 1.0e2

 1.0e4

 1.0e5

 1.0e6

 1.0e7

 1.0e8

1 5 9 12

I/
O

 a
cc

es
se

s

Function Capacity, k

 1.0e0

 1.0e1

 1.0e3

(c) I/O Cost (NBA)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

C
P

U
 ti

m
e

(s
ec

)

Function Capacity, k

Brute Force
Chain

SB

(d) CPU Time (NBA)

Figure 16: Results with Real Datasets

In Figures 16(c) and 16(d) we use NBA as the object set and
perform a capacitated assignment. We generated|F | = 1000 func-
tions with capacityk ∈ {1, 5, 9, 12}. The results are similar to
Figures 14(a) and 14(b), with SB incurring 2 orders of magnitude
fewer I/Os than Brute Force and Chain, and requiring only a frac-
tion of their CPU time.

7.6 Different Storage Settings

So far, we have assumed that the set of objectsO is persistent and
larger than the set of preference functionsF , and is thus stored on

the disk. We now briefly discuss how our technique can be applied
in other cases. If both sets fit in memory our algorithm can directly
be applied, if we indexO with the help of a main memory R-tree.
Its performance gains over Brute Force and Chain can be derived
from the CPU-comparison graphs in the experiments already pre-
sented.

If the set of functionsF does not fit in main memory, we can
still apply our method if we materialize on disk theD sorted lists
holding the function coefficients. Our SB algorithm can still be
applied. However, it is expected to be expensive since each object
in Osky executes (or resumes) an individual TA-based search; thus
the lists may have to be scanned (and accessed randomly) multiple
times at each iteration of the algorithm. To remedy this problem,
we can execute all TA searches for the current skylineOsky in batch
as follows. We access the lists in a round-robin fashion — one
block at a time. For each functionf that we find in listLi, we
collectf ’s remaining coefficients by applying random access on the
remaining listsLj , j 6= i. Next, we computef ’s aggregate score
to all objects inOsky and update their thresholds. If the aggregate
scoref(o) for an objecto is higher than its threshold, then we skip
this object in the following iterations. This process is repeated until
all objects have found their best function. This method is expected
to have good I/O performance, since the number of iterations over
the sorted lists is not directly dependent on the number of objects in
Osky; i.e., each function coefficient is accessed randomly at most
once for the current skyline. Note that this technique is applicable
in the case where neitherF nor O fits in memory, assuming that
the current skyline does. (IfOsky does not fit in memory, we can
split the set into small enough partitions and apply the best function
search in a batch manner for each partition.)

SB−alt
SB
Chain
Brute Force

 1.0e3

 1.0e4

 1.0e6

 1.0e7

 1.0e8

3 4 5 6

I/
O

 a
cc

es
se

s

D

 1.0e5

 1.0e0

 1.0e1

 1.0e2

(a) I/O Cost (Independent)

SB−alt
SB
Chain
Brute Force

 1.0e3

 1.0e4

 1.0e6

 1.0e7

 1.0e8

3 4 5 6

I/
O

 a
cc

es
se

s
D

 1.0e5

 1.0e0

 1.0e1

 1.0e2

(b) I/O Cost (Anti-Correlated)

 0

 5

 10

 15

 20

 25

 3 4 5 6

C
P

U
 ti

m
e

(s
ec

)

D

Brute Force
Chain

SB
SB-alt

(c) CPU Cost (Independent)

 0

 5

 10

 15

 20

 25

 30

 3 4 5 6

C
P

U
 ti

m
e

(s
ec

)

D

Brute Force
Chain

SB
SB-alt

(d) CPU Time (Anti-Correlated)

Figure 17: Effect of DimensionalityD (F on disk)

Figure 17 evaluates this batch best pair search approach for disk-
resident functions using synthetic datasets. We swap the cardinality
of functions and objects, and set all remaining parameters to their
defaults (the buffer size is now 2% of|F |), except from the di-
mensionalityD, which we vary. Apart from the three techniques
evaluated in the previous experiments, we also include the alterna-
tive of SB, denoted by SB-alt, which applies batch best pair search
on the function coefficient lists. Note that SB-alt saves a signifi-
cant number of I/O accesses. Since nowO fits in memory, there
are no I/O savings by SB over Brute Force and Chain, but only a
computational cost advantage. Still, for independently distributed
data SB-alt is even faster than SB, because SB (and Brute Force)
has to maintain the heaps of individual objects in order to resume

search (note that search resumption is not applied by SB-alt, as
the best functions are identified from scratch for each version of
the skyline). If the data are anti-correlated, SB-alt is slower than
SB because the skyline is large and the algorithm has to go deep
into the sorted lists at each iteration (SB saves effort, because of
its ability to resume search). Overall, SB-alt is the best choice for
disk-resident functions because of its huge I/O savings, while hav-
ing similar computational cost to other alternatives.

8 Conclusion
In this paper we address a stable marriage problem between a set
of preference functionsF and a set of objectsO. The functions
specify weights defining their requirements from the objects. The
problem arises in a variety of profile-matching applications, such as
facility allocation systems and task distribution applications. Our
solution is based on the observation that the stable pairs may in-
clude only objects that belong to the skylineO. When some of
these objects are assigned to a function, they are removed from
O and its skyline needs to be updated. To achieve this, we pro-
pose an incremental skyline maintenance technique that is proven
to be I/O optimal. Additionally, we describe mechanisms that re-
duce the CPU time by accelerating the matching between functions
and skyline objects, and identifying multiple stable pairs in each
iteration of the algorithm. Moreover, we extend our algorithm to
capacitated and prioritized assignments. An extensive empirical
evaluation with synthetic and real datasets shows that our approach
outperforms adaptations of existing methods by orders of magni-
tude in terms of I/O cost (typically 2 or 3), while having several
times lower CPU cost.

Besides finding a stable matching or an optimal assignment [22,
2], other definitions for 1-1 fair assignments between functions and
objects include the Rank-Maximal Matching [13] and the Maxi-
mum Pareto Optimal Matching [1]. A matching is rank-maximal
[13] if the maximum number of functions are matched to their first-
choice object, and subject to this condition, the maximum number
of users are matched to their second-choice object, and so on. This
problem can be solved inO(min{n + C, C

√
n} ·m) time, where

n = |F | + |O|, m = |F | · |O|, andC is the maximumc such
that some function is assigned to itscth-choice object inM . A
matchingM is Pareto optimal [1] if there is no other matching
M ′ such that some function gets a better object inM ′ than inM ,
while no user gets a worse object inM ′. A maximum Pareto op-
timal matching is a Pareto optimal matching with maximum size;
the complexity of finding such an assignment isO(m

√
n). Note

that a stable marriage matching is a Pareto optimal matching, but
not vice-versa. Given the high complexity of these problems, com-
pared to theO(m) cost of stable matching, and the subjectiveness
of fairness in general (i.e., there is no strong evidence that alterna-
tive definitions produce fairer assignments than the stable match-
ing in practice), we opted to solve our problem by finding a stable
matching. Nevertheless, our solution can be integrated with match-
ing methods that rely on incremental top-k searches. Exploration of
this potential is left as a subject for future work. In addition to this,
we plan to study issues such as the maintenance of a fair matching
in a system, where objects are dynamically allocated/freed.

Acknowledgment
Work supported by grant HKU 714907E from Hong Kong RGC.

9 References

[1] D. J. Abraham, K. Cechlárov́a, D. Manlove, and K. Mehlhorn. Pareto
optimality in house allocation problems. InISAAC, pages
1163–1175, 2005.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows :
Theory, Algorithms, and Applications. Prentice Hall, first edition,
1993.

[3] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline
evaluation.ACM Trans. Database Syst., 33(4):1–49, 2008.

[4] S. Börzs̈onyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, pages 421–430, 2001.

[5] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and
J. R. Smith. The onion technique: Indexing for linear optimization
queries. InSIGMOD Conference, pages 391–402, 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Closest pair queries in spatial databases. In
SIGMOD Conference, 2000.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.J. Comput. Syst. Sci., 66(4):614–656, 2003.

[9] D. Gale and L. S. Shapley. College admissions and the stability of
marriage.Amer. Math., 69:9–14, 1962.

[10] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
large data sets. InVLDB, pages 229–240, 2005.

[11] D. Gusfield and R. W. Irving.The Stable Marriage Problem,
Structure and Algorithms. MIT Press, 1989.

[12] A. Hylland and R. Zeckhauser. The efficient allocation of individuals
to positions.Journal of Political Economy, 87(2):293–314, 1979.

[13] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch.
Rank-maximal matchings.ACM Transactions on Algorithms,
2(4):602–610, 2006.

[14] F. Korn, B.-U. Pagel, and C. Faloutsos. On the ’dimensionality curse’
and the ’self-similarity blessing’.IEEE Trans. Knowl. Data Eng.,
13(1):96–111, 2001.

[15] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. InVLDB, pages 275–286, 2002.

[16] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring
of top-k queries over sliding windows. InSIGMOD Conference,
pages 635–646, 2006.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems.ACM Trans. Database Syst.,
30(1):41–82, 2005.

[18] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. InVLDB, pages 301–310, 2001.

[19] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-bound processing of ranked queries.Information
Systems, 32(3):424–445, 2007.

[20] L. H. U, N. Mamoulis, and K. Mouratidis. Efficient evaluation of
multiple preference queries. InICDE, pages 1251–1254, 2009.

[21] L. H. U, N. Mamoulis, and M. L. Yiu. Computation and Monitoring
of Exclusive Closest Pairs.IEEE Trans. Knowl. Data Eng., to appear.

[22] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis. Capacity
constrained assignment in spatial databases. InSIGMOD Conference,
pages 15–28, 2008.

[23] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and M. Vazirgiannis.
Skyline-based peer-to-peer top-k query processing. InICDE, pages
1421–1423, 2008.

[24] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu.
Efficient skyline querying with variable user preferences on nominal
attributes.PVLDB, 1(1):1032–1043, 2008.

[25] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On efficient
spatial matching. InVLDB, pages 579–590, 2007.

[26] P. Wu, D. Agrawal,Ö. Egecioglu, and A. E. Abbadi. Deltasky:
Optimal maintenance of skyline deletions without exclusive
dominance region generation. InICDE, pages 486–495, 2007.

[27] Y. Yuan. Residence exchange wanted: A stable residence exchange
problem.European Journal of Operational Research,
90(3):536–546, May 1996.

[28] L. Zhou. On a conjecture by gale about one-sided matching
problems.Journal of Economic Theory, 52(1):123–135, 1990.

