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ABSTRACT 

In database systems, the cost of data storage and retrieval are 

important components of the total cost and response time of the 

system. A popular mechanism to reduce the storage footprint is by 

compressing the data residing in tables and indexes. Compressing 

indexes efficiently, while maintaining response time requirements, 

is known to be challenging. This is especially true when designing 

for a workload spectrum covering both data warehousing and 

transaction processing environments. DB2 Linux, UNIX, 

Windows (LUW) recently introduced index compression for use 

in both environments. This uses techniques that are able to 

compress index data efficiently while incurring virtually no 

performance penalty for query processing. On the contrary, for 

certain operations, the performance is actually better. In this 

paper, we detail the design of index compression in DB2 LUW 

and discuss the challenges that were encountered in meeting the 

design goals.  We also demonstrate its effectiveness by showing 

performance results on typical customer scenarios. 

1. INTRODUCTION 
In database systems, a significant component of the total system 

cost is taken up by data storage and retrieval. As an example, in 

the 10TB TPCH [1] benchmark described in [2], the disks and the 

storage system as a whole were 24% and 36% of total system cost 

respectively. Other surveys [25] have reported figures as high as 

61% and 78% for disk storage for 100GB TPCH.  These stored 

data are queried and communicated routinely, with the cost of 

data access and communication making up a heavy component of 

the response time of the workload.   

Given all this, database systems have been exploring ways and 

means of reducing the storage footprint and retrieval cost of the 

data. Some of the techniques used include compressing the data 

[3], scan sharing of the data access [4], various caching 

techniques [5], data clustering mechanisms [6] etc.  These 

techniques are orthogonal to each other and have often been used 

in tandem. 

The common data structures where data resides include relational 

tables, large objects (LOBs) and the indexes used to access them. 

While the data in tables tend to be more than in individual 

indexes, it is not uncommon to find the total space occupied by 

indexes in a database to be in the same ballpark (if not more)  as 

that occupied by tables. It is therefore important to reduce the 

storage and I/O footprint by compression (or other means) of both 

tables and indexes. While there has been a lot of work on 

compression of tables, there is relatively less work on 

comprehensive compression schemes for indexes.  In this paper, 

we focus on the compression of the latter. 

Indexes used in a database system generally tend to be of the B+ 

tree family, with numerous index leaf pages and fewer non leaf 

pages. The index leaf pages contain sets of key and record 

identifiers (RIDs) for that key. The keys and the RIDs display 

different statistical properties depending on the usage scenario. In 

Data Warehousing, one tends to encounter indexes with few keys 

and long RID lists for those keys. The number of unique indexes 

or those with many keys is comparatively lower. For example in 

the ERP system described in [7], there was 1 unique index and 11 

non unique indexes. In contrast, in a transaction processing 

environment, one encounters a lot more primary key/unique 

indexes and fewer indexes with long RID lists.  To get efficient 

compression ratios overall, the compression technology for 

indexes has to be able to work efficiently for both RID dominated 

indexes and key dominated indexes.  

Compressing indexes efficiently, while maintaining response time 

requirements, is known to be challenging. This is partly because 

an index page has a lot of components like keys, RIDs and RID 

Flags intermixed in a page. For getting good compression ratios, 

one has to be able to compress all these components. Further, 

accesses to the compressed data need to be satisfied within certain 

response time guarantees. Maintaining response time 

requirements is challenged by the fact that index contents are 

often subjected to inserts, updates and deletes and the 

compression scheme chosen needs to be able to handle that 

efficiently. Maintaining response time requirements is also 

challenged by the fact that compression is inherently a CPU 
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intensive operation. Thus, one is trading off I/O savings for some 

CPU overhead. It is important that the CPU overhead be 

minimized for the wide ranging use of this technology.   

In this paper, we describe the design and implementation of Index 

Compression for DB2 LUW [20].  We discuss the challenges that 

were encountered in meeting the design goals and how they were 

tackled. We demonstrate the effectiveness of our techniques by 

showing performance results on typical customer scenarios.  

The remainder of the paper is organized as follows: first we 

describe the current state of the art in IO reduction in general and 

index compression in particular. Then in section 3 we give a 

description of the DB2 indexes we are targeting for compression. 

Subsequently in section 4 we describe the design of Index 

Compression in DB2 LUW with special emphasis on some key 

technologies like Prefix Key Compression (described in section 

5), RID list Compression (described in section 6) and the 

Compression Estimator (described in section 7). In section 8 we 

present the evaluation of these technologies using a typical 

customer workload and finally in section 9 we conclude. 

2. THE CURRENT STATE OF THE ART 
Index Compression comes under the broad area of IO reduction. 

Various mechanisms of IO reduction are listed in Figure 1. While 

some of these mechanisms concentrate on retrieval exclusively, 

others concentrate on storage and retrieval reduction.  Index 

Compression and compression in general are examples of the 

latter and mechanisms like Scan Sharing [4], Data Caching [5], 

and Data Clustering [6] etc are examples of the former. 

Scan Sharing [4] is a mechanism to achieve IO reduction on 

retrieval. Here two or more scans on the same table (optionally via 

an index), synchronize their retrieval so as to read the same page 

at the same time. Thus one page IO, by design, satisfies many 

scans.  In Data caching [5], pages of the base table or index or 

intermediate results are saved in a cache. This could be either on 

disk or main memory. These are then reused for subsequent 

queries. In Data Clustering [6], the data in the table is physically 

placed in the order of some attributes on which data is often 

accessed. This results in fewer physical IO for the pages. The 

indexes can be compressed (made light weight) by having pointers 

to blocks rather than records.  In all the above schemes, the pages 

themselves could be compressed, but that is optional. 

The literature on compression in general is very rich. 

Comprehensive surveys of compression methods and schemes are 

given in [8], [9], [10]. Compression in relational systems has 

focused a lot on relational table data. Some of the products 

support compression of blocks of table data [3], [22] while others 

support compression at row [11], [16] level. Yet another set of 

products support compression at column level [15], [17], [24]. 

From the technology point of view, the most popular is variations 

of dictionary based schemes [3], [11] and run length encoding 

[11]. While most of the products support query processing on 

uncompressed data, there has been work on query processing on 

compressed data itself [12], [13], [14], [15], [19]. 

There has also been work on designing indexes which are 

inherently compressed – like bitmap indexes [18], [19] and block 

based B+ tree indexes [10]. In the former, compression is 

achieved by representing a record id (RID) by a bit rather than an 

integer, and in the latter, by having only one identifier for a 

collection of records. 

For conventional B+ tree indexes, there are two schools of 

thought on how compressed index pages are handled in a system. 

Some products like [23] store a compressed version of the index 

page on disk and decompress the entire index page before it is 

brought into the bufferpool. Thus, all access to the data in the 

page is as before in decompressed form. 

Compression/decompression is done as part of the IO for the 

page. These systems support a different size for the compressed 

page on disk in comparison to the page that is actually stored in 

the bufferpool. In contrast, for our implementation and others 

[21], the image of the page on disk and bufferpool remains the 

same. Compression and decompression is done on demand as and 

when data in the page is accessed.  Since the bufferpool holds 

compressed pages in our design, for a given bufferpool size, this 

design can hold more data and thus can give better hit ratios. 
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Figure 1:  IO Reduction Schemes in Relational Systems 

A primary focus of index compression in existing products has 

been on full keypart, prefix key compression [21] [22] [33]. Here, 

common prefixes on keypart boundaries are selected and 

represented one time for a page rather than with every key which 

had it. This works well when the index has multi part keys but 

does not work for single part keys. It also does not work 

efficiently when one of the keyparts is very long and there is 

partial commonality in the key part. In real customer scenarios, 

one encounters these situations often. In our design, we are able to 

handle full key as well as partial key part prefix compression.  

This makes it applicable to a much wider range of use cases. 

Several approaches have been proposed to compress keys and to 

reduce index size. Prefix B-Trees [29] compress non-leaf index 

nodes to increase the branching degree of the internal nodes and 

make the index tree more flat. Traditional dictionary based string 

compression (e.g. [27]) have also been used to compress large 

data collections. However, binary search is not supported 

efficiently due to a large number of dictionary look-ups and 

complete key comparisons. Delta-coding ([30]) is another 

alternative to compress sorted keys. However, random key access 

is not supported efficiently because several key accesses are 

required to materialize a full key. This reduces the performance of 

virtually all operations performed on indexes, including insert and 

delete. Although order-preserving string compression techniques 

(e.g. [31], [32]) address binary search limitations, they however 

come with a considerable CPU overhead and retrieving keys 



during index scan (forward/reverse) requires several dictionary 

look-up and key comparisons which could affect the performance. 

The relational products [23] which have implemented RID list 

compression are relatively fewer in comparison. Although, 

something similar, is very popular in the information retrieval 

community for compressing inverted lists [28]. RID list 

compression is particularly useful for Data Warehousing or 

Operational Datastores where one tends to have indexes with long 

rid lists. However, for a product which is going to be used for 

those environments as well as OLTP, it needs to deliver on 

compression for small RID lists as well - which is typical of that 

environment. In addition, it needs to provide response time 

guarantees for index searches for a (Key, RID). These searches are 

used during insert/update/deletes which happen quite often in 

OLTP.  Our design is able to work for both environments. 

Inverted lists contain all positions where a term occurs in a 

document. These positions always yield a monotonically 

increasing integer sequence.  These are commonly compressed 

using Delta Compression which records the gaps between two 

positions rather than the positions themselves. Such compression 

possibilities make inverted lists superior to signature files as an IR 

access structure [26]. While early inverted list compression 

focused on exploiting the specific characteristics of the gap 

distribution using Huffman or Golomb coding [27], recent work 

has paid more attention to trading compression ratio for higher 

decompression speeds [28]. Compressed inverted indexes 

generally do not support features like reverse scans on these 

indexes. However for a relational product, supporting reverse scan 

on a compressed index is necessary if we want to avoid query 

processing overheads or the need for another index. In our design, 

a compressed index is able to support reverse scan processing on 

it. 

Finally, there has also been work on architecture sensitive 

compression like [25]. They are specifically designed to take 

advantage of the architectures of modern CPUs by coming up 

with algorithms which don’t do conditional branching in the 

performance critical parts of algorithms like dictionary, prefix key 

and delta encoding. 

3. OVERVIEW OF A B+ TREE IN DB2 
The B+ Tree index in DB2, at the high level, is very similar to a 

conventional B+ Tree index, with non leaf levels leading to a 

doubly connected list of leaf pages. Due to the high fanout, the 

number of non leaf pages is very small compared to the leaf 

pages. Given this, we have focused on compressing these leaf 

pages in this work.  The leaf page structure is shown in Figure 2. 

Apart from the double links, the page has a slot directory, keys 

and RID lists.  The DB2 B+ Tree index supports forward and 

reverse scans in index key collation order and one can traverse the 

index both ways. 

Every index page has a pre allocated slot directory in which the 

offset location of each index key on the page is stored. The 

number of slots in the slot directory is calculated based in the 

minimum key size. Therefore, the number of slots is the maximum 

possible slots that we need on an index page. The slot directory is 

followed by sets of keys and their RID lists as shown in Figure 2. 

 

 

Figure 2:  Structure of a B+ Tree in DB2 

A key has one or more sets of RIDs and RID Flags associated 

with it.  The RIDs point to records which have that key value. The 

RID Flags is a collection of 8 bits which indicate the state of the 

RID and the record it points to. All this sets together make up the 

RID list for that key.  If the RID list spans more than an index 

page, then it is continued on the next index page with the key 

being repeated. The RID itself has 3 components, namely the 

partition number, page number and slot number as shown in 

Figure 3.  The page number could be a 24 or 32 bit entity, the slot 

number an 8 or 16 bit entity and the partition number could be 

either not present or it could be a 16 bit entity.  Thus a RID could 

be either 32 bits or 48 Bits or a 64 bit entity.  

For a given key, the RIDs are ordered in ascending order. This 

helps in locating a (Key, RID) pair efficiently by a binary search 

on the RID list. It is important this be done efficiently since it is 

used for insert/update/deletes for locating the physical location of 

the RID. The RID list can be traversed in the forward and well as 

reverse direction.  The latter is used to answer queries which need 

the key in reverse order of the index collation.  

B+ Tree indexes can be either user defined or system generated. 

Some of the system generated indexes in DB2 include the primary 

key (if defined) and those that are used for pureXML (native 

XML storage) processing.  Some of the latter indexes are multi 

part key indexes with long character fields with adjacent keys 

differing in a few characters in that keypart.  These indexes tend 

to occupy a lot of space too.  Compressing them requires an 

ability to compress partial keys in the index. 
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Figure 3:   RID List Structure 

In DB2, a user could ask for multiple processing entities to be 

invoked to speed up processing of a scan. This is also known as 

Intra Query Parallelism. For an index scan, each entity would end 

up getting part of a rid list to process and as it finishes its 
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processing, it can come back for more work on a first come first 

served basis.   

4. INDEX COMPRESSION OVERVIEW 
In DB2 LUW, index compression can be invoked during the 

creation of an index as well as later using an alter index command 

or an index reorg. While we implement multiple techniques, we 

do not burden the user with having to select the technique to use. 

Instead, DB2 will automatically select the compression techniques 

that apply for the index. The only input that the user needs to 

provide is if they want to turn compression on. To assist with that 

decision, we have developed methods of estimating the 

compression that can be obtained for an index.  

To be able to compress the data in the index, one needs to be able 

to compress both the keys as well as the RID list. They tend to 

occupy most of the space in an index page. Compressing the slot 

directory also leads to useful space savings. In our implementation 

we have developed techniques to compress all three structures. 

Our compression techniques have been applied to the leaf pages 

of the index which tend to be more numerous compared to the non 

leaf pages. 

In the subsequent sections, we describe the techniques developed 

for RID list compression and Key compression.   We also describe 

our methods for estimating the compression savings for an index. 

We have not described slot directory compression due to lack of 

space. 

5. RID LIST COMPRESSION 
The key challenges of RID list compression include being able to 

satisfy the following requirements 

1. Search speeds for a Key, RID:  The RID lists are prone to 

binary searches for a RID. A design to compress the RID 

lists will need to be able to deliver adequate search capability 

for a RID.  Any performance degradation here will hit   

insert/update/deletes which depend on it. 

2. Reverse Scans:  The RID lists will need to facilitate forward 

as well as reverse scans. Otherwise we will either end up 

having to create another index - which goes against 

compression - or have to take a performance hit for certain 

workloads which use reverse scans. 

3. Delete Safe Property:  Deleting a RID from the compressed 

RID list should not make the new compressed RID list bigger 

than previous.  Given that the delete might happen during a 

rollback or other operation when we are trying to free up 

resources, taking up more space would go against the very 

need of these operations.  

4. Enabling Intra Query Parallelism:  The compressed rid list 

should allow multiple processing entities to pick up chunks 

to process and decompress independently. This will allow 

them to work in parallel.  

5. Badly Clustered Indexes: In real workloads, one encounters a 

lot of indexes where the RIDs in the RID list have high 

entropy when the RIDs are viewed as simple integers. In 

other words, the records tend not to be clustered in the order 

of the index key.  These indexes need to be compressed well 

too for an overall good compression ratio for the system.  

In order to address these challenges, we developed a scheme 

whose high level overview is given in Figure 4.  The RID list is 

broken up into variable sized logical blocks. The size of these 

logical blocks makes them data cache line friendly. In between the 

key and the first logical block sits a RID list primer which is 

described below. For very small RID lists one could just have the 

Primer without the variable sized logical blocks. 

The Primer contains the first RID of the RID list and its RID Flag 

as well as the last RID as shown in Figure 5. In addition, it 

contains the first RID and the offset (address) of every variable 

sized logical block. The variable sized logical blocks are 

reorganized when they cross a certain size threshold. This 

happens infrequently in comparison to the number of 

insert/deletes of RIDs in the RID list. 

.....

.....

Variable Size Block Variable Size Block

Variable Size Last Block

Key

Key

Index Page

Variable Sized Only Block

Primer

 

Figure 4:  High level overview of a compressed RID List 

Each variable sized logical block is an independent entity and can 

be compressed separately. We use a double layered compression 

scheme based on a modified delta encoding technique followed by 

a layer of pattern elimination for them. They are described below 

in the order in which they are applied 

Variable Size Block Variable Size Block

Key

Index Page

First Rid/RidFlags Last Rid

Rid/Offsets

Ptr2Ptr1 Ptr3 Primer

 

Figure 5: RID List Primer 

5.1 Variable Byte Delta Encoding 

Given that the RIDs in a RID list are sorted integers, a delta 

encoding of the RIDs is first applied. The first record of the block 

is stored in the Primer in its original binary representation and so 

is not repeated again. For the remaining RIDs, instead of the 

binary representation of the RIDs, a binary representation of the 

difference between that RID and the previous RID is stored. 

Figure 6 shows an example of such a delta encoding.  The first 

RID (053ED4:00) is stored as it is and for the subsequent RIDs 

we store the difference to the previous. For example, instead of 

RID (053ED4:25) we will store just (:25). Here, 053ED4 

represents the page and 25 the slot number of the RID.  The ‘:’ 

does not have a physical representation and is shown only for 

understanding the example. 
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Figure 6:  Variable length delta compression of RID list 

The deltas are encased in a custom built variable byte encoding 

scheme. In the conventional variable byte encoding scheme, the 

most significant bit is reserved for encoding if the payload (of 7 

bits) is the first byte of the RID or a continuation byte. This works 

well when the bytes are being scanned in one direction. However 

for an index scan, the bytes need to be scanned in both forward 

and reverse directions. For that, the conventional variable byte 

encoding scheme will not work since we would be unable to 

reconstruct the RIDs in the reverse direction since the RIDs and 

RID Flags are intermixed for proximity. We will not be able to 

differentiate between the RID Flag and a variable byte. 

In order to solve this problem, we use the byte encoding rules 

shown in Figure 7. For one byte deltas, we set the continuation bit 

to 0; for two byte deltas the continuation bit is set to 1 and when 

the deltas are more than 2 bytes, the continuation bits of the first 

and last byte is set to 1 and the rest is set to 0. With this scheme, 

scans in both directions would be easily able to collect all the 

component bytes of the delta and reconstruct it. 

 

Figure 7:  Delta encoding to support forward & reverse scans 

With this scheme of compressing and storing a RID list, we are 

able to handle the challenges like search speeds, reverse scans and 

enabling intra query parallelism.  

A search for a RID in the RID list is done by a binary search of 

the first RIDs of the logical blocks stored in the Primers.  After we 

have located the logical block where it might be, a sequential scan 

of the block is done.  The search will reconstruct each consecutive 

RID from the deltas as it proceeds and will take advantage of the 

fact that the RIDs are sorted and hence an early exit can be done if 

we hit a RID bigger than it. It should be noted that the block 

would fit a data cache line and thus the sequential scan would be 

fast. This two stage scheme delivers required performance. 

For Intra Query Parallelism, the processing entities are given a 

variable block at a time to process. Each entity can decode their 

block independent of the other by using the first RID of the block 

stored in the Primer. The fact that the variable size blocks are of 

the order of one cache line only, ensures adequate load balancing 

between the processing agents. 

A reverse scan uses the last RID that is stored in the Primer to 

start the delta decoding and proceeds from the last variable block. 

It traverses the deltas in reverse order using the variable length 

encoding scheme and extracts the RIDs by subtracting the deltas 

from the current rid. 

5.2 Pattern Elimination in Deltas 

The variable byte delta encoding scheme takes advantage of the 

fact that the RIDs are ordered integers but it does not take 

advantage of the basic structure of the RIDs, i.e pages, slots and 

partitions described in Figure 3.  In a RID, the slots occupy the 

least significant bytes. They point to records in a page.  The slots 

are of 1 or 2 bytes but most customers are moving towards 2 byte 

slots. With a 2 byte slot, one can address 65536 records in a page. 

However, given that the page sizes vary from 4K to 32K pages, in 

real customer situations one does not encounter that many records 

in a page. Thus one can expect quite a few of the most significant 

bits of the slot to be 0.   While for this discussion we will consider 

the 2 byte slot case, to a lesser degree, the same issue holds for 1 

byte slots too.  

When a computed delta is below 2 bytes (meaning the page 

number was the same for the two RIDs), then these 0s 

automatically get compressed out.  However if the delta is of more 

than two bytes, these 0s tend to persist in the delta.  Consider the 

example shown in Figure 6.  The delta between rid 

(053ED4:0000) and rid (053ED4:0025) is: 25. This is an example 

of a well compressed delta.  One the other hand, the delta between 

rid (053ED4:0025) and rid (053EDA:0029) is 6:0004. The 0s in 

the delta could be compressed out. 

The patterns one would encounter and thus eliminate, would 

include series of 1s or series of 0s. One could also eliminate other 

patterns of interest like mixed 1s and 0s.  The amount of savings 

by compressing the deltas like this will be higher for badly 

clustered indexes (where delta encoding would not work that 

well) and lower for well clustered indexes.    

To compress these patterns, we have developed a method for 

dictionary based pattern elimination from the deltas as shown in 

Figure 8.  We use a bit in the RID flags to indicate if its delta is an 

ordinary delta or a pattern eliminated delta.  The lowest two least 

significant bits of the delta are then reserved for a pattern 

identifier. They identify the pattern which was detected in the 

delta starting from the boundary between the page and the slot. 

For the two byte slot case, it will be bit 16 and lower. If the 

original delta has less than 16 bits, the bit in the RID flags would 

be 0 and the original delta would be preserved. 

RID Flags
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DeltaDelta Delta
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00000001 000101  00 1-------
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Figure 8: Delta encoding with pattern elimination 

At the time of compression, we check if the delta has any one of a 

set of 4 identified patterns for the index. If so, that pattern is 

eliminated from the delta and its identifier put in the lowest two 

bits.  We also set the flag in the RID flag. Consider the example 

shown in Figure 8. The original Delta was 10005x. If Pattern 

Number 00 is the pattern 000x and we want to eliminate that from 

the delta, then we will first set the bit indicator in the RID flag to 

1 0 1 

1 1 

0 RidFlags 

RidFlags 

RidFlags 

   1 Byte Delta 
Delta 

2 Byte Delta 

n Byte Delta 



1. Then we will insert the pattern code 00 in the least significant 

bit. At this stage, the delta logically becomes 40016x. 

Subsequently we will eliminate 000x from it to get 114x as the 

pattern eliminated delta. This is then encased in variable byte 

encoding to give us 8194x. We have saved 1 byte out of the 4 

bytes for this delta and RID flag by this technique. At the time of 

decompression, if the RID flag is set, we know that the delta is 

pattern eliminated. In that case, we reinsert the pattern to get the 

original delta. 

This mechanism allows us to eliminate any one out of four 

patterns from a RID.  We incur the 2 bit storage overhead for the 

pattern identifier in the RID only if pattern elimination is used for 

that RID. Pattern elimination like this is useful if we find patterns 

of more than 2 bits in the RIDs. It can also be used for more than 

4 patterns too. However, as the number of patterns is increased, 

the overhead of storage also increases. 

The best patterns to eliminate would depend on the number of 

records which fit a data page for the table. For large record sizes, 

the potential for savings by pattern elimination would be higher. 

There are various ways in which the patterns can be selected. 

Currently we use certain heuristics to select the patterns.  

5.3 Delete Safe Property 

A key requirement for RID list compression is that it needs to be 

delete safe. Meaning, if a delta and its RID flag is removed from 

the RID list, we should not end up taking up more space than with 

that delta in the list.  A delete of a delta from a RID list could 

happen during a delete of a record or during a rollback of an 

insert. Both operations are seeking to free up space/resources. If 

we end up taking up more space (which may cause a page split), it 

goes against the basic reason for these operations.  

We show that delta compression with variable byte encoding 

followed by 2 bit based pattern elimination is delete safe as long 

as the space saved in the deltas does not exceed 12 bits for 2 byte 

slots. Given that we use 2 bits for pattern identifiers, we can 

eliminate patterns of upto 14 bits and yet be delete safe. The 

following is the proof 

Claim 1: Deletion of a rid does not cause an expansion in space 

when using delta with variable byte encoding for rid list 

compression. 

 

Proof:  Since variable byte encoding is a monotonic step function, 

it suffices to prove that deletion of a rid does not cause an 

expansion in the space when using delta with binary encoding. 

 

Consider the delta-ridflag list (d1,f1),(d2,f2), where after deletion 

of (d1,f1), the delta-ridflag list becomes (d2',f2)  where  

d2' = d1 + d2. 

 

Let b(i) represent the size in bits of the binary encoding of i. 

 

We want to show that, 

       b(d1) + b(f1) + b(d2) + b(f2) >= b(d2') + b(f2). 

 

Given b(f1) =  b(f2) = 8,  the above is equivalent of 

 

        b(d1) + b(d2) + 8             >= b(d1+d2).           (1) 

 

Without loss of generality suppose d1 > d2.  

Binary addition guarantees that  

 

               b(d1) <= b(d1+d2)                                   (2a) 

               b(d1+d2) <= b(d1) + 1                             (2b) 

 

Hence,    b(d1) + b(d2) + 8 >= b(d1). 

 

This is equivalent of    b(d2) + 8 >= 0.                      (3) 

     

To get a tighter bound, consider also, 

 

      b(d1) + b(d2) + 8 >= b(d1) + 1. 

 

This is equivalent of   b(d2) + 7 >= 0                       (4) 

If (4) is true, (1) will also be satisfied because of (2b). 

 

In our case, since b(.) is always > 0, (1) is always true. 
 
Claim 2: Deletion will not result in a space expansion, when 

pattern elimination is used on the deltas in the rid list if the 

number of bits saved by the pattern elimination is less than 

b(d2)/2 + 3.5. 

 

Proof: Let 

k     be the number of bits saved by pattern elimination 

p(i)  be the length in bits of the binary representation of 

i after pattern elimination. 

 

      p(i) = b(i) - k                                                        (5) 

 

Consider the delta-ridflag list (d1,f1),(d2,f2). After deletion of 

(d1,f1), the delta-ridflag list becomes (d2',f2),   

where d2' = d1 + d2. 
 
Consider the worst case scenario when pattern elimination has 

been applied onto d1 and d2, but not on d2'. 

 

We want to find the conditions when, 

 

      p(d1) + 8 + p(d2) + 8   >= b(d2') + 8 

 

equivalent to    p(d1) + p(d2) + 8       >= b(d1+d2) 

equivalent to   b(d1) + b(d2) - 2k + 8  >= b(d1+d2)      (6) 

 

Without loss of generality, suppose d1 > d2.  

 

Using Eqn (2a), 

 

            b(d1) + b(d2) - 2k + 8  >= b(d1) 

 

equivalent to     b(d2) - 2k + 8          >= 0 

equivalent to     k <= b(d2)/2 + 4                                    (7) 

 

To get a tighter bound, consider 

  

      b(d1) + b(d2) - 2k + 8  >= b(d1) + 1 

 

equivalent to          b(d2) - 2k + 7  >= 0 

equivalent to          k  <= b(d2)/2 + 3.5                           (8) 

 

By Eqn (2b), (8) => (6) 



for rids with a 2 byte slot, pattern elimination is only done 

when the delta contains a change in the page number, 

 

            b(d2) >= 17 

Hence, 

            k <= 12                                                                 (9) 

 

As long as (9) is true, (6) is true. 

 

(9) means that the savings from pattern elimination should not 

exceed 12 bits for rids with 2-byte slots. 

For single byte slots b(d2) >=9  and thus k<=8. 

 

6. PREFIX KEY COMPRESSION 
Keys in an index page are stored in some collation order (e.g. 

alphabetical order) and often two adjacent keys are very similar 

and have a prefix in common. In single column indexes, e.g. 

OLTP applications, the common prefix can be a partial keypart. In 

multi-column indexes, e.g. data warehouse applications, the 

common prefix of two keys may contain zero or more complete 

keyparts, followed by a partial keypart. The common prefix 

proposes a certain degree of redundancy, which could be reduced 

when keys are stored in compressed format.  

We propose a two layer delta-coding scheme where each key is 

coded as a (prefix, suffix) pair, depicted in Fig.9. Prefixes are 

extracted from one or more consecutive keys that share a common 

prefix. For example, in Fig.9, the first three keys have prefix1 in 

common. This layout supports typical index operations, i.e. 

INSERT, DELETE and binary search, without the need to de-

compress index pages. Furthermore, it imposes three enhancement 

opportunities upon compressed indexes:  

• Common prefixes are repeated patterns that occupy more 

space on an index page if stored separately for each key. A 

single common prefix could as well represent a subset of 

keys that share the common prefix, without information loss.  

• The two layer structure can improve the performance of 

binary search, because the prefix layer could prune 

unnecessary keypart comparisons. The reduction in the 

number of comparison in turn improves performance of 

binary search, mostly for multi-column indexes and/or long 

keys.  

 

Figure 9: The Two-layer layout of a leaf index node 

• Materializing a key requires joining the corresponding prefix 

and suffix, versus performing a look-up in dictionary based 

coding or reading previous keys in pure delta-coding. This is a 

benefit for index scan queries (forward/reverse) and could be 

used to prune evaluating predicates on a number of keys by 

considering the prefixes. 

6.1 Prefix Optimization  

To leverage the power of the two layer index page layout, an 

optimal set of prefixes need to be identified. This requires 

comparing consecutive prefixes to identify common prefix 

between two keys and then comparing common prefixes to 

possibly merge two common prefixes. Each prefix is actually 

stored on an index page as a prefix and some overhead. The 

overhead depends on the data type of the keypart and the size of 

metadata in prefix slot directory. In one extreme case, the 

overhead is minimized when there is only one prefix for all keys 

on the page. This might not be an optimal prefix selection, in 

particular when the keys are partitioned into two (or more) blocks 

and the keys in each block have a long prefix in common. 

Obviously, in this case a better solution is to consider two (or 

more) prefixes, one for each block. As the number of key blocks 

on an index page increases, so does the number of prefixes, and 

the overhead associated with the metadata required to represent 

prefixes.  

The prefix selection problem can be formulated as an optimization 

problem, with the cost function being the space requirement for 

prefix section plus the space requirement of the suffixes. Note that 

the space requirement for prefix section includes the storage for 

common prefixes, the penalty for breaking splittable keyparts 

(such as VARCHAR, DATE, NUMERIC, TIMESTAMP), and 

the space for storing entries on the prefix slot directory. In case 

two adjacent keys have nothing in common, a special NULL 

prefix is considered as their common prefix to be consistent with 

the two layer storage scheme. Variables of this optimization 

problem are the number of prefixes as well as the keys that fall 

under each prefix group. The number of prefixes is at least one 

and at most the number of keys on the page minus one (a common 

prefix for every two consecutive keys). An O(n3) dynamic 

programming approach finds the optimal two layer layout of an 

index page with n keys.  

The prefix optimization step is triggered on special occasions 

during insert. If an index page has enough room to insert a new 

key, an aggressive approach would propose to use either the 

common prefix of the new key and the key before this on the 

index page or re-use an existing prefix which belongs to the 

previous key. However, when an index page is almost full or a 

duplicate key is being inserted to an almost full page, and index 

cleanup cannot free enough space on the page, the prefix 

optimization is triggered to analyze the page and re-consider the 

set of prefixes, in order to free space for next insert (if possible). 

The computational complexity of the dynamic programming 

approach is prohibitive for two reasons. First, it compares many 

keys on the page and key comparison is an expensive operation, 

specially for long keys and multi-column indexes. Second, the 

performance degrades when the number of keys on the index page 

increases, which can be the case for small keys and large index 

page.  

Several heuristics could be used to reduce the frequency to trigger 

prefix optimization during create index or massive inserts. For 



instance, one may decide to trigger prefix optimization only a 

fixed number of times for an index page. DB2 uses two 

orthogonal heuristics to efficiently find close to optimal prefixes 

using local approach instead of dynamic programming. The 

heuristics, namely prefix merge and prefix expansion, analyze the 

index page on a prefix level granularity, unlike the dynamic 

programming which performs a key-level analysis. The main 

benefit is a significantly reduced number of key comparisons, 

which improves performance especially for multi-column indexes 

with complex data types.  

6.2 Prefix Merge  

Prefix merge considers generalizing a group of prefixes into a 

single shorter prefix. For each prefix pi on the index page, let npi 

be the prefix in common between the last key that uses pi-1 and the 

first key that uses pi. For instance, if “bd” is the prefix being 

analyzed, npi is “b”.  

Table 1:  A Two-layer index page with corresponding full keys 

Prefix Suffix Full key 

a bc abc 

b 
bc 

bcb 

bbc 

bbcb 

bcd 
db 

dc 

bcddb 

bcddc 

bcde 
ee 

ef 

bcdeee 

bcdeef 

bd b bdb 

 

We introduce the concept of ClosedRange (CR)to restrict the 

scope of prefixes to be considered for merge while analyzing each 

prefix. The CR for prefix pi contains all prefixes on the page 

before pi that include npi as prefix. For example, “b”, “bcd”, and 

“bcde” are all contained in the CR of “bd”. There are many ways 

to group prefixes within the CR of a prefix. If there are m prefixes 

in CR of pi, the number of possible grouping for prefixes is 
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This number grows with the number of prefixes on the page. 

Instead of considering all possible grouping, we propose the 

concept of segments to further reduce the search space to blocks 

of prefixes within a CR. Each segment is a group of consecutive 

prefixes that contain at least prefix npi. By this definition, there is 

at least one segment in each CR that has npi as common prefix, 

but there can be more than one segment in each CR. In this 

example, the segments in CR of “bd” are [‘bcd”, “bcde”] with a 

common prefix of “bcd” and [“b", “bcd”, “bcde”] with a common 

prefix of “b”. We analyze the segments in each CR and compute 

the benefit of merging prefixes in a segment into the common 

prefix of all prefixes in that segment. The result of analyzing each 

prefix is either a merge, if there is space saving for the best 

segment in CR, or reject. The merge considers grouping the 

prefixes in the best segment into one prefix. Such a merge reduces 

metadata entry of the prefix slot directory but increases space on 

suffix section because the keys that used to have longer prefixes 

are now using shorter prefixes and therefore, the suffixes must 

grow. Algorithm.1 is a high level description of the prefix merge 

heuristic.  

Algorithm 1 : Prefix Merge  

FOREACH prefix pi 

  IF len(npi) is zero 

    Find all segments in CR(pi) 

    Merge best segment in CR(pi) to NULL prefix when possible 

  ELSEIF len(npi) < len(pi-1)  

    Find all segments in CR(pi) 

    Merge best segment in CR(pi) if benefit is positive  

  ENDIF  

END FOREACH  

6.3 Prefix Expansion  

Merging prefixes could save space by removing metadata entry 

from the slot directory of prefix section. This operation could 

leave the index page with short length prefixes in the long term. In 

contrast, the purpose of prefix expansion is to create longer 

prefixes for existing suffixes. This could result into space saving 

when the space required for new prefixes plus the overhead of the 

metadata entry in the prefix slot directory is less than the saving 

achieved when suffixes shrink. This condition often happens on 

prefix boundaries, where a subset of the suffixes that use prefix pi 

could also use prefix pi+1 (or the other way). If a subset of the 

keys that use prefix pi+1 can use a longer prefix pi, assigning the 

keys using pi+1 to use pi should result into shorter suffixes and in 

some cases, could leave pi+1 empty. In another setting, the keys in 

prefix boundary might use a new longer prefix where again the 

overhead for this new prefix and the metadata entry of the slot 

directory is still less than space saved when the corresponding 

suffixes reduce. DB2 employs a variation of prefix boundary 

analysis heuristics to extend prefix length and reduce space.  

Table 2:  Index page layout before and after prefix expansion 

Before prefix expansion After prefix expansion 

prefix suffix prefix suffix 

ab bc, <RID list 1> 

cd, <RID list 2> 

ab bc, <RID list 1> 

abc de, <RID list 3> 

def,<RIDlist 4> 

abcd k,   <RID list 5> 

abcd _, <RID list 2>  

e, <RID list 3>  

ef, <RID list 4> 

k, <RID list 5> 

Prefix expansion removes prefix “abc” and shrinks 3 suffixes 

(keys “abcd”, “abcde”, and “abcdef”). 

6.4 Logging Prefix Optimization 

Similar to logging insert and delete operations for an index page, 

there is need as well as technical reasons for logging prefix 

optimization. For instance during roll-forward (redo) and roll-

back (undo) operations, an insert operation which requires prefix 

optimization must be performed in the same way during a redo of 



the same insert. Because prefix optimization is deterministic, the 

direct approach is to log prefix optimization event. During redo of 

an insert which caused prefix optimization, an index page 

optimization could be performed to achieve the same result. 

However, to ensure the best performance, DB2 implements a 

minimalist log record structure to log the change in length of the 

affected prefix groups, as well as the changes in prefix slot 

directory. A single log record structure and a symmetric one-pass 

algorithm handles both redo and undo of prefix optimization.  

7. COMPRESSION ESTIMATOR   
Since compressing an index is a resource intensive operation, it is 

desirable to provide an estimate of the compression factor likely 

to be accomplished by compression. One way of estimating the 

space savings is to scan all leaf pages and simulate the 

compression algorithm on the actual keys and RIDs and calculate 

the space required without actually generating the compressed 

pages. This method will always compute the exact compression 

ratio but, since it touches all the pages, it will be almost as 

expensive as actually compressing the index. The question is: can 

we do better? The answer is yes, if we’re willing to trade precision 

for I/O cost. We will next describe estimation algorithms for each 

of our compression techniques in turn. 

7.1 RID list compression estimator 
As described in Section 5, RID list compression encodes each 

sorted list of record identifiers by storing the first RID and 

differences (deltas) of successive RIDs. In order to estimate the 

space required by this representation, we need to have a sense of 

the space occupied by the deltas. Since we are using a variable 

length encoding scheme with 7 bits of payload in each byte, the 

number of bits needed to store one delta value d is  
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So, in order to estimate the total space needed by a list of deltas, 

we need to estimate the distribution of delta values. To this end, 

we can take advantage of the available statistics that are currently 

being collected on indexes. One such piece of information that 

turns out to be useful is the index cluster ratio C, which is a 

measure of how well does the physical order of the records match 

the order of the keys. Whenever records are clustered, the delta 

between two consecutive RIDs in the list is small, requiring either 

one or at most two bytes, so we consider an average size of 12 

bits. Therefore, the space required by the clustered deltas is: 

( ) ( ) 121 ⋅−⋅= kCD nCkspace  

where nk is the number of RIDs in the list corresponding to key k. 

To estimate the space required by the non-clustered deltas, we 

consider the worst case situation where all the non-clustered RIDs 

are equally spaced in the containing tablespace. If we denote the 

tablespace size in pages by TS, it follows that the space required 

by each non-clustered deltas is: 
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Therefore, the space required by all non-clustered deltas will be at 

most 

 

( ) ( )( ) ncdkNCD sizenCkspace ⋅−⋅−= 11  

The total space needed to store a list of nk RIDs in compressed 

format will therefore be bound by: 

( ) )()(_ flagsbnspacespaceRIDbkspace kNCDCDlistc ⋅+++=  

where b(RID) is the size of a RID in bits (typically 48) and 

b(flags) is the size of the RID flags in bits (typically 8). 

The space needed to store the same list uncompressed is: 

( ) ( ))()( flagsbRIDbnkspace klist +=  

Therefore, the compression ratio can be estimated by the 

following formula: 
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Note that the above formula depends on the exact number of RIDs 

nk for each distinct key value k. One can further approximate this 

using the available histogram data for key distribution for that 

index. 

7.2 Prefix key compression estimator 
As described in Section 6, prefix key compression stores each 

common key prefix once together with a corresponding list of 

suffixes. In order to estimate the total space required by this 

encoding scheme, we need to estimate the number of distinct 

prefixes and the number of suffixes corresponding to each prefix. 

Since computing the exact number of prefixes and suffixes 

requires traversing the entire index, we have to approximate that 

using available statistics and some uniformity assumptions. Thus, 

for a multipart key consisting of columns C1, C2, …, Cp, we can 

use the distinct cardinalities of the first k key part and assume that 

each combination of distinct key part values occurs equally 

frequently. Then, the number of suffixes for each combination of 

values for the first k key parts is: 
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It follows that the total space occupied by suffixes is: 
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......... 111

 

Similarly, the space required by the prefixes is: 

( ) ( )( )kkpre CbCbnnnspace ++⋅⋅⋅⋅= ...... 121
 

So, the compression ratio can be estimated as: 
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8. EXPERIMENTAL EVALUATION 
For the experimental evaluation, we used a setup similar to that 

used by some customers who run ERP solutions over DB2 LUW. 

We used an 88 column FACT table with the majority of the 



columns being either decimal or varchars. There were 12 indexes 

defined on the table.  One of the indexes was a 16 part unique 

index defined on varchar fields. The remaining indexes were 

single part, non unique dimension indexes. The table and indexes 

were defined on different tablespaces but shared the same 

bufferpool. This setting is common to some customers running 

ERP on DB2 tables. Table 3 provides more details of the 

experimental setup. 

The evaluation aimed to compare parameters like space occupied, 

query performance, insert and update performance.  The 

evaluation was done with identical set of indexes created with the 

compression option on and off. In addition, we also evaluated our 

compression estimator against existing indexes and compared 

their estimates against actual compression that was achieved. 

Table 3:  Experimental setup details 

Hardware 

System 

IBM e326 with 4GB of main memory 

Processors 2 x 2.4GHz AMD64 processor 

Operating 

System 

64 bit x86_64-Linux 

DB2 

Instance 

DB2 LUW Cobra 

Table size 9 million records with ~1KB per record 

Index sizes Unique index (just 1 RID/index key)  : 1, Type : 

multi part key  

Non unique RID indexes : 11, Type :  single part 

key  

 

Table 4 shows a comparison of the space occupied in both cases 

for all the user defined indexes. We see that compressing the 

indexes leads to a 57% savings of space overall. The non unique 

indexes benefited the most from RID list compression and the 

multi part unique index benefited the most from the prefix key 

compression. Out of the 57% savings, about 31% came out of 

compressing RIDs, 25% came out of compressing keys and 1% by 

compressing the slot directory.  
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Table 4:  Overall Space Occupied By Indexes in Pages 

To explore the impact of RID list compression further, we study 3 

RID dominated indexes defined on the FACT table with cluster 

ratios varying from 1% (very badly clustered) to 99% (very well 

clustered). The Cluster Ratio refers to the degree of ordering of 

the index key to the column the table is clustered on. Table 5 

shows the compression savings for these indexes. We see that the 

savings vary from 43% for the badly clustered case to 65% for the 

best case.  As the clustering worsens, the entropy in the RID list 

worsens and that adversely impacts the compression savings. 
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Table 5:  Compression Savings for RID dominated indexes 
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Table 6:  Query Performance Stats For select count query 
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Table 7:  Query Performance Stats for select max query 

For evaluating the impact of index compression on query 

processing, we ran queries which used indexes in index only as 

well as index based table scans. In the former class, the scan is 

limited to just the index and in the latter, table rows are accessed 

via that index.  Table 6 shows the performance stats for an index 

only query which gets the count of records. It ran 37% faster with 

drastic reduction of IO.  The logical and physical reads come 

down to about 54% as on the uncompressed index.  No visible 

increase in CPU usage was noticed. Table 7 shows the 

comparison for an index only max count query.  This query is 

answered in a reverse scan in which we look for the maximum 

value for the key.  The query performance improved by 27% with 

vast improvements in logical and physical page reads. The index 



based table scan query that we ran, in comparison, does an access 

of the table via the index. Consequently it has a lot of work other 

than the index access to do. Hence in that case the performance 

improvement was 3%. 

In the next set of experiments, we evaluate the insert and update 

performance with compressed indexes. To this end, on the same 

schema, we inserted 100,000 records and compared that to the 

base system.  The results are summarized in Table 8. The inserts 

ran 19% faster and consumed 57% less space. The bufferpool 

activity also was significantly lower. 

ImprovementsIndex 
Compression

Baseline100K inserts

19%68.383.99Total execution time (sec)

61%649516827Bufferpool index writes

41%57939890Bufferpool index physical 
reads

9%38520994224179Bufferpool index logical reads

57%267348622350Index object pages

ImprovementsIndex 
Compression

Baseline100K inserts

19%68.383.99Total execution time (sec)

61%649516827Bufferpool index writes

41%57939890Bufferpool index physical 
reads

9%38520994224179Bufferpool index logical reads

57%267348622350Index object pages

Table 8: Inserting 100K records 

To test the updates, we ran three different update operations 

which updated columns on which RID indexes were defined. As 

seen in Table 9, the cumulative time taken for the updates was 

18% lower for the index compression case. This gain came at a 

little extra CPU overhead in user mode as shown in the CPU 

usage table in Table 10. But that was compensated by the decrease 

in the IO wait time. 
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Table 9: Update Time Comparison 
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Table 10: Update CPU Usage 

All the above tests were with indexes on relational table data. 

DB2 LUW also supports XML in its pureXML storage scheme. 

These also use B+ tree indexes for its internal as well as user 

created indexes which indexes XML data. The internal indexes 

are known as the REGION and PATH indexes. To evaluate how 

index compression does in this scenario, we used a database with 

approx 300000 documents of 5.6 GB total size.  Each document is 

of 20-30 KBs each. Table 11 shows a 38% compression savings. 

Since for XML indexes we do only prefix key compression, these 

savings reflect the benefits of that technology in this test scenario. 
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Table 11:  Compression Savings for XML Indexes 

8.1 Evaluation of Compression Estimator 
In order to evaluate the accuracy of our compression estimator, we 

examined three non-unique indexes: one with a 1% cluster ratio, 

one with 38% cluster ratio and one with 99% clustering. We 

considered several variants of our basic estimator model: the 

model which uses the cluster ratio and the exact key distribution, 

a model which assumes no clustering but uses the exact key 

distribution, a model which assumes uniform distribution of the 

keys and no clustering, a model which uses the exact key 

distribution for the top 4 keys and assumes uniform distribution 

for the rest, and a model which assumes 50% clustering and exact 

key distribution. The results are shown in Figure 1. With the 

exception of the last one, all the models underestimated the actual 

compression ratio, as expected since the models were built on 

worst-case assumptions. The reason the 50% clustering model 

overestimated in the case of the 1% clustered index is precisely 

because it broke the worst-case assumption and assumed a better 

clustering. Among all the models, the most accurate is the first 

one. This is to be expected because it uses the most information 

about the index. The superiority of this model is more pronounced 

for better clustered indexes. However, among the models which 

ignore the clustering, it did not make much difference whether or 

not we were using the exact key distribution. This is useful, 

because obtaining the exact key distribution requires a pass 

through the entire index, as opposed to using just the already 

collected statistics. 
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Table 12: Comparison of Estimation Techniques 



9. CONCLUSION 
The DB2 LUW Index Compression mechanism provides a very 

efficient and usable mechanism to compress indexes on relational 

and well as XML data. In this paper, we have detailed the design 

of DB2 LUW’s Index Compression feature and the challenges 

that needed to be addressed to meet the goals.We have outlined 

innovative prefix key and RID list compression techniques as well 

as a compressor estimator. 

We have shown through performance evaluations that on typical 

customer scenarios, index compression delivers significant space 

savings with additional benefits for query processing, insert, 

update and deletes. 
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