
Distance-Join: Pattern Match Query In a Large Graph
Database ∗

Lei Zou
Huazhong University of
Science and Technology

Wuhan, China
zoulei@mail.hust.edu.cn

Lei Chen
Hong Kong University of
Science and Technology

Hong Kong

leichen@cse.ust.hk

M. Tamer Özsu
University of Waterloo

Waterloo, Canada
tozsu@cs.uwaterloo.ca

ABSTRACT
The growing popularity of graph databases has generated
interesting data management problems, such as subgraph
search, shortest-path query, reachability verification, and
pattern match. Among these, a pattern match query is more
flexible compared to a subgraph search and more informa-
tive compared to a shortest-path or reachability query. In
this paper, we address pattern match problems over a large
data graph G. Specifically, given a pattern graph (i.e., query
Q), we want to find all matches (in G) that have the simi-
lar connections as those in Q. In order to reduce the search
space significantly, we first transform the vertices into points
in a vector space via graph embedding techniques, coverting
a pattern match query into a distance-based multi-way join
problem over the converted vector space. We also propose
several pruning strategies and a join order selection method
to process join processing efficiently. Extensive experiments
on both real and synthetic datasets show that our method
outperforms existing ones by orders of magnitude.

1. INTRODUCTION
Graphs have been used to model many data types in dif-

ferent domains, such as social networks, biological networks,
and World Wide Web. In order to conduct effective analy-
sis over graphs, various types of queries have been investi-
gated, such as subgraph search [19, 26, 27, 5, 10, 8, 28, 13,
20, 21], shortest-path query [7, 3, 16], reachability query [7,
24, 23, 4], and pattern match query [6, 22]. Among these
interesting queries, a pattern match query is more flexible
than a subgraph search and more informative than a simple

∗This work was done when the first author was visiting Uni-
versity of Waterloo as a visiting scholar. The first author was
partially supported by National Natural Science Foundation
of China under Grant 70771043. The second author was sup-
ported by Hong Kong RGC GRF 611608 and NSFC/RGC
Joint Research Scheme N HKUST602 /08. The third au-
thor was supported by National Science and Engineering
Research Council (NSERC) of Canada.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

shortest-path or reachability query. Specifically, a pattern
match looks for the existences of a pattern graph in a data
graph. A pattern match query is different from a subgraph
search in that it only specifies the vertex labels and connec-
tion constraints between vertices. In other words, a pattern
match query emphasizes the connectivity between labeled
vertices rather than checking subgraph isomorphism as sub-
graph search does. In this paper, we discuss an effective and
efficient method for executing pattern match queries over a
large graph database.

We describe a pattern match query as follows: given a
data graph G, a query graph Q (with n vertices), and a pa-
rameter δ, n vertices in G can form a match to Q, if: (1)
these n vertices in G have the same labels as the correspond-
ing vertices in Q; and (2) for any two adjacent vertices vi

and vj in Q (i.e. there is an edge between vi and vj in Q
and 1 ≤ i, j ≤ n), the distance between two correspond-
ing vertices in G is no larger than δ. We need to find all
matches of Q in G. In this work, we use the shortest-path
distance to measure the distance between two vertices, but
our approach is not restricted to this distance function, it
can be applied to other metric distance functions as well.
We discuss two examples to demonstrate the usefulness of
pattern match queries.
Example 1. Facebook Network Analysis
Figure 1(a) shows a fictitious graph model (G) of Facebook,
where vertices represent active users and the edges indicate
the friendship relations between two users. There are “job-
title” attributes associated with vertices. We treat job-titles
as vertex labels. Note that, the numbers inside vertices are
vertex IDs that we introduce to simplify description of the
graph. A pattern match query, Q (in Figure 1(b)), looks
for friendship relations between four types of users, i.e, four
types of labels: CFO, CEO, Manager and Doctor, and con-
straints are set up on the shortest-path distance (≤ 2) be-
tween any pair of matched labeled vertices in G. Finding
such patterns may help social science researchers discover
connections between a successful CEO and his/her circle of
friends. In Figure 1(a), vertices (3,5,6,8) match Q, which
indicates that vertices (3,5,6,8) (in G) have similar relation-
ships as those specified in query Q.
Example 2. Biological Network Investigation
We can model a biological network as a large graph, such
as a protein-protein interaction network (PPI) and a meta-
bolic network, where vertices represent biological entities
(proteins, genes and so on) and edges represent the inter-
actions between them. Consider the following scenario: in
order to study a certain disease, a scientist has constructed

3

2

5

8

1

7

6

4

CEO

CFO

Manager

Doctor

Account

CEO

Clerk

Student

9

10

CFO

Officer

CEO

CFO

Manager

Doctor

(a) Graph G (b) Query Q

Figure 1: Pattern Match Query in Facebook Network

a small portion of a biological network Q based on various
experimental data. The scientist is interested in predicting
more biological activities about the disease. So, s/he wants
to find matches of Q in a large biological network G about
another well-studied disease. The matches in G have the
same (or similar) pathways (i.e. shortest-path) as those in
Q.

As shown in these above examples, pattern match queries
are useful; however, it is non-trivial to find all matches in a
large graph due to the huge search space. Given a query Q
with n vertices, for each vertex vi in Q, we first find a list of
vertices in data graph G that have the same labels as that of
vi. Then, for each pair of adjacent vertices vi and vj in Q,
we need to find all matching pairs in G whose distances are
less than δ. This is called an edge query. To answer an edge
query, we need to conduct a distance-based join operation
between two lists of matching vertices corresponding to vi

and vj in G. Therefore, finding the pattern Q in G is a se-
quence of distance-based join operations, which is very costly
for large graphs. For example, assuming that the query Q
has 6 vertices, the data graph G has 100,000 vertices, and
each query vertex has 100 match vertices in G, the search
space is (100)6 = 1012! Therefore, we need efficient pruning
strategies to reduce the search space. Although many ef-
fective pruning techniques have been proposed for subgraph
search, (e.g. [19, 26, 27, 5, 10, 8, 28, 13, 20, 21]), they can
not be applied to pattern match queries since these prun-
ing rules are based on the necessary condition of subgraph
isomorphism. We propose a novel and effective method to
reduce the search space significantly. Specifically, we trans-
form vertices into points in a vector space via graph em-
bedding methods, converting a pattern match query into a
distance-based multi-way join problem over the vector space.
In order to reduce the join cost, we propose several prun-
ing rules to reduce the search space further, and propose a
cost model to guide the selection of the join order to process
multi-way join efficiently. To summarize, in this work, we
make the following contributions:

1) We propose a general framework for handling pattern
match queries over a large graph. Specifically, we map ver-
tices into vectors via an embedding method and conduct
distance-based multi-way join over a vector space.

2) We design an efficient distance-based join algorithm
for an edge query in the converted vector space, which well
utilizes the block nested loop join and hash join techniques
to handle high dimensional vector space.

3) We develop an effective cost model to estimate the cost
of each join operation, based on which we can select the most
efficient join order to reduce the cost of multi-way join.

4) Finally, we conduct extensive experiments with real
and synthetic data to demonstrate the effectiveness of our
solutions to answer pattern match queries.

The rest of the paper is organized as follows. We discuss

the related work in Section 2. Our framework is presented
in Section 3. In Section 4, we propose neighbor area prun-
ing technique. We propose a distance-based join algorithm
for an edge query and its cost model in Section 5. Section
6 presents a distance-based multi-way join algorithm for a
pattern match query and join order selection method. We
study our methods by experiments in Section 7. Section 8
concludes this paper.

2. RELATED WORK
Let G = 〈V, E〉 to be a graph where V is the set of vertices

and E is the set of edges. Given two vertices u1 and u2 in G,
a reachability query verifies if there exists a path from u1 to
u2, and distance query returns the shortest path distance be-
tween u1 and u2 [7]. These are well-studied problems, with
a number of vertex labeling-based solutions [7]. A family
of labeling techniques have been proposed to answer both
reachability and distance queries. A 2-hop labeling method
over a large graph G assigns to each vertex u ∈ V (G) a label
L(u) = (Lin(u), Lout(u)), where Lin(u), Lout(u) ⊆ V (G).
Vertices in Lin(u) and Lout(u) are called centers. There are
two kinds of 2-hop labeling: that are 2-hop reachability la-
beling (reachability labeling for short) and 2-hop distance
labeling (distance labeling for short). For reachability la-
beling, given any two vertices u1, u2 ∈ V (G), there is a
path from u1 to u2 (denoted as u1 → u2), if and only if
Lout(u1) ∩ Lin(u2) 6= φ. For distance labeling, we can com-
pute Distsp(u1, u2) using the following equation.

Distsp(u1, u2) = min{Distsp(u1, w) + Distsp(u2, w)|
w ∈ (Lout(u1) ∩ Lin(u2))} (1)

where Distsp(u1, u2) is the shortest path distance between
vertices u1 and u2. The distances between vertices and cen-
ters (i.e, Distsp(u1, w) and Distsp(u2, w)) are pre-computed
and stored. The size of 2-hop labeling is defined as

∑
u∈V (G)

(|Lin(u)|+ |Lout(u)|), while the size of 2-hop distance label-

ing is O(|V (G)||E(G)|1/2) [6]. Thus, according to Equation

1, we need O(|E(G)|1/2) time to compute the shortest path
distance by distance labeling because the average vertex dis-
tance label size is O(|E(G)|1/2).

To the best of our knowledge, there exists little work on
pattern match queries over a large data graph, except for
[6, 22]. In [6], based on the reachability constraint, au-
thors propose a pattern match problem over a large directed
graph G. Specifically, given a query pattern graph Q (that
is a directed graph) that has n vertices, n vertices in G can
match Q if and only if these corresponding vertices have the
same reachability connection as those specified in Q. This is
the most related work to ours, although our constraints are
on “distance” instead of “reachability”. We call our match
“distance pattern match”, and the match in [6] “reachability
pattern match”. We first illustrate the method in [6] using
Figure 2, and then discuss how it can be extended it to solve
our problem and present the shortcomings of the extension.

Without loss of generality, we first assume that there is
only one directed edge e = (v1, v2) in query Q. Figure 2(a)
shows a base table to store all vertex distance labels. For
each center wi, two clusters F (wi) and T (wi) of vertices are
defined, where for every vertex u1 in F (wi), it can reach
every vertex u2 in T (wi), via wi. Then, an index structure
is built based on these clusters, as shown in Figure 2c. For
each vertex label pair (l1, l2), all centers wi are stored (in
table W-Table), where there exists at least one vertex la-
beled l1 (and l2) in F (wi) (and T (wi)). Consider a directed

(,)b c

0
a 1

b

root

2
c

1 2
{ , }b c

0
{ }a 0

{ }a

0 1
{ , }a b

2
{ }c

0
a

0
b

0
a

2
c

1
b

0
b

1
b

2
c

0
b

2
c

0
a

0
b

1
b

1
{ }b

1
{ }b

0 1
{ , }a b

2
{ }c

0
b

2
c

2
{ }c

1 2
{ , }b c

()
in

L uu ()outL u

(,)a b 0
{ }a

label pair centers

0
()F a

0
()T a

1
()F b

1
()T b

2
()F c

2
()T c

(a) Base Table (b) W-Table

(c) Cluster-based Index

Figure 2: R-join

edge e = (v1, v2) in query Q and assume that the labels of
vertex v1 and v2 (in query Q) are ‘a’ and ‘b’, respectively.
According to table W-Table in Figure 2b, we can find cen-
ters wi, in which there exists at least a vertex u1 labeled ‘a’
in F (wi), and there exists at least a vertex u2 labeled ‘b’
in T (wi). For each such center wi, the Cartesian product
of vertices labeled ‘a’ in F (wi) and vertices labeled ‘b’ in
T (wi) can form the matches of Q. This operation is called
R-join [6]. In this example, there is only one center a0 that
corresponds to vertex label pair (a, b), as shown in Figure
2(b). According to index structure in Figure 2(c), we can
find F (a0) and T (a0). When the number of edges in Q is
larger than one, a reachability pattern match query can be
answered by a sequence of R-joins.

We can extend the method in [6] to distance pattern match
using 2-hop distance labeling instead of reachability label-
ing. Again, we first assume that there is only one edge
e = (v1, v2) in query Q. The vertex labels are ‘a’ and ‘b’, re-
spectively. In order to find distance pattern matches, follow-
ing the framework in [6], we also find all centers wi, in which
there exists at least a vertex u1 labeled ‘a’ in F (wi) and a
vertex u2 labeled ‘b’ in T (wi). In the last step, for each
vertex pair (u1, u2) in the Cartesian product, we need to
compute dist = Distsp(u1, wi)+Distsp(u2, wi). If dist ≤ δ,
(u1, u2) is a match. Note that this step is different from
reachability pattern match in [6], in which no distance com-
putation is needed. Assume that there are n1 vertices la-
beled ‘a’ and n2 vertices labeled ‘b’ in a graph G. It is clear
that the number of distance computations is at least n1×n2,
which is exactly the same as naive join processing. Since a
vertex u may exist in different clusters F (wi) and T (wi),
the computational cost of this straightforward extension is
far larger than |R1| × |R2|.

As discussed in Section 1, the challenge in our distance
pattern match problem is the huge search space. Simply
extending the method proposed in [6] will not resolve the
efficiency issue. Thus, the motivation of our work is exactly
this: is it possible to avoid unnecessary distance computa-
tion to speed up the search efficiency? Several efficient and
effective pruning techniques are proposed in this paper. Fur-
thermore, our method is independent of 2-hop graph label-
ing techniques.

The best-effect algorithm [22] returns K matches with

Table 1: Meanings of Symbols Used
G data graph Q Query Graph

V (G)/V (Q) Vertex set of G/Q vi a vertex in Q
E(G)/E(Q) Edge set of G/Q ui a vertex in G

large scores. Based on some heuristic rules, the algorithm
first finds the most promising match vertex u (in data graph
G) for one vertex in query Q (called Seed-Finder). Then,
it extends the vertex to match other vertices in Q (called
Neighbor-Expander). After that, it finds a “good” path to
connect two match data vertices if they are required to be
connected according to query Q (called Bridge). The query
can be repeated with another seed node, until the user re-
ceives all k matches that are requested. This algorithm can-
not guarantee that the k result matches are the k largest
over all matches. We cannot extend this method to apply
to our problem, since the algorithm cannot guarantee the
completeness of results. In [9], authors propose ranked twig
queries over a large graph, however, a “twig pattern” is a
directed graph, not a general graph.

Besides reachability, distance, and pattern match queries,
there are a lot of works on subgraph search over graph
databases, such as [19, 26, 27, 5, 10, 8, 28, 13, 20, 21], none
of which can be applied to pattern match queries, since all
these pruning techniques are based on the necessary condi-
tion of subgraph isomorphism.

3. FRAMEWORK
In this section, we give the formal definition of pattern

match queries over a graph and present the general frame-
work of our proposed solution. As discussed in Section 1, in
this work, we study search over a large vertex-labeled and
edge-weighted undirected graph. In the following, unless
otherwise specified, all uses of the term “graph” refer to a
vertex-labeled and edge-weighted graph. The common sym-
bols used in this paper are given in Table 1.

Definition 3.1. Match. Consider a data graph G, a
connected query graph Q that has n vertices {v1, ..., vn}, and
a parameter δ. A set of n distinct vertices {u1, ..., un} in G
is said to be a match of Q, if and only if the following con-
ditions hold:
1) L(ui) = L(vi), where L(ui)(L(vi)) denotes ui’s (vi’s) la-
bel; and
2) If there is an edge between vi and vj in Q, the shortest
path distance between ui and uj in G is no larger than δ,
that is, Distsp(ui, ui) ≤ δ.

Given an edge (vi, vj) in Q and its match (ui, uj), the
shortest path between ui and uj in G is said to be a match
path of the edge (vi, vj) in Q.

Definition 3.2. Pattern Match Query. Given a large
data graph G, a connected query graph Q with n vertices
{v1, ..., vn}, and a parameter δ, a pattern match query re-
ports all matches of Q in G according to Definition 3.1.

According to Definition 3.2, any match is always contained
in some connected component of G, since Q is connected.
Without loss of generality, we assume that G is connected.
If not, we can sequentially perform pattern match query in
each connected component of G to find all matches.

One way of executing the pattern match query (that we
call naive join processing) is the following. Given a pattern

match query Q that has n vertices, according to vertex label
predicates associated with each vertex vi, we first obtain n
lists of vertices, R1, . . . , Rn, where each list Ri contains all
vertices ui whose labels are the same as vi’s label. We say
list Ri corresponds to a vertex vi in Q. Then, we need to
perform a shortest path distance-based multi-way join over
these lists. To complete this task, we need to define a join
order. In fact, a join order in our problem corresponds to
a traversal order in Q. In each traversal step, the subgraph
induced by all visited edges (in Q) is denoted as Q′. We can
find all matches of Q′ in each step. Figure 3 shows a join
order (i.e., traversal order in Q) of a sample query Q. In
the first step, there is only one edge in Q′, thus, the pattern
match query degrades into an edge query. After the first
step, we still need to answer an edge query for each new
encountered edge. It is clear that different join orders will
lead to different performance.

a

b c

d

Query Q

NULL

a

ba

b ca

b ca

b c

d

Figure 3: A Join-Order
As in left-deep join processing in relational systems, we

always perform a shortest path distance-based two-way join
to answer an edge query. We call this two-way join Distance-
Join (D-join for short), which is expressed by Equation 2,
in which R1 and R2 are two lists of vertices in graph G, and
u1 and u2 are two vertices in the two lists, respectively.

RS = R1 ./ R2
Distsp(u1,u2)≤δ

(2)

According to Definition 3.1, we have to perform shortest
path distance computation online. The straightforward so-
lution to reduce the cost is to pre-compute and store all pair-
wise shortest path distances (Pre-compute method). The
method is fast but prohibitive in space usage (it needs O(|V (G)|2)
space). Graph labeling technique enables the computation

of shortest path distance in O(|E(G)|1/2) time, while the

space cost is only O(|V (G)||E(G)|1/2) [15]. Thus, we adopt
graph labeling technique instead of Pre-compute method to
perform shortest-path distance computation.

The key problem in naive join processing is its large num-
ber of distance computations, which is |R1| × |R2|. In or-
der to speed up the query performance, we need to address
two issues: how to reduce the number of distance computa-
tions; and, finding a distance computation method to find
all candidate matches that is more efficient than shortest
path distance computation.

In order to address these issues, we utilize LLR embedding
technique [17, 18] to map all vertices in G into points in vec-
tor space <k, where k is the dimensionality of <k. We then
compute L∞ distance between the points in <k space, since
it is much cheaper to compute and it is the lower bound of
the shortest path distance between two corresponding ver-
tices in G (see Theorem 3.1). Thus, we can utilize L∞ dis-
tance in vector space <k to find candidate matches.

We also propose several pruning techniques based on the
properties of L∞ distance to reduce the number of distance
computations in join processing. Furthermore, we propose a
novel cost model to guide the join order selection. Note that

Vertices in G Points in k

LLR
Embedding Blocks in a flat

file

Vertex distance
labels

2-hop distance labeling

Candidate Set

CL={(u1, u2)}
Answer Set

RS={(u1, u2)}
Edge Query

Offline

Online

Block Nested
Loop Join

Pattern Matching

Query

Join Order
Selection

Clustering

 Cost
Estimation

Vertex Lists Ri Shrunk Vertex Lists Ri

Neighbor
Area Pruning

Vertex
Labels

Figure 4: Framework of Pattern Match Query

we do not propose a general method for distance-join (also
termed as similarity join) in vector space [1, 2]; we focus on
L∞ distance in the converted space simply because we use
L∞ distance to find candidate matches.

Figure 4 depicts the general framework to answer a pat-
tern match query. We first use LLR embedding to map
all vertices into points in vector space <k. We adopt k-
medoids algorithm [11] to group all points into different
clusters. Then, for each cluster, we map all points u (in
this cluster) into a 1-dimensional block. According to the
Hilbert curve in <k space, we can define the total order for
all clusters. According to this total order, we link all blocks
to form a flat file. We also compute graph distance label
for each vertex to enable fast shortest path distance com-
putation [7, 15]. When query Q is received, according to
join order selection algorithm, we find the cheapest query
plan (i.e., join order). As discussed above, a join order cor-
responds to a traversal order in query Q. At each step, we
perform an edge query for the new introduced edge. During
edge query processing, we first use L∞ distance to obtain
all candidate matches (Definition 5.1); then, we compute the
shortest path distance for each candidate match to fix final
results. Join processing is iterated until all edges in Q are
visited.

According to LLR embedding technique [17, 18], we have
the following embedding process to map all vertices in G into
points in a vector space <k, where k is the dimensionality
of the vector space:

1) Let Sn,m be a subset of random selected vertices in
V (G). We define

D(u, Sn,m) = minu′∈Sn,m
{Distsp(u, u′)} (3)

that is, D(u, Sn,m) is the distance from u to its closest neigh-
bor in Sn,m.

2) We select k = O(log2|V (G)|) subsets to form the set
R = {S1,1, ..., S1,κ, ..., Sβ,1, ..., Sβ,κ}. where κ = O(log|V (G)|)
and β = O(log|V (G)|) and k = κβ = O(log2|V (G)|). Each
subset Sn,m (1 ≤ n ≤ β, 1 ≤ m ≤ κ) in R has 2n vertices in
V (G).

3) The mapping function E : V (G) → <k is defined as
follows:

E(u) = [D(u, S1,1), ..., D(u, S1,κ), ..., D(u, Sβ,1), ..., D(u, Sβ,κ)]
(4)

where βκ = k.
In the converted vector space <k, we use L∞ metric as

distance function in <k, which is defined as follows:

L∞(E(u1), E(u2)) = maxn,m|D(u1, Sn,m)−D(u2, Sn,m)| (5)

where D(u1, Sn,m) is defined in Equation 3, and E(u1) is the
corresponding point (in <k space) with regard to the vertex

u1 in graph G. For notational simplicity, we also use u1

to denote the point in <k space, when the context is clear.
Theorem 3.1 establishes L∞ distance over <k as the lower
bound of the shortest path distance over G.

Theorem 3.1. [18] Given two vertices u1 and u2 in G,
L∞ distance between two corresponding points in the con-
verted vector space <k is the lower bound of the shortest
path distance between u1 and u2; that is,

L∞(E(u1), E(u2)) ≤ Distsp(u1, u2) (6)

Note that shortest path distance and L∞ distance are
both metric distances [11]; thus they satisfy triangle inequal-
ity.

4. NEIGHBOR AREA PRUNING
As a result of LLR embedding, all vertices in G have

been mapped into points in <k. We use a relational table
T (ID, I1, ..., Ik, L) to store all points in <k. The first ID
column is the vertex ID, columns I1, ..., Ik are k dimensions
of a mapped point in <k, and the last column L denotes the
vertex label.

To answer a pattern match query, we conduct a multi-
way join over the converted vector space, not the original
graph space. Similarly, each D-join step is conducted over
the vector space as well. Thus, to reduce the cost of multi-
way join, the first step is to remove all the points that do not
qualify for D-join (i.e., they don’t satisfy join condition in
Equation 2) as early as possible. In this section, we propose
an efficient pruning strategy called neighbor area pruning.

a

b

c
b

a

4u

3u

1u

2u
5u

c6u

4 2(,)
sp

Dist u u

4 1(,)spDist u u

6 3(,)
sp

Dist u u

6 4(,)
sp

Dist u u

a

b c

(b) Query Q

1v

2v
3v

(a) Shortest Path Distances in graph G

4 is prunedu

Figure 5: Area Neighbor Pruning

We first illustrate the rationale behind neighbor area prun-
ing using Figure 5. Consider a query Q in Figure 5. If a
vertex u labeled ‘a’ (in G) can match v1 (in Q) according to
Definition 3.1, there must exist another vertex u′ labeled ‘b’
(in G), where Distsp(u, u′) ≤ δ, since v1 has a neighbor ver-
tex labeled ‘b’ in query Q. For vertex u4 in Figure 5, there
exists no vertex u′ labeled with ‘b’, where Distsp(u4, u

′) ≤ δ;
thus, u4 can be pruned safely. Vertex u6 has label ‘c’, thus,
it is a candidate match to vertex v3 in query Q. Although
there exists a vertex u4 labeled ‘a’, where Distsp(u6, u4) < δ,
pruning vertex u4 in the last step will lead to pruning u6 as
well. In other words, neighbor area pruning is an iterative
step, until convergence is reached (i.e., no vertices in each
list can be further pruned).

As a result of LLR embedding, all vertices in G have been
mapped into points in <k. Therefore, we want to conduct
neighbor area pruning over the converted space. Since L∞
distance is the lower bound for the shortest path distance,
for vertex u4 in Figure 5, if there exists no vertex u′ labeled
with ‘b’ where L∞(u4, u

′) ≤ δ, u4 can also be pruned safely.
However, it is inefficient to check each vertex one-by-one.
Therefore, we propose the neighbor area pruning to reduce
the search space in <k.

Definition 4.1. Given a vertex vi in query Q and its
corresponding list Ri in data graph G, for a point ui in Ri,
we define vertex neighbor area to be Area(ui) = ([(ui.I1 −
δ, ui.I1+δ), ..., (ui.Ik−δ, ui.Ik+δ)]), where ui is a point in <k

space. The list neighbor area of Ri is defined as Area(Ri) =⋃
ui∈Ri

Area(ui).

Definition 4.2. Given a list Ri and a vertex uj, uj ∈
Area(Ri), if and only if, for any dimension In, uj .In ∈
Area(Ri).In, where Area(Ri).In is the nth dimension of
Area(Ri).

Theorem 4.1. Consider a vertex vi in query Q and as-
sume that vi has m neighbor vertices vj (i.e. (vi, vj) is an
edge), j = 1, ..., m, and for each vertex vj, its corresponding
list is Rj in G. If ∃j, ui /∈ Area(Rj), ui can be safely pruned
from the list Ri.

Proof. (sketch) If ∃j, ui /∈ Area(Rj), there is no vertex
uj labeled as the same as vj , where L∞(ui, uj) ≤ δ.

Algorithm 1 Neighbor Area Pruning

Require: Input: Query Q that has n vertices vi; and each vi

has a corresponding list Ri.
Output n lists Ri after pruning.

1: while numLoop < MAXNUM do
2: for each list Ri do
3: Scan Ri to find Area(Ri).
4: for each list Ri do
5: Scan Ri to filter out false positives by Area(Rj), where

vj is a neighbor vertex w.r.t vi.
6: if all list Ri has not been change in this loop then
7: Break

Based on Theorem 4.1, Algorithm 1 lists the steps to per-
form pruning on each list Ri. Notice that, as discussed
above, the pruning process is iterative. Lines 2-5 are re-
peated until either the convergence is reached (Lines 6-7),
or iteration step exceeds the maximal iteration steps (Line
1). The total time complexity of Algorithm 1 is O(

∑
i |Ri|).

In the worst case, D-join processing needs O(
∏

i |Ri|). Thus,
it is desirable to perform neighbor area pruning before join
processing.

5. EDGE QUERY PROCESSING
After neighbor area pruning, we obtain n “shrunk” lists,

R1, . . . , Rn, each corresponding to a vertex vi in query Q.
According to the framework in Figure 4, at each step, we
need to answer an edge query. In this section, we propose
an efficient D-join edge query algorithm.

We first use L∞ distance in the converted vector space <k

to find a candidate match set CL (Definition 5.1):

CL = R1 ./ R2
L∞(u1,u2)≤δ

(7)

.
Each candidate match in G is a pair of vertices (ui, uj)

(i 6= j), where L∞(ui, uj) ≤ δ. Then, for each candidate
(ui, uj), we utilize a graph labeling technique to obtain the
exact shortest path distance Distsp(ui, uj) [7, 15]. All pairs
(ui, uj) where Distsp(ui, uj) ≤ δ are collected to form the
final result RS. Theorem 5.1 proves that the above process
guarantees no false negatives.

Definition 5.1. Given an edge query Qe = (v1, v2) over
a graph G and a parameter δ, vertex pair (u1, u2) is a can-
didate match of Qe if and only if:

(1) L(v1) = L(u1) and L(v2) = L(u2) where L(ui) (L(vi))
indicates label of ui (vi); and
(2) L∞(u1, u2) ≤ δ.

Theorem 5.1. Given an edge query Qe = (v1, v2) over
a graph G, and a parameter δ, let CL denote the set of
candidate matches of Qe computed according to Formula 7,
and RS denote the set of all matches of Qe. Then, RS ⊆
CL.

Proof. Straightforward from Theorem 3.1.

Essentially, a D-join is a similarity join over vector space.
Existing similarity join algorithms (such as RSJ [2] and
EGO [1]) can be utilized to find candidate matches over
the vector space <k. However, there are two important is-
sues to be addressed in answering an edge query. First,
the converted space <k is a high dimensional space, where
k = O(log2|V (G)|). In our experiments, we choose 15-30
dimensions when |V (G)| = 10K ∼ 100K. R-tree based sim-
ilarity join algorithms (such as RSJ [2]) cannot work well
due to the dimensionality curse [14]. Second, although some
high-dimensional similarity join algorithms have been pro-
posed, they are not optimized for L∞ distance, which we
use to find candidate matches.

To address these key issues, we first propose a novel data
structure to reduce both I/O and CPU costs (Section 5.1).
Then, we propose triangle inequality pruning and hash-join
to further reduce CPU cost (Section 5.2).

5.1 Data Structures and D-join Algorithm
Due to drawbacks of index-based access in high-dimensional

space, we adopt nested loop join strategy for a D-join pro-
cessing. However, a naive nested loop algorithm to join two
lists R1 and R2 has serious performance issues: a) High I/O
cost: Assume that table T is stored into N disk pages, the
total number of I/O in join processing is N2; b) High CPU
cost: The number of distance computations is |R1| × |R2|.

In order to perform an efficient D-join for edge query, we
propose cluster-based block nested loop join. The converted
high dimensional space <k is not uniformly distributed; there
exist some clusters in the <k space. Inspired by iDistance
[14] that answers NN queries in high dimensional space, we
first utilize existing cluster algorithms to find clusters in
<k. In our implementation, we use K-medoids algorithm
[11] to find clusters. Note that the clustering algorithm is
orthogonal to our D-join algorithm. How to find an optimal
clustering in <k is beyond the scope of this paper. In the
following discussion, we assume that clustering results in <k

are given. For each cluster Ci, we find its cluster center ci

as a pivot. For each point u in cluster Ci whose center is ci,
according to distance L∞(u, ci) (ci is cluster center of Ci),
u is mapped into 1-dimensional block Bi. Clearly, different
clusters are mapped into different blocks. We define cluster
radius r(Ci) as the maximal distance between center ci and
vertex u in cluster Ci. Figure 6 depicts our method, where
we Euclidean distance is used as the distance function for
demonstration; the actual distance function is still L∞.

We need to perform sequential scan in the nested loop
join. To facilitate sequential scan during join processing, we
define a total order of the clusters. According to this order,
we link all corresponding blocks Bi to form a flat file. We
delay the discussion on the total order until the end of this
subsection, since it is related to our D-join algorithm.

Flat File

Block 1

Hilbert curve

Block omitted

Block 2

1
()r c

2
()r c

1
c

1
u

2
u

1
d

2
d

3
d

1
d

1
u

1
c 2

d

2
u

2
c

3
u

2
c

3
d

3
u

3
c

4
c

Blocks

Figure 6: Cluster in <k

We adopt block nested loop strategy in D-join algorithm.
Given an edge query Qe = (v1, v2), let R1 and R2 to be
the lists of candidate vertices (in G) that satisfy vertex la-
bel predicates associated with v1 and v2, respectively. Let
R1 be the “outer” and R2 be the “inner” join operand. D-
join algorithm reads one block B1 from R1 in each step.
In the inner loop, it is not necessary to perform join pro-
cessing between B1 and all blocks in R2. We scan R2 to
load a “promising” block B2 into memory in the inner loop.
Then, we perform memory join algorithm between B1 and
B2. Theorem 5.2 shows the necessary condition that B2 is
a promising block with regard to B1.

Theorem 5.2. Given two blocks B1 and B2 (the “outer”
and “inner” join operands, respectively), the necessary con-
dition that D-join between B1 and B2 produces a non-empty
result is:

L∞(c1, c2) < r(C1) + r(C2) + δ

where C1 (C2) is the corresponding cluster of block B1 (B2),
c1 (c2) is C1’s (C2’s) cluster center, and r(C1) (r(C2)) is
C1’s (C2’s) cluster radius.

Proof. Proven according to triangle inequality.

After the nested loop join, we can find all candidate matches
for edge query. Then, for each candidate match (u1, u2), we
use graph labeling to compute the shortest path distance be-
tween u1 and u2, that is, Distsp(u1, u2). If Distsp(u1, u2) ≤
δ, (u1, u2) will be inserted into answer set RS. The detailed
steps of D-join Algorithm are shown in Algorithm 2.

Now, we discuss the total order for clusters. In Algorithm
2, in each inner loop, we sequentially scan R2 to load promis-
ing blocks into memory with regard to B1 (the “outer” join
operand). Consider two promising blocks B2 and B3 with
regard to B1 with corresponding clusters C2, C3 and C1,
respectively. According to triangle inequality, |L∞(c1, c2)−
L∞(c1, c3)| ≤ L∞(c2, c3) ≤ |L∞(c1, c2) + L∞(c1, c3)|. This
means that clusters C2 and C3 are near each other in <k

space.
All clusters that need to be joined with B1 should be near

each other in <k space. If their corresponding blocks are
also adjacent to each other in flat file F , we only need to
scan a portion of file F (instead of scanning the whole file) in
the inner loop. Due to good locality-preserving behavior, an
Hilbert curve is often used in multidimensional databases.

We define the total order for different clusters according to
Hilbert order. Consider two clusters C1 and C2 whose clus-
ter centers are c1 and c2 respectively. Assuming c1 and c2

are in two different cells S1 and S2 (in <k space) respec-
tively, if cell S1 is ahead of S2 in Hilbert order, cluster C1 is
larger than C2. If c1 and c2 are in the same cell, the order
of C1 and C2 is arbitrarily defined. According to the total
order, we can link all corresponding blocks to form a flat
file.

Algorithm 2 D-join Algorithm

Require: Input: An edge e = (l1, l2) in query Q, where L(v1)
(and L(v2)) denotes the vertex label of vertex v1 (and v2).
The distance constraint is δ. R1, the set of candidate vertices
for matching v1 in e. R2, the set of candidate vertices for
matching v2 in e.
Output: Answer set RS = {(u1, u2)}, where L(u1) = L(v1)
AND L(u2) = L(v2) AND Distsp(u1, u2) ≤ δ.

1: Initialize candidate set CL and answer set RS.
2: for each cluster C1 in flat file F do
3: if C1 ∩R1 6= φ then
4: Load C1 into memory
5: According to Theorem 5.2, find all promising clusters C2

w.r.t C1 in flat file F to form cluster set PC.
6: Order all clusters C2 in PC according to physical posi-

tion in flat file F .
7: for each promising cluster C2 in PC do
8: Load cluster C2 into memory.
9: Perform memory-based D-Join algorithm on C1 and

C2 to find candidate set CL1 (call Algorithm 3).
10: Insert CL1 into CL.
11: for each candidate match (u1, u2) in CL do
12: Compute Distsp(u1, u2) by graph labeling techniques.
13: if Distsp(u1, u2) ≤ δ then
14: Insert (u1, u2) into answer set RS
15: Report RS

Search Space

(a) (b)

1
c

1
(,)L p c

p

p

1
c

1
(,)L p c

1
(,)L p c

1
CCluster

1
c

1
()r C

p p
1

()r C1
c

Figure 7: Theorem 5.3

5.2 Memory Join Algorithm
For a pair of blocks B1 and B2 that are loaded in memory,

we need to perform a join efficiently. We achieve this by
pruning using triangle inequality and by applying hash join.

5.2.1 Triangle Inequality Pruning
The following theorem specifies how the number of dis-

tance computations can be reduced based on triangle in-
equality.

Theorem 5.3. Given a point p in block B2 (the inner
join operand) and a point q in block B1 (the outer join
operand), the distance between p and q needs to be com-
puted only when the following condition holds (C1 (C2) is
the cluster corresponding to B1 (B2)):

Max(L∞(p, c1)−δ, 0) ≤ L∞(q, c1) ≤ Min(L∞(p, c1)+δ, r(C1))

Proof. Directly follows from triangle inequality since L∞
is metric.

Figure 7 visualizes the search space in cluster C1 with
regard to point p in C2 after pruning according to Theorem
5.3.

5.2.2 Hash Join
Hash join in a well-known join algorithm with good per-

formance. The classical hash join does not work for D-join
processing, since it can only handle equi-join. Consider two
blocks B1 and B2 (the outer and inner join operands). For
purposes of presentation, we first assume that there is only
one dimension (I1) in <k, i.e. k = 1. The maximal value in
I1 is defined as I1.Max. We divide the interval [0, I1.Max]
into d I1.Max

δ
e buckets for dimension I1. Given a point q

in block B1 (the outer operand), we define hash function
H(q) = n1 = b q.I1

δ
c. Then, instead of hashing q into one

single bucket, we put q into three buckets, (n1 − 1)th, nth
1 ,

and (n1 + 1)th buckets. To save space, we only store q’s ID
in different buckets. Based on this revised hashing strategy,
we can reduce the search space, which is described by the
following theorem.

Theorem 5.4. Given a point p in block B2 (inner join
operand), according to hash function H(p) = n1 = b p.I1

δ
c,

p is located at the nth
1 bucket. It is only necessary to per-

form join processing between p and all points of B1 located
in the nth

1 bucket. The candidate search space for point p
is, Can1(p) = bn1 , where bn1 denotes all points in the nth

1

bucket.

Proof. It can be proven using L∞ distance definition.

...

1
1

.q I
nq

1n
1 1n 1 1n0

Buckets

Keys

0b
1 1nb

1nb
1 1n

b

1.I Max

p

11Candidate Search Space: ()
n

C p b

1Dimension I

Figure 8: Hash Join

Figure 8 demonstrates our proposed hash join method.
When k > 1 (i.e. higher dimensionality), we build buck-
ets for each dimension Ii (i = 1, ..., k). Consider a point p
(the inner join operand) from block B2 and obtain candidate
search space Cani(p) in dimension Ii, i = 1, ..., k. Theorem
5.5 establishes the final search space of p using hash join.

Theorem 5.5. The overall search space for vertex p is
Can(p) = Can1(p) ∩ Can2(p)... ∩ Cank(p), where Cani(p)
(i = 1, ..., k) is defined in Theorem 5.4.

Theorem 5.6 shows that, for a join pair (q, p) (p from B1

and q from B2, respectively), if Dist∞(q, p) > 2×δ, the join
pair (q, p) can be safely pruned by the hash join.

Theorem 5.6. Consider two blocks B1 and B2 (the outer
and inner join operands) to be joined in memory. For any
point p in B2, the necessary and sufficient condition that a
point q is in p’s search space (i.e., q ∈ C(p)) is L∞(p, q) ≤
2 ∗ δ.

Proof. It can be proven according to Theorems 5.4 and
5.5.

According to two pruning techniques in Theorem 5.3 and
join hash, respectively, we propose Memory D-join in Algo-
rithm 3.

Algorithm 3 Memory D-Join Algorithm

Require: Input: An edge e = (v1, v2) in query Q. Two clusters
are C1 and C2. The distance constraint is δ. R1 is the set of
candidate vertices that match v1; R2 is the set of candidate
vertices that match v2.
Output: Answer set RS = {(u1, u2)}, where L(u1) = L(v1)
AND L(u2) = L(v2) AND Distsp(u1, u2) ≤ δ.

1: for each vertex p in C2 do
2: if p ∈ R2 then
3: According to Theorem 5.3, find search space in C1 with

regard to p, denoted as SP (p).
4: Using hash join in Theorem 5.5, find search space

Can(p).
5: Final search space with regard to p is SP (p) = SP (p) ∩

Can(p).
6: for each point q in the search space SP (p) do
7: if L∞(q, p) ≤ δ then
8: Insert (q, p) into candidate set CL
9: Report CL.

6. PATTERN MATCH QUERY
According to the framework in Figure 4, a pattern match

query is transformed into a shortest path distance-based
multi-way join problem, called MD-join. Thus, we first give
the detailed steps to answer a multi-way join query in Sec-
tion 6.1, then we present the cost function (Section 6.2) that
drives join order selection discussed in Section 6.3.

6.1 MD-Join Algorithm
In the following discussion, we assume that the join or-

der is specified. As discussed in Section 3, a join order of
MD-join corresponds to a traversal order in query graph Q.
According to given traversal order (in Q), we visit one edge
e = (vi, vj) (in Q) from vertex vi in each step. If vertex vj

is the new encountered vertex (i.e., vj has not been visited
yet), edge e = (vi, vj) is called a forward edge; and if vj has
been visited before, e is called a backward edge. The pro-
cessing of a forward edge query and that of a backward edge
query are different. Essentially, forward edge processing is
performed by a D-join algorithm (as discussed in Section
5.1), while backward edge processing is a selection opera-
tion, which will be discussed shortly.

MD-join is similar to traditional multi-join operation in
relational databases and XML databases [25]. Thus, follow-
ing the same conventions, we define the concept of “status”.

Definition 6.1. Given a query graph Q, a subgraph Q′

induced by all visited edges in Q is called a status. All
matches of Q (and Q′) are stored in a relational table MR(Q)
(and MR(Q′)), in which columns correspond to vertices vi

in Q (and Q′).
The MD-join algorithm (Algorithm 4) performs a sequen-

tial move from the initial status NULL to final status Q,
as shown in Figure 3. Consider two adjacent statuses Q′i
and Q′i+1, where Q′i is a subgraph of Q′i+1 and |E(Q′i+1)| −
|E(Q′i)| = 1. Let e = (Q′i+1 \ Q′i) denote an edge in Q′i+1

but not in Q′i. If e is the first edge to be visited in query Q,
we can get the matches of e (denoted as MR(e)) by D-join

processing (Line 4 in Algorithm 4). Otherwise, there are
two cases to be considered.

Forward edge processing: If e = (vi, vj) is a forward
edge, we can obtain MR(Q′j) as follows: 1) we first project
table MR(Q′) over column vi to obtain list Ri (Line 9 in
Algorithm 4). We can obtain the list Rj (by scanning the
original table T before joining processing in Line 1) that
corresponds to vertex vj , according to vj ’s label. Note that,
Rj is a shrunk list after neighbor area pruning (Line 2); 2)
According to the D-join algorithm (Algorithm 2), we find
the matches for edge e, denoted as MR(e) (Line 10); 3) We
perform traditional natural join over MR(Q′i) and MR(e)
to obtain MR(Q′j) based on column vi (Line 11).

Backward edge processing: If e = (vi, vj) is a back-
ward edge, we can scan the intermediate table MR(Q′i) to
filter out all vertex pairs (ui, uj), where ui and uj correspond
to vertices vi and vj in query Q, and Distsp(ui, uj) > δ (we
can compute Distsp(ui, uj) by graph labeling technique).
After filtering MR(Q′i), we obtain the matches of Q′i+1, i.e.,
MR(Q′i+1). Essentially, it is a selection operation based
on the distance constraint (Line 13), defined as follows:
MR(Q′i+1) = σ(Distsp(r.vi,r.vj)≤δ)(MR(Q′i)).

The above steps are iterated until the final status Q is
reached (Lines 6-13).

Algorithm 4 Multi-Distance-Join Algorithm (MD-join)

Require: Input: A query graph Q that has n vertices and a pa-
rameter δ and a large graph G and a table T for the converted
vector space <k, and the join order MDJ .
Output: MR(Q): All matches of Q in G.

1: for each vertex vi in query Q, find its corresponding list Ri,
according to vi’s label.

2: Obtain Shrunk lists Ri (i = 1, ..., n) by neighbor area pruning.
3: Set e = (v1, v2).
4: Obtain MR(e) by D-join algorithm (call Algorithm 2).
5: set Q′i = e.
6: while Q′i! = Q do
7: According to join order MDJ , e is the next traversal edge.
8: if e is forward edge, denoted as e = (vi, vj) then

9: Ri = σt.ID∈(
∏

vi
MR(Q′i))

(T) .

10: MR(e) =
∏

(Ri.ID,Rj .ID) (Ri ./ Rj
Distsp(ri,rj)≤δ

) (call Algo-

rithm 2)
11: MR(Q′i+1) = MR(Q′i) ./ MR(e)

vi

12: else
13: MR(Q′i+1) = σ(Distsp(r.vi,r.vj)≤δ)(MR(Q′i))
14: Report MR(Q).

6.2 Cost Model
It is well-known that different join orders in MD-join al-

gorithm will lead to different performances. The join order
selection is based on the cost estimation of edge query. In
this section, we discuss the cost of D-join algorithm that an-
swers edge query, which has three components: the cost of
block nested loop join (Lines 2-10 in Algorithm 2), the cost
of computing the exact shortest path distance (Lines 12-14),
and the cost of storing answer set RS (Line 15). Note that
the matches of an edge query are intermediate results for
graph pattern query. Therefore, similar to cost analysis for
structural join in XML databases [25], we also assume that
intermediate results should be stored in a temporary table in
disk. We use a set of factors to normalize the cost of D-join
algorithm. These factors are fR: the average cost of loading

one block into memory; fD: the average cost of L∞ distance
computation cost; fS : the average cost of shortest path dis-
tance computation cost; fIO: the average cost of storing one
match into disk. Given an edge query Qe = (v1, v2) and a
parameter δ, R1 (R2) is the list of candidate vertices for
matching v1 (v2). All vertices in R1 (R2) are stored in |B1|
(|B2|) blocks in a flat file F . The cost of D-join algorithm
can be computed as follows:

Cost(e) =
|B1| × |B2| × γ1 × fR + |R1| × |R2| × γ2 × fD+
|CL| × fS + |CL| × γ3 × fIO

(8)

where γ1, γ2, and γ3 are defined as follows.

γ1 =
|AccessedBlocks|

|B1| ∗ |B2|
, γ2 =

|DisComp|
|R1| ∗ |R2|

, γ3 =
|RS|
|CL| (9)

and where |AccessedBlocks| is the number of accessed blocks
in Algorithm 2; |DisComp| is the number of L∞ distance
computations and |RS| (and |CL|) is cardinality of answer
set RS (and candidate set CL). We use the following meth-
ods to estimate γ1, γ2 and γ3.

1) Offline: We pre-compute γ1, γ2 and γ3. Notice that
γ1, γ2 and γ3 are related to vertex labels and the distance
constraint δ. Thus, according to historical query logs, the
maximal value of δ is δ. We partition [0, δ] into z intervals,

each with width d = d δ
z
e. In order to compute the statistics

the γ1, γ2 and γ3 for vertex label pair (l1, l2) and the distance
constraint δ in the ith interval [(i − 1)d, i ∗ d] (1 ≤ i ≤ z),
we set δ = (i−1/2)d, and there is only one edge e = (v1, v2)
in query graph Q, where L(v1) = l1 and L(v2) = l2. We
perform D-join algorithm, and compute γ1, γ2 and γ3 using
Equation 9.

2) Online: Given an edge query Qe = (v1, v2), we look up
the estimates for γ1, γ2 and γ3 that were computed offline
using the vertex label (L(v1), L(v2)) and δ.

Next, we discuss how to estimate |CL|. Let us first as-
sume that k = 1, given an edge query Qe = (v1, v2), the
cardinality of candidate match set CL can be denoted as
|CL| = |R1| × |R2| × θ where θ is the selectivity of D-join
based on L∞ distance. We can regard R1.I1 and R2.I1 as
two random variables x and y. Let z = |x − y| denote the
joint random variable. Selectivity θ equals to the probability
of z ≤ δ. Figure 9(a) visualizes the joint random variable z
and the area Θ between two curves y = x+ δ and y = x− δ.
We can use the following equation to compute selectivity θ.

θ = Pr(z ≤ δ) =

∫ ∫

|x−y|≤δ

f(x, y)d(x, y) =

∫ ∫

(x,y)∈Θ

f(x, y)d(x, y)

where f(x, y) denotes z’s density function. We use two-
dimensional histogram method to estimate f(x, y). Specifi-
cally, we use equi-width histograms that partition (x, y) data
space into t2 regular buckets (where t is a constant called
the histogram resolution), as shown in Figure 9(b). Similar
to other histogram methods, we also assume that the distri-
bution in each bucket is uniform. Then, we use a systematic
sampling technique [12] to estimate density function in each
bucket.

The basic idea of systematic sampling is the following [12]:
Given a relation R with N tuples that can be accessed in
ascending/desceding order on the join attribute of R, we
select n sample tuples as follows: select a tuple at random

from the first dN
n
e tuples of R and every dN

n
eth tuple there-

after [12]. The relations here are R1 and R2, and the join
attributes are R1.I1 and R2.I1.R1 and R2 are both from
table T . We assume that there exists a B+-tree index on
each dimension Ii in table T , allowing tuples to be accessed
in ascending/desceding order. We select (|R1| × λ) vertices
from R1, and all these selected vertices are collected to form
subset SR1, where λ is a sampling ratio. The same is done
for subset SR2 from the list R2.

0

the shared area

0

2 1 1 1
. .R I R I

2 1 1 1
. .R I R I

1 1
.R I

2 1
.R I

(a)

0

the shared area

0 x1

x1

x2

x3x2

22
f

12
f

11
f

21
f

31
f

32
f

33
f

23
f

13
f

2 1 1 1
. .R I R I

2 1 1 1
. .R I R I

1 1
.R I

2 1
.R I

(b)
Figure 9: Selectivity Estimation

We map SR1 × SR2 into different two-dimensional buck-
ets. For each bucket A, we use |A| to denote the number of
points (from SR1 × SR2) that fall into bucket A. The joint
density function of points in bucket A is denoted as

f(A) =
|A|

|SR1| × |SR2|
. (10)

Some buckets are partially contained in the shared area
Θ. The number of points (from R1×R2) that fall into both
bucket A and the shared area Θ (denoted as |A∩Θ|) can be
estimated as:

|A ∩Θ| = R1 ×R1 × f(A)× area(A ∩Θ)

area(A)

where area(A∩Θ) denotes the area of intersection between
A and Θ and area(A) denotes the area of A.

We adopt Monte-Carlo methods to estimate area(A∩Θ)
area(A)

.

Specifically, we first randomly generate a set of points in
bucket A (the number of generated records is a). The num-

ber of points that fall in Θ is b. Then, we estimate area(A∩Θ)
area(A)

to be a
b
.

Therefore, we have

|CL| =
∑

ij
|Aij ∩Θ| = |R1|×|R2|×

∑
ij

(f(Aij)×
area(Aij ∩Θ)

area(Aij)
)

The selectivity of θ can be estimated as follows

θ = Pr(z ≤ δ) =
∑

ij
|Aij ∩Θ| =

∑
ij

(f(Aij)×
area(Aij ∩Θ)

area(Aij)
)

(11)

where f(Aij) is estimated by Equation 10.
If k > 1, according to Theorem 5.1, we have

CL = R1 ./ R2
Max1≤i≤k(|R1.Ii−R2.Ii|≤δ)

The cardinality of |CL| is

|CL| = |R1| × |R2| × θ

where θ is the selectivity of D-join based on L∞ distance. We
can regard R1.Ii and R2.Ii (i = 1, ..., k) as random variables

1.I Max

1.I Max

0
2.I Max

2.I Max

0

2 2 1 2
. .R I R I

2 1 1 1
. .R I R I

2 1 1 1. .R I R I 2 2 1 2
. .R I R I

2 2.R I

1 2

1 2a join pair (,)r r

Dimension 1
I Dimension 2I

1 2
.R I

2 1.R I

1 1.R I

Figure 10: Multi-Dimension Selectivity Estimation

xi and yi. Let zi = |xi−yi| denote the joint random variable.

θ = Pr(Max(z1, ..., zk) ≤ δ)) = Pr((z1 ≤ δ) ∧ ... ∧ (zk ≤ δ))
(12)

To compute Equation 12, we propose two techniques: dime-
nsion-independence assumption and sampling-based method.

1) Dimension-Independence Assumption
We assume that every dimension Ii in vector space <k is

independent of each other. Thus, we have

Pr((z1 ≤ δ)∧...∧(zk ≤ δ)) = Pr(z1 ≤ δ)×...×Pr(zk ≤ δ). (13)

where Pr(zi ≤ δ) (i = 1, ..., k) can be computed using Equa-
tion 12. Experiments indicate that Equation 13 cannot pro-
vide accurate selectivity estimation. since dimensions in <k

space are correlated. In order to obtain more accurate esti-
mation, we propose sampling.

2) Sampling-based Method
Consider two lists R1 and R2 to be joined. Assume, for

simplicity, k = 2. In Figure 10, Pr(Max(z1, z2) ≤ δ)) is
the probability that a vertex pair falls into both shared
areas Θ1 and Θ2. We adopt sampling-based methods to
estimate Pr(Max(z1, ..., zk) ≤ δ)). For example, we have
two sample sets SR1 and SR2 from two sets R1 and R2,
respectively. If there are M join pairs (u1, u2) such that
Max(|u1.Ii − u2.Ii|) ≤ δ, (1 ≤ i ≤ k), Pr(Max(z1, ..., zk) ≤
δ) = M

|SR1|∗|SR2| . The specific technique for computing the

optimal sampling technique in high-dimensional space is be-
yond the scope of this paper. Without loss of generality,
we choose random samples, i.e, each point has the equal
probability of being chosen as a sample.

6.3 Join Order Selection
The join order selection can be performed by adopting

the traditional dynamic programming algorithm [25] using
the cost model introduced in the previous section. However,
this solution is inefficient due to very large solution space,
especially when |E(Q)| is large. Therefore, we propose a
simple yet efficient greedy solution to find a good join order.
There are two important heuristic rules in our join order
selection.

1) Given a status Q′i, if there is a backward edge e attached
to Q′i, the next status is Q′i+1 = Q′i∪e, i.e., we perform back
edge processing as early as possible. If there are more than
one backward edges attached to Q′i, we perform all back
edge processing simultaneously, which will reduce the I/O
cost.

The intuition behind this heuristic rule is similar to “se-
lection push-down” in relational query optimization. Per-
forming back edge query will reduce the cardinality of inter-
mediate join results.

2) Given a status Q′i, if there is no backward edge attached
to Q′i, the next status is Q′i+1 = Q′i∪e, where e is a forward

edge and Cost(e) (defined in Equation 8) is minimum of all
forward edges.

7. EXPERIMENTS
We evaluate our methods using both synthetic and real

data sets. All of the methods have been implemented using
standard C++. The experiments are conducted on a P4
3.0GHz machine with 1G RAM running Windows XP.

Synthetic Datasets a) Erdos Renyi Model : This is a
classical random graph model. It defines a random graph
as N vertices connected by M edges, chosen randomly from
the N(N − 1)/2 possible edges. We set N = 100K and
M = 500K. This graph is connected, and it is denoted as
“ER Network”.
b) Scale-Free Model : We use the graph generator gengraphwin
(www.cs.sunysb.edu/ algorith/implement/viger/distrib/). We
generate a large graph G with 100K vertices satisfying power-
law distribution. Default value of parameter α is set to 2.5.
There are 89198 vertices and 115526 edges in the maximal
connected component of G. We can sequentially perform our
method in each connected component of G. This dataset is
denoted “SF Network”.

In the above two datasetes, the edge weights in G satisfy
a random distribution between [1, 1000]. Vertex labels are
randomly assigned between [1, 500].

Real Datasets c) Citeseer: We generate co-author net-
work G from citeseer dataset (http://cs1.ist.psu.edu/public/oai/).
We generate co-author network G as follows: We treat each
author as a vertex u in G and introduce an edge to con-
nect two vertices if and only if there is at least one paper
co-authored by the two corresponding authors. We assign
vertex labels and edge weights as follows: according to text
clustering algorithms, we group all author affiliations into
1000 clusters. For each author, we assign the cluster ID as
its vertex label. For an edge e = (u1, u2) in G, its weight is
assigned as 100

co(u1,u2)
, where co(u1, u2) denotes the number

of co-authored papers between authors u1 and u2. There
are 387954 vertices and 1143390 edges in the generated G.
There are 273458 vertices and 1021194 edges in the maximal
connected component of G.
d) Yeast. This is a protein-to-protein interaction network in
budding yeast (http://vlado.fmf.uni-lj.si/pub/networks/data/).
Each vertex denotes a protein and an edge denotes the in-
teraction between two corresponding proteins. We delete
‘self-loop’ edges in the original dataset. There are 13 types
of protein clusters in this dataset. Therefore, we assign ver-
tex labels based on the corresponding protein clusters. The
edge weights are all set to ‘1’. There are 2361 vertices and
6646 edges in G. There are 2223 vertices and 6608 edges in
the maximal connected component of G.

Exp.1 We first evaluate the performance of LLR embed-
ding technique. In this experiment, we consider D-join al-
gorithm to answer edge query. For clustering, we use the k-
medoids algorithm. The value of the cluster number depends
on the available memory size for join processing. We choose
two alternative methods for performance comparison: the
extension of R-join algorithm [6] and the D-join without em-
bedding. In D-join without embedding method, we conduct
distance-based joins directly over the graph, rather than first
performing join processing over converted space and verify-
ing candidate matches. We use cluster-based block nested
loop join and triangle pruning, but no ‘hash join’ pruning.
We report query response time in Figure 11, which shows

100 200 300 400 500 1000
10

0

10
1

10
2

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
)

δ

D−Join
D−Join Without Embedding
Extension of R−join

(a) ER Network

100 200 300 400 500 1000
10

0

10
1

10
2

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
)

δ

D−Join
D−Join Without Embedding
Extension of R−join

(b) SF Network

10 20 30 40 50 100
10

1

10
2

10
3

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
)

δ

D−Join
D−Join Without Embedding
Extension of R−join

(c) Citeseer Network

1 2 3 4 5 6
10

−1

10
0

10
1

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
)

δ

D−Join
D−Join Without Embedding
Extension of R−join

(d) Yeast Network

Figure 11: Evaluating Embedding Technique

100 200 300 400 500 1000

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

N
um

be
r

of
 D

is
ta

nc
e

C
om

pu
ta

tio
n

δ

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(a) ER Network

100 200 300 400 500 1000

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

N
um

be
r

of
 D

is
ta

nc
e

C
om

pu
ta

tio
n

δ

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(b) SF Network

10 20 30 40 50 100
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

5

N
um

be
r

of
 D

is
ta

nc
e

C
om

pu
ta

tio
n

δ

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(c) Citeseer Network

1 2 3 4 5 6
1

2

3

4

5

6

7

8

x 10
4

N
um

be
r

of
 D

is
ta

nc
e

C
om

pu
ta

tio
n

δ

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(d) Yeast Network

Figure 12: Number of Distance Computation

that the response time of D-join is lower than ‘D-Join with-
out Embedding’ by orders of magnitude. This is because of
two reasons: first, L∞ distance computation is faster than
shortest path distance computation by 3 orders of magni-
tude in our tests; second, LLR embedding can filter out
about 90% of search space (we do not report pruning power
here due to the space limitation). Finally, the extension of
R-join cannot work well for our problem, since no pruning
techniques are introduced to reduce the search space.

Exp.2 In this experiment, we evaluate the effectiveness of
the proposed pruning techniques for the D-join algorithm.
We report the number of distance computations (after prun-
ing) and query response time in Figures 12 and 13, respec-
tively. In order to evaluate the pruning power of different
pruning strategies, we do not utilize neighbor area pruning
that shrinks the two lists before join processing. Neighbor
area pruning is evaluated in Exp.4. In ‘No-triangle-pruning’
(see Figure 13) method, we do not utilize the triangle in-
equality pruning technique, and only use the hash join tech-
nique. In ‘No-hash-pruning’ method, we do not utilize the
hash join pruning technique, and only use triangle inequal-
ity pruning. We also compare our techniques with two al-
terative similarity join algorithms: RSJ [2] and EGO [1].
Figure 12 shows that using two pruning techniques (triangle
pruning and hash join) together can provide better pruning
power, since they are orthogonal to each other. Further-
more, since the dimensionality of the converted vector space
is large, R-tree based RSJ cannot work well due to the di-
mensionality curse. As shown in Figures 12 and 13, D-join
with both pruning methods outperforms EGO significantly,
because EGO algorithm is not optimized for L∞ distance.
Note that, the difference between the running time in D-join
and EGO is not clear in Figure 13(d), since Yeast dataset
has only about 2000 vertices.

Exp.3 We test the two cost estimation techniques. Esti-

mation error is defined as ||CL′|−|CL′||
|CL| , where |CL| is the ac-

tual candidate size and |CL′| is estimation size. Since there
are some correlations in <k space, dimension independence
assumption does not hold. Sampling-based technique can
capture data distribution in <k space, thus, it can provide
better estimation, as shown in Figure 14.

Exp.4 In this experiment, we test the performance of

MD-join algorithm. We also evaluate the effectiveness of
neighbor-area pruning technique and join order selection
method. In this experiment, we fix the distance constraint
δ, and vary |E(Q)| from 2 to 6. In ‘without neighbor area
pruning’, we do not reduce the search space by neighbor
area pruning, but we still use join order selection method to
select a cheap query plan. In ‘No join order selection’, we
randomly define the join order for the MD-join processing,
but we use neighbor area pruning. We use both techniques
in MD-join algorithm. Without neighbor area pruning, the
search space is much larger than in MD-join algorithm using
neighbor area pruning, which is confirmed by the experimen-
tal results shown in Figure 15. ‘No join order selection’ is
much slower than MD-join algorithm. Figure 15 also demon-
strates that randomly defining join order cannot work as well
as MD-join algorithm.

8. CONCLUSIONS
In this paper, we propose a novel pattern match problem

over a large graph G. We transform vertices in G into points
in a vector space via graph embedding methods, coverting
a pattern match query into a distance-based multi-way join
problem over vector space. Several pruning techniques are
developed to reduce the search space significantly, such as
neighbor area pruning, triangle inequality pruning and hash
join. We also design a cost estimation technique to find a
cheap query plan (i.e., join order).

9. REFERENCES
[1] C. Böhm, B. Braunmüller, F. Krebs, and H.-P.

Kriegel. Epsilon grid order: An algorithm for the
similarity join on massive high-dimensional data. In
SIGMOD, 2001.

[2] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using r-trees. In SIGMOD,
1993.

[3] E. P. F. Chan and H. Lim. Optimization and
evaluation of shortest path queries. VLDB J., 16(3),
2007.

[4] Y. Chen and Y. Chen. An efficient algorithm for
answering graph reachability queries. In ICDE, 2008.

[5] J. Cheng, Y. Ke, W. Ng, and A. Lu. fg-index:
Towards verification-free query processing on graph

100 200 300 400 500 1000
10

−1

10
0

10
1

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
)

δ

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(a) ER Network

100 200 300 400 500 1000
10

0

10
1

Q
u
e
ry

 R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
) D-join

No-triangle-pruning

No-hash-pruning

RSJ

EGO

(b) SF Network

10 20 30 40 50 100

10
2

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
.)

δ

D−join
No−triagnle−pruing
No−hash−pruning
RSJ
EGO

(c) Citeseer Network

10 20 30 40 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Q
u
e
ry

 R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

D-join
No-triangle-pruning
No-hash-pruning
RSJ
EGO

(d) Yeast Network

Figure 13: Edge Query Response Time

100 200 300 400 500 1000
0

5

10

15

20

25

E
rr

or
 R

ai
o

δ

Dimension−independent assumption
Sampling

(a) ER Network

100 200 300 400 500 1000
0

5

10

15

20

25

E
rr

or
 R

ai
o

δ

Dimension−independent assumption
Sampling

(b) SF Network

10 20 30 40 50 100
0

5

10

15

20

25

30

35

40

E
rr

or
 R

ai
o

δ

Dimension−independent assumption
Sampling

(c) Citeseer Network

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

E
rr

or
 R

ai
o

δ

Dimension−independent assumption
Sampling

(d) Yeast Network

Figure 14: Cost Estimation

2 3 4 5 6
0

1

2

3

4

5

6

7

8

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
.)

|E(Q)|

MD−Join
No Join Order Selection
No Neighbor Area Pruning

(a) ER Network, δ = 200

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
.)

|E(Q)|

MD−Join
No Join Order Selection
No Neighbor Area Pruning

(b) SF Network, δ = 200

2 3 4 5 6
0

50

100

150

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
.)

|E(Q)|

MD−Join
No Join Order Selection
No Neighbor Area Pruning

(c) Citeseer Network, δ =

20

2 3 4 5 6
0

0.5

1

1.5

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

ec
.)

|E(Q)|

MD−Join
No Join Order Selection
No Neighbor Area Pruning

(d) Yeast Network, δ = 2

Figure 15: Pattern Match Query Response Time VS. |E(Q)|
databases. In SIGMOD, 2007.

[6] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang.
Fast graph pattern matching. In ICDE, 2008.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM J. Comput., 32(5), 2003.

[8] J. H. D.W. Williams and W. Wang. Graph database
indexing using structured graph decomposition. In
ICDE, 2007.

[9] G. Gou and R. Chirkova. Efficient algorithms for
exact ranked twig-pattern matching over graphs. In
SIGMOD, 2008.

[10] P. Y. H. Jiang, H. Wang and S. Zhou. Gstring: A
novel approach for efficient search in graph databases.
In ICDE, 2007.

[11] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2000.

[12] B. Harangsri, J. Shepherd, and A. H. H. Ngu.
Selectivity estimation for joins using systematic
sampling. In DEXA Workshop, 1997.

[13] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In ICDE, 2006.

[14] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and
R. Zhang. idistance: An adaptive b+-tree based
indexing method for nearest neighbor search. ACM
Trans. Database Syst., 30(2), 2005.

[15] C. Jiefeng and J. X. Yu. On-line exact shortest
distance query processing. In EDBT, 2009.

[16] N. Jing, Y.-W. Huang, and E. A. Rundensteiner.
Hierarchical encoded path views for path query
processing: An optimal model and its performance
evaluation. IEEE Trans. Knowl. Data Eng., 10(3),
1998.

[17] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2), 1995.

[18] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh.
A road network embedding technique for k-nearest
neighbor search in moving object databases.
GeoInformatica, 7(3), 2003.

[19] D. Shasha, J. T.-L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS, 2002.

[20] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and
J. M. Patel. Saga: a subgraph matching tool for
biological graphs. Bioinformatics, 23(2), 2007.

[21] Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In ICDE, pages 963–972, 2008.

[22] H. Tong, C. Faloutsos, B. Gallagher, and
T. Eliassi-Rad. Fast best-effort pattern matching in
large attributed graphs. In KDD, 2007.

[23] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, 2007.

[24] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu.
Dual labeling: Answering graph reachability queries in
constant time. In ICDE, 2006.

[25] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural
join order selection for xml query optimization. In
ICDE, 2003.

[26] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In SIGMOD, 2004.

[27] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. In ICDE, 2007.

[28] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree
+ delta >= graph. In VLDB, 2007.

