A Fair Assignment Algorithm
for Multiple Preference Queries

Leong Hou U Nikos Mamoulis Kyriakos Mouratidis
Department of Computer Department of Computer School of Information Systems
Science Science Singapore Management
University of Hong Kong University of Hong Kong University
Pokfulam Road, Hong Kong Pokfulam Road, Hong Kong Singapore 178902
hleongu@cs.hku.hk nikos@cs.hku.hk kyriakos@smu.edu.sg
ABSTRACT erences in terms of the capacity of the room, the location, avail-

fable equipment, etc. A central system is then called to make a fair
assignment of classrooms to instructors according to their prefer-
ences. Instances of this problem also arise in house allocation sce-
narios [12, 28]. Consider, for example, that every year a govern-
ment releases new public housing apartments. The attractiveness
of each housing option varies from person to person. Thus, inter-

Consider an internship assignment system, where at the end o
each academic year, interested university students search and a
ply for available positions, based on their preferences (e.g., nature
of the job, salary, office location, etc). In a variety of facility, task

or position assignment contexts, users have personal preference

expressed by different weights on the attributes of the searched . . ; ! '
objects. Although individual preference queries can be evaluated ested applicants specify their preferences and a fair 1-1 assignment
needs to be made by the government. Such situations are com-

by selecting the object in the database with the highest aggregate : . . :
Y g) g gareg on in countries with large government-owned estates. In China,

score, in the case of multiple simultaneous requests, a single object, ~. . . o

cannot be assigned to more than one users. The challenge is to com>’ |n_stanc'e, this prob_lem is of great significance [.27].' Other ap-
pute a fair 1-1 matching between the queries and the objects. Wepllcatlons include as&gnmgnt of stu_dents to special-interest high
model this as a stable-marriage problem and propose an efﬁcientSChoc?ls or colleges, a'llocatlon of offices to employees, placement
method for its processing. Our algorithm iteratively finds stable of leg'SIators tf) committees, etc. .]
query-object pairs and removes them from the problem. At its core Fair 1-1 assignments can be based on t_he cla_tssm Stable Marriage
lies a novel skyline maintenance technique, which we prove to be Problem (SMP) [9, 11]. To compute a fair assignment between a
/O optimal. We conduct an extensive experimental evaluation us- Set of preference functions and a set of objects, the pair(f, o)

ing real and synthetic data, which demonstrates that our approachin £ x O with the largesyf (o) value is found and established (i.e.,
outperforms adaptations of previous methods by several orders ofth€ user corresponding tbis assigned t®). Then, f ando are

magnitude. removed fromF andO respectively, and the process is iteratively
) repeated until eitheF’ or O becomes empty. This 1-1 matching
1 Introduction model based on stable pairs has been also adopted by previous work

Consider a system, where users (e.g., students) search and resenfd’ spanal §55|gnment problems [25_' 21].)
objects or services (e.g., internship positions), based on preference Figure 1 illustrates an example with three linear preference func-
functions. Typically, different users have different preferences ex- 4ONS F' = {f1, f2, 3} (by three users), which prioritize a set of
pressed by different weights on the attributes of the searched ob-four internship position®) = {a, b, ¢, d} with respect to the of-
jects (e.g., nature of the job, salary, office location, etc). For a fered salary &) and the company’s standing’). The function
single user, the system retumns a set of kogesults with respect coefficients are normalized (|.e.Z they sumto 1,in order not to favor
to his/her preference function. In this paper we study the problem @nY user) and they express weights of importance on the different
where multiple preference queries are issued simultaneously. In@ttributes. For example, usgr prefers an internship of high salary
this case, different users may compete for the same objects. ForoVer One ata company with high standing. In a stable 1-1 matching,
example, an available internship position could be the top-1 choice POSition (i.e., objecty: is assigned to preference functign since
of many interested students, while it can only be assigned to one /1(¢) = 0.68 has the highest aggregate value among all function-
of them. As a result, the system must look for a fair 1-1 matching ©Pi€ct pairs. Subsequently, andc are removed from#” and O
between the users and the objects. respectl\{ely. Next, objedt is assigned tg, and, finally, userfs

As another example, consider a classroom allocation system, [@kes object.
where at the beginning of each teaching semester (or before the In practice, the functions can be computed by a real system that

exam period) the various instructors declare their classroom pref- asks the users to input their preferences over the different search
attributes. Table 1 illustrates an exemplary input form. After a user
has expressed his/her preferences, the system translates them to a

Permission to copy without fee all or part of this material is granted provided function; the marked preferences in the example translate to the

that the copies are not made or distributed for direct commercial advantage, preference functiorf; = 0.8X + 0.2Y of Figure 1, as Salary has

the VLDB copyright notice and the title of the publication and its date appear, weight4/5 and Standing has weighy'5.

and ot 1S aien tal copyig i b perission of e Very Large Data e spatial assignment algoritms proposed in [25]and [21] can

or to redistribute to lists, requires afee’ and/or special [’)ermission from the b_e adapteql t‘_’ solve t_hls pro_blem. Both methOd_S work progres-

publisher, ACM. sively, by finding a pair that is guaranteed to be in the stable as-

VLDB ‘09, August 24-28, 2009, Lyon, France signment, reporting it, and iteratively finding the next one, until

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Usars' preferense functions DEFINITION 1. Given two datasetsl and B, a 1-1 matching

f,= 0.8X + 0.2Y M is stable if there are no two pair:, b) and (a’, ") in M, such
N best point ;zzg.giig.gz thl’ta [gifersb’ to b, andd’ prefersa to a’ (wherea,a’ € A and
S 3= 0. - ,0' € B).
'T% bO Positions' attributes [11] describes SMP and gives detailed solutions to its variants.
) a0 a=(0508) SMP has been recently considered as a model for fair spatial as-
aO ::((8582 signments [21, 25]. Given two sets of spatial objects, the objective
cO d;(0:4’0'.4) is to find a 1-1 stable matching, considering Euclidean distance as
(salary) X ' the preference function. That is, prefersd’ to b if and only if
dist(a,b’) < dist(a,b). In[21], this spatial SMP is referred to
Figure 1: Internship Assignment Example as exclusive c_Iosest pairs (ECP) join and is treated as a variar)t of
the closest pairs problem [7]. ECP searches for the closest pair of
objects in the cross product of the two datasets. Once the closest
Table 1: Example of a Preference Input Form pair is found, it is output, and the corresponding objects are re-
; moved from their respective datasets. The process is repeated until
User 1 Lowest Highest e
ser 1[2[3[4]5 one set becomes empty. Each computed pair is proven to be stable.
Salary X [21] and [25] use Property 1 to solve the problem. Assuming that
Company Standing| X pairs found to be stable are removed from the problem, at any point

during the execution of the assignment algorithm it holds that:

))) PROPERTY 1. A pair (a, b) is stable if and only if2's closest
the complete stable 1-1 assignment is established. These methodgpact ish andb's closest object ia, wherea andb are among the

can solve our problem by incremental thisearches, one for each nassigned (remaining) objects ihand B respectively.
function (e.g., using the algorithm of [19]). As we elaborate in

more detail later, their burden is the large number of kageries .
9 solves the problem by executing at m8stmin{| A|, | B|} nearest

performed on the complete set of objects. . . : - J
We propose a specialized technique, which greatly outperforms _nelghbor queries antt min{| A|, | 5|} deletions, assuming that the

: : . : L t datasetsl and B are indexed by two main-memory R-trees.
adaptations of spatial assignment algorithms. Our solution is based!Pu! A . .) .
on the observation that only objects in the skyline [4J@heed Chain first picks a random objegtfrom datasetd and finds its NN

to be considered at each step of the assignment process. The skyt(gzal\rleNS;,n;'%hbo?r:\’ Z ('Ssﬁ ’glf'lsn?nﬁ:xl)m:?;(’. ;hfnt},g:jm f'?sds
NN . ’ NN

line of O contains all objects i®, for which there does not exist pushed into a queu. Otherwise (i.e., i’ = a), pair (a, ax)

an equal or better object i@ with respect to all attributes. In the is output as a result pair ang ax s are removed fromd and B

internship assignment example (Figure 1), note that okjéchot B tively (bv deletion rformed on th " ndin tial
necessary to be retrieved before the assignment of abj@stsum- respectively (by eletions pertormed on the correspo g spatia
indexes). The algorithm continues by de-queuing the next object

ing that all preference functions are monotone). Thus, we can avoid ¢ ick d biect fromt if O i " d
accessing and examining objects unnecessarily by maintaining the® rom Q ’(or picks a random object rom Q is emp y)_ an
skyline of O. As modules of our technique, we provide an efficient tgstlng if’s NN in the othgr dataset hasas its ngarest neighbor
skyline maintenance algorithm and a fast method for identifying (;1'.6" the shame test desdgrlbtaédcibovg)_. Depen,dlr’llqun thehregult of
matching pairs between the skyline@fand F'. A short outline of t Is test, the corresponding =% pair is output'st IS pushe

our methodology appears in [20]; in this paper, the search modules!nto Q Ever_nually, Chain terminates after all ECP pairs have been
are optimized, there is an optimality proof for the skyline main- identified this way. . .

tenance algorithm, we include and evaluate variants of the basic. [2.2] splves a Fe'?‘ted spatial a55|gnment problem, where the (.)b'
problem, and study the case whétes larger tharo. jective is to minimize the average distance in the assigned pairs.

The rest of the paper is organized as follows. Section 2 reviews This problem is significantly more complex than the stable spa-
paper 9 :) - .~ tial assignment described above, as algorithms that derive an exact
related work, and Section 3 formalizes the problem under investi-

. : T . solution have Qn?®) cost, if both datasets hav@(n) size. The
gation. Section 4 presents the basic idea of our approach, while
Section 5 describes a nhumber of optimizations. Section 6 stud- methods provided in [22] exploit spatial indexes and apply approx-

; B ; ; imation techniques to prune the search space and to reduce the
ies two problem variations: assignment where objects may have - - : .

e . . - : computation cost. Still, as shown in [21], the stable assignment
capacities (e.g., a company offers 10 identical positions with the

. - achieves similar quality in terms of the average distance measure
same salary) and de-normalized functions (e.g., problems where . . . h
. —_ . L of [22], although designed for a different problem. Given this fact,
users have different priority). Section 7 empirically evaluates our S) .
s)) . - and considering the lower complexity of the stable marriage prob-
solution in various settings. Section 8 concludes the paper with L . . .
N lem, we choose to adapt Definition 1 to our function-object assign-
directions for future work. N ;
ment problem. We stress that our solution is fundamentally differ-
2 Related Work ent from [21, 25, 22], as (i) we compute an assignment between
}] elements of different nature (i.e., preference functions and multidi-
Our problem is closely related to three types of search: spatial as-mensional feature vectors) and (ii) we rely on the computation and

signment problems, skyline retrieval, and toptueries. Inthis sec- maintenance of a skyline, a notion that is not meaningful/applicable
tion, we review algorithms for these problems that are most related jn the spatial assignment problems of [21, 25, 22].

to our approach.

Based on this property, [25] proposes the Chain algorithm, which

2.2 Skyline Queries

2.1 Spatial Assignment Problems Consider a se of D-dimensional points. Point € O is said to

The Stable Marriage Problem (SMP) is a common 1-1 assignmentdominate poinb’ € O, if for all dimensionsi, 1 < i < D, o;
problem between objects from two different datasets. The goal of (i.e., the value ob in dimensioni), is greater than or equal tg
SMP is to find a stable matchiny/, as in Definition 1. (the value ob’ in dimensioni), and the two points do not coincide.

The skyline ofO consists of all points € O that are not dominated intersect the EDR (e.gm1). In this example, no new objects are
by any other point irO. added to the skyline, since all objectsrin are outside the EDR.

[4] is the first work on skyline computation in secondary storage, As a result, the updated skyline 3;x, = {a,c,i}. Note that
proposing two algorithms: BNL (block nested loops) and DC (di- the EDR is not a simple hyper-rectangle when the dimensionality
vide and conquer). BNL scans the dataset once, while keeping allexceeds 2. Figure 3(b) shows a 3-dimensional EDR example; the
non-dominated objects in the memory buffer. If during this process EDR of objecth is formed by several hyper-rectangles.
the buffer overflows, objects in it are flushed to a temporary file.

best

After the scan, some objects in the buffer are guaranteed to be in 2 SKYLINE
the skyline and output, while the rest remain in the buffer and the e
. . . Mgm Delete d

process is repeated (as many times as necessary) taking the tem- - a Delete b
porary file as input. DC computes local skylines in partitions of ?TG grs i » 4
the space, and then merges these skylines recursively. LESS (lin- L O § @ b
ear elimination sort for skyline) [10] is an adaptation of BNL that OF 4
reduces the average-case running time by topologically sorting the k O
points before evaluation. SalL. Sa [3] adopts the idea of LESS to pre- o 4‘
sort the input data, but uses an appropriate ordering and a termina- O M2 |
tion condition that avoids scanning the complete ordered input. best

Skyline computation is faster if the objects are indexed. [18, 15, (a) 2-dimensional EDR (b) 3-dimensional EDR
17] propose algorithms that rely on indexing. Branch and Bound
Skyline (BBS) [17] assumes thé&? is indexed by an R-tree and Figure 3: Examples of Exclusive Dominance Region

computes the skyline ab by accessing the minimum number of
R-tree nodes (i.e., it is I/O optimal). BBS accesses the nodes of the
tree in ascending distance order from #ky poinf that is the cor-
ner of the space with the largest attribute values in all dimensions,
and corresponds to the (imaginary) most preferable object possible.
Once a data object is found, it is added to the skyline and all R-tree
nodes/subtrees dominated by it are directly pruned.

We illustrate the BBS algorithm in Figure 2, whefecontains
13 objects indexed by the depicted R-tree. BBS executes an incre-
mental nearest neighbor search (INN) from the sky point. The first
NN is objecte; the right part of the figure shows the contents of

the INN search heap at the stage wheis confirmed to be NN; 8("?;@ .tD). Notthe tga:, for eacht deletion '@Sk’iE’DBRBS an;j ined
the R-tree nodes accessed so far are drawn with bold contour. Ob-—¢ [a=KY raverse the R-ree once 1o process an -constrain€

jecte is guaranteed to be in the skyline and is placed int@sgt,. queryhlf more :]h?jn one skygnﬁ objects are rem(()jved atlth? same
e dominates all objects falling in the shaded area; therefore, heaptlme these methods may read the same R-tree nodes multiple times,
elementsd, m., i, andc are pruned as they are de-heaped. The incurring high 1/0 cost. As a building block of our assignment al-

next NN found ise, which is also inserted int@., . Finally, heap gorithm, we propose a skyline maintenance technique for situations
entries M and M; are dominated by anda, respectively, and where only deletions happen. Our method outperforms DeltaSky

d. BBS terminates at this point (since the INN heap b and is 1/O optimal.
2:#3@) withoekrmré{fsai 's point (since the eap DECOMES A recent work by Wong et al. [24] studies the efficient computa-
1 sky — 9 .

tion of skylines on datasets with dynamic preferences on nominal

BBS requires computing the EDR in response to skyline removals.
[26] shows that if we use a systematic way to decompode- a
dimensional EDR into a set of hyper-rectangles, then the number
of rectangles i$O,, |”, whereD is the dimensionality. The worst
case of each intersection check beco®g) 1, |°) (if the MBR
entry only overlaps with the last rectangle). In view of this poten-
tially huge number of computations, an algorithm called DeltaSky
[26] is proposed, which determines the intersection between an
MBR and the EDR without explicitly calculating the EDR itself.
The worst case complexity of the intersection check is reduced to

g o attributes. Nominal attributes do not have a pre-defined (i.e., ob-
@) mal W jective) order, but a custom-based preference for their values can

M3 m7 oo 4 e be set. The skyline for such data can be computed by an index-
?me g m3 independent method (e.g., [3]), but index-based methods cannot be

L Pgmi i) mi [mz [ms][m4 | s | me \m7 \ applied because it is infeasible to maintain an index for each of

Ta 1 i ﬁ ﬁ ‘ (3] [xkm] - E| the (exponentially many) possible orderings. In view of this, [24]

K . proposes a technique, which precomputes and materializes the sky-

m"® "2 INN Heap={e, d,m1, i, ¢, a, M2, M3} lines for a subset of the possible orderings of the nominal attributes.

S | Given a skyline query with arbitrary user preferences on the nom-

best

inal attributes, the technique computes the result efficiently from

the materialized skylines. Computing a matching in object data-

bases with nominal attributes is beyond the scope of our work; we
For dynamic datasets, the skyline can be maintained as follows. only consider orderings implicitly defined by preference functions

Each inserted object;,s is compared against the current skyline. expressed by weights on the different attributes.

If it is not dominated by any object i@,,, it is included in it. If 23 Tobk S h

it dominates some skyline objects, they are removed ftn,.) Op- >earc

Deletions are more complex to handle. Once a skyline objggt Let O be a collection of: objects andS1, Ss, ..., Sp be a set of

is deleted, the skyline is updated by considering only objects in the D sorted lists of these objects, based on their atomic scores on dif-

region exclusively dominated hy,.;, calledexclusive dominance ferent features (i.e., dimensions). Consider an aggregate function

region (EDR). We illustrate this by an example in Figure 3(a). If f, which takes as input an objeat € O, and applies to thé

objectd is removed, the skyline is updated by inserting i6tg., atomic score®, o2, ..., op Of 0. A top-k query, based orf, re-

the skyline of the EDR (the shaded region). A constrained version trieves ak-subsetO;.,r of O (k < n), such thatf(o) > f(o),

of BBS can be used, which accesses only the entries whose MBRsVo € Oyopk, 0" € O — Oyopi.-

Figure 2: Example of Branch-and-Bound Skyline

Fagin et al. [8] propose a set of algorithms for tegueries with reporting the(f, o) pair with the highest score iff x O, and re-
monotone functiong, among which the threshold algorithm (TA) moving f ando from F and O respectively. During any process
prevails. The main idea of TA is to pop objects from the sorted that outputs matching pairs in this order, it holds that:
lists in a round-robin fashion. For each encountered ohjeet PROPERTY 2. A function-object pailf, o) in F' x O is stable,
random access is performed to retrieve all its atomic scores andif there is no functionf’ € F, f’ # f, f'(0o) > f(o) and there is
computef (o). The set of thek objects with the highest aggregate no objecto’ € O, 0" # o, f(0') > f(o), whereF and O are the
scores found so far is maintained. The search terminates when thesets of the unassigned (remaining) functions and objects.
k-th score in this set becomes greater than or equal to threshold .

T = f(lh,l2,...,lp), wherel; is the last atomic value drawn in 4 A|gOI‘Itth
sorted order from lisfb;. In this section, we describe a brute force solution and then sketch

BRS (branch-and-bound ranked search) [19] is an I/O optimal our proposed approach. Both techniquesmogressivei.e., sta-
top-k algorithm for datasets indexed by an R-tree. BRS visits the ble function-object pairs are output as soon as they are identified.
R-tree nodes in an order determined by the preference fungtion We assume thak’ is kept in memory whileD (which is typically
Given an MBRM, mazscore(M) is defined as the score of its persistent) is indexed by an R-tree on the disk. The main concepts
best corner and is an upper bound of the score for any object insideof our approach, however, apply to other indexes and alternative
M. BRS considers R-tree nodes in descendingrscore order, storage settings (discussed in Section 7).
and terminates when the score of #h¢h best object encou_nterc_ed 4.1 Brute Force Search
is no smaller than thenaxscore of the next R-tree node in this

order. Our assignment problem can be solved by iterative stable pair iden-

Onion [5] is a precomputation-based method for topueries tification and removal, according to Property 2. However, unlike

with linear aggregate functions, which relies on convex hull layers. _findin_g _ClOSGSt pairs in_the spatial vn_arsion of SMP (asin [21’_ 25)),
Onion computes the convex hull of the data objects and sets it as thedentifying stable function-object pairs may require substantial ef-
first layer. Then, it removes the hull objects and repeats the processO't: A brute force approach is to issue topgueries against,
to construct the next (deeper) layers, until all data are exhausted.ONe for every function if”. This will produce|F'| pairs. The pair

Onion computes to-results of an aggregate function by expand- (/> ©) with the highestf(o) value /should be stable, becausen(i}
ing the convex hull layers progressively, starting from the first one the top4 preference off and (i) /' (o) cannot be greater thaf{o)

and moving inwards. The main problems of Onion are (i) it may o @ny functionf” # f (since(f, o) is the pair with the highest
expand all layers if; is large and (i) the complexit®) (n”/?) of score).

convex hull computations for data objects becomes very high if This method requires numerous togrueries to be initiated; one
the dimensionalityD increases. for each function inF'. Assuming thaO is indexed by an R-tree

As in our method, skyline processing has been used in the pastRO’ the_se queries can be imp_lement_ed similarly to NN queries, as
to facilitate topx queries; however, our work is the first to tar- shpwn in [1.9] and qlscussed n Secfuon 2.3. In addition, after the
get a matching problem. [16] studies the continuous monitoring pair (f, o) with the highestf (o) valu_e is added to the query result,
of top-k queries over streaming multidimensional tuples in a fixed- © must be remoyed /fronRo, and if o was the topt ObJeCF for
size sliding window. It reduces the problem tdcakyband [17] S(/)mle ct)'t1her funtct|0|f # r{ to;t)-l searcn mustt Ee re-app:!eg ;or
maintenance problem, considering the data attributes and theirex-f' n the worst-case, where dpsearp_ must be re-applied for
piration times as skyline dimensions. Theskyband contains the all remaining functions after the identification of each stable pair,
objects that are dominated by at mést- 1 others. Thus, for any this aIgonthr_n requires QF\) deletions fromio and O(F'|%) t_op- .
monotone preference function, the tbpesults are contained in 1 searches io. Deletions and top-searches have logarithmic

the k-skyband. [23] utilizes:-skyband computation techniques to COStS:
evaluai(gtode qu[eriLS over peer){to-peer nert)works q The performance of the algorithm can be improved if we main-

tain the search heap for each topgjuery. In this case, if the top-
3 Problem Statement object of a functionf’ is assigned to another functigh(because

i . f(o) > f'(0)), then the search fof’ canresume This is possi-
Our model includes a set of user preference functibrever aset pje 'if an incremental top- algorithm is used (e.g., the algorithm
of multidimensional object®). Each objecb € O is represented 4 [19]). On the other hand, this solution requires a large amount of
by D feature values; ...op. Every functionf € F is defined memory, as one priority queue must be maintained for each func-
over theseD value§ and maps objeot.e O to & numeric score tion. We now describe a more efficient algorithm for this function-
f (o). F may contain anynonotondunction; i.e., if for two objects object assignment problem.
0,0 € 0,0; > 0},Vi € [1, D], thenf(o) > f(o'),Vf € F. For

ease of presentation, however, we focuslinear functions; i.e., 4.2 Skyline-based Search

each function specifie® weightsf.as ... f.ap, one for each di- An important observation is that, i contains only monotone
mension. The weights are normalized, such ml f-a; equals functions, then the top-objects of all preference functions should
1. This assures that no function is favored over another. Given anbe in the skyline ofO. Recall that the skylin®;,, of O is the
objecto € O, its score with respect to ahe F'is: maximum subset 0©, which contains only objects that are not
dominated by any other object. In other words, for ang O, if
D o is not in the skyline, then there exists an objecin Oy, such
flo)= Z fooi- 0 @ that any functionf € F would prefero’ overo.
i=1
Based on this observation, we propose an algorithm, which com-

Our goal is to find astable1-1 matching betweef’ andO. The putes and maintains the skylidg,,, while stable function-object
desired matching is described by Definition 1, subject to the con- pairs betweel®,, andF are found and reported. Algorithm 1 is a
vention that functionf preferso to o’ if f(o) > f(o’) and, sym- high-level pseudocode for thikyline-basedSB) approach. First,
metrically, objecb prefersf to f', if f(o) > f'(0). we compute the skylin®,y, of the complete se® (e.g., using

Similar to SMP, the matching can be computed by iteratively the algorithm of [17], described in Section 2.2). Then, while there

are unassigned functions, the function-object gdiro) with the
highestf (o) score is found,f ando are removed fron¥’ and O
respectively, and s, is updated by considerinG — o only.

Algorithm 1 Skyline-Based Stable Assignment

SB(setF’, R-treeRp)
1: OskyI:@
2: while |F| > 0do
if Ogyy =0 then
Osky:=ComputeSkylineRp)
else
UpdateSkylingOsy,, 0, Ro)
(f,0):= BestPai(F, O4py)
Output(f, o)
F:=F—f,0:=0-0;04py := Osy — 0

> more unassigned functions

> o = last deleted object

We illustrate the SB algorithm using an example. In Figure 4(a),

we have 2 linear preference functions (shown as lines) and 13 ob-

jects (shown as 2-dimensional points). The topbject of each
function is the first one to be met if we sweep the corresponding

not efficient, as it required”| - |Osr, | comparisons. This number
can be reduced by indexing eithEror O,,. Then, we can either
(i) seek for every function itf’ the best object iV, after having
indexedO,yy, or (ii) seek for every object i,, the best function
in F' after having indexed".

The indexing ofO,, is not practical for two reasons. First,
the number of updates i@.,, at each loop can be large, since
many new objects may enter the skyline after the removal of an
assigned object. Second, object<Jg, are anti-correlated, so a
multidimensional index for them (e.g., R-tree) is not expected to be
effective.

Instead, we choose to indek, since only one deletion is per-
formed in it at each loop. This set is also anti-correlated. There-
fore, organizing the function coefficients (i.e., preference weights)
with a multidimensional index is inefficient. We propose to in-
dex the functions as sorted lists, one for each coefficient. Then,
for each object inD,x, we can apply aeversetop-1 search on
the lists, where the roles of objects and functions are swapped, by

line from the best possible object (top-right corner of the space) to- adapting the threshold algorithm (TA) [8]. Consideiordered lists

wards the worst possible (origin of the axes). In the figaris,the
top-1 object for both functions.

SB first computes the skyline @¥: O, = {a,e}. From this
fact, we know that only: ande may be the top-1 objects fgi and
f2. Therefore, it is only necessary to compare 4 object-function
pairs (instead ofi3 - 2 = 26) in order to find the highesf (o)
score. In this example, palifi, e) is the first stable pair output
by the algorithm.O,, is then updated t®.x, = {a,c,d,i}, as
shown in Figure 4(b), and Lines 7-9 are repeated to identify the
next highest score paifz, d); this pair is reported as stable and
SB terminates.

— sky — sky

: SKYLINE I SKYLINE

b a f, f, b a fo

O © 5 9 o ‘o—4
S Cs Moo Q S oo
oi oi
kO kO O

m m

o | o |

best

(a) Original Skyline (b) Updated Skyline

Figure 4: Example of Skyline-Based Stable Assignment

The efficiency of SB relies on appropriate implementations of the

L1, Lo, ..., Lp (whereD is the dimensionality), such that ligt;
holds the(f.a, f) pairs of all functionsf € F (wheref.q; is the
i-th coefficient off), sorted onf.«; in descending order.

Recall that TA, given a classic tapsearch problem, accesses
the sorted lists and performs random accesses for the encountered
objects to find their aggregate scores. If at some stage the thresh-
old T', computed by aggregating the last values seen in each list in
sorted order, is lower than the best aggregate object score found so
far, then the algorithm terminates, as it is impossible for any non-
encountered object to be better than the best already found.

A similar process can be applied to find the best preference func-
tion for an objecb € O,,. Assume that we access the sorted lists
in a round-robin fashion and for each visited functibrwe com-
pute f (o), while maintaining the functiorf,.s: with the highest
aggregate score an Assume that the last values seen in the lists in
sorted order arél1, lo, ...,Ip}. Then, the threshol@ can be cal-
culated a$" ", I; - 0;. Neverthelessy” , I; could be larger than
1, which violates our assumption that the functions should be nor-
malized (the coefficients should sum to 1). Therefore, our goal is to
find a set of coefficients;, Vi € [1, D], such thaEiD:i B; = 1land
B: < 1;,Yi € [1, D], which maximize the quantity"” | 3; - 0;.

This is aknapsackcombinatorial optimization problem. The
quantity3; of each item to put in the knapsack is a real number in
our setting, so the problem is an instance offtaetional knapsack
combinatorial optimization problem [6], which can be solved using
the following greedy algorithm.

First, we rank the dimensions in descending order basegison

BestPair and UpdateSkyline functions. In the next section, we pro- corresponding values. Next, we consider each dimensiorthis
pose optimized methods for these modules. In addition, we show order. Starting withB = 1, we set3; = min{B, l;}, updateB =
how SB can be further enhanced to report more than one stableB — i and proceed to the next dimension. We continue untall

pairs at each loop.

5 Implementing SB Efficiently

values are set; note that if at some paihtdrops to 0, we directly
set the remaining; to 0 and terminate. T, n: = S0, B - 0;
threshold derived by the aboygke coefficients is a tight upper bound

Section 5.1 describes techniques that reduce the CPU time requirec! the score for all functions that have not been encountered in any

to find the object-function pair with the highest score. Section 5.2

presents an efficient skyline maintenance algorithm, and proves that

sorted list.
The table in Figure 5 illustrates an example of three sorted pref-

itis /O optimal, i.e., that it accesses the minimum possible number €rénce lists L) for five 3-dimensional preference function, (to
of disk pages throughout the SB execution. Section 5.3 discusses/e), Shown on the right of the figure. Note that for each function,

how multiple stable pairs can be output in a single SB iteration,
leading to earlier termination.

5.1 Best Pair Search

the sum of coefficients i§, for examplef, = 0.8z + 0.1y +0.1z.
Consider objecb = (10, 6, 8). Assume that TA is being executed
and it is accessing functions from the lists in a round-robin fash-
ion. First, f, is accessed from the first list; two random accesses to

At each loop, the SB algorithm seeks for the best pair in the cross the other two lists retrieve the complete selfpk coefficients and

productF’ x Ok, . A brute force implementation of this process is

fa(0) = 9.4 is computed. Similarlyf, and fq are accessed from

the 2nd and 3rd lists respectively, afiglo) = 6.8, fa(o) = 7.8
are computed. So faffp.s: = fo. After these three accesses, we
can compute the tight threshold; .. for any unvisited function
as follows. We rank the last seen values at each list (i.e0Q.8,
1>=0.8, andi3=0.9) based on the values ofin the corresponding
dimensions (i.e.]10, 6, and8). Therefore, the order i&, I3, 2.
We initialize B = 1 and assign to the first dimension in this or-
der (i.e., dimension 1) coefficief, = min{B,[;} = 0.8. Then
we updateB = B — 0.8 = 0.2. Now the second coefficient is
B3 = min{B,l3} = 0.2 and B is set to 0. Therefore, we have
B = 08,8 = 0,0 = 0.2, andTyigne = S, fi - 0; = 9.6.
SinceTyign: is greater thanfses: (o), we continue and access the
next element in the sorted lists, which is functifinin the first list.
After computingf.(o) = 8.2, fyest IS still fo. We updately;gn:
based on the reviséd = 0.5 asTiight = 0.5-10+0-6+0.5-8 = 9,
which is now smaller tharfies:(0) = fo(0) = 9.4. Therefore,
there cannot be any functiohwith f(o) > fa(o), and TA termi-
nates reportingfa, o).

[Li [Ly [Lz |
OB [LO8 [09| 1 Z05% fosy
fc (0.5) fe (0.4) fe (0.4) fe=05X +04Y +0.1Z
fe (02) fc (04) fc (Ol) fd =0.1Y +0.97
f5(02) || fa (0.1) || fa (0.1) fo = 0.2X +0.4Y +0.4Z
fa(0.0) || fa (0.1) [f5(0.0)

Figure 5: Example of Threshold Calculation

We now discuss some techniques that further optimize the Procesgpiects is removed, we scan.plist.

of finding the best pair.

TA access order: First, TA can be accelerated if instead of ac-
cessing the lists in a round-robin fashion, we access/theith
the highestl; - o, value (wherel; is the last coefficient seen in
L;). This biased list probing greedily decreagedeading to ear-
lier TA termination. For example, fos (10,6, 8), the algo-
rithm first accessed; (initially I; = 1,Vi € [1,D]) and en-
countersf, (0.8). Then,l; = 0.8 and the list with the largest
l; - 0; value is still L,. Therefore, f. (0.5) is accessed. Now
Tiight = 0.5-104+0-64 0.5-8 = 9, and TA terminates af-
ter accessing 2 functions (instead of 4 for a round-robin order).

Resuming search: Every time we need to find the best function
for a given objecb, we execute TA from scratch. However, a cer-
tain object may have to seek for its best function multiple times,
if its top choice is assigned to another object (e.g., recall the ex-
ample above witle). In order to avoid repetitive searches for the

same object, we store the state of the previous applied search fo

the objects inO,x, and resume it if necessary. Specifically, for
each such objeat we maintain in a heap.heap the scoresf (o)
for all functions f that have been examined by TA for Like be-

fore, TA search terminates when the threshold is not greater than

the best function in this queue. In the next loop, if search is re-
quired again fo (because the top function in its queue has been

assigned to another object), the next function in the heap is consid-

r

First, the queue’s maximum capacity is settp whereQ2 =
w - |F| andw is a parameter (e.gw = 5%). This means that
the queue only stores the tépfunctions encountered during TA
execution. TA proceeds in the same way as the basic resuming
search. The only difference is that we have to decr@asg1 when
an element is popped from the queue. This is necessary to ensure
correctness; the queue can only guaranted fdpr) retrieval after
poppedm times. Wher2 reaches 0, we need to re-run TA from
scratch and rese® to w - |F|. This technique provides control
over the tradeoff between execution time and memory usage via
parametet.

5.2

In order to minimize the tree traversal cost during skyline main-
tenance, we keep track of the pruned entries and objects during
the first run of the skyline computation algorithm. In other words,
every time an entn¥ is pruned during the first run of the skyline
algorithm (becausd’ is dominated by a skyline objed), E is
added to theruned listo.plist of o. Therefore, after the computa-
tion of the skyline, each skyline object may contain a list of entries
(non-leaf entries and/or objects) that it dominates. Note that, in or-
der to minimize the required memory, each pruned eftiig kept

in the plist of exactly one skyline objeci (althoughE could be
dominated by multiple skyline objects). Consider, for example, the
skyline in Figure 2; pruned entries m, i, ¢, M> are inserted into
e.plist, while Ms is included ina.plist.

Skyline maintenance now operates as follows. Once a skyline
For each entrny there, we
check whethef is dominated by another skyline object in this
case, wamoveF to o’.plist. Otherwise,E is moved to askyline
candidate setS..»q. Note that all objects and non-leaf entries in
Secana are exclusively dominated by the removed skyline object
(i.e., they fall in/overlap with its EDR, as defined in Section 2.2).
The entries 0ofS...q are organized in a heap, based on their dis-
tance to the best corner of the search space. The algorithm of [17]
is then applied, taking as inpt...« and the existing skyline ob-
jects.

Algorithm 2 is a pseudocode of our incremental UpdateSkyline
technique. Figure 6 illustrates the algorithm. Assume that the cur-
rent skyline is{a, e} ande is assigned to a function and removed
from the skyline. Suppose thaplist = {d, m1,1, ¢, M2}. If any
of these entries was dominated by the existing skyline oljeitt
would be moved ta.plist. None is, so the entireplist is placed
into S..na. Then, the skyline algorithm resumes taki®\g...4 as its
input heap; entries therein are examined in ascending distance order

Incremental Skyline Maintenance

from the best point (i.e., upper-right corner of the space). That s,
is examined first, which is found to dominate entd{es;, M2} in
Secand; these entries are addedd@list. The next entries areand

¢, which are skyline objects. Thu®,, is updated tda, ¢, d, i }.

Analytical Study: The following theorem shows that UpdateSky-
line (Algorithm 2) is I/O optimal, in the sense that (i) it visits only
nodes that intersect the EDR of the removed object, and (ii) it does

ered as the currently best one and compared with the threshold tonot access the same R-tree node twice during the entire stable as-
verify whether search has to resume. In the latter case, search insignment computation.

the lists continues from the previous state.

The drawback of this method is the extra memory required for
the queue and for keeping the previous state of TA search for all
objects iy, (thisisO(|Osky|-|F|) in the worst case). Note that

THEOREM 1. UpdateSkyline accesses the minimal number of
R-tree nodes for stable assignment computation.

PrRoOOF Each time UpdateSkyline is invoked, it only accesses

each skyline object only executes a small number of top-1 searchesentries that are not dominated by any object in the current skyline.
before it forms a stable pair, and this number is much smaller than Thus, each individual skyline maintenance is performed I/O opti-

the total number of functiong”|. Therefore, the queue needs not
store all seen functions. Motivated by this observation, we develop
aniterative solution to avoid high memory usage.

mally. It remains to show that no node is accessed more than once
during the entire stable assignment or, equivalently, that each call
of UpdateSkyline does not access previously visited nodes. This

Algorithm 2 Incremental Branch and Bound Skyline
Scand =0
algorithm UpdateSkyline(seDsy,,, objecto, R-treeRp)
» Scana:={E|E € o.plist, E ¢ o .plist,Vo' € Ogpy}
: newOgy,, :=ResumeSkylingfcqnd, Osky)
algorithm ResumeSkyline(seéf.,nd, S€tOky)

N =

1: push all elements df.,,,4 iNto Q
2: while Q is not emptydo
3: de-heap top entrf of Q
4. if E is dominated by any € Oy, then
5: addE to o.plist
6: else > not dominated by any skyline object
7. if Eis non-leaf entrythen
8: visit nodeN pointed byE
9: for all entriesk’ € N do
10: pushE’ into Q
11: else
12: Osky:=OSky UFE
HE SKYLINE H
F? SKYLINE
M3 m7 3 m| M1 M3 a
m i
c d e() c d e
\b)mG © a m3 ©
Q. Dy mt b (7! o
O7 e
k(] O
5
" M2 M2
— |

best

(b) Stored Elements

best

(a) Indexed Objects

Figure 6: UpdateSkyline Example

can be seen easily; once a node is visited (Line 8 in Algorithm 2),
it is no longer inS...q4 Nor in theplist of any skyline object. []

Compared to DeltaSky [26] (i.e., the state-of-the-art skyline main-

eachf € Fyest, We record the objecf.opest € Osiy that maxi-
mizesf (o). Then, we identify and report all those pairs that satisfy
Property 2. Specifically, we scdh,..: and for eachf therein, we
check whethe(f.ovest). foest = f. 1f SO, (f, f.0best) iS @ stable
pair and the corresponding function/object are removed @
andOsy,. Note that at least one pair is guaranteed to be output
(i.e., the pair(f, 0) in F x Oy with the highestf (o) score). If
more than one pairs are output, then multiple skyline objects are
removed fromO,,. This does not affect the functionality of the
UpdateSkyline module; all entries in théist of these objects are
either placed in thelist of a remaining skyline object (if domi-
nated by it) or otherwise en-heaped and processed by Algorithm 2.
The above enhanced version of SB is summarized in Algorithm 3.

Algorithm 3 Optimized Skyline-Based Stable Assignment

SB(setl’, R-treeRp)
1: Osky:@; Oger =0

2: while |F| > 0do > more unassigned functions
3: if Og1y =0 then

4: Osy:=ComputeSkylineRo)

5: else

6: UpdateSkylinéO, .y, Oger, Ro)

7. Ogel :i= 1]

8: Fbest:=@

9: forall o € Ogy,yy do

10: find functiono. fyes¢ € F that maximizesf (o)

11: Fbest::Fbest U 0~fbest

12: forall f € Fpest dO

13: find objectf.opest € Osky that maximizesf (o)

14: forall f € Fpese do

15: if (f~0best)'fbest = fthen

16: F:=F—f0:=0 — f.opest

17: Osky = Osky — f-0vests Odet = Oger U f.0pest

6 Problem Variants

In this section we consider variations of our assignment problem

and the corresponding adaptations of SB. In particular, Sections
6.1 and 6.2 consider its capacitated and prioritized versions respec-
tively.

tenance algorithm), UpdateSkyline performs fewer node accesses8.1 Obijects and Functions with Capacities

DeltaSky accesses at M@ALO,y | - h nodes, wheréd\ Oy, is the
set of new skyline objects after a removal ands the height of

So far, we have considered sets of distinct functions and objects. In
practice, multiple objects may share the same features (e.g., when

the R-tree [17]. This bound assumes that the BBS component of 3 company has many identical internship positions), and multiple
DeltaSky has to access a complete path in the tree for each deleteqsers may have the same preferences. The algorithms proposed

skyline object. UpdateSkyline performs only one complete tree tra-
versal, because it stores the pruned entries irpthg of existing

in this paper can be directly applied in such cases, as they do not
make any assumptions about the distinctiveness of the objects or

skyline objects. Thus, the accessed path for each new skyline ob-fnctions. Still, further optimizations are possible.

ject o is only the path from the topmost MBR in théist that
includeso, with lengthh’, whereh’ < h. Thus, the node accesses
are reduced tdAOsy, | - 1/, indicating that UpdateSkyline never

Specifically, our algorithms run faster if we replace multiple iden-
tical objects/functions by a single one, havingggacityvalue. For
example, 10 identical internship positions can be replaced by a sin-

accesses more nodes than DeltaSky. As we show experimentallygle oneo with capacity 10. Similarly, multiple identical functions

this leads to a significant performance boost.
5.3 Finding Multiple Pairs per Loop

At each loop, SB finds the best functioninfor each object in the
skyline O,,. After the best object-function pailf, o) is identi-

fied and reported, we removefrom Oy, necessitating skyline
maintenance. We can reduce the number of loops required (and
thus, the number of calls to the skyline maintenance module), if we
output multiple stable object-function pairs at each loop.

To achieve this, we use Property 2; if for an objedhe best
function is f ando is the best object for functioif, then(f, o)
must be stable. We take advantage of this property, as follows.
At each loop, letF;,.s: be the subset of’ that includes for every
objecto € Osy, the functiono. fu.s: that maximizesf (o). For

are replaced by a single function augmented with a capacity. Then,
the problem is solved on the distinct sets which are much smaller
than the original ones.

The necessary modifications to our solution regard capacity han-
dling. In Algorithm 3, Lines 15-17 are revised. Once a stable pair
(f, o) is identified (Line 15), the capacities gfando are reduced
by 1. Functionf and objecto are only removed fronf’ and O
respectively if their capacity reaches zero.

6.2 Functions with Different Priorities

Consider a booking system, where different membership levels have
different priorities. In our exemplary internship assignment system,

assume that students have different priorities depending on their se-
niority, e.g., a third year student is preferred over a second year one

when considered for the same position. To accommodate this rule, D dimensions (in the range from 3 to 6). Additionally, we ex-
the output of a functiorf applied on an object (Equation 1) can periment with two real datasets, Zillohand NBA?, described in

be changed to: Section 7.5. Each dataset is indexed by an R-tree with 4Kbytes
b page size. We use an LRU memory buffer with default size 2% of
the tree size. The preference functions are linear with weights gen-
=fv- .0+ 04, 2 . . - -
flo) = fv ;fa ©) erated independently, except in experiments that study specifically

) o]]] the effect of weight distribution.

where f.~y is the priority of functionf (set according to its user’s We compare our SB assignment algorithm (after turfing=
priority). Our solution works smoothly for this extended form of 9 5%.|F|) against Brute Force and Chain. Brute Force is described
the problem by making some minor changes in the best pair search-in Section 4.1. Chain is an adaptation of [25] (presented in Section
ing (described in Section 5.1). First, gllo; are replaced by, 2.1), where the functions are indexed by a main memory R-tree
where f.o; = f.ai - fy. Then, to adapt the process in Sec- (puilt on their weights), and the nearest neighbor module to either
tion 5.1 for Ti4n. calculation, the initial value o3 is changed (O or I is replaced by top-1 search in the corresponding R-tree us-
to maxser{fy}. For example, in a 4-year undergraduate pro- jng BRS [19]. In our SB assignment algorithm, BBS [17] is used
gramme, where students haye={4, 3, 2, } according to their o compute the initial skyline, modified to keep track of pruned en-
year of study3 is initialized to 4. After these changes, our assign- tries and objects, as described in Section 5.2. All methods were
ment algorithm can be directly applied. Nevertheless, SB is not jmplemented in C++ and experiments were performed on an Intel
expected to be as efficient as for the case where 1,Vf € F. Core2Duo 2.66GHz CPU machine with 4 GBytes memory, running
The reason is thaB in the prioritized case leads to a threshold on Fedora 8. Table 2 shows the ranges of the investigated parame-
Tiign: that may not be tight for some functions, thus increasing the ters, and their default values (in bold). In each experiment, we vary
number of TA iterations. a single parameter while setting the remaining ones to their default

We can do better if a skylin€’y, is built on the functions, us- values. We evaluate the algorithms by three factors; (i) their /O
ing their modified coefficientsf(c;). Once the function and ob- ¢ost, (ji) their CPU cost, and (jii) the maximum memory consumed
ject skylines £, andO;,) have been computed, the best pair(s) by their search structures (i.e., priority queues and pruned lists of
should be between elements of these two skylines. We illustrate skyline objects) during their execution. The CPU cost includes the
this technique using the example in Figure 1. First, we know that construction cost of any main-memory indexes (i.e., indexing the

Osiky = {a, b, c}. If all functions have the samgvalue, thenFy, function coefficients).

contains all functions irF’ (as shown in Figure 7(a)) since they all

have the same sum of coefficients. In Figure 7(b), where functions Table 2: Ranges of Parameter Values

f1, f2, and fs have~ values 3, 2, and 1 respectivel§f,., only | Parameter I values I
contains{f, f2} as there can be no objeetwith fs(o) > fi(o). Function set size F| (in thousands) 1,25,5,10,20
Thus, the best pair computation needs only be applied between Object set sizelO] (in thousands) || 10, 50,100, 200, 400
F,y and O,y Using this technique, it is faster to exhaustively Dimensionality,D 3,4,5,6
search for the best function for some object than to keep the func- Capacity valuek 1,2,4,8 16
tions indexed and execute TA. The reason is fiay, is relatively Maximum function priority;y 124,816
small, but most importantly, there are frequent update#'.in, Buffer size 0%, 1%,2%, 5%, 10%

(deletions and insertions are possible, whileFirthere were only

. A ; 7.1 Effectiveness of Optimizations
deletions) and maintaining the objects’ TA states would be costly.

Before considering the Brute Force and Chain competitors, we first

~1.0 f, = 0.8X +0.2Y 3.0 f1 = 3%(0.8X + 0.2Y)
> > evaluate the effectiveness of the optimizations proposed in Sec-
&[0 =02X+08Y L fz=21(02X +08Y) tion 5 within SB. We compare our fully optimized algorithm (SB)
3 £=05X+05Y B[O fa=1(0.5X+05Y) against SB-DeltaSky and SB-UpdateSkyline. SB-DeltaSky is Al-
§ los o § 71f25 gorithm 1 wusing DeltaSky [26] for skyline maintenance.
ol fs ol SB-UpdateSkyline is Algorithm 1 using our UpdateSkyline tech-
o nique described in Section 5.2, but not the other two optimizations
£,° &0 f mentioned in Sections 5.1 and 5.3.
0.5 1.0 3 15 3.0 1000 SB-Deliasky ——
|] | —] 1.0e8 Egg:gsg:&ﬁ(y"ne SB-UpdateSkyline .
Coefficient - X Coefficient - X 10e7F 0SB 100 R
(a) Same Priority (b) Different Priorities P S S B

8 1.0e5

8

& 1.0e4

8

O 1.0e3
1.0e2
1.0e1
1.0e0

10

CPU time (sec)

Figure 7: Effect of Function Priorities

1

3 4 5 T3 4 5
D D

7 Experiments
In this section we empirically evaluate the performance of our algo- (a) 1/O Cost (b) CPU Time

rithm. We generated three types of synthetic datasets according to

the methodology in [4]. Iindependentatasets the feature values Figure 8: Effect of Optimization Techniques (Anti-Correlated,
are generated uniformly and independent{yorrelated datasets |F| = 1000)

contain objects whose values are close in all dimensions, i.e., if . .
an object is good in one dimension, it is likely to be good in the In Figure 8 we show the 1/0 cost and the CPU time of the above

remaining ones too. On the contrary, dnti-correlateddatasets, SB variants for different dimensionality. We use anti-correlated
objects that are good in one dimension tend to be poor in the re- 1avajlable atwww.zillow.com.

maining ones. The above three types of data are common bench-2NBA Statistics v2.1.

marks for preference-based queries [4, 17]. Our dataspace containittp://basketballreference.com/statswnload.htm

1.0e8 m Brute Force 1.0e8 - m Brute Force
1067} DSB 1067} 0 SB
1.0e6 1.0e6
1065 @ 1065
g 1084 g 1004
0 1.0e3 O 1.0e3
" 10e2 T 10e2
1.0el 1.0e1
1060 3 2 5 6 10e0 3 2

D

(a) I/0 Cost (Independent)

D

(b) 1/0 Cost (Correlated)

Brute Force
Chain

5 6

(c) /0O Cost (Anti-Correlated)

Brute Force —+—
40 Chain -
SB

Brute Force —+—
35 Chain ~--—

535 e
2

140

120
X Brute Force —+—

CPU time (sec)
=

o ® 9
& 3 38

IS
S

N
S5}

o

(e) CPU Time (Correlated)

(f) CPU Time (Anti-Correlated)

=
o
S
o
o
S}

o
o
.
15}

2 !
PP
Memory Usage (MB)

Memory Usage (MB)
Memory Usage (MB)

Brute Force
Chain -

SB --a--

4==""""Brute Force —+—
Chain -

1000

H
1)
3

%

=
o

et

Brute Force ——
B i Chain —-—
SB —-a--

3¢

1

3 4 5 6 3 4
D D

5 6 3 4 5 6
D

(g) Memory Usage (Independentfh) Memory Usage (Correlated)i) Mem. Usage (Anti-Correlated)

Figure 9: Effect of Dimensionality D

data; the relative performance of the algorithms is similar for inde-
pendent and correlated ones. DeltaSky is too slow for liiglso
we set|F'| to 1000 and limit the examinef) range to [3..5] (the
remaining parameters are set to their defaults).
SB-UpdateSkyline incurs an order of magnitude lower 1/O cost
than SB-DeltaSky (I/O is the dominant performance factor), veri-
fying the efficiency of our incremental skyline approach. It is also
3 times faster in terms of CPU cost, while requiring roughly the

(explained in Section 4.1). The I/O cost increases viitlior all
methods, because the effectiveness of the object R-tree degrades (a
fact known as the dimensionality curse [14]).

Figures 9(d), 9(e), and 9(f) show the CPU cost as a function of
D. SB outperforms its competitors in this aspect too, due to their
numerous top-1 searches. Chain is the slowest method because
it performs even more top-1 searches than Brute Force, while the
efficiency of its function R-tree is limited, as their weights sum to

same amount memory (SB needs at most 25% more memory thanl and are thus anti-correlated.
SB-DeltaSky; the worst case is fof = 5 and anti-correlated data). Figures 9(g), 9(h), and 9(i) plot the memory usage verBus

The comparison of SB with the runner-up (SB-UpdateSkyline) Brute Force consumes several times the space of the other methods,
confirms the effectiveness of the best pair search enhancements anecause it maintains a top-1 search heap for g¢aehF’; this is the
of making multiple assignments per loop; there is a 13 to 27 times sacrifice for its ability to resume searches. SB usually requires less
improvement in CPU time (Figure 8(b)). Note that the above two memory than Chain, or slightly higher is some cases. The latter
optimizations are targeted exclusively at reducing the CPU time, cases are ilD = 5 andD = 6; O, contains more objects in
thus SB and SB-UpdateSkyline have the same 1/O cost (Figure high dimensions, requiring storage of many object TA states. Due

8(a)). To summarize, the results in Figure 8 verify that the opti-
mizations in Section 5 yield significant performance improvements.

7.2 Standard Preference Queries

We now compare SB with Brute Force and Chain. We vary the

to lack of space, we skip the memory usage charts for the remaining
experiments; the observed trends are similar to Figures 9(g), 9(h),
and 9(i). Also, we provide results for anti-correlated object sets
only, as (i) they capture most real scenarios (e.g., a high quality
apartment is usually expensive), and (i) the relative performance

parameters shown in Table 2 and measure the 1/O cost, the CPUof the methods is similar for all three types of synthetic data.

time, and the memory requirements of the three algorithms.
In Figure 9 we study the effect of dimensionalify, using all

In Figure 10 we study the effect ¢of’| (the number of func-
tions). The costs for all methods increase Wi, because more

three types of synthetic data. Figures 9(a), 9(b), and 9(c) show thestable pairs need to be computed. However, SB scales much better.

I/O cost. SB incurs 2 to 3 orders of magnitude fewer 1/0Os than the

Especially its I/O cost increases only slightly (from 4030 to 5135

runner-up, i.e., Brute Force. The reason for this vast advantage ofdisk accesses for the smallest and largéstspectively), while de-

SB is the 1/O optimality of its skyline maintenance module (Up-

dateSkyline), juxtaposed with the huge number of top-1 queries re-

terioration is significant for the two competitors. The reason is the
very skyline-based processing of SB. Only a few objects are fetched

quired by its competitors. Brute Force, on the other hand, is more into Osy,, and most of them successfully form a stable pair with
efficient than Chain, the reason being its resuming search featuresome function. Therefore, only a few accesses are performed on

— 1.0e8 - m Brute Force
13: é%‘gﬁ%rw 20 e E?‘g‘é e 1067 ggga" " e [S—
1.066 g 200 1.066 g -
1,065 g 150 g i,g: gZS
3 1.0ed z . =
S 1.0e3 E 100 O 1.0e3 § 20 /////;;E(ﬁﬁ’aﬁ?/
~ 10e2 s T 10e2 15 SB —-a-
1.0el R 1.0el o e
10e0 T 25 5 10 2 ®0 2 4 6 & 10 12 14 16 18 20 1.0e0 0% 1% 2% 5% 10% Yo 2 w0 ew 10w
Number of Functions, |F| (in thousands) Number of Functions, |F| (in thousands) Buffer Size Buffer Size
(a) I/O Cost (b) CPU Time (a) 1/0 Cost (b) CPU Time
Figure 10: Effect of Function Cardinality | F'| (Anti-Correlated) Figure 13: Effect of Buffer Size (Anti-Correlated)
b 1.0e8 Brute F ;ég Brute F —
Brute Force —+— . m Brute Force rute Force
iz: é él;%*:ome 32 “chan . 107} 5" 180 -
1.0e6 g‘ 35 1.066 ,g Sg
% Loe g :242 @ 1065 120 -
£ E
1.0e4 = § 1.0e4 = 100
T 10e2 w0 1062 e —
1.0e1 510 1.0e1 20 e
100 10 50 100 200 400 00 50 100 150 200 250 300 350 400 100 2 4 8 16 02 4 6 8 10 12 14 16
Number of Objects, |O] (in thousands) Number of Objects, |O] (in thousands) Function Capacity, k Function Capacity, k
(a) I/O Cost (b) CPU Time (@) /O Cost vs. Function C4¢b) CPU Time vs. Function Ca-
pacity pacity
Figure 11: Effect of Object Cardinality |O| (Anti-Correlated) L0, ® BruteForce “f orve Forse 1
1oe7t BN w Chain %
1'§ ﬁla
1. o
the object R-tree. 108 s 1‘2‘
In Figure 11 we investigate the effect of the object cardinality 2 iﬁ 5.
|O|. Both the I/O cost and the CPU time increase, as top-1 and 1o« ot
skyline searches become more costly. In all cases, SB incurs 2 100 2 2 8 B ®2 4 s & 1 12 1 1
orders of magnitude fewer 1/Os than the runner-up (Brute Force), Oblect Capacity k _ Obieet Capaciy k-
and its CPU time is several times smaller. (c) I/O Cost vs. Object Capacifyl) '(t:PU Time vs. Object Ca-
pacity

Next, we experiment with the preference weight distribution.
We randomly selecC' independent vectors (comprisiig = 4
weights each), and treat them as cluster centers. Each functionFigure 14: Effect of Function/Object Capacity (Anti-
f € F randomly chooses one of these centers, and its weights Correlated)
are generated by a Gaussian distribution with mean at the selected
center and standard deviation equal to 0.05. In Figure 12 we plot
the 1/0 and CPU costs of all methods @svaries between 1 and 7.3 Queries and Objects with Capacities

9. In all cases, SB incurs 2 orders of magnitude fewer I/Os than |, Figures 14(a) and 14(b) we process functions with capédity-
its competitors, and fewer computations. The most CPU-intensive yeen 2 and 16, setting the remaining parameters to their defaults.

case is wher’ = 1, becausé” is essentially more skewed; this \yheny increases, both the I/0 and the CPU costs increase because
leads to more conflicts among different functions and, thus, longer e stable pairs need to be computed (ke|F|); essentially, the
time to compute stable pairs. problem size grows.

In Figure 13 we examin_e the effect Qf the buffer size, varying i_t In Figures 14(c) and 14(d), on the other hand, we use objects
from 0% to 10% of the object R-tree size. Brute Force and Chain iy, canacities. As the object capacity increases, all methods slightly
incur fewer 1/Os for a larger buffer; they acceRs nodes multi- improve, because fewer top-1 searches and skyline updates are per-
ple times, and a larger buffer suppresses a higher number of the_seformed. Specifically, if an object ranks high for multiple func-
accesses. In contrast, the I/O cost of SB is stable, because of itsjong then its multiple instances (capacity) allow its output in mul-
I/O optimal skyline maintenance. Even for a 10% buffer size, SB i pairs without further object search. The results in Figure 14
is over 60 times more efficient than either competitor. verify that SB outperforms its competitors for capacitated assign-
ments too, achieving improvements of similar magnitude to the
non-capacitated case.

50
1.0e8+ m Brute Force a5 Brute Force — . . L
1007} B o ™ SB o 7.4 Preference Queries with Priorities
1086 . — .
él.oes gzz Next, we assign priorities to the functions, randomly chosen from
g 1:34 gzs the range [1%]. In Figure 15 we study the effect f while includ-
= Lo 2 ing in the charts the two-skyline version of SB, as described in Sec-
1.0eL iz ey tion 6.2. The I/O cost of the algorithms is practically independent
10T Nomberof Cluee ¢ R A of v, and the disk accesses of the two SB versions are identical. The
(a) I/0 Cost (b) CPU Time effectiveness of the two-skyline technique becomes clear in Figure

15(b), where its CPU time is more than 3 times shorter than any
.] . o . other method. The standard SB performs more computations for
Figure 12: Effect of Function Distribution (Anti-Correlated) larger~, because its TA threshold becomes looser, as anticipated in

Section 6.2. We note that the memory usage of the two-skyline SB the disk. We now briefly discuss how our technigue can be applied

is lower than all other methods; it only maintains the two skylines,
skipping, for example, any book-keeping information for resuming
search.

25

1.0e8
1.0e7
1.0e6

§10e

8

g 10e4

0 1.0e3

T 10e2
1.0el
1.0e0 5 + s

m Brute Force
o Chain

N
S

o
m SB - Two Skylines

-
@

Brute Force —+—
Chain ———

CPU time (sec)
.
S

SB --&-
SB - Two Skylines —&

= =

16 2 4 6 8 10
Maximum Priority, y

(b) CPU Time

12 14 16

Maximum Priority

(a) 1/0 Cost

Figure 15: Effect of Function Priorities (Anti-Correlated)

7.5 Experiments with Real Data

In addition to synthetic datasets, we experimented with two real
ones: Zillow and NBA. Zillow is a website with real estate in-
formation, containing 2M records with five attributes: number of

bathrooms, number of bedrooms, living area, price, and lot area.

NBA includes statistics about 12278 NBA players since 1973. We
selected 5 important attributes in NBA: points, rebounds, assists
steals, and blocks.

In Figures 16(a) and 16(b) we use as object éetandom sub-
sets of Zillow with varying cardinalityO| between 10K and 400K,

and set the remaining parameters to their default values. The I/Othe current skyline does. (b

cost results are similar to Figure 11, verifying the generality of SB.
Interestingly, the improvements in CPU time are even larger; Zil-
low is highly skewed and this worsens the performance of Brute

Force and Chain (due to their top-1 searches), but not that of SB

(due to its skyline-based nature).

90
80

1.0e8 ¢ m Brute Force
@ Chain
107t 0 SB 70
1.0e6 ’g 60
@ 1.065 g 50
1.0e4 <40
2
Q 10e3 30t
1.0e2 20
1.0el 10
1.0e0

0
10 50 100 200 400 0
Number of Objects, |O] (in thousands)

(a) /0 Cost (Zillow)

50 100 150 200 250 300 350 400
Number of Objects, |Of (in thousands)

(b) CPU Time (Zillow)

10
1.0e8 E grhlgf\ Force 9 Brute Force —+—
1067 0 B 8 Chain —x—
& 7 SB --4-- X
1066 3
Q 1065 L6
’ g s
1.0e4 s .
0 1083 g
1.0e2 2
1.0e1 1 B
e
1.0e0 T 5 9 V) o 2 4 6 8 10 12

Function Capacity, k

(c) 1/O Cost (NBA)

Function Capacity, k

(d) CPU Time (NBA)

Figure 16: Results with Real Datasets

in other cases. If both sets fit in memory our algorithm can directly
be applied, if we indexO with the help of a main memory R-tree.

Its performance gains over Brute Force and Chain can be derived
from the CPU-comparison graphs in the experiments already pre-
sented.

If the set of functionsF’ does not fit in main memory, we can
still apply our method if we materialize on disk ttie sorted lists
holding the function coefficients. Our SB algorithm can still be
applied. However, it is expected to be expensive since each object
in O,y executes (or resumes) an individual TA-based search; thus
the lists may have to be scanned (and accessed randomly) multiple
times at each iteration of the algorithm. To remedy this problem,
we can execute all TA searches for the current skyligg, in batch
as follows. We access the lists in a round-robin fashion — one
block at a time. For each functiofi that we find in listL;, we
collect f’s remaining coefficients by applying random access on the
remaining listsL;, j # i. Next, we computef's aggregate score
to all objects inO,x, and update their thresholds. If the aggregate
scoref (o) for an objecb is higher than its threshold, then we skip
this object in the following iterations. This process is repeated until
all objects have found their best function. This method is expected
to have good I/O performance, since the number of iterations over

' the sorted lists is not directly dependent on the number of objects in

Osry; i.€., each function coefficient is accessed randomly at most
once for the current skyline. Note that this technique is applicable
in the case where neithd? nor O fits in memory, assuming that
sky does not fit in memory, we can
split the setinto small enough partitions and apply the best function
search in a batch manner for each partition.)

m Brute Force
g, @ Chain

o SB
7L 08B-alt

L] g{‘u(s Force
ain
108 B sg

1.0e7} O SB-alt
1.0e6
8 1,065
g
S 1.0e4
8
O 1.0e3
1.0e2
1.0e1

3 7 5 6 1.0e0 3 7 5 3
D D

(a) /0 Cost (Independent) (b) 1/0O Cost (Anti-Correlated)

1.0et
1.0¢’
1.066
% 1.0e5
£ 1.0e4
g
O 1.0e3
T 10e2
1.0e1
1.0e0

—
e
20 SB --an-
SB-alt —v—

Brute Force
Chain

Brute Force —+—

-
o

,_\
5

CPU time (sec)

5 5 B

CPU time (sec)
5

3 4 5 6 3 4 5 6
D D

(c) CPU Cost (Independent)(d) CPU Time (Anti-Correlated)

Figure 17: Effect of Dimensionality D (F on disk)

Figure 17 evaluates this batch best pair search approach for disk-
resident functions using synthetic datasets. We swap the cardinality
of functions and objects, and set all remaining parameters to their

In Figures 16(c) and 16(d) we use NBA as the object set and defaults (the buffer size is now 2% ¢F[), except from the di-

perform a capacitated assignment. We generdtéd= 1000 func-
tions with capacityk € {1,5,9,12}. The results are similar to
Figures 14(a) and 14(b), with SB incurring 2 orders of magnitude
fewer 1/Os than Brute Force and Chain, and requiring only a frac-
tion of their CPU time.

7.6 Different Storage Settings

So far, we have assumed that the set of objéxts persistent and
larger than the set of preference functidnsand is thus stored on

mensionalityD, which we vary. Apart from the three techniques
evaluated in the previous experiments, we also include the alterna-
tive of SB, denoted by SB-alt, which applies batch best pair search
on the function coefficient lists. Note that SB-alt saves a signifi-
cant number of I/O accesses. Since nOwits in memory, there

are no |/O savings by SB over Brute Force and Chain, but only a
computational cost advantage. Still, for independently distributed
data SB-alt is even faster than SB, because SB (and Brute Force)
has to maintain the heaps of individual objects in order to resume

search (note that search resumption is not applied by SB-alt, as [2] R. K. Ahuja, T. L. Magnanti, and J. B. OrlilNetwork Flows :

the best functions are identified from scratch for each version of Theory, Algorithms, and ApplicationBrentice Hall, first edition,
the skyline). If the data are anti-correlated, SB-alt is slower than 1993. N _
SB because the skyline is large and the algorithm has to go deep [3] 1. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline

. .) . evaluationACM Trans. Database Sys83(4):1-49, 2008.
into the sorted lists at each iteration (SB saves effort, because of [4] S. Borzsdnyi, D. Kossmann, and K. Stocker. The skyline operator. In

its ability to resume search). Overall, SB-alt is the best choice for ICDE, pages 421430, 2001.

disk-resident functions because of its huge 1/O savings, while hav- [5] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and

ing similar computational cost to other alternatives. J. R. Smith. The onion technique: Indexing for linear optimization
. queries. INSIGMOD Conferencgpages 391-402, 2000.

8 Conclusion [6] T.H.Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

In this paper we address a stable marriage problem between a set |ntrgductioqltc;,gégorithms, Second EditioMIT Press and
of preference function#” and a set of object§). The functions . ch;ﬁg_w ,Manjlé) oulos. Y. Theodoridis. and
specify weights defining their requirements from the objects. The (71 A L b - X

. . . ! A L M. Vassilakopoulos. Closest pair queries in spatial databases. In
problem arises in a variety of profile-matching applications, such as SIGMOD Conference2000.

solution is based on the observation that the stable pairs may in- for middlewareJ. Comput. Syst. S¢66(4):614—656, 2003.

clude only objects that belong to the skyliGe When some of [9] D. Gale and L. S. Shapley. College admissions and the stability of
these objects are assigned to a function, they are removed from marriage Amer. Math, 69:9-14, 1962.

O and its skyline needs to be updated. To achieve this, we pro- [10] P.Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in
pose an incremental skyline maintenance technique that is proven _ large data sets. IMLDB, pages 229-240, 2005.

to be 1/O optimal. Additionally, we describe mechanisms that re- D. Gusfield and R. W. IrvingThe Stable Marriage Problem,

. . . . Structure and AlgorithmsMIT Press, 1989.
duce the CPU time by accelerating the matching between funCtlonS[12] A. Hylland and R. Zeckhauser. The efficient allocation of individuals

=
[N
_—

and skyline objects, and identifying multiple stable pairs in each to positionsJournal of Political EconomyB7(2):293-314, 1979.
iteration of the algorithm. Moreover, we extend our algorithm to [13] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch.
capacitated and prioritized assignments. An extensive empirical Rank-maximal matching®hCM Transactions on Algorithms

evaluation with synthetic and real datasets shows that our approach ~ 2(4):602-610, 2006.

outperforms adaptations of existing methods by orders of magni- [14] F. Korn, B.-U. Pagel, and C. Faloutsos. On the 'dimensionality curse’
tude in terms of /O cost (typically 2 or 3), while having several and the 'self-similarity blessinglEEE Trans. Knowl. Data Eng.

times lower CPU cost. 13(1):96-111, 2001. , _

Besides finding a stable matching or an optimal assignment [22, [1°] ([))h|lif10eszggﬂg’;nﬁ.fcl??g(flﬁrl?ee:]nudeﬁésol;tgé]Opoatg]gSSZt??—ISStgeZSOIgZ: An
2],'other_def|n|t|ons for 1-1 fair z_aSSIQnment_s between functions a_nd [16] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring
objects include the Rank-Maximal Matching [13] and the Maxi- of top-k queries over sliding windows. BIGMOD Conference
mum Pareto Optimal Matching [1]. A matching is rank-maximal pages 635-646, 2006.

[13] if the maximum number of functions are matched to their first- [17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
choice object, and subject to this condition, the maximum number computation in database systerA€M Trans. Database Syst.

of users are matched to their second-choice object, and so on. This _ 30(1):41-82, 2005. S _ _
problem can be solved i@ (min{n + C, C'y/n} - m) time, where [18] K.-L. Tan, P-K. Eng, and B. C. Ooi. Efficient progressive skyline
n — |F| + 0|, m = |F| -10], andC is the maximume such computation. InVLDB, pages 301-310, 2001.

S . TSI) . [19] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
that some function is assigned to it4'-choice object inM. A Branch-and-bound processing of ranked quetigsrmation

matching M is Pareto optimal [1] if there is no other matching Systems32(3):424-445, 2007.

M’ such that some function gets a better objectdfhthan in M, [20] L. H. U, N. Mamoulis, and K. Mouratidis. Efficient evaluation of
while no user gets a worse objectid’. A maximum Pareto op- multiple preference queries. IGDE, pages 1251-1254, 2009.
timal matching is a Pareto optimal matching with maximum size; [21] L. H. U, N. Mamoulis, and M. L. Yiu. Computation and Monitoring
the complexity of finding such an assignmenti$¢m./n). Note of Exclusive Closest PairtEEE Trans. Knowl. Data Engto appear.
that a stable marriage matching is a Pareto optimal matching, but[22] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis. Capacity

not vice-versa. Given the high complexity of these problems, com- constrained assignment in spatial databaseSIGMOD Conference

pages 15-28, 2008.
[23] A.Vlachou, C. Doulkeridis, K. Ngr&g, and M. Vazirgiannis.
Skyline-based peer-to-peer top-k query processintCDE, pages

pared to theD(m) cost of stable matching, and the subjectiveness
of fairness in general (i.e., there is no strong evidence that alterna-

tive definitions produce fairer assignments than the stable match- 1421-1423, 2008.

ing in practice), we opted to solve our problem by finding a stable [24] R. c.-w. Wong, A. W.-C. Fu, J. Pei, . S. Ho, T. Wong, and Y. Liu.
matching. Nevertheless, our solution can be integrated with match- Efficient skyline querying with variable user preferences on nominal
ing methods that rely on incremental tésearches. Exploration of attributes PVLDB, 1(1):1032-1043, 2008.

this potential is left as a subject for future work. In addition to this, [25] R.C.-W.Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On efficient
we plan to study issues such as the maintenance of a fair matching[zs] spatial matching. IIVLDB, pages 579-590, 2007.

in a system, where objects are dynamically allocated/freed. P. Wu, D. Agrawal©. Egecioglu, and A. E. Abbadi. Deltasky:
Optimal maintenance of skyline deletions without exclusive

Acknowledgment dominance region generation. IBDE, pages 486—495, 2007.
[27] Y. Yuan. Residence exchange wanted: A stable residence exchange
Work supported by grant HKU 714907E from Hong Kong RGC. problem.European Journal of Operational Reseaych
90(3):536-546, May 1996.
9 References [28] L. Zhou. On a conjecture by gale about one-sided matching

problems.Journal of Economic Theorp2(1):123-135, 1990.
[1] D.J. Abraham, K. Ceclarova, D. Manlove, and K. Mehlhorn. Pareto
optimality in house allocation problems. IBAAG pages
1163-1175, 2005.

