
Composable, Scalable, and Accurate Weight
Summarization of Unaggregated Data Sets

Edith Cohen
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
edith@research.att.com

Nick Duffield
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
duffield@research.att.com

Haim Kaplan
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

haimk@cs.tau.ac.il
Carsten Lund

AT&T Labs–Research
180 Park Avenue

Florham Park, NJ 07932, USA
lund@research.att.com

Mikkel Thorup
AT&T Labs–Research

180 Park Avenue
Florham Park, NJ 07932, USA
mthorup@research.att.com

ABSTRACT
Many data sets occur as unaggregated data sets, where multiple
data points are associated with each key. In the aggregate view of
the data, the weight of a key is the sum of the weights of data points
associated with the key. Examples are measurements of IP packet
header streams, distributed data streams produced by events reg-
istered by sensor networks, and Web page or multimedia requests
to context distribution servers. We aim to combine sampling and
aggregation to provide accurate and efficient summaries of the ag-
gregate view. However, data points are scattered in time or across
multiple servers and hence aggregation is subject to resource con-
straints on the size of summaries that can be stored or transmitted.

We develop a summarization framework for unaggregated data
where summarization is a scalable and composable operator, and as
such, can be tailored to meet resource constraints. Our summaries
support unbiased estimates of the weight of subpopulations of keys
specified using arbitrary selection predicates. While we prove that
under such scenarios there is no variance optimal scheme, our es-
timators have the desirable properties that the variance is progres-
sively closer to the minimum possible when applied to a “more” ag-
gregated data set. An extensive evaluation using synthetic and real
data sets shows that our summarization framework outperforms all
existing schemes for this fundamental problem, even for the special
and well-studied case of data streams.

1. INTRODUCTION
This paper concerns the problem of summarizing a large popu-

lation of data points of the form
���������

where
�

is a key and
�

a
non-negative weight. The data are unaggregated in the sense that a
key may appear in different data points. We aim to support queries
on the total weight present over arbitrary selections of keys.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

A motivating reference example comes from traffic measurement
in computer communication networks, the data points being flow
records that detail the number of bytes

�
that a router forwards

between a source-destination pair
�

in some (usually short) period
of time; typically multiple such data points would be produced by
the router for each

�
over longer periods. We aim to find the total

weight (bytes) of an arbitrary set of keys in an arbitrary time period.
It is important that we are not constrained to subsets known in

advance of the measurements. This would preclude exploratory
studies, and would not allow a change in routine questions to be ap-
plied retroactively to the measurements. A striking example where
the selection is not known in advance was the tracing of the Internet
Slammer Worm [20]. It turned out to have a simple signature in the
flow record. Once this signature was identified, the worm could be
studied by selecting records of flows matching this signature from
the sampled flow records. We detail other applications in Section 2.

Our example is instructive in the sense that practical constraints
for router design effectively rule out what might otherwise be con-
sidered an obvious application of a general approach, namely for
the router to maintain an aggregate view of the data by summing
the weights associated with each key. In a high speed communica-
tions network, too many distinct keys are present over any useful
aggregation timescale to be concurrently stored and modified in a
router memory that combines feasible cost, size and speed.

These constraints motivate a different general approach, which
computes a weight summary of the population, comprising a ran-
dom sample of keys, each of which has its associated weight ad-
justed so as to be an unbiased estimate of the exact aggregated
weight for the key (see example in Figure 2). In keeping with our
original aim, we can use the weight summary to estimate the weight
of any key selection by summing the adjusted weights of those keys
in the sample that are selected. As mentioned, the summary must
be made without any prior knowledge of which key sets will be of
interest for later selections. Finally, the summaries should mini-
mize estimator variance.

1.1 Streaming for (Un)aggregated Data
Our reference example requires the summarization to work on

data streams; the traffic measurement data points are generated by
routers at an extremely high rate and hence the time window for
buffering is extremely short. Beyond this, any measurement must

either be immediately incorporated into the summary, or discarded
forever. In fact, the problem of creating weight summaries has been
studied intensely for streaming data. If all data points have distinct
keys, then aggregation is trivial and the weight summaries are clas-
sic samples with associated estimates. For streams Knuth calls this
reservoir sampling [19, pp. 138–140]: maintaining 	 samples for
the part of the stream seen thus far; we review a variety of sampling
strategies in Section 3.1. Whichever method is used, these samples
should comprise adjusted weights for unbiased estimation. But the
important general case of unaggregated data is much less under-
stood. The previous techniques are most suited for the special case
of streams where all point weights are unit. We shall review these
techniques under related work in Section 3.2.

1.2 Information Flows on Trees
A further dimension to the problem of summarization that is

present in some important applications is the hierarchical structure
of measurement data flows. Again we use measurement in com-
puter communications networks as a motivating example. In this
case, hardware speed and cost constraints in the router typically
prevent measurement on every packet flowing through the router.
Instead routers perform summarization on a sampled substream of
packets. Furthermore, bandwidth constraints in the measurement
collection infrastructure prevent direct collection of the summaries
from all routers. Instead, the collection topology is a tree, in which
a set of co-located routers send their summaries to a local collec-
tor (e.g. one per city) that further summarizes data from all local
routers, and forwards the summary to a regional collector, and so
on, to a single final collector. We give more details applications,
including the need for intermediate summarization, in Section 2.

We abstract this arrangement as an Information Flow Tree (IFT)
in which information flows bottom up from the leaves to the root.
Each node obtains weight summaries from its children, and sum-
marizes these for its parent. Each node, including the root (the final
collector) has a capacity constraint limiting the size of the summary
it produces. Subjected to all the capacity constraints, we wish to ob-
tain a summary that gives the most accurate weight estimates. Even
though the weight summary produced by a node is aggregated with
each key being distinct, a key may occur multiple times over the
different summaries produced by it and its sibling nodes, hence the
total input to the parent from all children is an unaggregated data
set, albeit with random keys and weights.

The expressiveness of IFTs is illustrated in Figure 1. On the left
we see how IFTs can capture the streaming model. The streaming
IFT is a path with a single leaf hanging off each node. All edges
have the same capacity, which corresponds to the storage limitation
when processing the stream. An IFT for summarization of multi-
ple distributed data streams over some communication network is
illustrated in Figure 1 (middle). Edge capacities at each “stream”
module capture storage constraints and other edge capacities cap-
ture network bandwidth constraints. Figure 1 (right) illustrates an
IFT for summarization performed by multiple servers, each sum-
marizing a part of the data and sending a summary of their part to
a single central collector server, which produces a summary of the
full data set. These IFTs also capture constraints of using multi-
ple parallel processors: The data set is partitioned to processors,
each processor produces a summary of its own chunk of the data,
and these summaries are combined to produce the final output sum-
mary.

1.3 Contribution
So far we have established the aims and constraints for our work:

we wish to summarize unaggregated data with unbiased estimator

of arbitrary subset sums, having minimal variance, being computa-
tionally efficient, and respecting information flow constraints. The
contribution of this paper is a summarization scheme which meets
these goals; in particular:

 Accuracy: our new scheme is significantly more accurate than
previous schemes both with heavy tailed weight distributions, and
even in the special case of a stream of unit weights. We will docu-
ment the improved accuracy experimentally on both real and syn-
thetic data. Moreover, accuracy is sharp in the sense that estima-
tor variance decreases for more aggregated input data, converging
to variance-optimal sampling for completely aggregated input (i.e.
having one data point per key).
 Tree Modularity: We frame our solution as a Summarization Al-
gebra: each node in the IFT performs its own independent summa-
rization of data below it in the tree, and this is the only information
it passes to its parent. In principle, each node could use a different
summarization algorithm.
 Streaming Modularity: Our scheme transparently allows stream-
ing summarization. We use the following general approach to
maintain a weight summary of 	 keys from unaggregated data. An
incident data point is added to the adjusted weight if the key is
included in the current summary. Otherwise, sampling is applied
to decide which of the now 	���
 keys to discard in order to keep
within the limit 	 . We call this approach modular because any sam-
pling algorithm can in principle be used to reduce from 	���
 to 	
weights.
 Multiple Weight Functions: Our approach to unaggregated data is
much more flexible than previous weight summarizations, and we
can easily extend it to handle multiple weights, e.g., both byte and
packet counts, and even negative weights.
 Flexibility: Our approach works naturally for non-streaming
cases, e.g., distributed data collection by disjoint sensors that only
have limited capacity for communication.
 Efficiency: We give a specialized implementation when each node
uses the efficient variance optimal sampling scheme VAROPT from
[6], that uses only � ������� 	 � amortized CPU time per data point.
The implementation is in practice much faster, being constant on
non-pathological sequences. In experiments, reading an item from
a file took about three times longer than summarizing it on a PC.

The layout of the remainder of the paper is as follows. Section 2
details further applications of our method. Section 3 discusses re-
lated work summarizing aggregated and unaggregated data, and the
propagation of summaries on trees. Section 4 describes our mod-
ular approach to summarization, and previews the performance of
our method relative to existing approaches. Section 5 describes ad-
justed weight summaries and their variance. Section 6 describes
our proposed summarization algebra, while Section 7 describes its
application under IFT constraints, and investigates the impact on
estimator variance of unaggregated data. The scalable algorithms
that facilitate our fast implementation are outlined in Section 8. Ex-
perimental comparison with other methods is in Section 9.

2. APPLICATIONS
As mentioned in the introduction, communication networks pro-

vide a fertile area for developing summarization methods. In the
Internet Protocol (IP) suite, routers forward packets between high
speed interfaces based on the contents of their packet headers. The
header contains the source and destination address of the packets,
and usually also source and destination port number which are used
by end hosts to direct packets to the correct application executing

(a,4) (d,6) (a,3) (b,1)

time

(c,1) (a,2)(b,2) (d,2) (c,2)(a,2)
(d,6)(a,4)(c,1)(a,2)(a,4)(d,6)

(a,2)

(c,1)(d,2) (b,2) (d,2)

(d,2)(c,1) (a,4) (d,6)

(a,2)

(b,2)

(b,2)

(d,6) (a,4) (c,1)(d,2) (b,2)
(d,2)(b,2)(c,1)

(a,2)
(d,6)(a,4)

(b,2) (d,2) (d,6)(a,4)(c,1)

(a,2)

(a,2) (a,2)(b,2)(d,6) (a,4) (c,1)(d,2)

(a,4) (c,1)(d,2) (b,2)(d,6)
(a,2)

(d,2) (b,2) (c,1)
(a,2)

(d,6) (a,4)
(c,1) (d,2)(b,2) (a,4) (a,2)(d,6) (c,1)(d,2) (b,2)(a,4) (a,2)(d,6) (a,2) (d,6)(a,4)(d,6)(a,4)(c,1) (d,2)(b,2) (c,1)(d,6) (a,4) (c,1)(d,2) (b,2) (a,2)(a,2) (d,2)(b,2) (b,2)(a,2) (d,6)(a,4)(c,1) (d,2)

Figure 1: (left) IFT corresponding to data stream model constraints. The weighted set of this stream has keys ��� ����������� � with weights��� � �"!$# �&%'�)(!$*
.
�������+!,# ��
 ! (,

�������-!
.� #/! % , and
�����0�+!1# �)2 !43

. The output of the root node is a summary
of this weighted set. Other nodes output a summary of the respective prefix. For example, the third node outputs a summary of
the weighted set with

��� � �5! 2 ,
�6���7�6!8#

, and
�������9!
 . (middle) IFT of an aggregation of multiple distributed data streams.

(right)IFT for an aggregation of data from multiple servers sending summaries to a central server.

within them. These and other fields in the packet header constitute
a key that identifies the IP flow that the packet belongs to. In our
context, we can think of the set of keys of packets arriving at the
router in some time interval, each paired with the byte size of the
corresponding packet, as a population of unaggregated data points.
As described in the introduction, routers typically sample packets
and summarize the header information of a flows packets into flow
records, including the key, aggregate packet and byte counts, along
with timing and other information. Sampled NetFlow [22] is the
most commonly deployed method in routers today. Other proposed
methods for summarization are discussed in Section 3 below.

The flow records are exported up a measurement infrastructure,
potentially involving multiple stages of summarization through
sampling and aggregation, to a collector and ingested into a
database. Common database queries for network administrators
would include: (i) calculating the traffic matrix, i.e., the weight be-
tween source-destination address pairs; (ii) the application mix, as
indicated by weight in various port numbers (iii) popular websites,
as indicated by destination address using certain ports. Although
some queries are routine, in exploratory and troubleshooting tasks
the keys of interest are not known in advance.

A given flow record may serve different measurement applica-
tions, which operate with different levels of key granularity, and
may require separate summarization within the measurement in-
frastructure. For example, service providers are commonly inter-
ested in the traffic matrix between different IP address routing pre-
fixes, i.e., certain groups of IP addresses. Thus in a measurement
module serving this applications, the original source-destination
address-level key is mapped into a source-destination prefix-level
key. Obviously, flow records having the same prefix-level key ob-
served at a router can be aggregated, either by the router itself,
or within the measurement infrastructure. But also at the prefix-
level, with over
�:<; current prefixes, there are over
�:0=?> possible
keys and summarization is attractive for managing prefix-level ag-
gregates. Whereas packets with shared address-level key typically
follow the same path (same routers), and hence, the data source
can be modeled as a stream, load balancing commonly causes dif-
ferent packets within the same prefix-level key to take different
paths through the network, either on different parallel links be-
tween router pairs, or even traversing different routers in a city.
Therefore, a suitable model this data source with prefix-level keys
is distributed unaggregated streams.

Network devices that serve content or mediate network protocols
generate logs comprising records of each transaction. Examples
include web servers and caches; content distribution servers and
caches; electronic libraries for software, video, music, books, pa-
pers; DNS and other protocol servers. We consider each record as
a data point, keyed e.g. by requester or item requested, with weight
being unity or the size or price of the item requested if appropriate.
Offline libraries can produce similar records. Queries include find-

ing the most popular items or the heaviest users, requiring aggrega-
tion over keys with common user and/or item. Another example is
sensor networks that comprise of a distributed set of devices each
of which generates monitoring events in certain categories.

3. RELATED WORK

3.1 Summarizing Aggregated Data
In aggregate data sets each data point has a unique key. There

are many algorithms for computing a weight summary in reser-
voir/stream, offline, and distributed settings. These algorithms uti-
lize uniform sampling [14, 32], Poisson sampling [16, 12] (with
Horvitz Thompson [17] adjusted weights), probability proportional
to size sampling with replacement (ppswr) [2], and order sam-
pling [25, 8, 9] which includes pps without replacement [24] with
adjusted weights in [9] and priority sampling [23, 11] with adjusted
weights derived in [11].

Most of these methods are ill-suited to summarize unaggregated
data. Pre-aggregation before sampling is generally prohibited by
resource or streaming constraints1. Post-aggregation—after sam-
pling effectively treating each data point as having a unique key—
is inefficient for keys having large multiplicities of the same key
and considerably less accurate than key-level summaries. This
prompted the development of methods that compute key-level sum-
maries over the unaggregated data.

3.1.1 Variance Optimal Summaries: VarOpt
VAROPT [6, 1, 30] is a generic weight summarization scheme

for aggregated data that has optimality properties that date back
to [28]. We leverage VAROPT in our modular summarization as
the internal sampler at all nodes of an IFT.

For keys @ ACB ! �D
 ��EFE�EF� A � , let
�����?�

denote the weight of key
�

and G�����H� denote its corresponding adjusted weight in the summary.
VAROPT I summary has the following properties:

(i) Inclusion probabilities proportional to size (ipps). Key
�

is in-
cluded in the sample with probability J ���?�K!MLONFP �D
 �������?��Q�R I � ,
where

R I is the unique solution of SUTWV0X Y�Z LONFP �[
 �������?��Q�R I �\! 	
(assuming 	K]&A ; otherwise all keys are included with J ���?�^!
).

The adjusted weight of a sampled key
�

is (the Horvitz-
Thompson (HT) estimator [17]) G�6���?� ! �6���?��Q J ���H� !L/_�` � �6���?�a��R I � (the weight divided by the probability that the key
is included in the sample).

(ii) Sample contains exactly
LONFP �b	 � A � keys.

(iii) No positive covariances between distinct adjusted weights:
COV

� G�����?�a� G�6��cD���.d : for
�-e!fc

.
1ASH and ANF [5, 3] realize the sample distribution of weighted
sampling [24, 25], —see Section 3.2— but a second pass is re-
quired to determine weights.

(iv) Total preserving: S T�V X Y�Z G�����?�^! S T�V X Y�Z �����?� .
HT adjusted weights are unbiased and minimize the variance for

each key. In particular, they minimize gih ! S�T�V0X Y�Z VAR @[G�5���?� B ,
for a given set of inclusion probabilities J ���?� (

�^jlk
). Ipps inclusion

probabilities with HT adjusted weights minimize gih for a given
average summary size [26, 27]. We discuss these qualities in more
detail in Section 5.

3.2 Summarizing Unaggregated Data
Summarization of unaggregated data sets was studied for ap-

plications including data streams and stream databases [18], dis-
tributed data, and in-network aggregation (sensor networks). Our
applications require estimation of arbitrary subset sums; we do not
consider alternatives that do not, and hence exclude those restricted
to estimate aggregates over full data, or limited aggregates such as
top-k, heavy hitters, or frequency moments.

Concise samples [15] independently samples data points of uni-
form weight, aggregating all points with the same key, thus obtain-
ing a larger effective sample using the same storage. This is also
the flow counting mechanism deployed by Cisco’s sampled Net-
Flow (NF) [22]. With fixed-rate sampling we obtain a variable-size
summary. In many applications, a fixed-size summary is desirable,
which is obtained by adaptively decreasing the sampling rate as
new data points arrive. We refer to this adaptive version as ANF.

Counting samples [15] (see also sample-and-hold (SH) [13])
is a summarization algorithm applicable to an unaggregated data
streams with uniform weights. It samples all data points at a fixed
rate, but once a key is sampled, all subsequent data points with the
same key are counted. Similarly, there is an adaptive version of the
algorithm that produces fixed-size summaries (ASH) [15, 13].

Subpopulation-weight estimators for ASH and ANF were pro-
posed and evaluated in [5, 3]. ASH is more accurate that ANF on
any subpopulation and distribution. On the other hand NF and ANF
are applicable on general IFTs, whereas ASH and SH are limited
to streams. NF and ANF support multiple-objectives unbiased es-
timation for other additive (over data points) weight functions [4],
whereas ASH and SH do not.

Step-counting SH (SSH) is another summarization scheme for
unaggregated data streams that improves over ASH [5, 3] by ex-
ploiting the memory hierarchy of IP routers. As a pure data stream
algorithm, however, SSH utilizes larger storage to produce the
same size summary as ASH. Of the approaches considered so far,
the best previous solutions we are aware of on data streams is ASH
and on general IFT constraints, ANF.

3.3 Propagation of Summaries on Trees
Multistage aggregation for threshold sampling [12] is repre-

sented on a tree in [7] for the purpose of developing exponential
bounds on estimation error. Applications include Sampled Net-
Flow, Counting Samples, and Sample and Hold. Some earlier work
[10] had analyzed variance for Sampled NetFlow exploiting rela-
tionships similar to Lemma 6.8 for multistage sampling. However,
both these cases were restricted to the independent sampling.

4. MODULAR SUMMARIZATION
In the modular summarization algebra (SA) outlined in Sec-

tion 1.3, each node in an IFT passes up to its parent a further sum-
maries of the weight summaries produced by its children. This
internal summarization is performed by a sampling scheme m for
aggregated data. If the same local scheme is used at all nodes, we
denote the resulting scheme SA @ mnB . In cases where the structure is
specialized to some class o of IFTs we indicate this as an argument

� o � : For streams (Figure 1 (left)), we use SA @ mnB � stream
�
. For the

2-level model of Figure 1, we use SA @ mpB � servers
�
. Our notation

expresses the underlying modularity, which allows arbitrary inter-
nal samplers. A natural choice for this sampler is VAROPT, the
variance optimal scheme for aggregated data sets. It follows from
a general recurrence in [6] that if all data points in the input to the
IFT have unique keys, then SA @ VAROPT B is a VAROPT scheme, as
defined in Section 3.1.1.

We are left with some intriguing questions, whose answers we
now preview.

 How does SA @ VAROPT B relates to VAROPT?, that is, what is the
cost, in terms of estimation quality, of not aggregating recurrent
keys prior to summarization ?

SA @ VAROPT B does not fully inherit the theoretical variance op-
timality of VAROPT (Section 3.1.1). In particular, inclusion prob-
abilities are not ipps, adjusted weights are not Horvitz-Thompson,
and hence gih is not minimized (property (i)). We show, however,
that even in the streaming model, there does not exist a summariza-
tion scheme for unaggregated data that minimizes gih (see Sec-
tion 7.2). On the flip side, SA @ VAROPT B does have properties (ii)-
(iv): fixed-size sample, unbiased estimation, and is total preserving
with no positive covariances.

We empirically compared SA @ VAROPT B to the ideal optimal
scheme which first performs complete aggregation of the data
and then applies VAROPT. We found that on real data sets,
SA @ VAROPT B was never more than 15% from this unattainable op-
timum, and in many experiments, the difference was only a fraction
of a percent.
 How does SA @ VAROPT B compare with existing schemes for un-
aggregated data? In our experiments for data streams, our scheme
SA @ VAROPT B � stream

�
typically had a 10%-40% reduction in vari-

ance over the more specialized ASH. For more general IFTs with
distributed data or applications with multiple weight functions (see
Section 7.3), the only competitor to our framework is ANF. We
observed 3-10 fold reduction in variance when using SA @ VAROPT B
instead of ANF.
 Is there an efficient scalable implementation of SA @ VAROPT B ?
We present a specialized implementation of SA @ VAROPT B � stream

�
that uses only � ���F�<� 	 � amortized CPU time per data point. The
implementation is in practice much faster, being constant on non-
pathological sequences.

5. WEIGHT SUMMARIES

Weighted Sets and Summaries. We explore in more detail the no-
tion of a weight summary. We start with some universe q of possi-
ble keys. A weighted set is specified by a pair

��kr���s�
where

k9t q
and

�
is a function from q to the non-negative real numbers, with

the convention that
�

extends to : throughout qUu k . When q is
clear from context, we sometimes specify a weighted set using the
function

�
. Data points are singleton weighted sets of the form�����������H���

.

DEFINITION 5.1. A weight summary
��kr��v��

of a weighted set��kr���s�
is a random weighted set such that for any key

�wj q ,
E @ v6���?� B !x�����?�

.

The weights
v6���?�

of a weight summary are called adjusted
weights. By linearity of expectation, the weighted sum

���?yz�/!
Sf{ V[| �6��cD� over selected keys

y,t q has the unbiased estima-
tor

v��?yz�.! S { V[| v6��cD� . v6��cD� is computed over the summary, by
first applying the selection predicate to included keys and adding

unaggregated data set with keys}+~f�����H���?�a�
:�����D���a�����������a���a�������b�����������a���a�������a�H�

aggregated weights:� ���<��~��
, � ������~��

, � ���a��~��
weighted set:��}[� � ��~w���������b�����������b���a���7���a�H�

weight summary � = of
��}[� � � :� weights�a�7� �����D���b�?��a�7� �������H�b�?��a�7� �����7�H�b�H�

weight summary � > of
��}[� � � :� weights�b�7� �����D���b���������H�b�H��a�7� �����D���b�������7�?�b�H�

weight summary �n� of
��}[� � � :� weights�b�7� �����D���b���a���7�a�a�?��b�7� �������H�b�����������a�?�

Figure 2: Example showing an unaggregated data set, the correspond-
ing aggregated data as a weighted set

��}[� � � , and three weight sum-
maries distributions � = � � > � �n� of

��}[� � � . Keys with zero adjusted
weights are not listed.

up the adjusted weights of keys that satisfy the predicate. Con-
sider

y�! ��� ���b� for the example in Figure 2 and estimating���?yz�'!$�6� � � � �������s! ('� #�!��
using

v > . With probability#�Q (the summary includes keys � ��� , which are both members of
y

.
We obtain the estimate

v > �?yz�'!�v > � � � � v > ���7�'! ('�x(! 2 .
With probability
 Q (the summary includes � ��� . Only � is a mem-
ber of

y
and hence

v > �?yz�.!�v > � � �n! (. It is easy to see that the
expectation E @ v > �?yz� B ! 2-� � #<Q (� �f("� �
 Q (�p!���!x���?yz�

.

Summary Size. Different weight summaries of the same weighted
set are compared based on their size and estimation quality trade-
offs. The size of a summary is the number of keys with posi-
tive adjusted weights. The average size of a weight summary is
E @�¡ � � ¡ v6���?�9¢ : � ¡ B . A weight summary has a fixed size 	 if it as-
signs positive adjusted weight to exactly 	 keys. The weight sum-
maries in Figure 2 have fixed sizes.

v = has size
 and
v > and

v �
have size

#
.

Estimation quality measures. Variance is the standard metric for
the quality of an estimator. The variance VAR @ v6�?y£� B for a particular
subpopulation

y
is equal to¤

T�¥ { VD| COV ¦i@ ��� c B ! ¤
T�VD| VAR ¦.@ � B0� ¤

TH§¨ { ¥ T�¥ { V[| COV ¦.@ ���?c B �

where COV ¦.@ ���?c Bª© COV @ v����?�a��v6��cD� B ! E @ v����?��v6��cD� B�« �����H�H����cD�
is the covariance of

v6���?�
and

v6��cD�
. No single weight summary can

dominate all others of the same size on all subpopulations. Since
we are aiming for a summary that can be used with arbitrary sub-
populations, the notion of a quality metric is more subtle.

The average variance of weight summary
v

of
��kr�H���

over sub-
populations of a certain cardinality is a linear combination of two
quantities: the sum of per-key variances gihK@ v Bz©,S TWV<¬ VAR ¦.@ � B
and the variance of the sum h�gs@ v B ! VAR @ v���k0� B [29]. For

v
that preserves total weight (

v���k0�f!­����k0�
, h�gs@ v B ! :), the

average variance is minimized when gih/@ v B is minimized. The
three weight summaries in Figure 2 are total preserving. We have
VAR ¦C®D@ �DB ! : , VAR ¦C®D@ � B ! VAR ¦C®0@ � B !¯#

, and hence gih/@ v > B !% . We have VAR ¦C° @ ��B ! VAR ¦C° @ � B ! 2 , VAR ¦C° @ � B ! : , and hencegih/@ v � B !
 # .
In practice, average variance bounds are insufficient as they do

not translate into bounds on the estimation error of specific queries.
This metric is complemented by limiting the covariance structure:
A weight summary

v
has non-positive covariances if for every two

keys
�±e!²c

, COV ¦.@ ���?c B d : . It is easy to see that the weight
summariesin Figure 2 have non-positive covariances – for keys � ���
in
v > we have E @ v > � � ��v > ����� B !4* � #�Q (�"! 2 d���� � �H�������i! 2 ,

for keys
�����

we have E @ v > ���7��v > ���7� B ! : d��������H�������^!¯#
.

The weight summarizations we propose and existing ones we
evaluate (VAROPT, ANF, ASH) all preserve total weight, have
fixed size, and have non-positive covariances. Therefore, all same-
size sumamries can be compared using the sum of per-key vari-
ances gih . In Figure 2, both gihK@ v > B and gihO@ v � B have size

#
butgihO@ v > Bz])gihO@ v � B and therefore

v > is a better summary.

The three weight summaries in Figure 2 have HT adjusted weights,
as each key obtains the same adjusted weight when it is included
in the summary. The inclusion probabilities of

� � ��������� in
v = are�
 Q�#��
 Q (�
 Q 2 � and in

v > are
�
 �a#<Q (�
 Q (� , and are proportional

to their weights
� (��#D�
 � . Therefore,

v = and
v > realize ipps sam-

pling for size-1 and size-2 samples, which minimizes gih . Since
they also have the other desirable properties,

v = and
v > are opti-

mal (size-1 and size-2) VAROPT weight summaries of
��kr�H���

[6, 1,
30] (see Section 3.1.1).

6. SUMMARIZATION ALGEBRA
Here we collect the specifics of the summarization algebra in the

form of formal statements of the algebraic properties; for space rea-
sons we omit the proofs. The sum of two weighted sets is defined by
key wise addition over the union of keys, i.e.,

��k = ��� = �a³K��k > ��� > �´!��k =6µ k > ��� = ³�� > � where
��� = ³�� > �����H�$!¶� = ���?� � � > ���H�

(
�9j q). Note this extends to the sum of multiple weighted sets� = ³·� > ³f¸�¸7¸a³¹�-º�!�» º{ ¨ =

� { . Observe that the sum operation
is commutative.

Some important properties, including being a weight summary,
are additive. Let

� { (
 dfc/dU¼
) be weighted sets with respective

weight summaries
v { . Let

�x! » º{ ¨ =
� { .

LEMMA 6.1. The random weighted set
v½! » º{ ¨ =

v { is a
weight summary of

�
.

Clearly, if all
v { preserve the total weight, then so does

» º{ ¨ =
v { :

¾
T�V ¿

� ºÀ
{ ¨ =

� { ���ÂÁW�z~
º¾
{ ¨ =

¾
T�V ¿ � {

��ÁW�£~ º¾
{ ¨ =

� { �WÃ.��~ � ��Ã.�CÄ

LEMMA 6.2. If the weight summaries
v { are independent, then

covariances are additive: COV Å6ÆÇ ÈrÉ0¦ Ç @ ���?c B ! S ºÊ ¨ = COV ¦ Ç @ ���?c B E
The sum of weight summaries preserves the non-positive covari-

ances and zero covariances properties:

COROLLARY 6.3. If the weight summaries
v { are independent,

then if
v { (

cU!
 ��E7E7E���¼) have the non-positive covariances or
the zero covariances properties then so does the weight summary» º{ ¨ =

v { .
COROLLARY 6.4. If the weight summaries

v { are independent,
then for each key

�pj q , VAR Å6ÆËHÈÌÉ ¦ Ë @ � B ! S º{ ¨ = VAR ¦ Ë @ � B E
COROLLARY 6.5. If the weight summaries

v { are independent,
then gihK@ » º{ ¨ =

v { B ! S º{ ¨ = gih/@ v { B .
DEFINITION 6.6. An adjusted-weights summarization scheme

(weight summarization) Í is a random mapping from the set of
weighted sets into itself that for any weighted set

�
, Í ���s�

is a
weight summary of

�
.

If we apply Í to a random weighted set
v

, e.g. a weight sum-
mary, we use the notation Í�Î v ©,Í �Wv��

. It follows using con-
ditional expectation and the law of total variance that weight sum-
mary properties are transitive under composition:

LEMMA 6.7. Let
v

be a weight summary of
�

, and let Í be a
weight summarization defined over the support of

v
(i) E @ � Í ���s�������?� B !U�6���?�

(
�pj q).

(ii) Í�Î v is a weight summary of
�

.

The composition Í = Î£Í > Î ¸�¸�¸ Î£Í/Ï (the domains must be com-
patible for this to be defined) of several weight summarizations is
also a weight summarization. Suppose

v���Ð
are weight summaries

of
�

with the property that E @ ÐK���?� ¡ v B !�v����H�
for all

�pj q . Then
COV Ñi@ ���?c ¡ v B will denote the conditional covariance of

Ð/���?�a��Ð/��cD�
,

i.e., conditioned on
v

. Set VAR Ñ @ � ¡ v B ! COV Ñ @ ����� ¡ v B . The fol-
lowing is a Law of Total (co)Variance for the present model.

LEMMA 6.8. For each pair of keys
���?c9j q ,

COV ÒiÓ ¦ @ ���?c B ! E @ COV ÒiÓ ¦ @ ���?c ¡ v BFB'� COV ¦ @ ���?c B E
COROLLARY 6.9. For each key

�pj q ,

VAR Ò.Ó ¦.@ � B ! VAR ¦.@ � B0� E @ VAR ÒiÓ ¦n@ � ¡ v B�B E
In particular, we have, in an obvious notation, gihK@ ÍÔÎ v B !
gih/@ v B�� E @ gih/@ ÍÕÎ v ¡ v BFB .

LEMMA 6.10. If the weight summaries
v

and the range of Í
preserve total weight, have the zero covariances, or have the non-
positive covariances properties, then so does the weight summaryÍÕÎ v .

7. IFT-CONSTRAINED SUMMARIES
The additivity and transitivity properties of weight summaries

from Section 6 guarantee that if each basic summarization step at
and below a node utilizes a weight summarization that is total-
preserving with non-positive covariances, then the node’s output
weight summary is also total preserving with non-positive covari-
ances. Note that for this property to hold, the IFT structure does not
have to be fixed. The next operation (and hence the tree topology
above the node) can depend on the output, and a summarization can
itself depend on its input data points. Generally, we can consider
a family of recursive IFTs, which allow, for example, for different
arrival orders of data points or for variable size streams.

This flexibility is important because an IFT node does not nec-
essarily corresponds to a physical node. Constraints at a physical
node can also be modeled by an IFT. For example, capacity con-
straints at a physical node may preclude efficient set merging of
summaries obtained as feeds from its children – it might be neces-
sary to partition the inputs across multiple process, the data stored
in external memory, and at the extreme, internal memory only suf-
fices to store the output summary size. In this case, we model the
constraints of this physical node by a family of IFTs. E.g., if in-
ternal memory is only sufficient to store the output summary size
then constraints are modeled by a family of IFTs corresponding to
unaggregated stream.

The basic primitive of data stream summarization is a weight
summarization that inputs a weighted set of size 	/�$
 and out-
puts a weighted set of size 	 (removes a single key). Interest-
ingly, any weight summary that produces a size 	 weight summary
from a size 	���
 weighted set using HT adjusted weights has the
non-positive covariances property. Note this is important for sec-
ondary weights—see Section 7.3— for it implies that they have
non-positive covariances.

LEMMA 7.1. Consider a weight summarization that for an in-
put weighted set of size 	K�,
 produces summaries of fixed size

	 , (for inputs that are already of size 	 , it returns the input set)
and uses the HT adjusted weights. This weight summarization has
non-positive covariances.

PROOF. Consider a weighted set
��kr�H���

where ¡ k ¡ ! 	��x
 and
let J ���?� be the probability that

�
is included in the summary. We

have S TWV<¬ J ���H�-! 	 . These probabilities uniquely define the dis-
tribution over summaries. The one key that is not included is se-
lected with probabilities
ª«"J ���?� . (This is only correct for selecting	 out of 	���
). Otherwise, the summary distribution is not deter-
mined uniquely). Consider two keys

��e!�c
and let

v6���?�
and

v6��cD�
be the adjusted weights. Consider the expectation E @ v6���?��v���cD� B .
We have

v6���?��v���cD�Ö! : with probability
«fJ ���?� «fJ ��cD� (ex-

actly one of the items
�

or
c

is not included). With probabil-
ity J ���?� �xJ ��cD� «$
 , we have both items included with respec-
tive adjusted weights

v6���?�s!1�����?��Q J ���?� and
v6��cD��!$�6��cD��Q J ��cD� .

Therefore E @ v6���?��v6��cD� B !$�6���?�H����cD��×�Ø TÂÙ�Ú ×�Ø { Ù Û =×<Ø TÂÙ ×�Ø { Ù d4�����?�H�6��cD�
. IfJ ���?�]�
 and J ��cD�]�
 , the inequality is strict.

It turns out that there is a unique such weight summarization
that is also total-preserving and minimizes gih , which means it
is optimal for this 	9�¯
 to 	 keys primitive. We will denote this
base VAROPT scheme by B-VAROPT I [1, 30, 31, 6]). We specify
B-VAROPT I below as Algorithm 1. The scheme B-VAROPT I
inputs a weighted set of size 	9��
 . It uses the ipps probabilities
(see Section 3.1.1) J ���?�²!ÜLONFP �[
 �������?��Q�RC� , where

R
is the

solution of S T�V ¦ LONFP �[
 �������H��QbRC�w! 	 . Key
�

is then dropped
with probability Ý ���?�)!
/«&J ���?� . We have S T�V ¦ Ý ���?�&!

(exactly one key is dropped). All remaining keys

c¯j�v u9� ���
get adjusted weights G����cD�²!Þ�6��cD��Q J ��cD�²!ßL/_b` � R0���6��cD��� .
Algorithm 1: B-VAROPT I �Wv�� where ¡ v ¡ ! 	��)
 .

let à be such that á±â V ¦'ã'äæå �����èç� ����� � à �i~�é
for

�'ê � do � ���<��ë ã'äæå �����£ç� �����?� à �
generate uniformly random ì êOÃ-��í<���a�
maximize î such that á ��� �pï � ����� ��ð ��ê � ���'ñ î �-ò ì .
remove î from �
for

�'ê � do
ç� �����zë ã�ó�ô � à �zç� ���<�?�

This leads to a simple but inefficient implementation of
SA @ VAROPT IbB (stream) in Algorithm 2.

Algorithm 2: SA @ B-VAROPT I B (stream). Simple but inefficient
implementation. Maintains summary

v
with adjusted weightsG�5� � � , � jlv

.
� ë�õ

;
while new data point

����� � � arrives do
if
��ê � then

ç� �����zëöç� �����r÷ �
else

include
�

in �ç� ���<�£ë �
if
ð � ð�~±éi÷±�

then B-VAROPT I � � �

In Figure 3 we contrast an example application of
SA @ B-VAROPT > B (stream) on an unaggregated data stream,
with the action of VAROPT > on the respective aggregated data
set. The resulting weight summariesare different: while both are
total preserving with non-positive covariances, that produced by
SA @ B-VAROPT > B (stream) does not have HT adjusted weights.

7.1 Working within IFT constraints
Internal summarization at an IFT nodes can be performed by

merging the weighted sets collected from its children, then apply-
ing a weight summarization to the merged set to reduce it as needed
to satisfy the capacity constraint on the edge directed to its parent.
But is it always beneficial to merge the inputs? Below we justify
the rule: merge before summarizing, meaning that it is beneficial to

VAROPT > on the aggregated stream:�����D���a���������H�b���a���7�a�a�?�
.

VAROPT > weight summary:� weight assignment�a�7� �
(a,2),(b,2)

��a�7� �
(b,2), (c,2)

�
SA ø B-VAROPT >�ù (stream) on the unaggregated stream (ú data points):���7���a�

,
�������a�

,
�������a�

,
�������a�

weight summary after 2 data points:� weights� �
(b,1),(c,1)

�
weight summary after 3 data points:� weights�a�7� �

(a,1.5),(b,1.5)
��a�7� �

(b,1.5), (c,1.5)
��a�7� �

(a,1.5), (c,1.5)
�

weight summary after 4 data points:� weights�a�7� �
(a,1.5),(b,2.5)

��a�7� �
(b,2.5), (c,1.5)

��a�7� �
(a,2), (c,2)

��a����� �
(a,2), (b,2)

��a����� �
(b,2), (c,2)

�
Figure 3: Example: The weight summary distributions of
SA ø B-VAROPT >aù (stream) on an unaggregated data stream and of
VAROPT > on the respective aggregated data set.

merge data points before applying B-VAROPT. Intuitively, merg-
ing before summarizing extends the base optimality derived from
B-VAROPT (minimal gih) from being per data-point to the batch
of data-points obtained from the children. Formally, for a weighted
set

�?y ��vs�
(representing the current summary) and additional data

points
��� = ��� = �a�DE7E�E7�b��� Ï ��� Ï �ûzü+ý

VAROPT þ[ÿ��������	�
�Ë?ÈrÉ
� ÿ��
 ���
 ������� (1)

ûèü+ý
B-VAROPT þ<ÿ������ B-VAROPT þ[ÿ ÿ��������	� � ÿ�� É ��� É ������������� � ÿ��
 ���
 �������

We have not specified a particular VAROPT I for input size larger
than 	Ì�6
 ; in this context we use B-VAROPT I�� Û = Î ¸�¸7¸ Î B-VAROPT I ,
where 		 ! ¡ � y µ �b� = �7E�E7E�� �0Ï �<� ¡ ; see [6]. The left hand side of (1),
by optimality of VAROPT I , is the minimum gih for size- 	 weight
summaries of the weighted set

�?yÌ��v���³ » Ï{ ¨ = �
��� Ï ��� Ï ��� . The right

hand side is another weight summary of this weighted set.
In the example of Figure 3, gih ! #

by VAROPT > , which is
strictly lower than gih !�# =� by SA @ B-VAROPT > B (stream) on the
unaggregated data set. This is an example where the inequality (1
is strict and hence, the “merge before summarizing” rule results
in a strictly better weight summary. This sharply contrasts aggre-
gated data sets where there is no benefit to a VAROPT elimination
procedure initiated with the full data set [30] over a reservoir im-
plementation of VAROPT [1, 6].

If the data happens to be aggregated, and all intermediate sum-
marizations allow for summary size that is at least the output size	 , then SA @ VAROPT B is an instance of VAROPT I .

7.2 The Cost of Not Aggregating
SA @ VAROPT B on unaggregated data set is outperformed by

VAROPT applied to a respective aggregated data set. SA @ VAROPT B
has the advantage that by leveraging B-VAROPT as a building
block, gih gracefully converges to the optimal when the data is
more aggregated and attains it if the data set happens to be aggre-
gated. We show that this cost of not aggregating is inherent. That
is, there is no IFT-constrained summarization algorithm of unag-
gregated data sets that (is guaranteed to) minimize gih .

THEOREM 7.2. There is no weight summarization algorithm
for unaggregated streams that produces a fixed-size summary that
minimizes gih .

PROOF. We find a weighted set (data below an IFT node) such
that for any weight summary

v
of this set, there exists a “com-

pletion” into a dominating (has at least the weight for any key)
weighted set (below a parent node) such that

v
is not the right

building block of an optimal summary for the parent. Consider two
streams that share the prefix ! !,����� = �
 �a�0��� > �
 �a�b��� � �
 ��� . " = has
! followed by

��� � �
 � and " > has ! followed by
����#<�
 � . Let 	 !�#

.
We show that any weight summary of ! , can not be completed to
an optimal weight summary of both " = and " > .

The minimum gih over size-2 weight summaries of a weighted
set with positive weights

�
 �
 ��#<� (aggregating " = respectively for
keys

��� = ��� > ��� � �) is
#
. The unique size-2 weight summary withgih !Õ#

is
� : ��#��a#�� with probability
 Q�# and

� #D� : ��#�� with proba-
bility
 Q<# .

The minimum gih over size-2 weight summaries of a set with
positive weights

�
 �
 �
 �
 � (aggregated " >) is % , and is attained
by assigning two keys adjusted weight : and the other two keys
adjusted weight

#
, with all keys having the same inclusion proba-

bility.
Consider two weight summaries,

v = and
v > for the prefix

! .
v > is (the unique) optimum for ! and has probability
 Q (

for each of
� (Q<#�� (Q<#�� : �·� (Q<#D� : � (Q�#<� and

� : � (Q<#D� (Q<#�� . v =
has

� : ��#D�
 � and
� #D� : �
 � , each with probability
 Q<# . We havegihO@ VAROPT > Î �Wv = ³\��� � �
 ��� B !�#

. In fact
v = is the unique size-2

weight summary of ! that can be completed to a weight summary
of " = with minimum gih . For any other weight summary, includ-
ing

v > , we have gih/@ VAROPT > Î �Wv > ³���� � �
 ��� B ¢Õ#
. Similarly,gihO@ VAROPT > Î �Wv > ³���� # �
 ��� B ! % and

v > is the unique size-2
weight summary of ! with this property, for any other weight sum-
mary, including

v = , we have gihK@ VAROPT > Î �Wv = ³Õ����#<�
 ��� B ¢% .

A consequence of Theorem 7.2 is that there is no optimal algorithm
for unaggregated streams, that is, an algorithm that outperforms
all others on all inputs. In particular, there are examples where
SA @ VAROPT B � stream

�
has a slightly larger gih than ASH. On the

other hand, we constructed a family of unaggregated streams where
ASH has larger gih by a logarithmic (in) factor.

We conclude this theoretical discussion with a conjecture. We
define the competitive ratio of a weight summarization

v
of size	 as the worst-case ratio (over all applicable input data sets) be-

tween gih/@ v B and the minimum possible gih (gihO@ VAROPT IbB on
the corresponding aggregated data). For SA @ VAROPT B summary

v
of a data set and corresponding family of IFTs, we define 	� to be
the smallest size of an intermediate summary on which VAROPT is
locally applied and consider the ratio gihK@ v B Q gih/@ VAROPT I�� B . We
conjecture that this ratio, and in particular, the competitive ratio of
SA @ VAROPT IbB (stream) are bounded by a constant.

The competitive ratio of ASH is at least
�F�<� 	 whereas the worst

example we could find for SA @ VAROPT I B (stream) (on a contrived
family of sequences) was about
 E 2 . The highest ratio we observed
on real-life data was at most
 E
 � (see Section 9).

7.3 Multiple Objectives Estimates
Applications frequently require aggregate values with respect

to multiple weight functions, as is the case with IP flow records
with packet and byte counts. Each data point is modeled as a tu-
ple

����������¼ª�
, where

�
is a key,

�
is the primary weight and

¼
is

a secondary weight. (There can be multiple secondary weights¼ = ��¼ > �7¸7¸7¸ , but they are all handled similarly.) As with primary
weights, the secondary weight of a key is defined to be the sum of
the secondary weights of data points that share the key.

We show that if nonzero secondary weight implies positive pri-
mary weight pointwise, our summarization algebra extends to sup-

port unbiased estimation over secondary weights. Summarization
is performed with respect to the primary weights, but we main-
tain adjusted secondary weights $ ���?�

for each key in the sum-
mary. Adjusted secondary weights are updated as follows after
summarization and addition operations: Consider a weight sum-
mary

v applied to a weighted set with primary weights
v

and
secondary weights $. That is, for a key

�
,
v6���?�

and $ ���?�
are

the weights of
�

before summarization and (the random variable)v ���?� is the adjusted primary weight after summarization. We
argue that $% ���H��! $ ���H� ¦ � Ø TÂÙ¦ Ø TÂÙ are correct adjusted secondary
weights. Note that $& ���?� are well defined because we assumed
that $ ���H�

is nonzero only if
v����?�&¢ : . It is easy to see that

E @ $ ���?� B ! E @ v ���?� B�$ ���?��Q�v6���?��! $ ���?�
. Clearly, if $ ���?�le! :

then
v ���H�6e! : . Hence, the final weight summary satisfies our as-

sumption that nonzero secondary weight implies positive primary
weights pointwise.

When summing two weighted sets, we perform a key wise addi-
tion of adjusted secondary weights (in addition to adjusted primary
weights). This operation retains unbiasdness of adjusted weights.
If each weighted set has the property that when the secondary
weight is nonzero, the primary weight is positive, this property also
holds for the result of the addition (using nonnegativity of primary
weights).

If the weight summarization has non-positive covariances
of primary weights, this property carries over to secondary
weights: We substitute our assumption that E @ v ���?��v ��cD� B dv����?��v6��cD�

in E @ $ ���?� $ ��cD� B !('-Ø TÂÙ '-Ø { Ù¦ Ø TÂÙ ¦ Ø { Ù E @ v ���?��v ��cD� B and obtain
E @ $ ���?� $ ��cD� B d $ ���?� $ ��cD�

. On the flip side, adjusted secondary
weights do not preserve total even if the primary weights do and
they can have much higher variance compared to a summarization
where they are considered primary weights, especially if the pri-
mary and secondary weights are weakly or negatively correlated.

Secondary weights are more flexible than primary weights in that
they may assume negative values. Negative values are of interest
because they naturally model deletions.

7.4 Signed weights
What if our primary weights are signed ? One solution is to use

two summarization schemes, one for positive and one for negative
data points. A more natural solution is to handle the weights as
secondary but set and modify the (adjusted) primary weights as we
please – as long as we maintain that the primary weights are pos-
itive when the secondary adjusted weight is nonzero, the adjusted
secondary weights remain unbiased. We propose a heuristic where
prior to each sampling step, each adjusted primary weight is reset-
ted to the absolute value of respective adjusted secondary weight.
If we use VAROPT for the sampling, then this heuristic guarantees
that each sampling step locally minimizes gih .

7.5 Information flow DAGs
Our summarization framework can be extended to information

flow DAGs where nodes can partition their output summary among
multiple recipients. This extended model supports exporting se-
lected keys out of a summary. This model is suitable when keys
naturally expire, as is the case with IP flows that are considered
final after certain time elapses since the arrival of the most recent
packet. Expired records are final in the sense that all data points
were already observed. These records are exported out of the fast-
memory summarization module into a slower and larger storage
module. This model also supports a continuous output of summa-
rized records instead of periodic outputs of complete summaries.
We leave details for future work.

8. IMPLEMENTATION
The naive implementation of SA @ VAROPT B is inefficient. If the

output weighted set of each application of B-VAROPT is transferred
as a list, then each B-VAROPT I application performed after addi-
tion of data points requires � � 	 � processing time. Similarly, with-
out tuned data structures, the processing time of a merge (adding
sets) depends on the sum of the sizes of the sets.

We designed and implemented an efficient code for
SA @ VAROPT B which maintains the summary in a tuned data
structure that reduces worst-case per-data point processing to
amortized � ���F�<� 	 � . The implementation is fast and further
benefits from the fact that the theoretical amortized � ���F�<� 	 �
bound applies to worst-case distributions and arrangements of the
data points. Performance on “real” sequences is closer to � �
 �
time per data point that hold for randomly permuted data points.

Pseudocode for SA @ VAROPT IbB � stream
�
is provided in Algorithm

3. The algorithm input is an unaggregated stream of data points� � ���s� where � is a key and
�

a positive weight. The summary
v

is a sample of up to 	 keys. Each included key � has an adjusted
weight G�6� � � . If a key is not in

v
its adjusted weight is : .

Algorithm 3: SA @ VAROPT IbB (stream). Efficient implementa-
tion. Summary represented as

vU!*) µ,+ with explicit adjusted
weights G��� � � if � j&)

while G�6� � �^!xR
if � j

+ .

-�ë²õ
; . ë õ

; à ë�í
while

ð -nð�ñ·é
and new data point

���D� � � arrives do
if
��ê/-

then � �����£ë � �����r÷ �
else

include
�

in
-� ���<��ë �

if stream not ended then
Insert

-
in a heap maintaining the minimum key argmin 0 V21 � �����

while new data point
����� � � arrives do

if
�'ê � then

if
�'ê/-

then� �����£ë � �����r÷ �
else � �����£ë à ÷ �

move
�

from . to
-

else � �����zë �34ë�õ
/* keys to be moved from

-
to . */4�5 �76�6 4�895 ë à;: ð . ð /* sum of weights in .=< 3 */

if �?> à then include
�

in
-

else
include

�
in
3

4�5 �76�6 4�8	5 ë 4�5 �76�6 4�895 ÷ �
while 4�5 ��6@6 4�895BA ��ð . ð ÷·ð 3lð�ï/�a� ã'äæå 0 V�1 � ����� do�^ë

argmin 0 V21 � �����
move

�
from

-
to end of

3
4�5 �76�6 4�8	5 ë 4�5 �76�6 4�895 ÷ � �����C ë 4�5 ��6@6 4�895 ����ð . ð�÷wð 3lð�ï �a�

Generate uniformly random ì êOÃ-��í<���a�
if ì ñfð . ð �?�^ï à � C � thenî ëED ì ��� �pï à � C ��F

remove .-ø î ù from .
else ì ë ì ï±ð . ð � � ï à � C �î ë�í

while ì > í
doì ë ì ï·�?�^ï � ��3 ø î ù � � C �î ë î ÷±�

remove
3 ø î ù from

3
à ë C
. ë .&< 3

When a new data point has been processed, we will have a sum-
mary represented by the following components:
 A threshold

R\jHG
.

The keys in
v

are partitioned into two sets + and
)

. Hash tables
are used to determine membership of keys in

v
, + , and

)
.
 Each � jI)

has a weight
��� � ��¢ R

. The set
)

is stored
in a priority queue which always identifies the smallest weightLONFP â V21 �6� � � . Here,

LONFPKJ ©ML .
 Each � j
+ has a weight

��� � �Kd R
. The set + is stored as a

prefix of an array of size 	��)
 .
For every � j$v

, the adjusted weight is G�6� � �K!ML/_b` � R0��� â � .
Thus G� â !x� â for � jN)

while G��� � �^!UR
for � j

+ .
This design can be extended to support batch addition of data

points into the summary (which requires allowing the size of the
summary to vary.). When adding multiple summaries we main-
tain the internal representation of the largest child, and batch merge
(and if necessary summarize) the input from other children. This
tuning is important if all but one child have small weighted sets,
as in the case of a stream (Algorithm 3) where one child repre-
sents the stream and the other a single data point to be added. To
get � ���F�<� 	 � expected time per data point, and � �
 � for randomly
permute streams, it is critical that we preserve our implicit repre-
sentation.

9. EXPERIMENTAL EVALUATION
We evaluate our summarization scheme against best-known pre-

vious schemes on two basic IFT-constrained settings:
 Unaggregated data streams. We apply SA @ VAROPT B � stream
�

(our summarization algebra with B-VAROPT summarization in
each step, see Algorithm 3). SA @ VAROPT B � stream

�
is compared

with ASH (see Section 3).
 Distributed servers The unaggregated data set is partitioned to O
servers. Each server produces a size- 	 summary of its data. These
summaries are then sent to a “central collector” server, which adds
up (fully merges) the summaries and produces a size- 	 summary
of the entire data set (See Figure 1 (right) for the corresponding
IFT constraints.) All servers apply VAROPT locally. We refer
to this summarization as SA @ VAROPT I B � servers

�
. We compare

SA @ VAROPT I�B � servers
�

with ANF (see Section 3). (ASH is not
applicable in this model.)

ANF and ASH are defined for unit-weight data points, but their
summaries depend only on the aggregated data set (Summaries are
oblivious to IFT structure, stream order, or the level of aggrega-
tion of the data). For efficiency (eg, when summarizing bytes for
IP flows), our implementation worked directly with the aggregated
data. We used the best-known adjusted weighted sets based on
ANF and ASH counts [3]: These weight summaries have non-
positive covariances, are total preserving, and have no larger gih
than all other respective methods.

Because all evaluated schemes are total preserving and have non-
positive covariances, they can be compared using the gih metric
(see discussion in Section 5). The relation of the gih values re-
flects the relation of the variances of the corresponding estimators
on any subpopulation size. To demonstrate applications of usage
for our summaries, we also evaluate the variance of the estimators
on subpopulations defined by natural selection predicates.

As a reference point, we compute gihO@ VAROPT I�B (exactly) on
the aggregated data set. This is the minimum gih possible for the
distribution and is not attainable for unaggregated data under the
IFT constraints.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

fra
ct

io
n

of
 to

ta
l w

ei
gh

t

number of heaviest keys

alpha=0.6
alpha=0.8

alpha=1
alpha=1.2
alpha=1.6

alpha=2
0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07

fra
ct

io
n

of
 to

ta
l w

ei
gh

t

number of heaviest keys

campus flows
campus src-dest

peering flows
peering src-dest

peering dest
Netflix

Figure 4: Left: Cumulative distributions of a Family of
Pareto distributions on 1000 keys with parameters P !
: E 2 � : E 30�
 �
 E #��
 E 2 ��# . Right: Netflix movies requests and IP
flows bytes distributions.

0.0001

0.001

0.01

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

Pareto power parameter

Pareto n=1000 k=100

aNF
aSH

SA[VarOpt](stream)
SA[VarOpt](5 servers)

VarOpt (agg opt)
1e-05

0.0001

0.001

0.01

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

Pareto power parameter

Pareto n=1000 k=200

aNF
aSH

SA[VarOpt](stream)
SA[VarOpt](5 servers)

VarOpt (agg opt)

1

10

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

Pareto power parameter

Pareto n=1000 k=100

aNF
aSH

SA[VarOpt](5 servers)
SA[VarOpt](stream)

VarOpt (agg opt)

1

10

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

Pareto power parameter

Pareto n=1000 k=200

aNF
aSH

SA[VarOpt](5 servers)
SA[VarOpt](stream)

VarOpt (agg opt)

Figure 5: Pareto distributions, sweeping the power parame-
ter P from : E 2 to

#
for a fixed sample size 	 !
�:�: (left) and	 !M# :�: (right). Top: normalized average sum over keys of

square errors. Bottom: the ratio of the sum of square errors togihO@ VAROPT IbB .
9.1 Data sets
Pareto distributions. We generated a family of Pareto distribu-
tions, each with 1000 distinct keys, using different power parame-
ters P (in the range : E 2 to

#
). This synthetic data set enables us

to explore how the relation between the different methods depends
on the power P (skew of the distribution) and the summary size 	 .
Properties of these distributions are illustrated in Figure 4(left). We
can see that the mean weight of a key and the relative weight of the
top- 	 set (the skew of the data) increase as P decreases.

We applied scaling and rounding to obtain integral weights with
the smallest weight being
 (to facilitate comparison with ASH and
ANF that are only defined for integral weights). Corresponding
unaggregated data sets were obtained by breaking each key into
unit-weight data points.

Unaggregated data stream were obtained for each distribution by
taking a random permutation of the data points. For the multiple
servers model, we partition data points into 5 servers by randomly
and independently assigning data points to servers.

Netflix Prize data. This data set [21] contains roughly
%Q
�:�R ratings of 17,770 distinct movies by roughly
� Qx
�:2S users

(anonymized user IDs). (See Figure 4(right)). We treat ratings as
requests for movies from users.

Stream: We generate an unaggregated data stream from this data
by treating all requests for a movie with the same time stamp (date)
as a data point with weight equal to the number of requests and the

1e-05

0.0001

0.001

0.01

40 60 80 100 120 140 160 180 200

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

Pareto n=1000 alpha=0.6

aNF
aSH
SA[VarOpt](5 servers)
SA[VarOpt](stream)
VarOpt (agg opt)

0.001

0.01

40 60 80 100 120 140 160 180 200

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

Pareto n=1000 alpha=1.2

aNF
aSH
SA[VarOpt](5 servers)
SA[VarOpt](stream)
VarOpt (agg opt)

1

10

40 60 80 100 120 140 160 180 200

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

Pareto n=1000 alpha=0.6

aNF
aSH

SA[VarOpt](5 servers)
SA[VarOpt](stream)

VarOpt (agg opt)

1

1.2

1.4

1.6

1.8

2

40 60 80 100 120 140 160 180 200

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

Pareto n=1000 alpha=1.2

aNF
aSH

SA[VarOpt](5 servers)
SA[VarOpt](stream)

VarOpt (agg opt)

Figure 6: Pareto distributions, sweeping the sample size 	 for
power parameter P ! : E 2 (left) and P !
 E # (right). Top:
normalized average sum over keys of square errors. Bottom:
the ratio of the sum of square errors to gihO@ VAROPT IbB .

0.0001

0.001

0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](10 servers)
SA[VarOpt](100 servers)

SA[VarOpt](stream)
VarOpt (agg opt)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH
SA[VarOpt](stream)
SA[VarOpt](10 servers)
SA[VarOpt](100 servers)
VarOpt (agg opt)

Figure 7: Netflix request stream, sweeping the sample size 	 .
Left: normalized average sum of square errors. Right: the ra-
tio of the sum of square errors to gihK@ VAROPT I B .
movie ID as the key. These data points are naturally ordered by
request date. The resulting stream has
TQÖ
7:�U data points.

Partition into “servers:” we obtained a natural partition the data
into servers by mapping users to servers (all requests of the same
user are mapped to the same server, selected uniformly at random).
We used 10 and 100 servers.

Natural subpopulations: We evaluated the estimators on subpopu-
lations defined by the release-year (and range of years) of the movie
(release years range from 1896 to 2005).

IP packet header streams. We used two IP packet header
streams gathered from network links, one in a campus network
(campus) and another near a peering point (peering). The streams
comprise metadata derived from each packet header, and the
packet’s weight in bytes. The analysis did not use raw header fields
such as IP address. Instead, the data was anonymized prior to anal-
ysis, with header mapped to metadata comprising an application
type derived from the TCP/UDP ports, and three key indices of dif-
ferent levels of granularity. The basic key level uses distinct values
of the 4-tuple of source/destination IP address and TCP/UDP ports.
Coarser keys used source and destination IP address, and destina-
tion IP address only. The key choice entails a tradeoff. While sum-
marization based on coarser keys limits the selection predicate of
the subpopulation, it allows for more accurate estimates using a
given-size summaries for predicates based on the coarser keys. For
example, a summary supporting destination-based selection (e.g.,
traffic to destinations in a certain AS or to news web servers) should

use keys based only on destination IP address. If the summary
needs to support more complex selections, based also on applica-
tion and source IP, it should use the full flow attributes as the key.

The campus stream had
*�E 2HQ�
�: ; packets, (E : # Q�
7: S distinct

flows, % E V Q�
�:XW bytes,
2%Q&
7: � distinct source and destination

IP addresses pairs, and 2 E 3 Q·
�: � distinct destination IP addresses.
The peering stream had

*0E # QU
7:[; packets,
 E : * QU
�:<; distinct
flows, % E #�� Q�
7:XW bytes,
 E % # Q�
7:2S distinct source and destination
IP addresses pairs, and (E 3 Q·
�: # distinct destination IP addresses.
(See Figure 4(right)).

Stream: The packet header stream is an unaggregated data stream.
Each data point is a packet header metadata and the weight is the
number of bytes.
Partition into “servers:” Typically all packets of a flow follow the
same route. To obtain a meaningful partition, we used the peering
data set with keys corresponding to destination IP address. Packets
(data points) were assigned to servers by consistently assigning all
the packets of the same (4-tuple) flow into the same random server.
We used 100 servers. This way, each key (destination IP address)
had data points in multiple servers (on average, each destination
IP address had data points in about 10 servers) but all packets of a
flow were assigned to the same server. This partition corresponds
to load balancing of traffic across multiple routers. If each router
produces a summary of destination addresses in the traffic it han-
dles and these summaries are then combined into a global one of
the full traffic.
Natural subpopulations: We considered subpopulations of flows
based on application (identified by port number). From the peering
stream, we selected three subpopulations that correspond to “web”
(
*0E
YQK
�:XS distinct flows,

#�E % � QK
�:XW total bytes) “p2p,” (
�DE # Q�
7: �

distinct flows, (ZQ�
�: R total bytes) and “multimedia” (
*�E %�%[QÖ
�: >

distinct flows,
*0E % * Q¹
�: U total bytes) traffic.

From the peering stream with keys that correspond to destina-
tion IP addresses, we selected two (possibly overlapping) subpop-
ulations of IP addresses: Destination IP addresses that support in-
coming web traffic

� #DE 3[� Qw
�:XW bytes and
#DE V�* Qw
�: # distinct IP

addresses) and destination IP addresses that support incoming p2p
traffic (

�DE % � Q¹
�: R bytes and
 E
�2 � Q·
�: � addresses).
9.2 Results

We provide two plots that visualize the results for each data set.
The first plot shows the (estimated) normalized gih of each method
(sum over keys of square errors, averaged over at least 100 runs,
normalized by dividing by the square of the total weight of the data
set.) This plot is shown on a logarithmic scale to accommodate
the wide range of gih as a function of summary size. Because
the first plot uses a logarithmic scale, we include a second plot
to illustrate the relation between the methods by showing the ra-
tio of gih of each method to gih/@ VAROPT I�B . Results for both
the stream and multiple servers models are shown on the same
plots: SA @ VAROPT B � stream

�
should be compared with ASH and

SA @ VAROPT IbB � servers
�

with ANF.
Figure 5 shows the results for Pareto distributions for a fixed

summary size 	 and sweeping the power P . Figure 6 shows results
for Pareto distributions with P ! : E 2 and P !
 E # . Figure 7
shows results on the Netflix data. Figure 8 shows results for the
two IP packet header streams with keys that correspond to IP flows.
Figure 9 shows the results for the coarser keys (IP address pairs, and
destination IP addresses) on the IP packet header streams.

For each selected subpopulation and weight summarization, we
computed the average normalized square error of the estimate
gleaned from the summaries (the square error is normalizing by di-
viding it with the square of the total weight of the subpopulation).

1e-05

0.0001

0.001

0.01

0 500 1000 1500 2000 2500 3000 3500 4000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
VarOpt (agg opt)

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH
SA[VarOpt](stream)
VarOpt (agg opt)

0.0001

0.001

0.01

0 1000 2000 3000 4000 5000 6000 7000 8000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
VarOpt (agg opt)

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000 7000 8000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH
SA[VarOpt](stream)
VarOpt (agg opt)

Figure 8: IP packet header streams with keys according to 4-
tuple flows. campus (top) and peering (bottom). Left: nor-
malized average sum of square errors. Right: the ratio of the
average sum of square errors to gihK@ VAROPT I B .
Note that the “offline” optimum is not meaningful for subpopula-
tions (see discussion in Section 7.2) and therefore is not included in
the plots. Figure 11 shows results for subpopulations of IP flows.
Figure 10 (left and middle) shows results for subpopulations of des-
tination IP addresses in the peering data set and Figure 10 (right)
shows results for the Netflix data set.

We can see that across data sets, SA @ VAROPT B � stream
�

performs
very closely to the (unattainable) optimum gihO@ VAROPT I B . On
Pareto data (randomly permuted packets), it is within fraction of
a percent, within 5% on most datasets, and about 15% on one
dataset. SA @ VAROPT I�B � servers

�
was closer to gihO@ VAROPT IbB and

within a fraction of a percent on all datasets. ANF is the worst
performer, typically with 50% to an order of magnitude larger
variance and ASH is in between. The Pareto distributions show
that the performance gaps grow as the power parameter P de-
creases. Across data sets, performance gaps grow as 	 increases.
Across data sets and subpopulations, on unaggregated data streams
SA @ VAROPT B � stream

�
has
�:2\Ö«�%<:2\ smaller variance than ASH.

For multiple servers, SA @ VAROPT I�B � servers
�

has
«/
�: fold lower

variance than ANF. Therefore, our summarization framework pro-
vides significantly tighter estimates.

10. CONCLUSION
This paper is motivated by the practical need for summarization

through multilevel aggregation and sampling of high-rate, possibly
distributed, streams of measurements of communications networks.

We develop a summarization algebra that reduces the summa-
rization problem of unaggregated data when subjected to resource
constraints to a primitive summarization operation on aggregated
data sets. By using VAROPT as this primitive, a scheme known
to minimize the sum of per key estimation variances when sam-
pling pre-aggregated data, we obtain SA @ VAROPT B and its stream
variant SA @ VAROPT B � stream

�
. Although we show that there is no

streaming algorithm that achieves the same minimum on unaggre-
gated streams, SA @ VAROPT B has the novel desirable property that
the variance is progressively closer to the pre-aggregated minimum
when applied to a “more” aggregated data set. We provide an ef-
ficient implementation of our algorithm. Extensive evaluation on
synthetic and real-life data sets shows that SA @ VAROPT B � stream

�
significantly outperforms all other streaming based estimates for
unaggregated data in terms of accuracy for a given summary size.

Even larger performance improvements are established for the
generic SA @ VAROPT B applicable to distributed data sets.

11. REFERENCES
[1] M. T. Chao. A general purpose unequal probability sampling plan. Biometrika,

69(3):653–656, 1982.
[2] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On random sampling over

joins. In Proc. ACM SIGMOD Conference, pages 263–274, 1999.
[3] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup. Algorithms and

estimators for accurate summarization of Internet traffic. In Proceedings of the
7th ACM SIGCOMM conference on Internet measurement (IMC), 2007.

[4] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup. Algorithms and
estimators for accurate summarization of Internet traffic. Manuscript, 2007.

[5] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup. Sketching
unaggregated data streams for subpopulation-size queries. In Proc. of the 2007
ACM Symp. on Principles of Database Systems (PODS 2007). ACM, 2007.

[6] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup. Stream sampling
for variance-optimal estimation of subset sums. In Proc. 20th ACM-SIAM
Symposium on Discrete Algorithms. ACM-SIAM, 2009.

[7] E. Cohen, N. Duffield, C. Lund, and M. Thorup. Confident estimation for
multistage measurement sampling and aggregation. In ACM SIGMETRICS,
2008. June 2-6, 2008, Annapolis, Maryland, USA.

[8] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In Proc.
26th ACM PODC, 2007.

[9] E. Cohen and H. Kaplan. Tighter estimation using bottom-k sketches. In
Proceedings of the 34th VLDB Conference, 2008.

[10] N. Duffield and C. Lund. Predicting resource usage and estimation accuracy in
an ip flow measurement collection infrastructure. In ACM SIGCOMM Internet
Measurement Workshop, 2003. Miami Beach, Fl, October 27-29, 2003.

[11] N. Duffield, M. Thorup, and C. Lund. Priority sampling for estimating arbitrary
subset sums. J. Assoc. Comput. Mach., 54(6), 2007.

[12] N.G. Duffield, C. Lund, and M. Thorup. Learn more, sample less: control of
volume and variance in network measurements. IEEE Transactions on
Information Theory, 51(5):1756–1775, 2005.

[13] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proceedings of the ACM SIGCOMM’02 Conference. ACM,
2002.

[14] C.T. Fan, M.E. Muller, and I. Rezucha. Development of sampling plans by
using sequential (item by item) selection techniques and digital computers. J.
Amer. Stat. Assoc., 57:387–402, 1962.

[15] P. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. In SIGMOD. ACM, 1998.

[16] J. Hájek. Asymptotic theory of rejective sampling with varying probabilities
from a finite population. The Annals of Mathematical Statistics,
35(4):1491–1523, 1964.

[17] D. G. Horvitz and D. J. Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical
Association, 47(260):663–685, 1952.

[18] T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Sampling algorithms in a
stream operator. In Proc. ACM SIGMOD, pages 1–12, 2005.

[19] D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms. Addison-Wesley, 1969.

[20] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the slammer worm. IEEE Security and Privacy Magazine, 1(4):33–39,
2003.

[21] The Netflix Prize. http://www.netflixprize.com/.
[22] Cisco NetFlow.

http://www.cisco.com/warp/public/732/Tech/netflow.
[23] E. Ohlsson. Sequential poisson sampling. J. Official Statistics, 14(2):149–162,

1998.
[24] B. Rosén. Asymptotic theory for successive sampling with varying probabilities

without replacement, i. The Annals of Mathematical Statistics, 43(2):373–397,
1972.

[25] B. Rosén. Asymptotic theory for order sampling. J. Statistical Planning and
Inference, 62(2):135–158, 1997.

[26] S. Sampath. Sampling Theory and Methods. CRC press, 2000.
[27] R. Singh and N. S. Mangat. Elements of survey sampling. Springer-Verlag, New

York, 1996.
[28] A. B. Sunter. List sequential sampling with equal or unequal probabilites

without replacement. Applied Statistics, 26:261–268, 1977.
[29] M. Szegedy and M. Thorup. On the variance of subset sum estimation. In Proc.

15th ESA, LNCS 4698, pages 75–86, 2007.
[30] Y. Tillé. An elimination procedure for unequal probability sampling without

replacement. Biometrika, 83(1):238–241, 1996.
[31] Y. Tillé. Sampling Algorithms. Springer-Verlag, New York, 2006.
[32] J.S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,

11(1):37–57, 1985.

0.0001

0.001

0.01

0 500 1000 1500 2000 2500 3000 3500 4000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
VarOpt (agg opt)

1e-05

0.0001

0.001

0.01

0 500 1000 1500 2000 2500 3000 3500 4000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
SA[VarOpt](100 servers)

VarOpt (agg opt)

1e-06

1e-05

0.0001

0.001

0.01

0 500 1000 1500 2000 2500 3000 3500 4000

no
rm

al
iz

ed
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
VarOpt (agg opt)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 500 1000 1500 2000 2500 3000 3500 4000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH
SA[VarOpt](stream)
VarOpt (agg opt)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH
SA[VarOpt](stream)
SA[VarOpt](100 servers)
VarOpt (agg opt)

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500 4000

ra
tio

 to
 o

pt
im

al
 s

um
 o

f s
qu

ar
e

er
ro

rs

k

aNF
aSH

SA[VarOpt](stream)
VarOpt (agg opt)

Figure 9: IP packet header streams with keys according to IP address pairs on the peering data (left), destination IP addresses on
the peering data (middle), and IP address pairs on the campus data (right). Sweeping the sample size 	 . Top: Normalized average
sum of square errors. Bottom: The ratio of the average sum of square errors to gihO@ VAROPT IbB .

1e-05

0.0001

0.001

0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH

SA[VarOpt](100 servers)
SA[VarOpt](stream)

0.0001

0.001

0.01

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH
SA[VarOpt](100 servers)
SA[VarOpt](stream)

0.01

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH

SA[VarOpt](100 servers)
SA[VarOpt](10 servers)

SA[VarOpt](stream)

Figure 10: Left and middle: Normalized square error, averaged over 100 runs, on the total bytes of subpopulations of destination IP
addresses from the peering IP packet header stream. Estimates gleaned from SA @ VAROPT B � stream

�
, SA @ VAROPT IbB � servers

�
(on 100

servers with random assignment of flows to servers), ASH, and ANF summaries. Subpopulations selection: destinations that support
web flows (left) and p2p flows (middle). Right: Normalized square error, averaged over 100 runs, on the total requests for movies
released in 1991 (Netflix dataset) ((0
72 movies,
 E V Q�
7: ; requests). Estimates gleaned from SA @ VAROPT B � stream

�
, ASH, ANF, and

SA @ VAROPT I�B � servers
�

(10 and 100 servers) summaries.

1e-05

0.0001

0.001

0.01

0 1000 2000 3000 4000 5000 6000 7000 8000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH

SA[VarOpt](stream)

0.0001

0.001

0.01

0.1

0 1000 2000 3000 4000 5000 6000 7000 8000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH

SA[VarOpt](stream)

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

no
rm

al
iz

ed
 s

qu
ar

e
er

ro
r

k

aNF
aSH

SA[VarOpt](stream)

Figure 11: Normalized square error, averaged over 100 runs, on the total bytes of subpopulations of flows from the peering IP packet
header stream. Estimates gleaned from SA @ VAROPT B � stream

�
, ASH, and ANF summaries. Subpopulations: web flows (left), p2p

flows (middle), multimedia flows (right).

