
A Shared Execution Strategy for Multiple Pattern Mining
Requests over Streaming Data ∗

Di Yang
Worcester Polytechnic Institute

Computer Science
Department

diyang@wpi.edu

Elke A. Rundensteiner
Worcester Polytechnic Institute

Computer Science
Department

rundenst@cs.wpi.edu

Matthew O. Ward
Worcester Polytechnic Institute

Computer Science
Department

matt@cs.wpi.edu

ABSTRACT
In diverse applications ranging from stock trading to traffic mon-
itoring, popular data streams are typically monitored by multiple
analysts for patterns of interest. These analysts may submit similar
pattern mining requests, such as cluster detection queries, yet cus-
tomized with different parameter settings. In this work, we present
an efficient shared execution strategy for processing a large num-
ber of density-based cluster detection queries with arbitrary param-
eter settings. Given the high algorithmic complexity of the cluster-
ing process and the real-time responsiveness required by streaming
applications, serving multiple such queries in a single system is
extremely resource intensive. The naive method of detecting and
maintaining clusters for different queries independently is often in-
feasible in practice, as its demands on system resources increase
dramatically with the cardinality of the query workload. To over-
come this, we analyze the interrelations between the cluster sets
identified by queries with different parameters settings, including
both pattern-specific and window-specific parameters. We intro-
duce the notion of thegrowth propertyamong the cluster sets iden-
tified by different queries, and characterize the conditions under
which it holds. By exploiting thisgrowth propertywe propose a
uniform solution, calledChandi, which represents identified clus-
ter sets as one single compact structure and performs integrated
maintenance on them – resulting in significant sharing of compu-
tational and memory resources. Our comprehensive experimental
study, using real data streams from domains of stock trades and
moving object monitoring, demonstrates thatChandi is on aver-
age four times faster than the best alternative methods, while using
85% less memory space in our test cases. It also shows thatChandi
scales in handling large numbers of queries on the order of hun-
dreds or even thousands under high input data rates.

1. INTRODUCTION

∗This work is supported under NSF grants CCF-0811510, IIS-
0119276 and IIS-00414380. We thank our collaborators at MITRE
Corporation, Jennifer Casper and Peter Leveille, for the GMTI data
stream generator

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Motivation. The discovery of complex patterns such as clusters,
outliers, and associations from huge volumes of streaming data has
been recognized as critical for many domains, ranging from stock
market analysis to traffic monitoring. Previous research effort that
have developed efficient algorithms for streaming pattern detection
focused on single query processing [5, 6, 18]. Little effort has been
made towards simultaneous execution of multiple pattern mining
queries against the same input stream. In this work, we provide a
strategy to efficiently execute a large number (on the order of hun-
dreds or even thousands) of pattern mining queries with different
parameter settings, while still achieving real-time responsiveness
required by stream applications.

Complex pattern detection queries are usually parameterized, be-
cause pattern detection processes are driven by the domain knowl-
edge of the analysts and the specific analysis tasks. For example,
a query asking for the stocks that dropped or rose significantly
in the most recent transactions can be considered as a parameter-
ized query. Here, analysts need to specify parameters that define
their notion of “significance” in price fluctuation and the mean-
ing of “most recent” transactions based on their application se-
mantics. Other examples of parameterized queries include density-
based clustering [9] that require a range and count threshold as in-
put, and K-means style clustering [11] that requires K as input.

Given the prevalence of parameterized queries, a stream process-
ing system often needs to handle multiple such queries. Multiple
analysts monitoring the same input stream may submit the same
pattern search but using different parameter settings. Using the ear-
lier example, different analysts may have different interpretations
of the “significance” in price fluctuation (say from10−80% of the
original price). Even a single analyst may submit multiple queries
with different parameter settings, because determining a priori the
most effective input parameters is difficult when faced with an un-
known input stream. In streaming environments, the nonrepeata-
bility of streaming data requires analysts to supply the most appro-
priate input parameters early on. Otherwise, they may permanently
lose the opportunity to accurately discover the patterns in at least
a portion of the stream. Thus, an ideal stream processing system
should be able to accommodate multiple queries covering many, if
not all, major parameter settings of a parameterized query, and thus
capture all potentially valuable patterns in the stream.

In this work, we tackle multiple query optimization for density-
based clustering queries over sliding windows. Such query type
is of relevance to many important applications, such as monitoring
congestions (clusters) in traffic from the streams reporting vehicle
positions, and learning “transaction-intensive areas” (clusters) from
the most recent stock transactions. In these applications, sliding
window semantics need to be applied to force the clusters to form
based on the most recent portion of the input streams only. The

out-of-date information, such as the positions of vehicles reported
a long time ago, should no longer contribute to the recent clustering
results and thus has to be purged from the window.

Challenges. Each density-based clustering query over slid-
ing windows has four input parameters: two pattern parameters, a
range thresholdθrange and a count thresholdθcnt, and two win-
dow parameters: window sizewin and slide sizeslide. Any such
query can be expressed by the template given in Figure 1.

Qi: DETECT Density-Based Clusters FROM stream

USING θrange = r and θcnt = c

IN Windows WITH win = w and slide = s

Figure 1: Templated density-based cluster detection query for
sliding windows over a data steam

Realizing parameterization for this query type is important not
only because its input parameters, such asθrange and θcnt, are
difficult to determine without pre-analysis of the stream data, but
also because even a slight difference in any of these parameters
may cause totally different cluster structures to be identified. For
instance, figure 8 shows different clusters identified in a subpart of
the GMTI [7] data stream by density-based clustering queries with
different pattern parameter settings.

Given the high algorithmic complexity of density-based cluster-
ing, serving a large number of such clustering queries in a single
system is highly resource intensive. The naive method of maintain-
ing progressive clusters (clusters identified in the previous window)
for multiple queries independently has prohibitively high demands
on both computational and memory resources.

Thus, the key problem we need to solve is to design a cluster
maintenance mechanism that achieves effective sharing of system
resources for multiple queries. This is a challenging problem, be-
cause the meta-information required to be maintained by this query
type is more complex than those for SQL query operators. More
specifically, we need to maintain the identified cluster structures,
which are defined by the tuples and the global topological relation-
ships among tuples. While SQL operators, such as join or aggre-
gation operators, usually maintain pair-wise relations between two
tuples (independent from the rest of the tuples) or simply numbers
(aggregation results). The techniques [10, 13] regarding sharing
among SQL queries are not adequate to solve our problem.

Proposed Solution. Our proposed solution allows arbitrary
parameter settings for queries on all four input parameters. We
first discover that given the same window parameters, if a query
Qi’s pattern parameters are “more restricted” than those of another
queryQj , thegrowth property(Section 4) holds between the clus-
ter sets identified byQi andQj . Thisgrowth propertyallows us to
incrementally organize the clusters identified by multiple queries
into an integrated structure, calledIntView. As a highly compact
structure,IntView saves the memory space needed for storing the
clusters identified by multiple queries. More importantly,IntView
also enables integrated maintenance for the progressive clusters of
multiple workload queries, and thus effectively saves the computa-
tional resources from maintaining them independently.

We also propose a “meta querystrategy”, which uses a single
meta query to represent all the workload queries, when their pat-
tern parameters are the same. The proposed meta query strategy
adopts a flexible window management mechanism to efficiently or-
ganize the query windows that need to be maintained by multiple
queries. By leveraging the overlap among query windows, it min-
imizes the number of windows that need to be maintained in the

system. We show in Section 6 that our meta query technique suc-
cessfully transforms the problem of maintaining multiple queries
into the execution of a single query.

Finally, we combine theIntViewtechnique and meta query strat-
egy to form one integrated solution. We call itChandi 1 , which
stands for Clustering high speed streaming data for multiple queries
using integrated maintenance.Chandi integrates the progressive
clusters detected by all workload queries into a single structure, and
thus realizes incremental storage and maintenance for this meta in-
formation across the queries. Computation-wise, for each window,
Chandi only requires a single pass through the new data points,
each running only one range query search and communicating with
its neighbors once for a group of shared queries. Memory-wise,
given the maximum window size allowed, the upper bound of the
memory consumption ofChandi for a group of shared queries is
independent of the number of queries in the group (see Section 7).
Thus,Chandiis a full sharing algorithm for arbitrary density-based
clustering queries over windowed streams.

Our experimental study (in Section 8) shows that the system us-
ing our proposed algorithmChandicomfortably handles 100 arbi-
trary workload queries under a 1K tuple per second data rate. If
the number of workload queries increases to 1K, the system still
works stably with a 300 tuple per second input rate. On the same
experimental platform, given the 300 tuples per second input rate,
the independent execution strategies from the literature, such asIn-
cDBSCAN[8] andExtra-N [18], can only handle less than 1.7 and
12 percent of the same 1K query workload, respectively.

Contributions. The contributions of this work include: 1)
We characterize thegrowth propertythat holds among the density-
based cluster sets as a general concept enabling multiple cluster-
ing query sharing in both dynamic and static environments. 2)
We introduce a technique calledIntView that realizes integrated
maintenance for the density-based cluster sets identified by mul-
tiple queries in the same dataset. 3) We develop ameta querystrat-
egy as general technique to efficiently execute multiple sliding win-
dow queries with varying window parameters. 4) We propose the
first algorithm that realizes full sharing for multiple density-based
clustering queries over streaming windows. 5) Our comprehensive
experiments on several real streaming datasets confirm the effec-
tiveness of our proposed algorithms and also its superiority over all
state-of-art alternatives in both CPU time and memory utilization.

2. PROBLEM DEFINITION
Density-Based Clustering in Sliding Windows. We first de-

fine the concept of density-based clusters [9, 8]. We use the term
data pointto refer to a multi-dimensional tuple in the data stream.
Density-based cluster detection uses a range thresholdθrange ≥ 0
to define the neighbor relationship (neighborship) between any two
data points. For two data pointspi andpj , if the distance between
them is no larger thanθrange, pi andpj are said to be neighbors.
We use the functionNumNei(pi, θ

range) to denote the number
of neighbors a data pointpi has, given theθrange threshold.

Definition 2.1. Density-Based Cluster: Given θrange and a
count thresholdθcnt, a data pointpi with NumNei(pi, θ

range)
≥ θcnt is defined as a core point. Otherwise, ifpi is a neighbor
of any core point,pi is an edge point.pi is a noise point if it is
neither a core point nor an edge point. Two core pointsc0 andcn

are connected if they are neighbors of each other, or there exists
a sequence of core pointsc0, c1, ...cn−1, cn, where for anyi with
0 ≤ i ≤ n − 1, a pair of core pointsci andci+1 are neighbors of

1name of a powerful god with multiple hands in hindu theology

each other. Finally, a density-based cluster is defined as a group of
connected core points and the edge points attached to them. Any
pair of core points in a cluster are connected with each other.

Figure 2 shows an example of a density-based cluster composed of
11core points(black) and 2edge points(grey) inW0.

We focus on periodic sliding window semantics as proposed by
CQL [2] and widely used in the literature [18, 3]. Such semantics
can be either time-based or count-based. For both cases, each query
Q has a of sizeQ.win (either a time interval or a tuple count) and
a slide sizeQ.slide. The patterns will be generated only based on
the data points falling into the window. The template of this query
type has been shown in Section 1.

Optimization for Multiple Queries. Queries over the same
input stream can have arbitrary settings on all four parameters. We
call all the queries submitted to the system together a Query Group
QG, and each of them a Member Query ofQG. We focus on the
generation of complete clustering results. In particular, we output
the members of each cluster, each associated with the cluster id of
the cluster they belong to. Given the precondition that all the mem-
ber queries are accurately answered, our goal is to minimize both
the average processing time for each data point and the memory
space needed by the system.

3. EXISTING SINGLE QUERY EXECUTION
AND BASIC SHARING STRATEGY

3.1 Extra-N Algorithm
Alternative methods for processing a single density-based clus-

tering query over sliding windows are discussed in [18]. Both ana-
lytical and experimental studies conducted in [18] show thatExtra-
N is the best existing approach for executing a single query of this
type. Extra-N realizes efficient evaluation by incrementally main-
taining the cluster structures identified in the query window. Tech-
nically, Extra-N is based on two main ideas, namely the hybrid
neighborship abstraction and the notion of predicted views.

Hybrid (Exact+Abstracted) Neighborship Abstraction. Since
density-based cluster structures are defined based on the neighbor-
ships among data points, efficiently maintaining the neighborships
identified in the windows is naturally the core task for cluster struc-
ture maintenance. For each non-core point in the window,Extra-N
maintains the exact neighborships (a neighbor list containing links
to each of its neighbors). For each core point,Extra-N maintains
the abstracted neighborships for it, including its neighbor count and
cluster membership.

General Notion of Predicted Views. Another problem that
needs to be solved for incremental maintenance of density-based
clusters is to efficiently discount the effect of expired data points
from the previously formed patterns. The expiration of existing
data points may cause complex pattern structure changes, such as
splitting of clusters. Detecting and handling these changes espe-
cially splitting, may require large amount of computation, which
could be as expensive as recomputing the clusters from scratch.

To address this problem,Extra-N exploits the general notion of
predicted views. It is well known that, since sliding windows tend
to partially overlap (slide < win), some of the data points falling
into a windowWi will also participate in the windows right af-
ter Wi. Based on the data points in the current window, say a
datasetDcur, and the slide size, we can exactly “predict” the spe-
cific subset ofDcur that will participate in each of the future win-
dows. We can thus pre-determine some properties of these future
windows (refered as “predicted windows”) based on these known-
to-participate data points and thus form the “predicted views” for

them. Figure 2 shows an example of the predicted views for three
future windows. In this example, the window size and the slide
size of the query are 16 tuples and 4 tuples respectively. The black,
grey and white spots represent the core, edge and noise points iden-
tified in each predicted view. The lines among any two data points
represent the neighborship between them. By using the predicted

Figure 2: Predicted views of four consecutive windows atW0

view technique, we can avoid the computational effort needed for
discounting the effect of such expired data points from the detected
clusters. The idea is to pre-generate the partial clusters for the fu-
ture windows based on the data points that are in the current win-
dow and known to participate in those future windows (without
considering the to-be-expired ones). Then when the window slides,
we can simply use the new data points to update the pre-generated
clusters in the predicted views. Figures 2 and 3 respectively demon-
strate examples of the “pre-generated” clusters in future windows
and the updated clusters after the window slides.

Figure 3: Updated predicted views of four windows atW1

Discussion. At each window slide,Extra-N runs one range
query search for each new data point to update the progressive
clusters, which are represented by the predicted views. Although
Extra-N is an effective solution for single query execution, execut-
ing Extra-Nalgorithm for each member query independently is not
scalable for handling aQG with large|QG|. We thus aim to design
a shared processing strategy to handle a large query group against
high speed data streams.

3.2 Sharing Range Query Searches
The basic strategy to share the computations among multiple

density-based clustering queries is to share the range query searches.

Generally, to execute a query groupQG with |QG|=N , we can ex-
ecute NExtra-N algorithms, one for each member query, indepen-
dently (each maintaining its own progressive clusters), but share the
range query searches. Specifically, for each new data pointpnew,
we run one instead of|QG| range query searches, withQi.θ

range

the largestθrange in QG. Using the result set of this “broadest”
range query search, we then gradually filter out the results for the
queries with smaller and smallerθrange. Since the range query
search with the largestθrange is in any case needed by at least one
query, no extra computation is introduced by this process. Consid-
ering the expensiveness of range query searches, sharing them can
be beneficial, especially for large windows.

3.3 Discussion.
However, sharing range query searches alone is not sufficient for

handling a heavy workload containing hundreds or even thousands
of queries. Two critical problems still remain: 1) Since every mem-
ber query needs to store its progressive clusters independently, the
memory space for executing aQG grows linearly with|QG|. 2)
Because of the independent cluster storage, the cluster maintenance
effort for different queries cannot be shared. To solve these prob-
lems, we propose below an integrated cluster maintenance mecha-
nism, which effectively shares both the storage and computational
resources needed by cluster maintenance for multiple queries.

4. GROWTH PROPERTY AND HIERARCHI-
CAL CLUSTER STRUCTURES

Growth property. Now we introduce an important property
of density-based cluster structures that will later be exploited to
form the basis for efficient multiple query sharing. We call this the
“growth property” of density-based clusters.

Definition 4.1. Given two density-based clustersCi and Cj

(each cluster is a set of data points, which are called cluster mem-
bers of this cluster), if for any data point,p ∈ Ci impliesp ∈ Cj ,
we say thatCi is contained byCj , denoted byCi ⊂ Cj .

Definition 4.2. Given two cluster setsClu Set1 andClu Set2
with for i = 1, 2, Clu Seti =

S

1≤x≤n Cx, and for anyy 6= z,
Cy ∩ Cz = ∅. If for any Ci in Clu Set1, there exists exactly
oneCj in Clu Set2 that Ci ⊂ Cj , Clu Set2 is defined to be a
“ growth” of Clu Set1. We say the growth property holds between
Clu Set1 andClu Set2.

We now characterize the possible relationships between the two
cluster sets between which thegrowth propertyholds (see Figures
4 and 5 for an example).

Observation 4.3. GivenClu Set1 andClu Set2 with
Clu Set2 a growth ofClu Set1, then any clusterCj in Clu Set2
must either be aNew cluster (for anyp ∈ Cj , p 6∈ Ci, if Ci is in
Clu Set1), an Expansion of a single cluster inClu Set1 (there
exists exactly oneCi in Clu Set1 such thatCi ⊂ Cj), or a Merge
of multiple clusters inClu Set1 (there existCi, Ci+1,...Ci+n(n >

0) in Clu Set1 with Ci, Ci+1,...Ci+n ⊂ Cj .

The black circles in Figures 4 and 5 represent the data points
belonging to both cluster sets, while the gray ones represent those
belonging toClu Set2 only. The clusterC4 in Clu Set2 is a
merge of clusterC1 andC2 in Clu Set1, while the clustersC5 and
C6 in Clu Set2 are an expansion of clusterC2 in Clu Set1 and
a new cluster respectively. Generally, ifClu Set2 is a “growth”
of Clu Set1, any two data points belonging to the same cluster in
Clu Set1 will also belong to the same cluster inClu Set2.

Figure 4: Cluster Set 1 con-
tains 3 clusters

Figure 5: Cluster Set 2 con-
tains 3 clusters. Cluster Set 2
is a growth of Cluster Set 1

Hierarchical Cluster Structure. If the growth propertytransi-
tively holds among a sequence of cluster sets, a hierarchical cluster
structure can be built across the clusters in these cluster sets. The
key idea is that instead of storing cluster memberships for them in-
dependently, we incrementally store the cluster growth information
from one cluster set to another. Figures 6 and 7 respectively give
examples of independent and hierarchical cluster structures built
for the two cluster sets shown in Figures 4 and 5.

Figure 6: Independent Clus-
ter Membership Storage for
Cluster Sets 1 and 2

Figure 7: Hierarchial Clus-
ter Membership Storage for
Cluster Sets 1 and 2

As shown in Figure 6, if we store the cluster memberships for
cluster members in these two cluster sets independently, each clus-
ter member (black squares) belonging to both clusters has to store
two cluster memberships, one for each cluster set. However, if we
store them in the hierarchical cluster membership structure as de-
picted in Figure 7, we no longer need to repeatedly store the cluster
memberships for these “shared” cluster members. Instead, we sim-
ply store cluster memberships for each cluster member belonging
to Clu Set1, and then store the cluster “growth information” from
the Clu Set1 to Clu Set2. In particular, we just need to corre-
late each clusterCi in Clu Set1 with the cluster inClu Set2 that
contains it. Such growth information is now based on thegranular-
ity of complete clustersrather thanindividual cluster members -
thus saving memory space for storing cluster memberships.

Lemma 4.1. Given a query groupQG with the growth prop-
erty transitively holding among the cluster sets identified by all its
member queries, the upper bound of the memory space needed for
storing the cluster memberships using hierarchical cluster struc-
ture is2 ∗ Ncore (independent from|QG|), with Ncore the number
of distinct data points that are at least once identified as core point
in any member query ofQG.

The intuition here is that this is equal to the relationship between
the total size of a binary heap and the number of leaf nodes of this
heap. The formal proof can be found in our technical report [17].

Besides the benefit of huge memory savings, this hierarchical
cluster structure also realizes integrated maintenance for cluster
sets identified by multiple queries, and thus saves the computational

resources needed to maintain them independently. This general
principle forms the foundation for our multiple query optimization.

5. SHARING AMONG QUERIES WITH AR-
BITRARY PATTERN PARAMETERS

In this section, we discuss the shared processing of multiple
queries with arbitrary pattern parameters, namely arbitraryθrange

andθcnt. Here we assume that all queries have the same window
parameters, namely same window sizewin and same slide size
slide. This assumption will later be relaxed in Section 7 to allow
completely arbitrary parameters.

5.1 Sameθrange, Arbitrary θcnt Case.
We first look at the case that all queries have the sameθrange

but arbitraryθcnt. Given the sameθrange, the neighbors of each
data point identified by all queries are the same. This indicates that
for all member queries, the neighborships identified in the same
window are exactly the same. However, this does not imply that the
cluster structures identified by all queries are identical, because the
differentθcnts of the queries may assign different “roles” to a data
point. For example, a data point with 4 neighbors is a core point for
queryQ1 havingQ1.θ

cnt = 3, while being a non-core point for
Q2 having queryQ2.θ

cnt = 10. Recall the hybrid neighborship
abstraction (in Section 3) requires each non-core point to store the
links to its exact neighbors, while the core points store the cluster
membership only. Thus, a data point may need to store different
types of neighborship abstractions depending on its roles assigned
by different queries. To solve this problem, we turn to thegrowth
propertyof density-based cluster structures discussed in Section 4.

Lemma 5.1. GivenQi andQj specified on the same dataset,
with Qi.θ

range = Qj .θ
range andQi.θ

cnt ≤ Qj .θ
cnt, the cluster

set identified byQi is a “growth” of that identified byQj .

Lemma 5.1 holds, because the more relaxed count thresholdQi.θ
cnt

can only cause “extra core points” to be identified byQi. Thus it
brings a new cluster or an expansion or merge of existing clusters
identified byQj . Formal proof of this lemma can be found in [17].

Figure 8 demonstrates an example of the cluster sets identified
by three queries having the sameθrange but differentθcnts in a
subpart of GMTI data [7].

Figure 8: Clusters identified by queries with different θcnt

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary θcnt. Since the window parameters
of all queries are the same in this case, the predicted windows to be
maintained by them are the same. In particular, all member queries
need to maintain the same number of predicted windows, say from

W0 to Wn. Also, for all member queries, any predicted window
Wi contains exactly the same data points. This indicates that in
anyWi the cluster sets identified by the member queries will have
thegrowth propertyhold among them (by Lemma 5.1).

As discussed in Section 4, once thegrowth propertyholds among
cluster sets, we can build the hierarchical cluster structure for them.
Thus for each predicted window, we can represent multiple pre-
dicted views identified by different queries in an integrated struc-
ture. We denote such integrated representation of predicted views
across queries with arbitraryθcnt by IntView θcnt. For eachWi,
IntView θcnt starts from the predicted view with the “most restricted
clusters”. In this context, this corresponds to the predicted view
maintained byQi with the largestθcnt amongQG. Then, it incre-
mentally stores the cluster growth information, namely the merge
of existing cluster memberships and the new cluster memberships,
from one query to the next in decreasing order ofθcnt. Figure 9
gives an example of aIntView θcnt, which represents the predicted
views from Figure 8 identified by three queries.

Figure 9: IntView θcnt: Integrated representation for predicted
views identified by three different queries

IntView θcnt successfully integrates the representations of multi-
ple predicted views into a single structure, thus saving the memory
space from storing them independently.

Lemma 5.2. Given the maximum window size allowed for the
member queries in|QG|, the upper bound of the memory space
needed by IntViewθcnt is independent from|QG|, the cardinality
of the query group represented by it.

Lemma 5.2 holds because both types of meta-information that need
to be maintained byIntView θcnt, namely the cluster memberships
and the exact neighbors of data points, have upper bounds inde-
pendent from|QG|. The formal proof of Lemma 5.2 can be found
in [17]. Obviously, without usingIntView θcnt, the memory space
needed for independently storing the cluster memberships identi-
fied by all queries inQG will increase linearly with|QG|. Our
method now makes it independent from|QG|.

Maintenance ofIntView θcnt. Besides the memory savings, we
can also update multiple predicted views represented byIntView θcnt

incrementally and thus save computational resources. For each new
data pointpnew, we start the update process from the bottom level
of IntView θcnt, namely the predicted view identified by the query
with the largestθcnt. Then we incrementally propagate the effect
of this new data point to the next higher level predicted views. Us-
ing the example shown in Figure 9, a new data point identified to
have 3 neighbors in the window is a non-core in the bottom (most
restricted) level predicted view, whereθcnt = 4. So, at the bottom
level, we simply add all its neighbors to its neighbor list. How-
ever, its effect on the upper level predicted views may differ, as this
data point may be identified as a “core point” by a more “relaxed”

query, say whenθcnt = 3. Then, we need to generate a cluster
membership for it at that predicted view and merge it with those
cluster memberships (if any) belonging to its neighbors.

We omit the detailed maintenance algorithm ofIntView θcnt here
to save space, but emphasize the efficiency of the maintenance pro-
cess. First, no extra range query search is needed when a data point
is found to be a “core point” in an upper level predicted view and
thus needs to communicate with its neighbors. The reason is that
as a non-core point in the lower level predicted views, it would al-
ready have stored the links to its neighbors and thus would have
direct access to them. Second, as the “growth” of cluster sets iden-
tified in predicted views is incremental, less and less maintenance
effort will be needed as we handle predicted views at higher levels.

5.2 Sameθcnt, Arbitrary θrange Case.
Now we discuss the case that all member queries have the same

θcnt but arbitraryθrange. This case is more complicated than the
previous one, because differentθranges will affect the neighbor-
ships identified by different queries. For example, two data points
pi andpj with distance equal to 0.2 will be considered to be neigh-
bors inQ1 with θrange = 0.1, but not inQ2 with θrange = 0.4.
As the neighborships identified by queries are different, the clusters
identified by them are likely to be different as well.

Based on our experience of designingIntView θcnt, we now ex-
plore whether thegrowth propertyholds between two queries with
sameθcnt but differentθranges. Fortunately, the answer is positive,
as demonstrated below.

Lemma 5.3. GivenQi andQj specified on the same data set,
with Qi.θ

cnt = Qj .θ
cnt andQi.θ

range ≥ Qj .θ
range, the cluster

set identified byQi is a “growth” of that identified byQj .

This lemma holds because the additional neighborships identified
by the more relaxed range thresholdQi.θ

range will only either
bring new clusters or the expansion or merge of existing clusters
identified byQj . Formal proof can be found in [17]. Figure 10
demonstrates the cluster sets identified by three queries having the
sameθcnt but differentθrange settings. It uses dashed lines be-
tween data points to represent the extra neighborships identified.

Figure 10: Clusters identified by queries with differentθrange

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary θrange. Similarly as before, we
now can build an integrated structure to represent multiple pre-
dicted views identified by queries with arbitraryθcnt. We call it
IntView θrange. Similar with IntView θcnt, IntView θrange starts
from the predicted view with the most restricted clusters, namely

the predicted view representingQi with the smallestθrange among
QG. Then, it incrementally stores the cluster growth information
from one query to the next in the increasing order ofθrange. How-
ever, as now each data point may be identified to have more neigh-
bors in the higher level predicted views, which represent queries
with larger and largerθrange, a new type of increment, namely the
additional exact neighbors of each data point, needs to be stored.

Again, we can prove that the upper bound of the memory space
needed byIntView θrange is independent from|QG|. The proof
can be found in [17]. SinceIntView θrange is very similar in con-
cept toIntView θcnt, we omit the details of its maintenance.

5.3 Arbitrary θrange, Arbitrary θcnt Case.
Now we discuss the case whereQG has queries with totally ar-

bitrary pattern parameters, namely arbitraryθrange and arbitrary
θcnt values. Although thegrowth propertyhas been shown to hold
between the cluster sets identified by two queriesQi andQj , if Qi

andQj share at least one query parameter, we observe that it does
not necessarily hold if both query parameters of them differ. To
take advantage of the compact structure of integrated representa-
tion of the predicted views, we again study in what situations when
thegrowth propertywould hold.

Lemma 5.4. GivenQi andQj specified on the same dataset,
with Qi.θ

cnt ≤ Qj .θ
cnt andQi.θ

range ≥ Qj .θ
range, the cluster

set identified byQi is a “growth” of that identified byQj .

This lemma can easily be proven by the transitivity of thegrowth
property. The formal proof is omitted here but can be found in [17].

To more intuitively describe the relationship between two such
queriesQi andQj , with the growth propertyholding among the
cluster sets identified by them, we sayQj is a “more restricted”
query thanQi, andQi is a “more relaxed” query thanQj .

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary Pattern Parameters. For each pre-
dicted window, we aim to build a single structure to represent the
predicted views for all queries. However, given thegrowth prop-
erty only holds between two queries if one is more restricted than
the other, we can no longer expect to put all given predicted views
into a single linear hierarchy.

Our solution is to build aPredicted View Tree, which inte-
grates multiple predicted view hierarchies as branches into a sin-
gle tree structure. In this tree structure, each predicted view (ex-
cept the root) only needs to maintain the incremental information
(cluster “growth”) from its parent, much like the predicted views in
IntView θrange and inIntView θcnt. In particular, such a predicted
view tree starts from the predicted view that represents the most
restricted query amongQG as its root. This would be the member
query that has both the smallestθcnt and the largestθrange among
QG. If such a most restricted query does not exist inQG, we build
a virtual one by generating a query with the smallestθcnt and the
largestθrange amongQG. Its predicted view will be used for pre-
dicted view tree maintenance but it will never generate any output.

Starting from the root, we iteratively pick (and remove) the most
restricted queries remaining inQG and put their predicted views as
the next level of the tree. Here, a member queryQj is one of the
most restricted queries remaining inQG if there does not exist any
other queryQi in QG, which is “more restricted” thanQj . This
process of figuring out “the most restricted queries” at each level
is equal to the problem of calculating the Skyline [19] in the two
dimensional space ofθrange andθcnt. Since this process can be
conducted offline during query compilation, any existing skyline
algorithm can be employed to solve this problem.

To connect queries at adjacent levels, for each queryQn on the

ith level of the tree, we need to determine its parent on the(i−1)th

level. We aim to find a parent queryQm that is most similar to
Qn, indicating that there exists least growth between the cluster
set identified by them, compared with that between the cluster set
identified byQn and any otherQo on the(i − 1)th level. Based
on our analysis, for two member queries, their difference on neigh-
borships identified (decided by their difference onθrange settings)
is more likely to cause the variations on the cluster sets identified,
compared to their difference on the requirement for core points (de-
cided by their difference onθrange settings). So, when we deter-
mine the parent predicted view, although we consider the similarity
between both pattern parameters, more weight is given to that be-
tweenθranges. We can prove that, in our proposed predicted view
tree structure, each predicted view maintains the smallest increment
possible. The detailed algorithm of building the predicted view tree
and the proof to its properties can be found in [17]. To unify the
names of the hierarchical structures representing multiple predicted
views, we call the predicted view treeIntView θ.

Although IntView θ is a tree structure, instead of the linear se-
quences likeIntView θcnt andIntView θrange, they all three share
the essence that each predicted view is incrementally built based on
the predicted view most similar to it. We call the queries on each
path ofIntView θ a group ofshared queries.

Lemma 5.5. The upper bound of the memory space needed by
IntView θ for any group of shared queries is independent from the
number of queries in this group.

Since thegrowth propertytransitively holds among the cluster sets
identified by all queries on the same path ofIntView θ, the inde-
pendency between the upper bound of the memory space and the
number of queries can be proven as in Lemma 5.2.

The maintenance process ofIntView θ is also similar to that for
IntView θcnt/range. For each new data point, we start the mainte-
nance from the root ofIntView θ, and then incrementally maintain
the predicted views on the next higher level ofIntView θ.

Theorem 5.1. For a givenQG with member queries having ar-
bitrary pattern parameters, IntViewθ achieves full sharing of both
memory space and query computation.

Lemma 5.1 is ture becauseIntView θ achieves completely incre-
mental storage and computation for the predicted views maintained
by multiple queries. The formal proof can be found in [17].

5.4 IntView θ In Multiple Predicted Windows
Given the assumption that all the queries inQG share the same

window parameters, the predicted windows that need to be main-
tained by them are the same. A straightforward way to serve a
query group that needs to maintain N predicted windows, is to
use NIntView θs to represent these N predicted windows indepen-
dently, and maintain them independently at arrival of each new data
point. Figure 11 gives an example of using fourIntView θs to rep-
resent four predicted windows for a query group with 5 queries.

This strategy realizes the full sharing in each predicted window
(Lemma 5.1). However, no sharing is yet achieved across the dif-
ferent predicted windows. In Section 6, we will introduce a more
sophisticated methods that succeed to integrate multipleIntView θ

representing different windows into a single structure.

6. SHARING FOR QUERIES WITH ARBI-
TRARY WINDOW PARAMETERS

Next, we study the case that the window parameters can vary,
while the pattern parameters are common among the queries.

Figure 11: IntView θ: integrated representation for predicted
views for five queries with arbitrary pattern parameters

6.1 Samewin, Arbitrary slide Case
In this case, all queries have the same window sizewin, while

their slide sizes may vary. First, we assume that all queries start
simultaneously. So that the equality of window sizes implies that
all queries always query the same portion of the data stream. More
specifically, at any given time the data points falling into the win-
dows of different queries are the same. Then, the only difference
among queries is that they need to generate output at different mo-
ments due to different slide sizes. For example, given three queries
Q1, Q2 andQ3, with Q1.win = Q2.win = Q3.win = 10(s),
Q1.slide = 2(s), Q2.slide = 3(s) andQ3.slide = 6(s), the
query windows of them cover exactly the same portion of the data
stream at any given time, while they are required to output the clus-
ters at every 2, 3 and 6 seconds respectively. So, to serve the dif-
ferent output time points, they need to build predicted windows
starting at different times. These predicted windows should each
end at a future output time point, and thus cover the data points on
which the clusters need to be formed for that output time point.

To solve this problem, for a given groupQG, we build a single
meta queryQmeta which integrates all the member queries ofQG.
Qmeta has the same window size as all member queries inQG,
while its slide size is no longer fixed but rather adaptive during the
execution. More specifically, the slide size ofQmeta at a partic-
ular moment is decided by the nearest moment which at least one
member query ofQG needs to be answered. The specific formula
to determine the next output moment is:

Tnextoutput = Min((⌈
T − win

Qi.slide
⌉ + 1) ∗ Qi.slide + win)

With T the current wall-clock time andwin the common window
size of all queries. Using the earlier example, for the three mem-
ber queries, we build a meta queryQmeta with win = 10s. At
wall-clock time 00:00:10, the slide size ofQmeta should be 2s, as
00:00:12 will be the nearest time at which a member query (Q1)
needs to be answered. Then its slide size is adapted to 1s, 1s and 2s
at 00:00:12, 13 and 14 respectively for the same reason.

Knowing the slide sizes ofQmeta, we build predicted windows
for Qmeta based on the output time. Using the earlier example, at
wall-clock time 00:00:10, we would have built eight predicted win-
dows forQmeta , which start from 00:00:00, 00:00:02, 00:00:03,
00:00:04, 00:00:06, 00:00:08, 00:00:09 and 00:00:10 respectively,
as each of them corresponds to one output time point for at least
one member query. Among these eight “predicted windows”, many
of them are serving multiple queries. For example, a single “pre-
dicted window” starting at 00:00:06 will be used to answerQ1, Q2

andQ3. Each would have maintained one predicted window start-
ing at this time if executed independently. As the predicted views
representing such predicted windows for a meta query are no dif-
ferent from those needed for any single query, a straightforward
way to maintain them is to use the maintenance method introduced
in Extra-N [18] to update them independently at the arrival of each
new data point. We will discuss further optimizations for this in the
later part of this section.

In conclusion, this meta query strategy saves the system resources
for answering a query group for the following reasons: 1) No over-
head, in particular, no extra predicted views will be introduced,
as a predicted window is built only if at least one member query
needs output from it. 2) Predicted views are shared among member
queries requiring output at the same time. The specific amount of
sharing depends on the overlaps of queries’ output times.

6.2 Sameslide, Arbitrary win Case
In this case, although the window sizes may vary, we hold the

slide size steady, indicating that their output schedules are identical.
Here we first use the simplifying assumption that all the window
sizes of the member queries are multiples of their common slide
size. Since the queries have the same slide size, it is easy to observe
that all queries require output at exactly the same moments. Based
on this observation, an important characteristic can be discovered.

Lemma 6.1. Given a query groupQG with member queries
having the same slide size but arbitrary window sizes (multiples
of slide), the predicted windows maintained forQi with Qi.win

the largest window size amongQG will be sufficient to answer all
member queries inQG.

This is because the predicted windows maintained forQi will cover
all the predicted windows that need to be maintained for all the
other queries. For example, given three queriesQ1, Q2 andQ3,
with Q1.slide = Q2.slide = Q3.slide = 5s, Q1.win = 10,
Q2.slide = 15s andQ3.slide = 20s, at wall clock time 00:00:20,
the predicted windows built byQ3 start from 00:00:00, 00:00:05,
00:00:10 and 00:00:15 respectively, while those need to be main-
tained byQ1 andQ2 start from 00:00:10, 00:00:15 and 00:00:05,
00:00:10, 00:00:15 respectively, which all overlap with those built
by Q3. The “predicted window” starting from 00:00:00 can used
to answerQ3, while the predicted windows starting from 00:00:10
and 00:00:05 can be used to answerQ1 andQ2 respectively. The
formal proof of this can be found in [17].

In summary, we only need to maintain the predicted windows
for a single member query with the largest window size, and then
we can answer all the queries in the query group with different
predicted windows maintained. Clearly, full sharing is achieved.

6.3 Arbitrary slide, Arbitrary win Case
We now give the solution for the cases that both window param-

eters, namelywin andslide, are arbitrary. Generally, the solution
for this case is a straightforward combination of the techniques in-
troduced in the last two subsections. In particular, we simply build
one single meta query that has the largest window size among all
the member queries and uses an adaptive slide size.

Here we use an example to demonstrate our solution. Given
three queriesQ1, Q2 andQ3, with Q1.win = 10, Q1.slide = 4,
Q2.win = 9, Q2.slide = 5, Q3.win = 6 andQ3.slide = 2,
and all starting at wall clock time 00:00:00, we build a meta query
Qmeta with Qmeta.win = max(Qi.win)(1≤i≤3) = 10. Then
we adaptively change its slide size based on the next nearest output
time point required by at least one query. For instance, at wall clock
time 00:00:10, six predicted windows would have been built, which

start from 00:00:00 (servingQ3 for output at 00:00:10), 00:00:01
(servingQ2 for output at 00:00:10), 00:00:04 (servingQ1 for out-
put at 00:00:12 andQ3 for output at 00:00:10), 00:00:06 (serving
Q2 for output at 00:00:13 andQ3 for output at 00:00:12), 00:00:08
(servingQ1 for output at 00:00:18 andQ3 for output at 00:00:14)
respectively. Figure 12 shows the predicted views that need to be
maintained by each of these three queries independently, versus
those by the meta query at wall clock time 00:00:10.

Figure 12: Predicted views maintained by three queries inde-
pendently versus those maintained by a single meta query

Integrated Representation of Predicted Views across Multi-
ple Windows. AlthoughExtra-N [18] can be applied to maintain
the predicted views of the meta query, it achieves no sharing across
the multiple predicted windows (see Section 3). Now we introduce
a further optimization for maintaining predicted views of multi-
ple predicted windows. [16] found that even for a single query ,
thegrowth propertyholds among the cluster sets identified by it in
different predicted windows. In particular, for a single queryQi

at any given time T withWn being the current window, the clus-
ter set identified by it in a predicted windowWn+i is always a
growth of that identified by it inWn+i+1. Figure 2 demonstrates
an example of the predicted views representing four successive pre-
dicted windows of a single query. The formal proof of this can be
found in [17]. Thisgrowth propertyallows us to build an inte-
grated structure to incrementally store and maintain the predicted
views across multiple windows, calledIntView W. IntView W starts
from the predicted view with the most restricted clusters, namely
the one representing the newest predicted window, and then incre-
mentally stores the growth information for those representing older
predicted windows. Figure 13 gives an example of theIntView W
built for the meta query discussed earlier.

7. PUTTING IT ALL TOGETHER
Finally, we consider the general case with arbitrary pattern and

window parameters. Although sharing among a group of totally ar-
bitrary queries is a hard problem if we have to solve it from scratch,
we now can easily handle it by combining the two techniques in-
troduced in the last two sections, namely theIntView θ technique
(Section 5) and the meta query technique (Section 6). These two
techniques can be easily combined, because they are orthogonal to
each other. In particular, theIntViewcnt

θ technique is designed to
share among a group of predicted views representing the same pre-
dicted window. We can consider this to be an “inner-predicted-
window” optimization technique. On the other hand, the meta
query technique is designed to minimize the number of predicted
windows generated for multiple queries and to share the mainte-
nance costs across them. So, it can be considered to be an “inter-
predicted-window” optimization technique. These two orthogonal

techniques can be applied together to realize the full sharing of the
member queries on both inner- and inter-predicted window levels.

We use an example to demonstrate this solution. Given three
queriesQ1, Q2 andQ3 starting at 00:00:00, withQ1(win = 10, slide =
4, θrange = 0.2, θcnt = 5); Q2(win = 9, slide = 5, θrange =
0.3, θcnt = 4) andQ3(win = 6, slide = 2, θrange = 0.2, θcnt =
3), we first use the meta query technique to build the predicted win-
dows they need to maintain. At wall clock time 00:00:10, the re-
quired predicted windows are those shown in Figure 12. Then, for
each predicted window built, we apply theIntView θ technique to
build a predicted view tree to integrate the predicted views (of dif-
ferent queries) in this window. For the predicted window starting
from 00:00:04, a predicted view tree (IntView θ) is built to repre-
sent the predicted views forQ1 andQ3.

Figure 13: IntView: integrated representation for predicted
views Identified by 3 Queries in 5 Predicted Windows

To apply theIntView W technique (in Section 6), which allows
us to share across multiple predicted windows, we use the most
restricted query of the whole query group as the root of all the pre-
dicted view trees built in each of the different windows. By do-
ing so, the predicted view trees in different windows predicted now
start from the predicted view representing the same query. Thus, we
can further integrate these roots in different predicted windows into
a IntView W structure. This final move “connects” all the predicted
view trees in different predicted windows, forming a single tree
structure that realizes completely incremental storage and mainte-
nance We call this ultimate hierarchical structure theIntView. Ex-
cept the root of theIntView, all the predicted views withinIntView
only maintain incremental information. Figure 13 demonstrates the
IntView built for the three queries mentioned in the earlier exam-
ple. We call the final algorithm based on theIntViewChandi. We
sketch pseudo code describing the overall flow of theChandial-
gorithm below. More details ofChandi, including the complete
pseudo code, can be found in [17].

In conclusion, computation-wise,Chandionly requires a single
pass through new data points, each running one range query search
and communicating with its neighbors once for all shared queries
on each path ofIntView. Memory-wise, as thegrowth property
holds among the cluster sets identified by the queries on each path
of IntView, the upper bound of the memory consumption ofChandi
for a group of shared queries on the same path is independent from
the “length” of this path, namely the number of shared queries in
this group (This can be proven using the same methods as those
used for proving Lemma 5.2) [17]. In short,Chandiachieves full
sharing for multiple density-based cluster queries over sliding win-
dows in terms of both CPU and memory resources.

Chandi (stream, QG)
1 For each new data pointpnew in stream

// purge
2 if pnew.T > Woldest.Tend (ending time ofWoldest)
3 Purge(Woldest); //purge the oldest predicted window

// load
4 loadpnew into index // we use GRID

// IntView Maintenance
5 neighbors=RangeQuerySearch(pnew, max(Qi.θ

range))
6 UpdateIntView(pnew, neighbors)

// output
7 if pnew.T = Toutput

8 Output(QG);
9 add new predicted windowWnewest to IntView;
10 Toutput=ScheduleNextOutputMoment();

8. EXPERIMENTAL STUDY
Our experiments are conducted on a HP Pavilion dv4000 laptop

with Intel Centrino 1.6GHz processor and 1GB memory, running
Windows XP. We implemented all algorithms with VC++ 7.0.

Real Datasets. We used two real streaming data sets. The first
data set, GMTI (Ground Moving Target Indicator) data [7], records
the real-time information of moving objects gathered by 24 differ-
ent data ground stations or aircrafts in 6 hours from JointSTARS.
It has around 100,000 records regarding the information of vehi-
cles and helicopters (speed ranging from 0-200 mph) moving in a
certain geographic region. In our experiment, we used all 14 di-
mensions of GMTI while detecting clusters based on the targets
latitude and longitude. The second dataset is the Stock Trading
Traces data (STT) from [12], which has one millions transaction
records throughout the trading hours of a day.

Alternative Algorithms. To evaluate our proposed algorithm,
for any inputQG, we compareChandi’s performance of two major
alternative methods, executingQG with four alternative methods,
namely executing oneExtra-N algorithm [18] for each member
query with and without sharing of range query searches (hence-
forth referred asExtra-N with rqsandExtra-N), and executing one
IncDBSCANalgorithm [8] for each member query with and with-
out sharing of range query searches (referred asIncDBSCAN with
rqs and IncDBSCAN). The reasons why we choose them are: 1)
Extra-N algorithm is the only algorithm we are aware of in lit-
erature solving density-based clustering over sliding windows; 2)
IncDBSCANalgorithm is the most well known method for incre-
mental density-based clustering.

Experimental Methodologies. We measure two common met-
rics for stream processing algorithms, namely average processing
time for each tuple (CPU time) and memory footprint, indicating
the peak memory space required by an algorithm.

In many applications, the domain knowledge or the specific anal-
ysis tasks may restrict some of the query parameters to particular
values. To thoroughly understand the performance of the algo-
rithms under different situations, we first evaluate at a time four
test cases, each varying on only one of the four parameters. Then
we relax this constraint to allow two arbitrary parameters. Finally
we test the general cases with all four parameters arbitrary.

Evaluation for One-Arbitrary-Parameter Cases. For each test
case, we prepare a query groupQG with |QG| = 20 by randomly
generating one input parameter (in a certain range) for each mem-
ber query, while using common parameter settings for the other
three parameters for queries. The parameter settings in our ex-
periment are selected based on a pre-analysis of the datasets. In

particular, we pick parameter ranges that allow member queries to
identify all major cluster structures that could be identified in the
datasets. In all our test cases, the largest number of clusters identi-
fied by a member query is at least five times more than the smallest
number of clusters identified by the other, indicating that the clus-
ter structures identified by different queries vary significantly. This
is the worst case for our proposed sharing algorithm, because the
larger the variations on cluster structures identified, the more main-
tenance costs are needed for our sharing strategy. To observe the
performance of the algorithms when executing different numbers
of queries, we use different random subsets ofQG (sized from 5 to
20) to execute against the GMTI data.

Arbitrary θcnt case. We useθrange = 0.01, win = 5000
andslide = 1000, while varyingθcnt from 2 to 20. In this case,
at most 16 clusters are identified by the most restricted query with
θcnt = 20, while at least 3 clusters are identified by the most re-
laxed one with withθcnt = 3. As shown in the C1 and C2 of Figure
14, both the CPU time and the memory space used by all four alter-
natives increases as the number of queries increases. However, the
utilization of CPU resources byChandiis significantly lower than
those consumed by other alternatives, especially when the num-
ber of the member queries increases. The memory consumption
of Chandi is almost equal toIncDBSCAN with rqs, which main-
tains very little meta-information but relies on range query searches
to re-collect them, and much lower thanExtra-N with rqs. This
matches our analysis in Section 5. In particular, since for any data
point its neighbors identified by all queries are the same, the cluster
growth information that needs to be maintained byChandiamong
the queries is very simple and can be updated efficiently.

Figure 14: Comparison of CPU and memory utilizations for
five algorithms in arbitrary θcnt case (C1 and C2) and in arbi-
trary θrange case (C3 and C4)

Arbitrary θrange case. In this experiment, we useθcnt = 10,
win = 5000 andslide = 1000, while varyingθrange from 0.01
to 0.1. At most 10 clusters are identified by the most restricted
query withθrange = 0.1, while at least 2 clusters are identified
by the most relaxed one withθrange = 0.1. As shown in C3
and C4 of Figure 14, a similar situation can be observed, while
the increase of the resource utilization forChandiis more obvious
in this scenario. This is for two main reasons. 1) Sinceθrange

varies among the queries, the range query search costs increase
along with the number of queries, even with the range query shar-
ing (each data point needs to figure out its neighbors defined by

different queries). 2) As the neighborships identified by different
queries differ, the “extra-neighborships” are more likely to cause
cluster structure changes and thus requireChandito maintain more
meta-information inIntView. The performance of other competi-
tors, especially forIncDBSCANthat consumes large numbers of
range query searches, is largely affected by the increasing cost of
range query searches as well.

Arbitrary window or slide case. In these two cases, the cost
of Chandiis almost unchanged as the number of queries increases.
It thus achieves even more significant savings compared with the
previous two cases. This is because we always maintain a single
meta query and thus answer the whole query group, no matter how
many queries are in the query group. The detailed experimental
results and analysis for these two cases can be found in [17].

Evaluation for Two-Arbitrary-Parameter Cases. We further
evaluate the two test cases by varying two parameters among the
member queries.

Arbitrary Pattern Parameters. In this case, we usewin =
5000, slide = 1000, while varyingθcnt from 2 to 20 andθrange

from 0.01 to 0.1. As shown in Figures 15,Chandistill consumes
significantly less CPU time compared with the alternatives, although
the increase of its CPU consumption corresponding to the increase
of queries is more obvious. This is because totally arbitrary pattern
parameters leads to even larger differences among the clusters iden-
tified by different queries, and thus increases the maintenance costs
of Chandi. In this test case, the largest number of clusters identi-
fied by the member query (withθrange = 0.01 andθcnt = 14)
reaches 35, while the smallest number of clusters identified by the
query (withθrange = 0.1 andθcnt = 3) is only 2. Even though
the CPU time used byChandi is still 63% less than that used by
Extra-N with rqs, when executing the query group sized 20.

Arbitrary Window Parameters. We useθcnt = 10 andθrange =
0.01, while varyingwin from 1000 to 5000 andslide from 500 to
5000 (for anyQi, Qi.slide < Qi.win). As shown in Figure 16,
the savings achieved byChandiare even higher than in the arbi-
trary pattern parameter case. This is because, the variation of both
window parameters does not affect the principle of how the meta
query strategy works. In particular, the cost of maintaining the meta
query only depends on the largestwin in the query group and the
number of predicted views that need to be maintained, which both
do not necessarily increase along with the number of queries.

Figure 15: CPU time used by
five algorithms in arbitrary
pattern parameter case

Figure 16: CPU time used by
five algorithms in arbitrary
window parameter case

General Case: Four Arbitrary Parameters. Finally, we eval-
uate the general case with all four parameters being varied arbitrar-
ily. We divide this experiment into three cases, each measuring the
performance of the algorithms when executing different numbers
of queries. In particular, for each test case, we generate 30 query
groups each with N member queries (N equals to 20, 40 and 60 for

three cases respectively). Each query group is independently gen-
erated, and the member queries in each group are randomly gen-
erated with parameter settings:θcnt = 2 to 20,θrange = 0.01 to
0.1,win = 1000 to 5000slide = 500 to 5000. For each test case,
we measure the average cost of each algorithm for executing all 30
query groups. Beyond that, we zoom into the overall average cost
of each algorithm, and measure the cost caused by each specific
subtask. In particular, the CPU measurement is divided it into two
parts, namely the CPU time used by range query searches and that
used by cluster maintenance. For the memory space consumed, we
distinguish the memory used for raw data (for storing actual tuples)
and the memory used for meta-data.

Figure 17: Detailed comparison of CPU time consumption of
five algorithms

As shown in C1, C2 and C3 of Figure 17, we observe that the
average CPU time used byChandiis 70, 76, and 85 precent lower
then the best alternative method,Extra-N with rqs, in the three cases
respectively. In particular, the CPU time used byChandito conduct
range query searches is always less than10% compared with that
needed byIncDBSCANwith rqs. This is becauseChandionly re-
quires each new data point to run one range query search when it
arrives at the system, whileIncDBSCANrelies on repeated range
query searches to determine the cluster changes. The CPU time
used byChandito maintain meta-information is at least62% less
than that used byExtra-N with rqs. This is becauseChandiupdates
the meta-information for different queries integrally, whileExtra-N
maintains them independently.

Besides the comparison of the average system resource consump-
tion, we also measure the savings ofChandi for each individual
query group in all three test cases. In particular, for each query
group, we measure the difference in resource utilization between
Extra-N with rsqandChandi, which corresponds to the difference
between executing them using the best existing technique and our
proposed strategy. More specifically, for each group, we first cal-
culate the difference on CPU (or memory) utilizations between
ChandiandExtra-N with rqs. Then, we use the difference to di-
vide that used byExtra-N with rqsto get the saving percentage
achieved byChandi. As shown in C4 of Figure 17, although the
minimum savings achieved byChandiis only around20%, which
is caused by too large variations on the parameter settings, it never
performs worse thanExtra-N with rqsfor any query group. For
the first test case (each query group has 20 queries), the average
savings achieved byChandion CPU time are62%. Although the

minimum savings in this case among the 30 groups are23%, the
maximum savings reach84% , and the standard deviation is only
19% . As the number of queries in each group increases, the sav-
ings achieved byChandiare even higher in the other two test cases.
In particular, the average saving achieved byChandiof CPU time
increases to80% when the number of queries in each group in-
creases to 60. The minimum and maximum savings of CPU time
increases to45% and92% respectively in this case, and the stan-
dard deviation of the savings decreases to12%. This shows the
promise ofChandi that, for a query group with 60 queries, it can
achieve savings between73% to 92% of CPU time in most of the
cases. Among the 30 query groups in this test case, 23 of them fall
into this range. The average savings achieved byChandion mem-
ory space in this 60-query cases is89%. Due to page limitations,
we omit the charts showing savings of the memory space.

Evaluation for Scalability. Now we evaluate the scalability
of the algorithms in terms of the number of queries they can han-
dle under a certain data rate. In this experiment, we useExtra-N,
Extra-N with rqsandChandi to execute query groups sized from
10 to 1000 against GMTI data. Similar with earlier experiment, the
member queries in the query group are randomly generated with
the arbitrary parameter settings in certain ranges. In particular, the
parameters settings in this experiment areθcnt = 2 to 30,θrange =
0.001 to 0.01,win = 1000 to 5000 andslide = 500 to 5000.

Figure 18: CPU time used by
five algorithms in logarith-
mic scale

Figure 19: Memory space
used by five algorithms in
logarithmic scale

As shown in Figures 18 and 19, both the CPU time and the mem-
ory space used byChandi increases modestly as the number of
member queries increases. In particular, the CPU time consumed
by Chandi increases around 6 times when the number of queries
grows from 10 to 100 (increased 9 times), and then it increases
less than 4 times when number of queries grows from 100 to 1000.
Thus totally the CPU time consumed byChandiincreases 33 times
when the number of queries increased from 10 to 1000, which is
100 times. Such increases forExtra-N andExtra-N with rqsare
105 times and 89 times respectively. More specifically, in our test
cases, the average processing time (CPU) for each tuple used by
Chandito execute the 100-query and 1000-query query groups are
0.76 and 3.3ms respectively, which indicates that our system can
comfortably handle 100 queries under a 1000 tuple per second data
rate, and handle 1000 queries under a 300 tuple per second data
rate. For the memory space used,Chandihas even better perfor-
mance as its utilization of memory space only increases 5 times
when the number of queries increases from 10 to 1000, while such
increase forExtra-N andExtra-N with rqsare both 98 times.

9. RELATED WORK
Traditionally, clustering algorithms [9, 11, 20] are designed for

static environments. More recently, as stream applications are be-

coming prevalent, the problem of clustering streaming data is being
tackled in the literature [1, 4, 18].

As a well-known clustering algorithm, DBSCAN [9] is the first
to propose density-based clustering for static data. Later an incre-
mental DBSCAN [8] algorithm was introduced to incrementally
update density-based clusters in data warehouses. However, as both
analytically and experimentally shown in [18] as well as in our ex-
perimental study, since all optimizations in [8] were designed for
single updates (a single deletion or insertion) to the data warehouse,
it is not scalable to highly dynamic streaming environments.

Algorithms for density-based clustering over streaming data in-
clude [5, 6, 18]. Among these works, [6] and [5] have goals dif-
ferent from ours, because they are neither designed to identify the
individual cluster members nor enforce the sliding window seman-
tics for the clustering process. Thus these two algorithms cannot be
applied to solve the problem we tackle in this work. The only algo-
rithm we are aware of that detects density-based clusters in sliding
windows is [18]. Our experiments show that our proposed shar-
ing strategy largely outperforms the solution of executingExtra-N
independently for multiple queries.

As a general query optimization problem, multiple query opti-
mization has been widely studied for not only static but also stream-
ing environments. Previous research on sharing focuses on opera-
tors, such as selection and join operators [10, 13, 15], and aggrega-
tion [3, 14]. To our best knowledge, none of them discuss the shar-
ing for clustering operators. General principles used in these works,
such as query containment [10] can also be applied in our context
(used in sharing range query searches for our solution). However,
the key problem we address in this work, namely the integrated
maintenance of the density-based cluster structures identified by
multiple queries, is different from the optimization effort required
by traditional SQL query sharing. The meta-information we main-
tain, namely the cluster structures defined by individual objects as
well as the topological relationships among them, is more complex
than meta-information for selection, join or aggregation operators,
which are usually pair-wise relations or simply numbers (aggrega-
tion results). Efficient maintenance of such meta-information re-
quires thorough analysis of the properties of density-based cluster
structures, which is a key contribution of our work.

10. CONCLUSION
In this work, we resent the first framework, calledChandi, for

efficient shared processing of a large number of density-based clus-
tering queries over streaming windows. It is the first step of apply-
ing multiple query optimization principles from the field of database
to process large number of data mining requests in stream environ-
ments. For answering multiple clustering queries with arbitrary
parameter settings,Chandiachieves full sharing of both CPU and
memory utilizations. Our experimental study shows that, for the
most general cases,Chandi is on average four times faster than
the best alternative method while using85% less memory space.
More savings can be achieved if the queries have similar parameter
settings.Chandialso exhibits excellent scalability in terms of be-
ing able to handle large numbers of queries under high speed input
streams in our experiments.

Based on the general principles learned in this work, such as the
hierarchical pattern representation for multiple queries, we will ex-
plore the potential for the shared execution for other mining types,
such as other cluster types, outliers, associations, etc. Efficient stor-
age and management mechanisms for those detected patterns also
become an important topic for future exploration.

11. REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework
for clustering evolving data streams. InVLDB, pages 81–92,
2003.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution.VLDB
J., 15(2):121–142, 2006.

[3] A. Arasu and J. Widom. Resource sharing in continuous
sliding-window aggregates. InVLDB, pages 336–347, 2004.

[4] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.
Maintaining variance and k-medians over data stream
windows. InPODS, pages 234–243, 2003.

[5] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based
clustering over an evolving data stream with noise. InSDM,
2006.

[6] Y. Chen and L. Tu. Density-based clustering for real-time
stream data. InKDD, pages 133–142, 2007.

[7] J. N. Entzminger, C. A. Fowler, and W. J. Kenneally.
Jointstars and gmti: Past, present and future.IEEE
Transactions on Aerospace and Electronic Systems,
35(2):748–762, april 1999.

[8] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu.
Incremental clustering for mining in a data warehousing
environment. InVLDB, pages 323–333, 1998.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. InKDD, pages 226–231, 1996.

[10] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.
Elmagarmid. Scheduling for shared window joins over data
streams. InVLDB, pages 297–308, 2003.

[11] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm.Applied Statistics, 28(1).

[12] I. INETATS. Stock trade traces. http://www.inetats.com/.
[13] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and

G. Jacobson. The case for precision sharing. InVLDB, pages
972–986, 2004.

[14] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly
sharing for streamed aggregation. InSIGMOD Conference,
pages 623–634, 2006.

[15] S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar.
State-slice: New paradigm of multi-query optimization of
window-based stream queries. InVLDB, pages 619–630,
2006.

[16] D. Yang, E. A. Rundensteiner, and M. O. Ward. Highly
efficient neighbor-based pattern detection over streaming
windows.WPI Technical Report WPI-CS-TR-09-06, june
2009.

[17] D. Yang, E. A. Rundensteiner, and M. O. Ward. Multiple
query optimization for density-based clustering queries over
streaming windows.WPI Technical Report:
WPI-CS-TR-09-04, april 2009.

[18] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over
streaming data. InEDBT, pages 529–540, 2009.

[19] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.
Efficient computation of the skyline cube. InVLDB, pages
241–252, 2005.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An
efficient data clustering method for very large databases.
SIGMOD Record, vol.25(2), p. 103-14, 1996.

