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ABSTRACT
The production environment for analytical data management ap-
plications is rapidly changing. Many enterprises are shifting away
from deploying their analytical databases on high-end proprietary
machines, and moving towards cheaper, lower-end, commodity
hardware, typically arranged in a shared-nothing MPP architecture,
often in a virtualized environment inside public or private “clouds”.
At the same time, the amount of data that needs to be analyzed is
exploding, requiring hundreds to thousands of machines to work in
parallel to perform the analysis.

There tend to be two schools of thought regarding what tech-
nology to use for data analysis in such an environment. Propo-
nents of parallel databases argue that the strong emphasis on per-
formance and efficiency of parallel databases makes them well-
suited to perform such analysis. On the other hand, others argue
that MapReduce-based systems are better suited due to their supe-
rior scalability, fault tolerance, and flexibility to handle unstructured
data. In this paper, we explore the feasibility of building a hybrid
system that takes the best features from both technologies; the pro-
totype we built approaches parallel databases in performance and
efficiency, yet still yields the scalability, fault tolerance, and flexi-
bility of MapReduce-based systems.

1. INTRODUCTION
The analytical database market currently consists of $3.98 bil-

lion [25] of the $14.6 billion database software market [21] (27%)
and is growing at a rate of 10.3% annually [25]. As business “best-
practices” trend increasingly towards basing decisions off data and
hard facts rather than instinct and theory, the corporate thirst for
systems that can manage, process, and granularly analyze data is
becoming insatiable. Venture capitalists are very much aware of
this trend, and have funded no fewer than a dozen new companies in
recent years that build specialized analytical data management soft-
ware (e.g., Netezza, Vertica, DATAllegro, Greenplum, Aster Data,
Infobright, Kickfire, Dataupia, ParAccel, and Exasol), and continue
to fund them, even in pressing economic times [18].

At the same time, the amount of data that needs to be stored
and processed by analytical database systems is exploding. This is
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partly due to the increased automation with which data can be pro-
duced (more business processes are becoming digitized), the prolif-
eration of sensors and data-producing devices, Web-scale interac-
tions with customers, and government compliance demands along
with strategic corporate initiatives requiring more historical data
to be kept online for analysis. It is no longer uncommon to hear
of companies claiming to load more than a terabyte of structured
data per day into their analytical database system and claiming data
warehouses of size more than a petabyte [19].

Given the exploding data problem, all but three of the above
mentioned analytical database start-ups deploy their DBMS on a
shared-nothing architecture (a collection of independent, possibly
virtual, machines, each with local disk and local main memory,
connected together on a high-speed network). This architecture
is widely believed to scale the best [17], especially if one takes
hardware cost into account. Furthermore, data analysis workloads
tend to consist of many large scan operations, multidimensional ag-
gregations, and star schema joins, all of which are fairly easy to
parallelize across nodes in a shared-nothing network. Analytical
DBMS vendor leader, Teradata, uses a shared-nothing architecture.
Oracle and Microsoft have recently announced shared-nothing an-
alytical DBMS products in their Exadata1 and Madison projects,
respectively. For the purposes of this paper, we will call analytical
DBMS systems that deploy on a shared-nothing architecture paral-
lel databases2.

Parallel databases have been proven to scale really well into the
tens of nodes (near linear scalability is not uncommon). However,
there are very few known parallel databases deployments consisting
of more than one hundred nodes, and to the best of our knowledge,
there exists no published deployment of a parallel database with
nodes numbering into the thousands. There are a variety of reasons
why parallel databases generally do not scale well into the hundreds
of nodes. First, failures become increasingly common as one adds
more nodes to a system, yet parallel databases tend to be designed
with the assumption that failures are a rare event. Second, parallel
databases generally assume a homogeneous array of machines, yet
it is nearly impossible to achieve pure homogeneity at scale. Third,
until recently, there have only been a handful of applications that re-
quired deployment on more than a few dozen nodes for reasonable
performance, so parallel databases have not been tested at larger
scales, and unforeseen engineering hurdles await.

As the data that needs to be analyzed continues to grow, the num-
ber of applications that require more than one hundred nodes is be-
ginning to multiply. Some argue that MapReduce-based systems

1To be precise, Exadata is only shared-nothing in the storage layer.
2This is slightly different than textbook definitions of parallel
databases which sometimes include shared-memory and shared-
disk architectures as well.



[8] are best suited for performing analysis at this scale since they
were designed from the beginning to scale to thousands of nodes
in a shared-nothing architecture, and have had proven success in
Google’s internal operations and on the TeraSort benchmark [7].
Despite being originally designed for a largely different application
(unstructured text data processing), MapReduce (or one of its pub-
licly available incarnations such as open source Hadoop [1]) can
nonetheless be used to process structured data, and can do so at
tremendous scale. For example, Hadoop is being used to manage
Facebook’s 2.5 petabyte data warehouse [20].

Unfortunately, as pointed out by DeWitt and Stonebraker [9],
MapReduce lacks many of the features that have proven invaluable
for structured data analysis workloads (largely due to the fact that
MapReduce was not originally designed to perform structured data
analysis), and its immediate gratification paradigm precludes some
of the long term benefits of first modeling and loading data before
processing. These shortcomings can cause an order of magnitude
slower performance than parallel databases [23].

Ideally, the scalability advantages of MapReduce could be com-
bined with the performance and efficiency advantages of parallel
databases to achieve a hybrid system that is well suited for the an-
alytical DBMS market and can handle the future demands of data
intensive applications. In this paper, we describe our implementa-
tion of and experience with HadoopDB, whose goal is to serve as
exactly such a hybrid system. The basic idea behind HadoopDB
is to use MapReduce as the communication layer above multiple
nodes running single-node DBMS instances. Queries are expressed
in SQL, translated into MapReduce by extending existing tools, and
as much work as possible is pushed into the higher performing sin-
gle node databases.

One of the advantages of MapReduce relative to parallel
databases not mentioned above is cost. There exists an open source
version of MapReduce (Hadoop) that can be obtained and used
without cost. Yet all of the parallel databases mentioned above
have a nontrivial cost, often coming with seven figure price tags
for large installations. Since it is our goal to combine all of the
advantages of both data analysis approaches in our hybrid system,
we decided to build our prototype completely out of open source
components in order to achieve the cost advantage as well. Hence,
we use PostgreSQL as the database layer and Hadoop as the
communication layer, Hive as the translation layer, and all code we
add we release as open source [2].

One side effect of such a design is a shared-nothing version of
PostgreSQL. We are optimistic that our approach has the potential
to help transform any single-node DBMS into a shared-nothing par-
allel database.

Given our focus on cheap, large scale data analysis, our tar-
get platform is virtualized public or private “cloud computing”
deployments, such as Amazon’s Elastic Compute Cloud (EC2)
or VMware’s private VDC-OS offering. Such deployments
significantly reduce up-front capital costs, in addition to lowering
operational, facilities, and hardware costs (through maximizing
current hardware utilization). Public cloud offerings such as EC2
also yield tremendous economies of scale [14], and pass on some of
these savings to the customer. All experiments we run in this paper
are on Amazon’s EC2 cloud offering; however our techniques are
applicable to non-virtualized cluster computing grid deployments
as well.

In summary, the primary contributions of our work include:

• We extend previous work [23] that showed the superior per-
formance of parallel databases relative to Hadoop. While this
previous work focused only on performance in an ideal set-
ting, we add fault tolerance and heterogeneous node experi-

ments to demonstrate some of the issues with scaling parallel
databases.

• We describe the design of a hybrid system that is designed to
yield the advantages of both parallel databases and MapRe-
duce. This system can also be used to allow single-node
databases to run in a shared-nothing environment.

• We evaluate this hybrid system on a previously published
benchmark to determine how close it comes to parallel
DBMSs in performance and Hadoop in scalability.

2. RELATED WORK
There has been some recent work on bringing together ideas

from MapReduce and database systems; however, this work focuses
mainly on language and interface issues. The Pig project at Yahoo
[22], the SCOPE project at Microsoft [6], and the open source Hive
project [11] aim to integrate declarative query constructs from the
database community into MapReduce-like software to allow greater
data independence, code reusability, and automatic query optimiza-
tion. Greenplum and Aster Data have added the ability to write
MapReduce functions (instead of, or in addition to, SQL) over data
stored in their parallel database products [16].

Although these five projects are without question an important
step in the hybrid direction, there remains a need for a hybrid solu-
tion at the systems level in addition to at the language and interface
levels. This paper focuses on such a systems-level hybrid.

3. DESIRED PROPERTIES
In this section we describe the desired properties of a system de-

signed for performing data analysis at the (soon to be more com-
mon) petabyte scale. In the following section, we discuss how par-
allel database systems and MapReduce-based systems do not meet
some subset of these desired properties.

Performance. Performance is the primary characteristic that com-
mercial database systems use to distinguish themselves from other
solutions, with marketing literature often filled with claims that a
particular solution is many times faster than the competition. A
factor of ten can make a big difference in the amount, quality, and
depth of analysis a system can do.

High performance systems can also sometimes result in cost sav-
ings. Upgrading to a faster software product can allow a corporation
to delay a costly hardware upgrade, or avoid buying additional com-
pute nodes as an application continues to scale. On public cloud
computing platforms, pricing is structured in a way such that one
pays only for what one uses, so the vendor price increases linearly
with the requisite storage, network bandwidth, and compute power.
Hence, if data analysis software product A requires an order of mag-
nitude more compute units than data analysis software product B to
perform the same task, then product A will cost (approximately)
an order of magnitude more than B. Efficient software has a direct
effect on the bottom line.

Fault Tolerance. Fault tolerance in the context of analytical data
workloads is measured differently than fault tolerance in the con-
text of transactional workloads. For transactional workloads, a fault
tolerant DBMS can recover from a failure without losing any data
or updates from recently committed transactions, and in the con-
text of distributed databases, can successfully commit transactions
and make progress on a workload even in the face of worker node
failures. For read-only queries in analytical workloads, there are
neither write transactions to commit, nor updates to lose upon node
failure. Hence, a fault tolerant analytical DBMS is simply one that



does not have to restart a query if one of the nodes involved in query
processing fails.

Given the proven operational benefits and resource consumption
savings of using cheap, unreliable commodity hardware to build
a shared-nothing cluster of machines, and the trend towards
extremely low-end hardware in data centers [14], the probability
of a node failure occurring during query processing is increasing
rapidly. This problem only gets worse at scale: the larger the
amount of data that needs to be accessed for analytical queries, the
more nodes are required to participate in query processing. This
further increases the probability of at least one node failing during
query execution. Google, for example, reports an average of 1.2
failures per analysis job [8]. If a query must restart each time a
node fails, then long, complex queries are difficult to complete.

Ability to run in a heterogeneous environment. As described
above, there is a strong trend towards increasing the number of
nodes that participate in query execution. It is nearly impossible
to get homogeneous performance across hundreds or thousands of
compute nodes, even if each node runs on identical hardware or on
an identical virtual machine. Part failures that do not cause com-
plete node failure, but result in degraded hardware performance be-
come more common at scale. Individual node disk fragmentation
and software configuration errors can also cause degraded perfor-
mance on some nodes. Concurrent queries (or, in some cases, con-
current processes) further reduce the homogeneity of cluster perfor-
mance. On virtualized machines, concurrent activities performed
by different virtual machines located on the same physical machine
can cause 2-4% variation in performance [5].

If the amount of work needed to execute a query is equally di-
vided among the nodes in a shared-nothing cluster, then there is a
danger that the time to complete the query will be approximately
equal to time for the slowest compute node to complete its assigned
task. A node with degraded performance would thus have a dis-
proportionate effect on total query time. A system designed to run
in a heterogeneous environment must take appropriate measures to
prevent this from occurring.

Flexible query interface. There are a variety of customer-facing
business intelligence tools that work with database software and
aid in the visualization, query generation, result dash-boarding, and
advanced data analysis. These tools are an important part of the
analytical data management picture since business analysts are of-
ten not technically advanced and do not feel comfortable interfac-
ing with the database software directly. Business Intelligence tools
typically connect to databases using ODBC or JDBC, so databases
that want to work with these tools must accept SQL queries through
these interfaces.

Ideally, the data analysis system should also have a robust mech-
anism for allowing the user to write user defined functions (UDFs)
and queries that utilize UDFs should automatically be parallelized
across the processing nodes in the shared-nothing cluster. Thus,
both SQL and non-SQL interface languages are desirable.

4. BACKGROUND AND SHORTFALLS OF
AVAILABLE APPROACHES

In this section, we give an overview of the parallel database and
MapReduce approaches to performing data analysis, and list the
properties described in Section 3 that each approach meets.

4.1 Parallel DBMSs
Parallel database systems stem from research performed in the

late 1980s and most current systems are designed similarly to the
early Gamma [10] and Grace [12] parallel DBMS research projects.

These systems all support standard relational tables and SQL, and
implement many of the performance enhancing techniques devel-
oped by the research community over the past few decades, in-
cluding indexing, compression (and direct operation on compressed
data), materialized views, result caching, and I/O sharing. Most
(or even all) tables are partitioned over multiple nodes in a shared-
nothing cluster; however, the mechanism by which data is parti-
tioned is transparent to the end-user. Parallel databases use an op-
timizer tailored for distributed workloads that turn SQL commands
into a query plan whose execution is divided equally among multi-
ple nodes.

Of the desired properties of large scale data analysis workloads
described in Section 3, parallel databases best meet the “perfor-
mance property” due to the performance push required to compete
on the open market, and the ability to incorporate decades worth
of performance tricks published in the database research commu-
nity. Parallel databases can achieve especially high performance
when administered by a highly skilled DBA who can carefully de-
sign, deploy, tune, and maintain the system, but recent advances
in automating these tasks and bundling the software into appliance
(pre-tuned and pre-configured) offerings have given many parallel
databases high performance out of the box.

Parallel databases also score well on the flexible query interface
property. Implementation of SQL and ODBC is generally a given,
and many parallel databases allow UDFs (although the ability for
the query planner and optimizer to parallelize UDFs well over a
shared-nothing cluster varies across different implementations).

However, parallel databases generally do not score well on the
fault tolerance and ability to operate in a heterogeneous environ-
ment properties. Although particular details of parallel database
implementations vary, their historical assumptions that failures are
rare events and “large” clusters mean dozens of nodes (instead of
hundreds or thousands) have resulted in engineering decisions that
make it difficult to achieve these properties.

Furthermore, in some cases, there is a clear tradeoff between
fault tolerance and performance, and parallel databases tend to
choose the performance extreme of these tradeoffs. For example,
frequent check-pointing of completed sub-tasks increase the fault
tolerance of long-running read queries, yet this check-pointing
reduces performance. In addition, pipelining intermediate results
between query operators can improve performance, but can result
in a large amount of work being lost upon a failure.

4.2 MapReduce
MapReduce was introduced by Dean et. al. in 2004 [8].

Understanding the complete details of how MapReduce works is
not a necessary prerequisite for understanding this paper. In short,
MapReduce processes data distributed (and replicated) across
many nodes in a shared-nothing cluster via three basic operations.
First, a set of Map tasks are processed in parallel by each node in
the cluster without communicating with other nodes. Next, data is
repartitioned across all nodes of the cluster. Finally, a set of Reduce
tasks are executed in parallel by each node on the partition it
receives. This can be followed by an arbitrary number of additional
Map-repartition-Reduce cycles as necessary. MapReduce does not
create a detailed query execution plan that specifies which nodes
will run which tasks in advance; instead, this is determined at
runtime. This allows MapReduce to adjust to node failures and
slow nodes on the fly by assigning more tasks to faster nodes and
reassigning tasks from failed nodes. MapReduce also checkpoints
the output of each Map task to local disk in order to minimize the
amount of work that has to be redone upon a failure.

Of the desired properties of large scale data analysis workloads,



MapReduce best meets the fault tolerance and ability to operate in
heterogeneous environment properties. It achieves fault tolerance
by detecting and reassigning Map tasks of failed nodes to other
nodes in the cluster (preferably nodes with replicas of the input Map
data). It achieves the ability to operate in a heterogeneous environ-
ment via redundant task execution. Tasks that are taking a long time
to complete on slow nodes get redundantly executed on other nodes
that have completed their assigned tasks. The time to complete the
task becomes equal to the time for the fastest node to complete the
redundantly executed task. By breaking tasks into small, granular
tasks, the effect of faults and “straggler” nodes can be minimized.

MapReduce has a flexible query interface; Map and Reduce func-
tions are just arbitrary computations written in a general-purpose
language. Therefore, it is possible for each task to do anything on
its input, just as long as its output follows the conventions defined
by the model. In general, most MapReduce-based systems (such as
Hadoop, which directly implements the systems-level details of the
MapReduce paper) do not accept declarative SQL. However, there
are some exceptions (such as Hive).

As shown in previous work, the biggest issue with MapReduce
is performance [23]. By not requiring the user to first model and
load data before processing, many of the performance enhancing
tools listed above that are used by database systems are not possible.
Traditional business data analytical processing, that have standard
reports and many repeated queries, is particularly, poorly suited for
the one-time query processing model of MapReduce.

Ideally, the fault tolerance and ability to operate in heterogeneous
environment properties of MapReduce could be combined with the
performance of parallel databases systems. In the following sec-
tions, we will describe our attempt to build such a hybrid system.

5. HADOOPDB
In this section, we describe the design of HadoopDB. The goal of

this design is to achieve all of the properties described in Section 3.
The basic idea behind behind HadoopDB is to connect multiple

single-node database systems using Hadoop as the task coordinator
and network communication layer. Queries are parallelized across
nodes using the MapReduce framework; however, as much of the
single node query work as possible is pushed inside of the corre-
sponding node databases. HadoopDB achieves fault tolerance and
the ability to operate in heterogeneous environments by inheriting
the scheduling and job tracking implementation from Hadoop, yet
it achieves the performance of parallel databases by doing much of
the query processing inside of the database engine.

5.1 Hadoop Implementation Background
At the heart of HadoopDB is the Hadoop framework. Hadoop

consits of two layers: (i) a data storage layer or the Hadoop Dis-
tributed File System (HDFS) and (ii) a data processing layer or the
MapReduce Framework.

HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size
and distributed across multiple DataNodes in the cluster. The
NameNode maintains metadata about the size and location of
blocks and their replicas.

The MapReduce Framework follows a simple master-slave ar-
chitecture. The master is a single JobTracker and the slaves or
worker nodes are TaskTrackers. The JobTracker handles the run-
time scheduling of MapReduce jobs and maintains information on
each TaskTracker’s load and available resources. Each job is bro-
ken down into Map tasks based on the number of data blocks that
require processing, and Reduce tasks. The JobTracker assigns tasks
to TaskTrackers based on locality and load balancing. It achieves
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Figure 1: The Architecture of HadoopDB

locality by matching a TaskTracker to Map tasks that process data
local to it. It load-balances by ensuring all available TaskTrackers
are assigned tasks. TaskTrackers regularly update the JobTracker
with their status through heartbeat messages.

The InputFormat library represents the interface between the
storage and processing layers. InputFormat implementations parse
text/binary files (or connect to arbitrary data sources) and transform
the data into key-value pairs that Map tasks can process. Hadoop
provides several InputFormat implementations including one that
allows a single JDBC-compliant database to be accessed by all
tasks in one job in a given cluster.

5.2 HadoopDB’s Components
HadoopDB extends the Hadoop framework (see Fig. 1) by pro-

viding the following four components:

5.2.1 Database Connector
The Database Connector is the interface between independent

database systems residing on nodes in the cluster and TaskTrack-
ers. It extends Hadoop’s InputFormat class and is part of the Input-
Format Implementations library. Each MapReduce job supplies the
Connector with an SQL query and connection parameters such as:
which JDBC driver to use, query fetch size and other query tuning
parameters. The Connector connects to the database, executes the
SQL query and returns results as key-value pairs. The Connector
could theoretically connect to any JDBC-compliant database that
resides in the cluster. However, different databases require different
read query optimizations. We implemented connectors for MySQL
and PostgreSQL. In the future we plan to integrate other databases
including open-source column-store databases such as MonetDB
and InfoBright. By extending Hadoop’s InputFormat, we integrate
seamlessly with Hadoop’s MapReduce Framework. To the frame-
work, the databases are data sources similar to data blocks in HDFS.

5.2.2 Catalog
The catalog maintains metainformation about the databases. This

includes the following: (i) connection parameters such as database
location, driver class and credentials, (ii) metadata such as data
sets contained in the cluster, replica locations, and data partition-
ing properties.

The current implementation of the HadoopDB catalog stores its
metainformation as an XML file in HDFS. This file is accessed by
the JobTracker and TaskTrackers to retrieve information necessary



to schedule tasks and process data needed by a query. In the future,
we plan to deploy the catalog as a separate service that would work
in a way similar to Hadoop’s NameNode.

5.2.3 Data Loader
The Data Loader is responsible for (i) globally repartitioning data

on a given partition key upon loading, (ii) breaking apart single
node data into multiple smaller partitions or chunks and (iii) finally
bulk-loading the single-node databases with the chunks.

The Data Loader consists of two main components: Global
Hasher and Local Hasher. The Global Hasher executes a custom-
made MapReduce job over Hadoop that reads in raw data files
stored in HDFS and repartitions them into as many parts as the
number of nodes in the cluster. The repartitioning job does not
incur the sorting overhead of typical MapReduce jobs.

The Local Hasher then copies a partition from HDFS into the
local file system of each node and secondarily partitions the file into
smaller sized chunks based on the maximum chunk size setting.

The hashing functions used by both the Global Hasher and the
Local Hasher differ to ensure chunks are of a uniform size. They
also differ from Hadoop’s default hash-partitioning function to en-
sure better load balancing when executing MapReduce jobs over
the data.

5.2.4 SQL to MapReduce to SQL (SMS) Planner
HadoopDB provides a parallel database front-end to data analysts

enabling them to process SQL queries.
The SMS planner extends Hive [11]. Hive transforms HiveQL, a

variant of SQL, into MapReduce jobs that connect to tables stored
as files in HDFS. The MapReduce jobs consist of DAGs of rela-
tional operators (such as filter, select (project), join, aggregation)
that operate as iterators: each operator forwards a data tuple to the
next operator after processing it. Since each table is stored as a
separate file in HDFS, Hive assumes no collocation of tables on
nodes. Therefore, operations that involve multiple tables usually
require most of the processing to occur in the Reduce phase of
a MapReduce job. This assumption does not completely hold in
HadoopDB as some tables are collocated and if partitioned on the
same attribute, the join operation can be pushed entirely into the
database layer.

To understand how we extended Hive for SMS as well as the dif-
ferences between Hive and SMS, we first describe how Hive creates
an executable MapReduce job for a simple GroupBy-Aggregation
query. Then, we describe how we modify the execution plan for
HadoopDB by pushing most of the query processing logic into the
database layer.

Consider the following query:
SELECT YEAR(saleDate), SUM(revenue)
FROM sales GROUP BY YEAR(saleDate);

Hive processes the above SQL query in a series of phases:
(1) The parser transforms the query into an Abstract Syntax Tree.
(2) The Semantic Analyzer connects to Hive’s internal catalog,

the MetaStore, to retrieve the schema of the sales table. It also
populates different data structures with meta information such as
the Deserializer and InputFormat classes required to scan the table
and extract the necessary fields.

(3) The logical plan generator then creates a DAG of relational
operators, the query plan.

(4) The optimizer restructures the query plan to create a more
optimized plan. For example, it pushes filter operators closer to the
table scan operators. A key function of the optimizer is to break up
the plan into Map or Reduce phases. In particular, it adds a Repar-
tition operator, also known as a Reduce Sink operator, before Join
or GroupBy operators. These operators mark the Map and Reduce
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Figure 2: (a) MapReduce job generated by Hive (b)
MapReduce job generated by SMS assuming sales is par-
titioned by YEAR(saleDate). This feature is still unsup-
ported (c) MapReduce job generated by SMS assuming
no partitioning of sales

phases of a query plan. The Hive optimizer is a simple, naı̈ve, rule-
based optimizer. It does not use cost-based optimization techniques.
Therefore, it does not always generate efficient query plans. This is
another advantage of pushing as much as possible of the query pro-
cessing logic into DBMSs that have more sophisticated, adaptive or
cost-based optimizers.

(5) Finally, the physical plan generator converts the logical query
plan into a physical plan executable by one or more MapReduce
jobs. The first and every other Reduce Sink operator marks a tran-
sition from a Map phase to a Reduce phase of a MapReduce job and
the remaining Reduce Sink operators mark the start of new MapRe-
duce jobs. The above SQL query results in a single MapReduce
job with the physical query plan illustrated in Fig. 2(a). The boxes
stand for the operators and the arrows represent the flow of data.

(6) Each DAG enclosed within a MapReduce job is serialized
into an XML plan. The Hive driver then executes a Hadoop job.
The job reads the XML plan and creates all the necessary operator
objects that scan data from a table in HDFS, and parse and process
one tuple at a time.

The SMS planner modifies Hive. In particular we intercept the
normal Hive flow in two main areas:

(i) Before any query execution, we update the MetaStore with
references to our database tables. Hive allows tables to exist exter-
nally, outside HDFS. The HadoopDB catalog, Section 5.2.2, pro-
vides information about the table schemas and required Deserial-
izer and InputFormat classes to the MetaStore. We implemented
these specialized classes.

(ii) After the physical query plan generation and before the ex-
ecution of the MapReduce jobs, we perform two passes over the
physical plan. In the first pass, we retrieve data fields that are actu-
ally processed by the plan and we determine the partitioning keys
used by the Reduce Sink (Repartition) operators. In the second
pass, we traverse the DAG bottom-up from table scan operators to
the output or File Sink operator. All operators until the first repar-
tition operator with a partitioning key different from the database’s
key are converted into one or more SQL queries and pushed into
the database layer. SMS uses a rule-based SQL generator to recre-
ate SQL from the relational operators. The query processing logic
that could be pushed into the database layer ranges from none (each



table is scanned independently and tuples are pushed one at a time
into the DAG of operators) to all (only a Map task is required to
output the results into an HDFS file).

Given the above GroupBy query, SMS produces one of two dif-
ferent plans. If the sales table is partitioned by YEAR(saleDate),
it produces the query plan in Fig. 2(b): this plan pushes the entire
query processing logic into the database layer. Only a Map task
is required to output results into an HDFS file. Otherwise, SMS
produces the query plan in Fig. 2(c) in which the database layer
partially aggregates data and eliminates the selection and group-by
operator used in the Map phase of the Hive generated query plan
(Fig. 2(a)). The final aggregation step in the Reduce phase of the
MapReduce job, however, is still required in order to merge partial
results from each node.

For join queries, Hive assumes that tables are not collocated.
Therefore, the Hive generated plan scans each table independently
and computes the join after repartitioning data by the join key. In
contrast, if the join key matches the database partitioning key, SMS
pushes the entire join sub-tree into the database layer.

So far, we only support filter, select (project) and aggregation
operators. Currently, the partitioning features supported by Hive
are extremely naı̈ve and do not support expression-based partition-
ing. Therefore, we cannot detect if the sales table is partitioned
by YEAR(saleDate) or not, therefore we have to make the pes-
simistic assumption that the data is not partitioned by this attribute.
The Hive build [15] we extended is a little buggy; as explained in
Section 6.2.5, it fails to execute the join task used in our bench-
mark, even when running over HDFS tables3. However, we use the
SMS planner to automatically push SQL queries into HadoopDB’s
DBMS layer for all other benchmark queries presented in our ex-
periments for this paper.

5.3 Summary
HadoopDB does not replace Hadoop. Both systems coexist en-

abling the analyst to choose the appropriate tools for a given dataset
and task. Through the performance benchmarks in the following
sections, we show that using an efficient database storage layer cuts
down on data processing time especially on tasks that require com-
plex query processing over structured data such as joins. We also
show that HadoopDB is able to take advantage of the fault-tolerance
and the ability to run on heterogeneous environments that comes
naturally with Hadoop-style systems.

6. BENCHMARKS
In this section we evaluate HadoopDB, comparing it with a

MapReduce implementation and two parallel database imple-
mentations, using a benchmark first presented in [23]4. This
benchmark consists of five tasks. The first task is taken directly
from the original MapReduce paper [8] whose authors claim is
representative of common MR tasks. The next four tasks are
analytical queries designed to be representative of traditional
structured data analysis workloads that HadoopDB targets.

We ran our experiments on Amazon EC2 “large” instances (zone:
us-east-1b). Each instance has 7.5 GB memory, 4 EC2 Compute
Units (2 virtual cores), 850 GB instance storage (2 x 420 GB plus
10 GB root partition) and runs 64-bit platform Linux Fedora 8 OS.

3The Hive team resolved these issues in June after we completed
the experiments. We plan to integrate the latest Hive with the SMS
Planner.
4We are aware of the writing law that references shouldn’t be used
as nouns. However, to save space, we use [23] not as a reference,
but as a shorthand for “the SIGMOD 2009 paper by Pavlo et. al.”

We observed that disk I/O performance on EC2 nodes were ini-
tially quite slow (25MB/s). Consequently, we initialized some ad-
ditional space on each node so that intermediate files and output of
the tasks did not suffer from this initial write slow-down. Once disk
space is initialized, subsequent writes are much faster (86MB/s).
Network speed is approximately 100-110MB/s. We execute each
task three times and report the average of the trials. The final results
from all parallel databases queries are piped from the shell com-
mand into a file. Hadoop and HadoopDB store results in Hadoop’s
distributed file system (HDFS). In this section, we only report re-
sults using trials where all nodes are available, operating correctly,
and have no concurrent tasks during benchmark execution (we drop
these requirements in Section 7). For each task, we benchmark per-
formance on cluster sizes of 10, 50, and 100 nodes.

6.1 Benchmarked Systems
Our experiments compare performance of Hadoop, HadoopDB

(with PostgreSQL5 as the underlying database) and two commercial
parallel DBMSs.

6.1.1 Hadoop
Hadoop is an open-source version of the MapReduce framework,

implemented by directly following the ideas described in the orig-
inal MapReduce paper, and is used today by dozens of businesses
to perform data analysis [1]. For our experiments in this paper, we
use Hadoop version 0.19.1 running on Java 1.6.0. We deployed the
system with several changes to the default configuration settings.
Data in HDFS is stored using 256MB data blocks instead of the de-
fault 64MB. Each MR executor ran with a maximum heap size of
1024MB. We allowed two Map instances and a single Reduce in-
stance to execute concurrently on each node. We also allowed more
buffer space for file read/write operations (132MB) and increased
the sort buffer to 200MB with 100 concurrent streams for merging.
Additionally, we modified the number of parallel transfers run by
Reduce during the shuffle phase and the number of worker threads
for each TaskTracker’s http server to be 50. These adjustments
follow the guidelines on high-performance Hadoop clusters [13].
Moreover, we enabled task JVMs to be reused.

For each benchmark trial, we stored all input and output data in
HDFS with no replication (we add replication in Section 7). Af-
ter benchmarking a particular cluster size, we deleted the data di-
rectories on each node, reformatted and reloaded HDFS to ensure
uniform data distribution across all nodes.

We present results of both hand-coded Hadoop and Hive-coded
Hadoop (i.e. Hadoop plans generated automatically via Hive’s SQL
interface). These separate results for Hadoop are displayed as split
bars in the graphs. The bottom, colored segment of the bars repre-
sent the time taken by Hadoop when hand-coded and the rest of the
bar indicates the additional overhead as a result of the automatic
plan-generation by Hive, and operator function-call and dynamic
data type resolution through Java’s Reflection API for each tuple
processed in Hive-coded jobs.

6.1.2 HadoopDB
The Hadoop part of HadoopDB was configured identically to the

description above except for the number of concurrent Map tasks,
which we set to one. Additionally, on each worker node, Post-
greSQL version 8.2.5 was installed. We increased memory used by
the PostgreSQL shared buffers to 512 MB and the working memory

5Initially, we experimented with MySQL (MyISAM storage layer).
However, we found that while simple table scans are up to 30%
faster, more complicated SQL queries are much slower due to the
lack of clustered indices and poor join algorithms.



size to 1GB. We did not compress data in PostgreSQL.
Analogous to what we did for Hadoop, we present results of

both hand-coded HadoopDB and SMS-coded HadoopDB (i.e. en-
tire query plans created by HadoopDB’s SMS planner). These sep-
arate results for HadoopDB are displayed as split bars in the graphs.
The bottom, colored segment of the bars represents the time taken
by HadoopDB when hand-coded and the rest of the bar indicates
the additional overhead as a result of the SMS planner (e.g., SMS
jobs need to serialize tuples retrieved from the underlying database
and deserialize them before further processing in Hadoop).

6.1.3 Vertica
Vertica is a relatively new parallel database system (founded in

2005) [3] based on the C-Store research project [24]. Vertica is
a column-store, which means that each attribute of each table is
stored (and accessed) separately, a technique that has proven to im-
prove performance for read-mostly workloads.

Vertica offers a “cloud” edition, which we used for the experi-
ments in this paper. Vertica was also used in the performance study
of previous work [23] on the same benchmark, so we configured
Vertica identically to the previous experiments6. The Vertica con-
figuration is therefore as follows: All data is compressed. Vertica
operates on compressed data directly. Vertica implements primary
indexes by sorting the table by the indexed attribute. None of Ver-
tica’s default configuration parameters were changed.

6.1.4 DBMS-X
DBMS-X is the same commercial parallel row-oriented database

as was used for the benchmark in [23]. Since at the time of our
VLDB submission this DBMS did not offer a cloud edition, we
did not run experiments for it on EC2. However, since our Vertica
numbers were consistently 10-15% slower on EC2 than on the Wis-
consin cluster presented in [23]7 (this result is expected since the
virtualization layer is known to introduce a performance overhead),
we reproduce the DBMS-X numbers from [23] on our figures as a
best case performance estimate for DBMS-X if it were to be run on
EC2.

6.2 Performance and Scalability Benchmarks
The first benchmark task (the “Grep task”) requires each sys-

tem to scan through a data set of 100-byte records looking for a
three character pattern. This is the only task that requires process-
ing largely unstructured data, and was originally included in the
benchmark by the authors of [23] since the same task was included
in the original MapReduce paper [8].

To explore more complex uses of the benchmarked systems, the
benchmark includes four more analytical tasks related to log-file
analysis and HTML document processing. Three of these tasks op-
erate on structured data; the final task operates on both structured
and unstructured data.

The datasets used by these four tasks include a UserVisits table
meant to model log files of HTTP server traffic, a Documents table
containing 600,000 randomly generated HTML documents, and a
Rankings table that contains some metadata calculated over the data
in the Documents table. The schema of the tables in the benchmark
data set is described in detail in [23]. In summary, the UserVisits
table contains 9 attributes, the largest of which is destinationURL
which is of type VARCHAR(100). Each tuple is on the order of 150
bytes wide. The Documents table contains two attributes: a URL

6In fact, we asked the same person who ran the queries for this
previous work to run the same queries on EC2 for our paper
7We used a later version of Vertica in these experiments than [23].
On using the identical version, slowdown was 10-15% on EC2.

(VARCHAR(100)) and contents (arbitrary text). Finally, the Rank-
ings table contains three attributes: pageURL (VARCHAR(100)),
pageRank (INT), and avgDuration(INT).

The data generator yields 155 million UserVisits records (20GB)
and 18 million Rankings records (1GB) per node. Since the data
generator does not ensure that Rankings and UserVisits tuples with
the same value for the URL attribute are stored on the same node, a
repartitioning is done during the data load, as described later.

Records for both the UserVisits and Rankings data sets are stored
in HDFS as plain text, one record per line with fields separated by
a delimiting character. In order to access the different attributes
at run time, the Map and Reduce functions split the record by the
delimiter into an array of strings.

6.2.1 Data Loading
We report load times for two data sets, Grep and UserVisits in

Fig. 3 and Fig. 4. While grep data is randomly generated and re-
quires no preprocessing, UserVisits needs to be repartitioned by
destinationURL and indexed by visitDate for all databases during
the load in order to achieve better performance on analytical queries
(Hadoop would not benefit from such repartitioning). We describe,
briefly, the loading procedures for all systems:
Hadoop: We loaded each node with an unaltered UserVisits data
file. HDFS automatically breaks the file into 256MB blocks and
stores the blocks on a local DataNode. Since all nodes load their
data in parallel, we report the maximum node load time from each
cluster. Load time is greatly affected by stragglers. This effect
is especially visible when loading UserVisits, where a single slow
node in the 100-node cluster pushed the overall load time to 4355
seconds and to 2600 seconds on the 10-node cluster, despite the
average load time of only 1100 seconds per node.
HadoopDB: We set the maximum chunk size to 1GB. Each chunk
is located in a separate PostgreSQL database within a node, and
processes SQL queries independently of other chunks. We report
the maximum node load time as the entire load time for both Grep
and UserVisits.

Since the Grep dataset does not require any preprocessing and is
only 535MB of data per node, the entire data was loaded using the
standard SQL COPY command into a single chunk on each node.

The Global Hasher partitions the entire UserVisits dataset across
all nodes in the cluster. Next, the Local Hasher on each node re-
trieves a 20GB partition from HDFS and hash-partitions it into 20
smaller chunks, 1GB each. Each chunk is then bulk-loaded using
COPY. Finally, a clustered index on visitDate is created for each
chunk.

The load time for UserVisits is broken down into several phases.
The first repartition carried out by Global Hasher is the most ex-
pensive step in the process. It takes nearly half the total load time,
14,000 s. Of the remaining 16,000 s, locally partitioning the data
into 20 chunks takes 2500 s (15.6%), the bulk copy into tables takes
5200 s (32.5%), creating clustered indices, which includes sort-
ing, takes 7100 s (44.4%), finally vacuuming the databases takes
1200 s (7.5%). All the steps after global repartitioning are executed
in parallel on all nodes. We observed individual variance in load
times. Some nodes required as little as 10,000 s to completely load
UserVisits after global repartitioning was completed.
Vertica: The loading procedure for Vertica is analogous to the one
described in [23]. The loading time improved since then because a
newer version of Vertica (3.0) was used for these experiments. The
key difference is that now bulk load COPY command runs on all
nodes in the cluster completely in parallel.
DBMS-X: We report the total load time including data compression
and indexing from [23].
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Figure 3: Load Grep (0.5GB/node)
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Figure 4: Load UserVisits (20GB/node)
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Figure 5: Grep Task

In contrast to DBMS-X, the parallel load features of Hadoop,
HadoopDB and Vertica ensure all systems scale as the number of
nodes increases. Since the speed of loading is limited by the slow-
est disk-write speed in the cluster, loading is the only process that
cannot benefit from Hadoop’s and HadoopDB’s inherent tolerance
of heterogeneous environments (see section 7)8.

6.2.2 Grep Task
Each record consists of a unique key in the first 10 bytes, fol-

lowed by a 90-byte character string. The pattern “XYZ” is searched
for in the 90 byte field, and is found once in every 10,000 records.
Each node contains 5.6 million such 100-byte records, or roughly
535MB of data. The total number of records processed for each
cluster size is 5.6 million times the number of nodes.

Vertica, DBMS-X, HadoopDB, and Hadoop(Hive) all executed
the identical SQL:
SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

None of the benchmarked systems contained an index on the field
attribute. Hence, for all systems, this query requires a full table scan
and is mostly limited by disk speed.

Hadoop (hand-coded) was executed identically to [23] (a sim-
ple Map function that performs a sub-string match on “XYZ”). No
Reduce function is needed for this task, so the output of the Map
function is written directly to HDFS.

HadoopDB’s SMS planner pushes the WHERE clause into the
PostgreSQL instances.

Fig. 5 displays the results (note, the split bars were explained in
Section 6.1). HadoopDB slightly outperforms Hadoop as it handles
I/O more efficiently than Hadoop due to the lack of runtime parsing
of data. However, both systems are outperformed by the parallel
databases systems. This difference is due to the fact that both Ver-
tica and DBMS-X compress their data, which significantly reduces
I/O cost ( [23] note that compression speeds up DBMS-X by about
50% on all experiments).

6.2.3 Selection Task
The first structured data task evaluates a simple selection predi-

cate on the pageRank attribute from the Rankings table. There are
approximately 36,000 tuples on each node that pass this predicate.

Vertica, DBMS-X, HadoopDB, and Hadoop(Hive) all executed
the identical SQL:
SELECT pageURL, pageRank FROM Rankings WHERE pageRank > 10;

Hadoop (hand-coded) was executed identically to [23]: a Map
function parses Rankings tuples using the field delimiter, applies
the predicate on pageRank, and outputs the tuple’s pageURL and
8EC2 disks are slow on initial writes. Since performance bench-
marks are not write-limited, they are not affected by disk-write
speeds. Also, we initialized disks before experiments (see Sec-
tion 6).

pageRank as a new key/value pair if the predicate succeeds. This
task does not require a Reduce function.

HadoopDB’s SMS planner pushes the selection and projection
clauses into the PostgreSQL instances.

The performance of each system is presented in Fig. 6. Hadoop
(with and without Hive) performs a brute-force, complete scan of
all data in a file. The other systems, however, benefit from us-
ing clustered indices on the pageRank column. Hence, in general
HadoopDB and the parallel DBMSs are able to outperform Hadoop.

Since data is partitioned by UserVisits destinationURL, the for-
eign key relationship between Rankings pageURL and UserVisits
destinationURL causes the Global and Local Hasher to repartition
Rankings by pageURL. Each Rankings chunk is only 50 MB (col-
located with the corresponding 1GB UserVisits chunk). The over-
head of scheduling twenty Map tasks to process only 1GB of data
per node significantly decreases HadoopDB’s performance.

We, therefore, maintain an additional, non-chunked copy of
the Rankings table containing the entire 1GB. HadoopDB on this
data set outperforms Hadoop because the use of a clustered index
on pageRank eliminates the need to sequentially scan the entire
data set. HadoopDB scales better relative to DBMS-X and Vertica
mainly due to increased network costs of these systems which
dominate when query time is otherwise very low.

6.2.4 Aggregation Task
The next task involves computing the total adRevenue generated

from each sourceIP in the UserVisits table, grouped by either the
seven-character prefix of the sourceIP column or the entire sourceIP
column. Unlike the previous tasks, this task requires intermediate
results to be exchanged between different nodes in the cluster (so
that the final aggregate can be calculated). When grouping on the
seven-character prefix, there are 2000 unique groups. When group-
ing on the entire sourceIP, there are 2,500,000 unique groups.

Vertica, DBMS-X, HadoopDB, and Hadoop(Hive) all executed
the identical SQL:
Smaller query:
SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);
Larger query:
SELECT sourceIP, SUM(adRevenue) FROM UserVisits
GROUP BY sourceIP;

Hadoop (hand-coded) was executed identically to [23]: a Map
function outputs the adRevenue and the first seven characters of the
sourceIP field (or the whole field in the larger query) which gets
sent to a Reduce function which performs the sum aggregation for
each prefix (or sourceIP).

The SMS planner for HadoopDB pushes the entire SQL query
into the PostgreSQL instances. The output is then sent to Reduce
jobs inside of Hadoop that perform the final aggregation (after col-
lecting all pre-aggregated sums from each PostgreSQL instance).
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Figure 6: Selection Task
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Figure 7: Large Aggregation Task
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Figure 8: Small Aggregation Task

The performance numbers for each benchmarked system is dis-
played in Fig. 7 and 8. Similar to the Grep task, this query is
limited by reading data off disk. Thus, both commercial systems
benefit from compression and outperform HadoopDB and Hadoop.

We observe a reversal of the general rule that Hive adds an over-
head cost to hand-coded Hadoop in the “small” (substring) aggrega-
tion task (the time taken by Hive is represented by the lower part of
the Hadoop bar in Fig. 8). Hive performs much better than Hadoop
because it uses a hash aggregation execution strategy (it maintains
an internal hash-aggregate map in the Map phase of the job), which
proves to be optimal when there is a small number of groups. In
the large aggregation task, Hive switches to sort-based aggregation
upon detecting that the number of groups is more than half the num-
ber of input rows per block. In contrast, in our hand-coded Hadoop
plan we (and the authors of [23]) failed to take advantage of hash
aggregation for the smaller query because sort-based aggregation
(using Combiners) is a MapReduce standard practice.

These results illustrate the benefit of exploiting optimizers
present in database systems and relational query systems like
Hive, which can use statistics from the system catalog or simple
optimization rules to choose between hash aggregation and sort
aggregation.

Unlike Hadoop’s Combiner, Hive serializes partial aggregates
into strings instead of maintaining them in their natural binary rep-
resentation. Hence, Hive performs much worse than Hadoop on the
larger query.

PostgreSQL chooses to use hash aggregation for both tasks as it
can easily fit the entire hash aggregate table for each 1GB chunk
in memory. Hence, HadoopDB outperforms Hadoop on both tasks
due to its efficient aggregation implementation.

This query is well-suited for systems that use column-oriented
storage, since the two attributes accessed in this query (sourceIP
and adRevenue) consist of only 20 out of the more than 200 bytes
in each UserVisits tuple. Vertica is thus able to significantly outper-
form the other systems due to the commensurate I/O savings.

6.2.5 Join Task
The join task involves finding the average pageRank of the set

of pages visited from the sourceIP that generated the most revenue
during the week of January 15-22, 2000. The key difference be-
tween this task and the previous tasks is that it must read in two
different data sets and join them together (pageRank information is
found in the Rankings table and revenue information is found in the
UserVisits table). There are approximately 134,000 records in the
UserVisits table that have a visitDate value inside the requisite date
range.

Unlike the previous three tasks, we were unable to use the same
SQL for the parallel databases and for Hadoop-based systems. This
is because the Hive build we extended was unable to execute this

query. Although this build accepts a SQL query that joins, filters
and aggregates tuples from two tables, such a query fails during
execution. Additionally, we noticed that the query plan for joins of
this type uses a highly inefficient execution strategy. In particular,
the filtering operation is planned after joining the tables. Hence,
we are only able to present hand-coded results for HadoopDB and
Hadoop for this query.

In HadoopDB, we push the selection, join, and partial aggrega-
tion into the PostgreSQL instances with the following SQL:
SELECT sourceIP, COUNT(pageRank), SUM(pageRank),
SUM(adRevenue) FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND
UV.visitDate BETWEEN ‘2000-01-15’ AND ‘2000-01-22’
GROUP BY UV.sourceIP;

We then use a single Reduce task in Hadoop that gathers all of
the partial aggregates from each PostgreSQL instance to perform
the final aggregation.

The parallel databases execute the SQL query specified in [23].
Although Hadoop has support for a join operator, this operator

requires that both input datasets be sorted on the join key. Such
a requirement limits the utility of the join operator since in many
cases, including the query above, the data is not already sorted and
performing a sort before the join adds significant overhead. We
found that even if we sorted the input data (and did not include the
sort time in total query time), query performance using the Hadoop
join was lower than query performance using the three phase MR
program used in [23] that used standard ‘Map’ and ‘Reduce’ oper-
ators. Hence, for the numbers we report below, we use an identical
MR program as was used (and described in detail) in [23].

Fig. 9 summarizes the results of this benchmark task. For
Hadoop, we observed similar results as found in [23]: its perfor-
mance is limited by completely scanning the UserVisits dataset on
each node in order to evaluate the selection predicate.

HadoopDB, DBMS-X, and Vertica all achieve higher perfor-
mance by using an index to accelerate the selection predicate
and having native support for joins. These systems see slight
performance degradation with a larger number of nodes due to the
final single node aggregation of and sorting by adRevenue.

6.2.6 UDF Aggregation Task
The final task computes, for each document, the number of in-

ward links from other documents in the Documents table. URL
links that appear in every document are extracted and aggregated.

HTML documents are concatenated into large files for Hadoop
(256MB each) and Vertica (56MB each) at load time. HadoopDB
was able to store each document separately in the Documents ta-
ble using the TEXT data type. DBMS-X processed each HTML
document file separately, as described below.

The parallel databases should theoretically be able to use a user-
defined function, F, to parse the contents of each document and
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Figure 9: Join Task
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Figure 10: UDF Aggregation task

emit a list of all URLs found in the document. A temporary table
would then be populated with this list of URLs and then a simple
count/group-by query would be executed that finds the number of
instances of each unique URL.

Unfortunately, [23] found that in practice, it was difficult to im-
plement such a UDF inside the parallel databases. In DBMS-X,
it was impossible to store each document as a character BLOB in-
side the DBMS and have the UDF operate on it directly, due to “a
known bug in [the] version of the system”. Hence, the UDF was
implemented inside the DBMS, but the data was stored in separate
HTML documents on the raw file system and the UDF made exter-
nal calls accordingly.

Vertica does not currently support UDFs, so a simple document
parser had to be written in Java externally to the DBMS. This parser
is executed on each node in parallel, parsing the concatenated doc-
uments file and writing the found URLs into a file on the local disk.
This file is then loaded into a temporary table using Vertica’s bulk-
loading tools and a second query is executed that counts, for each
URL, the number of inward links.

In Hadoop, we employed standard TextInputFormat and parsed
each document inside a Map task, outputting a list of URLs found
in each document. Both a Combine and a Reduce function sum the
number of instances of each unique URL.

In HadoopDB, since text processing is more easily expressed in
MapReduce, we decided to take advantage of HadoopDB’s ability
to accept queries in either SQL or MapReduce and we used the lat-
ter option in this case. The complete contents of the Documents
table on each PostgreSQL node is passed into Hadoop with the fol-
lowing SQL:
SELECT url, contents FROM Documents;

Next, we process the data using a MR job. In fact, we used iden-
tical MR code for both Hadoop and HadoopDB.

Fig. 10 illustrates the power of using a hybrid system like
HadoopDB. The database layer provides an efficient storage layer
for HTML text documents and the MapReduce framework provides
arbitrary processing expression power.

Hadoop outperforms HadoopDB as it processes merged files of
multiple HTML documents. HadoopDB, however, does not lose
the original structure of the data by merging many small files into
larger ones. Note that the total merge time was about 6000 seconds
per node. This overhead is not included in Fig. 10.

DBMS-X and Vertica perform worse than Hadoop-based systems
since the input files are stored outside of the database. Moreover,
for this task both commercial databases do not scale linearly with
the size of the cluster.

6.3 Summary of Results Thus Far
In the absence of failures or background processes, HadoopDB

is able to approach the performance of the parallel database sys-
tems. The reason the performance is not equal is due to the fol-
lowing facts: (1) PostgreSQL is not a column-store (2) DBMS-X
results are overly optimistic by approximately a factor of 15%, (3)
we did not use data compression in PostgreSQL, and (4) there is
some overhead in the interaction between Hadoop and PostgreSQL
which gets proportionally larger as the number of chunks increases.
We believe some of this overhead can be removed with the increase
of engineering time.

HadoopDB consistently outperforms Hadoop (except for the
UDF aggregation task since we did not count the data merging time
against Hadoop).

While HadoopDB’s load time is about 10 times longer than
Hadoop’s, this cost is amortized across the higher performance of
all queries that process this data. For certain tasks, such as the Join
task, the factor of 10 load cost is immediately translated into a
factor of 10 performance benefit.

7. FAULT TOLERANCE AND HETEROGE-
NEOUS ENVIRONMENT

As described in Section 3, in large deployments of shared-
nothing machines, individual nodes may experience high rates
of failure or slowdown. While running our experiments for
this research paper on EC2, we frequently experienced both
node failure and node slowdown (e.g., some notifications we
received: “4:12 PM PDT: We are investigating a localized issue
in a single US-EAST Availability Zone. As a result, a small
number of instances are unreachable. We are working to restore
the instances.”, and “Starting at 11:30PM PDT today, we will be
performing maintenance on parts of the Amazon EC2 network.
This maintenance has been planned to minimize the probability
of impact to Amazon EC2 instances, but it is possible that some
customers may experience a short period of elevated packet loss as
the change takes effect.”)

For parallel databases, query processing time is usually deter-
mined by the the time it takes for the slowest node to complete its
task. In contrast, in MapReduce, each task can be scheduled on any
node as long as input data is transferred to or already exists on a free
node. Also, Hadoop speculatively redundantly executes tasks that
are being performed on a straggler node to reduce the slow node’s
effect on query time.

Hadoop achieves fault tolerance by restarting tasks of failed
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Figure 11: Fault tolerance and heterogeneity experi-
ments on 10 nodes

nodes on other nodes. The JobTracker receives heartbeats from
TaskTrackers. If a TaskTracker fails to communicate with the
JobTracker for a preset period of time, TaskTracker expiry interval,
the JobTracker assumes failure and schedules all map/reduce tasks
of the failed node on other TaskTrackers. This approach is different
from most parallel databases which abort unfinished queries upon a
node failure and restart the entire query processing (using a replica
node instead of the failed node).

By inheriting the scheduling and job tracking features of
Hadoop, HadoopDB yields similar fault-tolerance and straggler
handling properties as Hadoop.

To test the effectiveness of HadoopDB in failure-prone and het-
erogeneous environments in comparison to Hadoop and Vertica,
we executed the aggregation query with 2000 groups (see Section
6.2.4) on a 10-node cluster and set the replication factor to two for
all systems. For Hadoop and HadoopDB we set the TaskTracker
expiry interval to 60 seconds. The following lists system-specific
settings for the experiments.
Hadoop (Hive): HDFS managed the replication of data. HDFS
replicated each block of data on a different node selected uniformly
at random.
HadoopDB (SMS): As described in Section 6, each node con-
tains twenty 1GB-chunks of the UserVisits table. Each of these
20 chunks was replicated on a different node selected at random.
Vertica: In Vertica, replication is achieved by keeping an extra copy
of every table segment. Each table is hash partitioned across the
nodes and a backup copy is assigned to another node based on a
replication rule. On node failure, this backup copy is used until the
lost segment is rebuilt.

For fault-tolerance tests, we terminated a node at 50% query
completion. For Hadoop and HadoopDB, this is equivalent to fail-
ing a node when 50% of the scheduled Map tasks are done. For
Vertica, this is equivalent to failing a node after 50% of the average
query completion time for the given query.

To measure percentage increase in query time in heterogeneous
environments, we slow down a node by running an I/O-intensive
background job that randomly seeks values from a large file and
frequently clears OS caches. This file is located on the same disk
where data for each system is stored.

We observed no differences in percentage slowdown between
HadoopDB with or without SMS and between Hadoop with or with-
out Hive. Therefore, we only report results of HadoopDB with SMS
and Hadoop with Hive and refer to both systems as HadoopDB and
Hadoop from now on.

The results of the experiments are shown in Fig. 11. Node failure
caused HadoopDB and Hadoop to have smaller slowdowns than
Vertica. Vertica’s increase in total query execution time is due to
the overhead associated with query abortion and complete restart.

In both HadoopDB and Hadoop, the tasks of the failed node are
distributed over the remaining available nodes that contain replicas
of the data. HadoopDB slightly outperforms Hadoop. In Hadoop
TaskTrackers assigned blocks not local to them will copy the data
first (from a replica) before processing. In HadoopDB, however,
processing is pushed into the (replica) database. Since the number
of records returned after query processing is less than the raw size of
data, HadoopDB does not experience Hadoop’s network overhead
on node failure.

In an environment where one node is extremely slow, HadoopDB
and Hadoop experience less than 30% increase in total query exe-
cution time, while Vertica experiences more than a 170% increase
in query running time. Vertica waits for the straggler node to com-
plete processing. HadoopDB and Hadoop run speculative tasks on
TaskTrackers that completed their tasks. Since the data is chunked
(HadoopDB has 1GB chunks, Hadoop has 256MB blocks), multi-
ple TaskTrackers concurrently process different replicas of unpro-
cessed blocks assigned to the straggler. Thus, the delay due to pro-
cessing those blocks is distributed across the cluster.

In our experiments, we discovered an assumption made by
Hadoop’s task scheduler that contradicts the HadoopDB model.
In Hadoop, TaskTrackers will copy data not local to them from
the straggler or the replica. HadoopDB, however, does not move
PostgreSQL chunks to new nodes. Instead, the TaskTracker of the
redundant task connects to either the straggler’s database or the
replica’s database. If the TaskTracker connects to the straggler’s
database, the straggler needs to concurrently process an additional
query leading to further slowdown. Therefore, the same feature
that causes HadoopDB to have slightly better fault tolerance
than Hadoop, causes a slightly higher percentage slow down in
heterogeneous environments for HadoopDB. We plan to modify
the current task scheduler implementation to provide hints to
speculative TaskTrackers to avoid connecting to a straggler node
and to connect to replicas instead.

7.1 Discussion
It should be pointed out that although Vertica’s percentage

slowdown was larger than Hadoop and HadoopDB, its total query
time (even with the failure or the slow node) was still lower than
Hadoop or HadoopDB. Furthermore, Vertica’s performance in the
absence of failures is an order of magnitude faster than Hadoop and
HadoopDB (mostly because its column-oriented layout of data is a
big win for the small aggregation query). This order of magnitude
of performance could be translated to the same performance as
Hadoop and HadoopDB, but using an order of magnitude fewer
nodes. Hence, failures and slow nodes become less likely for
Vertica than for Hadoop and HadoopDB. Furthermore, eBay’s
6.5 petabyte database (perhaps the largest known data warehouse
worldwide as of June 2009) [4] uses only 96 nodes in a shared-
nothing cluster. Failures are still reasonably rare at fewer than 100
nodes.

We argue that in the future, 1000-node clusters will be com-
monplace for production database deployments, and 10,000-node
clusters will not be unusual. There are three trends that support
this prediction. First, data production continues to grow faster than
Moore’s law (see Section 1). Second, it is becoming clear that
from both a price/performance and (an increasingly important)
power/performance perspective, many low-cost, low-power servers
are far better than fewer heavy-weight servers [14]. Third, there



is now, more than ever, a requirement to perform data analysis
inside of the DBMS, rather than pushing data to external systems
for analysis. Disk-heavy architectures such as the eBay 96-node
DBMS do not have the necessary CPU horsepower for analytical
workloads [4].

Hence, awaiting us in the future are heavy-weight analytic
database jobs, requiring more time and more nodes. The probabil-
ity of failure in these next generation applications will be far larger
than it is today, and restarting entire jobs upon a failure will be
unacceptable (failures might be common enough that long-running
jobs never finish!) Thus, although Hadoop and HadoopDB pay a
performance penalty for runtime scheduling, block-level restart,
and frequent checkpointing, such an overhead to achieve robust
fault tolerance will become necessary in the future. One feature
of HadoopDB is that it can elegantly transition between both ends
of the spectrum. Since one chunk is the basic unit of work, it can
play in the high-performance/low-fault-tolerance space of today’s
workloads (like Vertica) by setting a chunk size to be infinite, or in
high fault tolerance by using more granular chunks (like Hadoop).
In future work, we plan to explore the fault-tolerance/performance
tradeoff in more detail.

8. CONCLUSION
Our experiments show that HadoopDB is able to approach the

performance of parallel database systems while achieving similar
scores on fault tolerance, an ability to operate in heterogeneous en-
vironments, and software license cost as Hadoop. Although the
performance of HadoopDB does not in general match the perfor-
mance of parallel database systems, much of this was due to the
fact that PostgreSQL is not a column-store and we did not use data
compression in PostgreSQL. Moreover, Hadoop and Hive are rel-
atively young open-source projects. We expect future releases to
enhance performance. As a result, HadoopDB will automatically
benefit from these improvements.

HadoopDB is therefore a hybrid of the parallel DBMS and
Hadoop approaches to data analysis, achieving the performance
and efficiency of parallel databases, yet still yielding the scalability,
fault tolerance, and flexibility of MapReduce-based systems.
The ability of HadoopDB to directly incorporate Hadoop and
open source DBMS software (without code modification) makes
HadoopDB particularly flexible and extensible for performing data
analysis at the large scales expected of future workloads.
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