
 Efficient Index Compression in DB2 LUW

Bishwaranjan Bhattacharjee,

Lipyeow Lim,
Timothy Malkemus,

George Mihaila,
Kenneth Ross

 IBM T.J. Watson Research Center
Hawthorne, NY, USA

{bhatta, liplim, malkemus,
mihaila, rossak} @us.ibm.com

 Sherman Lau,

 Cathy McArthur,

 Zoltan Toth,

 IBM Toronto Labs
 Markham, Ontario,

Canada

 {sherman, cmcarthu,

 ztoth}@ca.ibm.com

Reza Sherkat,*

 Dept. of Computer Science

 University of Alberta
 Edmonton, Alberta,

Canada

 reza@cs.ualberta.ca

ABSTRACT

In database systems, the cost of data storage and retrieval are

important components of the total cost and response time of the

system. A popular mechanism to reduce the storage footprint is by

compressing the data residing in tables and indexes. Compressing

indexes efficiently, while maintaining response time requirements,

is known to be challenging. This is especially true when designing

for a workload spectrum covering both data warehousing and

transaction processing environments. DB2 Linux, UNIX,

Windows (LUW) recently introduced index compression for use

in both environments. This uses techniques that are able to

compress index data efficiently while incurring virtually no

performance penalty for query processing. On the contrary, for

certain operations, the performance is actually better. In this

paper, we detail the design of index compression in DB2 LUW

and discuss the challenges that were encountered in meeting the

design goals. We also demonstrate its effectiveness by showing

performance results on typical customer scenarios.

1. INTRODUCTION
In database systems, a significant component of the total system

cost is taken up by data storage and retrieval. As an example, in

the 10TB TPCH [1] benchmark described in [2], the disks and the

storage system as a whole were 24% and 36% of total system cost

respectively. Other surveys [25] have reported figures as high as

61% and 78% for disk storage for 100GB TPCH. These stored

data are queried and communicated routinely, with the cost of

data access and communication making up a heavy component of

the response time of the workload.

Given all this, database systems have been exploring ways and

means of reducing the storage footprint and retrieval cost of the

data. Some of the techniques used include compressing the data

[3], scan sharing of the data access [4], various caching

techniques [5], data clustering mechanisms [6] etc. These

techniques are orthogonal to each other and have often been used

in tandem.

The common data structures where data resides include relational

tables, large objects (LOBs) and the indexes used to access them.

While the data in tables tend to be more than in individual

indexes, it is not uncommon to find the total space occupied by

indexes in a database to be in the same ballpark (if not more) as

that occupied by tables. It is therefore important to reduce the

storage and I/O footprint by compression (or other means) of both

tables and indexes. While there has been a lot of work on

compression of tables, there is relatively less work on

comprehensive compression schemes for indexes. In this paper,

we focus on the compression of the latter.

Indexes used in a database system generally tend to be of the B+

tree family, with numerous index leaf pages and fewer non leaf

pages. The index leaf pages contain sets of key and record

identifiers (RIDs) for that key. The keys and the RIDs display

different statistical properties depending on the usage scenario. In

Data Warehousing, one tends to encounter indexes with few keys

and long RID lists for those keys. The number of unique indexes

or those with many keys is comparatively lower. For example in

the ERP system described in [7], there was 1 unique index and 11

non unique indexes. In contrast, in a transaction processing

environment, one encounters a lot more primary key/unique

indexes and fewer indexes with long RID lists. To get efficient

compression ratios overall, the compression technology for

indexes has to be able to work efficiently for both RID dominated

indexes and key dominated indexes.

Compressing indexes efficiently, while maintaining response time

requirements, is known to be challenging. This is partly because

an index page has a lot of components like keys, RIDs and RID

Flags intermixed in a page. For getting good compression ratios,

one has to be able to compress all these components. Further,

accesses to the compressed data need to be satisfied within certain

response time guarantees. Maintaining response time

requirements is challenged by the fact that index contents are

often subjected to inserts, updates and deletes and the

compression scheme chosen needs to be able to handle that

efficiently. Maintaining response time requirements is also

challenged by the fact that compression is inherently a CPU

* Work done while working at IBM Toronto Lab

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

intensive operation. Thus, one is trading off I/O savings for some

CPU overhead. It is important that the CPU overhead be

minimized for the wide ranging use of this technology.

In this paper, we describe the design and implementation of Index

Compression for DB2 LUW [20]. We discuss the challenges that

were encountered in meeting the design goals and how they were

tackled. We demonstrate the effectiveness of our techniques by

showing performance results on typical customer scenarios.

The remainder of the paper is organized as follows: first we

describe the current state of the art in IO reduction in general and

index compression in particular. Then in section 3 we give a

description of the DB2 indexes we are targeting for compression.

Subsequently in section 4 we describe the design of Index

Compression in DB2 LUW with special emphasis on some key

technologies like Prefix Key Compression (described in section

5), RID list Compression (described in section 6) and the

Compression Estimator (described in section 7). In section 8 we

present the evaluation of these technologies using a typical

customer workload and finally in section 9 we conclude.

2. THE CURRENT STATE OF THE ART
Index Compression comes under the broad area of IO reduction.

Various mechanisms of IO reduction are listed in Figure 1. While

some of these mechanisms concentrate on retrieval exclusively,

others concentrate on storage and retrieval reduction. Index

Compression and compression in general are examples of the

latter and mechanisms like Scan Sharing [4], Data Caching [5],

and Data Clustering [6] etc are examples of the former.

Scan Sharing [4] is a mechanism to achieve IO reduction on

retrieval. Here two or more scans on the same table (optionally via

an index), synchronize their retrieval so as to read the same page

at the same time. Thus one page IO, by design, satisfies many

scans. In Data caching [5], pages of the base table or index or

intermediate results are saved in a cache. This could be either on

disk or main memory. These are then reused for subsequent

queries. In Data Clustering [6], the data in the table is physically

placed in the order of some attributes on which data is often

accessed. This results in fewer physical IO for the pages. The

indexes can be compressed (made light weight) by having pointers

to blocks rather than records. In all the above schemes, the pages

themselves could be compressed, but that is optional.

The literature on compression in general is very rich.

Comprehensive surveys of compression methods and schemes are

given in [8], [9], [10]. Compression in relational systems has

focused a lot on relational table data. Some of the products

support compression of blocks of table data [3], [22] while others

support compression at row [11], [16] level. Yet another set of

products support compression at column level [15], [17], [24].

From the technology point of view, the most popular is variations

of dictionary based schemes [3], [11] and run length encoding

[11]. While most of the products support query processing on

uncompressed data, there has been work on query processing on

compressed data itself [12], [13], [14], [15], [19].

There has also been work on designing indexes which are

inherently compressed – like bitmap indexes [18], [19] and block

based B+ tree indexes [10]. In the former, compression is

achieved by representing a record id (RID) by a bit rather than an

integer, and in the latter, by having only one identifier for a

collection of records.

For conventional B+ tree indexes, there are two schools of

thought on how compressed index pages are handled in a system.

Some products like [23] store a compressed version of the index

page on disk and decompress the entire index page before it is

brought into the bufferpool. Thus, all access to the data in the

page is as before in decompressed form.

Compression/decompression is done as part of the IO for the

page. These systems support a different size for the compressed

page on disk in comparison to the page that is actually stored in

the bufferpool. In contrast, for our implementation and others

[21], the image of the page on disk and bufferpool remains the

same. Compression and decompression is done on demand as and

when data in the page is accessed. Since the bufferpool holds

compressed pages in our design, for a given bufferpool size, this

design can hold more data and thus can give better hit ratios.

 Compression in B+ Tree

 (and others)

IO Reduction

Storage and Retrieval

 Reduction
Retrieval Reduction

 Scan Sharing

Data Clustering

 Data Caching

 Compression

Table Index

Block/Page Based

Row Based

Column Based

By Design

Bitmap Index

Block Index

Key Based

 Rid Based

Page Based

Dictionary Based, Run Length Encoding, Delta Encoding (and others)

Figure 1: IO Reduction Schemes in Relational Systems

A primary focus of index compression in existing products has

been on full keypart, prefix key compression [21] [22] [33]. Here,

common prefixes on keypart boundaries are selected and

represented one time for a page rather than with every key which

had it. This works well when the index has multi part keys but

does not work for single part keys. It also does not work

efficiently when one of the keyparts is very long and there is

partial commonality in the key part. In real customer scenarios,

one encounters these situations often. In our design, we are able to

handle full key as well as partial key part prefix compression.

This makes it applicable to a much wider range of use cases.

Several approaches have been proposed to compress keys and to

reduce index size. Prefix B-Trees [29] compress non-leaf index

nodes to increase the branching degree of the internal nodes and

make the index tree more flat. Traditional dictionary based string

compression (e.g. [27]) have also been used to compress large

data collections. However, binary search is not supported

efficiently due to a large number of dictionary look-ups and

complete key comparisons. Delta-coding ([30]) is another

alternative to compress sorted keys. However, random key access

is not supported efficiently because several key accesses are

required to materialize a full key. This reduces the performance of

virtually all operations performed on indexes, including insert and

delete. Although order-preserving string compression techniques

(e.g. [31], [32]) address binary search limitations, they however

come with a considerable CPU overhead and retrieving keys

during index scan (forward/reverse) requires several dictionary

look-up and key comparisons which could affect the performance.

The relational products [23] which have implemented RID list

compression are relatively fewer in comparison. Although,

something similar, is very popular in the information retrieval

community for compressing inverted lists [28]. RID list

compression is particularly useful for Data Warehousing or

Operational Datastores where one tends to have indexes with long

rid lists. However, for a product which is going to be used for

those environments as well as OLTP, it needs to deliver on

compression for small RID lists as well - which is typical of that

environment. In addition, it needs to provide response time

guarantees for index searches for a (Key, RID). These searches are

used during insert/update/deletes which happen quite often in

OLTP. Our design is able to work for both environments.

Inverted lists contain all positions where a term occurs in a

document. These positions always yield a monotonically

increasing integer sequence. These are commonly compressed

using Delta Compression which records the gaps between two

positions rather than the positions themselves. Such compression

possibilities make inverted lists superior to signature files as an IR

access structure [26]. While early inverted list compression

focused on exploiting the specific characteristics of the gap

distribution using Huffman or Golomb coding [27], recent work

has paid more attention to trading compression ratio for higher

decompression speeds [28]. Compressed inverted indexes

generally do not support features like reverse scans on these

indexes. However for a relational product, supporting reverse scan

on a compressed index is necessary if we want to avoid query

processing overheads or the need for another index. In our design,

a compressed index is able to support reverse scan processing on

it.

Finally, there has also been work on architecture sensitive

compression like [25]. They are specifically designed to take

advantage of the architectures of modern CPUs by coming up

with algorithms which don’t do conditional branching in the

performance critical parts of algorithms like dictionary, prefix key

and delta encoding.

3. OVERVIEW OF A B+ TREE IN DB2
The B+ Tree index in DB2, at the high level, is very similar to a

conventional B+ Tree index, with non leaf levels leading to a

doubly connected list of leaf pages. Due to the high fanout, the

number of non leaf pages is very small compared to the leaf

pages. Given this, we have focused on compressing these leaf

pages in this work. The leaf page structure is shown in Figure 2.

Apart from the double links, the page has a slot directory, keys

and RID lists. The DB2 B+ Tree index supports forward and

reverse scans in index key collation order and one can traverse the

index both ways.

Every index page has a pre allocated slot directory in which the

offset location of each index key on the page is stored. The

number of slots in the slot directory is calculated based in the

minimum key size. Therefore, the number of slots is the maximum

possible slots that we need on an index page. The slot directory is

followed by sets of keys and their RID lists as shown in Figure 2.

Figure 2: Structure of a B+ Tree in DB2

A key has one or more sets of RIDs and RID Flags associated

with it. The RIDs point to records which have that key value. The

RID Flags is a collection of 8 bits which indicate the state of the

RID and the record it points to. All this sets together make up the

RID list for that key. If the RID list spans more than an index

page, then it is continued on the next index page with the key

being repeated. The RID itself has 3 components, namely the

partition number, page number and slot number as shown in

Figure 3. The page number could be a 24 or 32 bit entity, the slot

number an 8 or 16 bit entity and the partition number could be

either not present or it could be a 16 bit entity. Thus a RID could

be either 32 bits or 48 Bits or a 64 bit entity.

For a given key, the RIDs are ordered in ascending order. This

helps in locating a (Key, RID) pair efficiently by a binary search

on the RID list. It is important this be done efficiently since it is

used for insert/update/deletes for locating the physical location of

the RID. The RID list can be traversed in the forward and well as

reverse direction. The latter is used to answer queries which need

the key in reverse order of the index collation.

B+ Tree indexes can be either user defined or system generated.

Some of the system generated indexes in DB2 include the primary

key (if defined) and those that are used for pureXML (native

XML storage) processing. Some of the latter indexes are multi

part key indexes with long character fields with adjacent keys

differing in a few characters in that keypart. These indexes tend

to occupy a lot of space too. Compressing them requires an

ability to compress partial keys in the index.

RID1Key RID2 RID3Rid

Flags

Rid

Flags

Rid

Flags

 2 byte

part num 4 byte page num 2 byte

slot num

3 byte page num
 1 byte

slot num

Big Rid

Standard Rid

a) A Key and its RID list

b) Different RID types

Figure 3: RID List Structure

In DB2, a user could ask for multiple processing entities to be

invoked to speed up processing of a scan. This is also known as

Intra Query Parallelism. For an index scan, each entity would end

up getting part of a rid list to process and as it finishes its

Slot Dir

Key

Leaf Page

Non Leaf Pages
--- Rid

List

processing, it can come back for more work on a first come first

served basis.

4. INDEX COMPRESSION OVERVIEW
In DB2 LUW, index compression can be invoked during the

creation of an index as well as later using an alter index command

or an index reorg. While we implement multiple techniques, we

do not burden the user with having to select the technique to use.

Instead, DB2 will automatically select the compression techniques

that apply for the index. The only input that the user needs to

provide is if they want to turn compression on. To assist with that

decision, we have developed methods of estimating the

compression that can be obtained for an index.

To be able to compress the data in the index, one needs to be able

to compress both the keys as well as the RID list. They tend to

occupy most of the space in an index page. Compressing the slot

directory also leads to useful space savings. In our implementation

we have developed techniques to compress all three structures.

Our compression techniques have been applied to the leaf pages

of the index which tend to be more numerous compared to the non

leaf pages.

In the subsequent sections, we describe the techniques developed

for RID list compression and Key compression. We also describe

our methods for estimating the compression savings for an index.

We have not described slot directory compression due to lack of

space.

5. RID LIST COMPRESSION
The key challenges of RID list compression include being able to

satisfy the following requirements

1. Search speeds for a Key, RID: The RID lists are prone to

binary searches for a RID. A design to compress the RID

lists will need to be able to deliver adequate search capability

for a RID. Any performance degradation here will hit

insert/update/deletes which depend on it.

2. Reverse Scans: The RID lists will need to facilitate forward

as well as reverse scans. Otherwise we will either end up

having to create another index - which goes against

compression - or have to take a performance hit for certain

workloads which use reverse scans.

3. Delete Safe Property: Deleting a RID from the compressed

RID list should not make the new compressed RID list bigger

than previous. Given that the delete might happen during a

rollback or other operation when we are trying to free up

resources, taking up more space would go against the very

need of these operations.

4. Enabling Intra Query Parallelism: The compressed rid list

should allow multiple processing entities to pick up chunks

to process and decompress independently. This will allow

them to work in parallel.

5. Badly Clustered Indexes: In real workloads, one encounters a

lot of indexes where the RIDs in the RID list have high

entropy when the RIDs are viewed as simple integers. In

other words, the records tend not to be clustered in the order

of the index key. These indexes need to be compressed well

too for an overall good compression ratio for the system.

In order to address these challenges, we developed a scheme

whose high level overview is given in Figure 4. The RID list is

broken up into variable sized logical blocks. The size of these

logical blocks makes them data cache line friendly. In between the

key and the first logical block sits a RID list primer which is

described below. For very small RID lists one could just have the

Primer without the variable sized logical blocks.

The Primer contains the first RID of the RID list and its RID Flag

as well as the last RID as shown in Figure 5. In addition, it

contains the first RID and the offset (address) of every variable

sized logical block. The variable sized logical blocks are

reorganized when they cross a certain size threshold. This

happens infrequently in comparison to the number of

insert/deletes of RIDs in the RID list.

.....

.....

Variable Size Block Variable Size Block

Variable Size Last Block

Key

Key

Index Page

Variable Sized Only Block

Primer

Figure 4: High level overview of a compressed RID List

Each variable sized logical block is an independent entity and can

be compressed separately. We use a double layered compression

scheme based on a modified delta encoding technique followed by

a layer of pattern elimination for them. They are described below

in the order in which they are applied

Variable Size Block Variable Size Block

Key

Index Page

First Rid/RidFlags Last Rid

Rid/Offsets

Ptr2Ptr1 Ptr3 Primer

Figure 5: RID List Primer

5.1 Variable Byte Delta Encoding

Given that the RIDs in a RID list are sorted integers, a delta

encoding of the RIDs is first applied. The first record of the block

is stored in the Primer in its original binary representation and so

is not repeated again. For the remaining RIDs, instead of the

binary representation of the RIDs, a binary representation of the

difference between that RID and the previous RID is stored.

Figure 6 shows an example of such a delta encoding. The first

RID (053ED4:00) is stored as it is and for the subsequent RIDs

we store the difference to the previous. For example, instead of

RID (053ED4:25) we will store just (:25). Here, 053ED4

represents the page and 25 the slot number of the RID. The ‘:’

does not have a physical representation and is shown only for

understanding the example.

Key
Rid

Flags

Rid

Flags

Rid

Flags053ED4:00 053ED4:25 053EDA:29

Key
Rid

Flags
053ED4:00

Rid

Flags
:25

Rid

Flags
6:04

Original Ridlist

Compressed Ridlist

Figure 6: Variable length delta compression of RID list

The deltas are encased in a custom built variable byte encoding

scheme. In the conventional variable byte encoding scheme, the

most significant bit is reserved for encoding if the payload (of 7

bits) is the first byte of the RID or a continuation byte. This works

well when the bytes are being scanned in one direction. However

for an index scan, the bytes need to be scanned in both forward

and reverse directions. For that, the conventional variable byte

encoding scheme will not work since we would be unable to

reconstruct the RIDs in the reverse direction since the RIDs and

RID Flags are intermixed for proximity. We will not be able to

differentiate between the RID Flag and a variable byte.

In order to solve this problem, we use the byte encoding rules

shown in Figure 7. For one byte deltas, we set the continuation bit

to 0; for two byte deltas the continuation bit is set to 1 and when

the deltas are more than 2 bytes, the continuation bits of the first

and last byte is set to 1 and the rest is set to 0. With this scheme,

scans in both directions would be easily able to collect all the

component bytes of the delta and reconstruct it.

Figure 7: Delta encoding to support forward & reverse scans

With this scheme of compressing and storing a RID list, we are

able to handle the challenges like search speeds, reverse scans and

enabling intra query parallelism.

A search for a RID in the RID list is done by a binary search of

the first RIDs of the logical blocks stored in the Primers. After we

have located the logical block where it might be, a sequential scan

of the block is done. The search will reconstruct each consecutive

RID from the deltas as it proceeds and will take advantage of the

fact that the RIDs are sorted and hence an early exit can be done if

we hit a RID bigger than it. It should be noted that the block

would fit a data cache line and thus the sequential scan would be

fast. This two stage scheme delivers required performance.

For Intra Query Parallelism, the processing entities are given a

variable block at a time to process. Each entity can decode their

block independent of the other by using the first RID of the block

stored in the Primer. The fact that the variable size blocks are of

the order of one cache line only, ensures adequate load balancing

between the processing agents.

A reverse scan uses the last RID that is stored in the Primer to

start the delta decoding and proceeds from the last variable block.

It traverses the deltas in reverse order using the variable length

encoding scheme and extracts the RIDs by subtracting the deltas

from the current rid.

5.2 Pattern Elimination in Deltas

The variable byte delta encoding scheme takes advantage of the

fact that the RIDs are ordered integers but it does not take

advantage of the basic structure of the RIDs, i.e pages, slots and

partitions described in Figure 3. In a RID, the slots occupy the

least significant bytes. They point to records in a page. The slots

are of 1 or 2 bytes but most customers are moving towards 2 byte

slots. With a 2 byte slot, one can address 65536 records in a page.

However, given that the page sizes vary from 4K to 32K pages, in

real customer situations one does not encounter that many records

in a page. Thus one can expect quite a few of the most significant

bits of the slot to be 0. While for this discussion we will consider

the 2 byte slot case, to a lesser degree, the same issue holds for 1

byte slots too.

When a computed delta is below 2 bytes (meaning the page

number was the same for the two RIDs), then these 0s

automatically get compressed out. However if the delta is of more

than two bytes, these 0s tend to persist in the delta. Consider the

example shown in Figure 6. The delta between rid

(053ED4:0000) and rid (053ED4:0025) is: 25. This is an example

of a well compressed delta. One the other hand, the delta between

rid (053ED4:0025) and rid (053EDA:0029) is 6:0004. The 0s in

the delta could be compressed out.

The patterns one would encounter and thus eliminate, would

include series of 1s or series of 0s. One could also eliminate other

patterns of interest like mixed 1s and 0s. The amount of savings

by compressing the deltas like this will be higher for badly

clustered indexes (where delta encoding would not work that

well) and lower for well clustered indexes.

To compress these patterns, we have developed a method for

dictionary based pattern elimination from the deltas as shown in

Figure 8. We use a bit in the RID flags to indicate if its delta is an

ordinary delta or a pattern eliminated delta. The lowest two least

significant bits of the delta are then reserved for a pattern

identifier. They identify the pattern which was detected in the

delta starting from the boundary between the page and the slot.

For the two byte slot case, it will be bit 16 and lower. If the

original delta has less than 16 bits, the bit in the RID flags would

be 0 and the original delta would be preserved.

RID Flags

00000001 00000000 00000101 0-------

DeltaDelta Delta

RID Flags

00000001 000101 00 1-------

Delta Delta

Pattern Code

RID Flags

1 0000001 1 00101 00 1-------

Varbyte Varbyte

Pattern Code

Original Delta

Delta with pattern 000x

Eliminated via Pattern

Number 00

Delta with Pattern

Elimination and

varbyte encoding

Continuation Bit

Figure 8: Delta encoding with pattern elimination

At the time of compression, we check if the delta has any one of a

set of 4 identified patterns for the index. If so, that pattern is

eliminated from the delta and its identifier put in the lowest two

bits. We also set the flag in the RID flag. Consider the example

shown in Figure 8. The original Delta was 10005x. If Pattern

Number 00 is the pattern 000x and we want to eliminate that from

the delta, then we will first set the bit indicator in the RID flag to

1 0 1

1 1

0 RidFlags

RidFlags

RidFlags

 1 Byte Delta
Delta

2 Byte Delta

n Byte Delta

1. Then we will insert the pattern code 00 in the least significant

bit. At this stage, the delta logically becomes 40016x.

Subsequently we will eliminate 000x from it to get 114x as the

pattern eliminated delta. This is then encased in variable byte

encoding to give us 8194x. We have saved 1 byte out of the 4

bytes for this delta and RID flag by this technique. At the time of

decompression, if the RID flag is set, we know that the delta is

pattern eliminated. In that case, we reinsert the pattern to get the

original delta.

This mechanism allows us to eliminate any one out of four

patterns from a RID. We incur the 2 bit storage overhead for the

pattern identifier in the RID only if pattern elimination is used for

that RID. Pattern elimination like this is useful if we find patterns

of more than 2 bits in the RIDs. It can also be used for more than

4 patterns too. However, as the number of patterns is increased,

the overhead of storage also increases.

The best patterns to eliminate would depend on the number of

records which fit a data page for the table. For large record sizes,

the potential for savings by pattern elimination would be higher.

There are various ways in which the patterns can be selected.

Currently we use certain heuristics to select the patterns.

5.3 Delete Safe Property

A key requirement for RID list compression is that it needs to be

delete safe. Meaning, if a delta and its RID flag is removed from

the RID list, we should not end up taking up more space than with

that delta in the list. A delete of a delta from a RID list could

happen during a delete of a record or during a rollback of an

insert. Both operations are seeking to free up space/resources. If

we end up taking up more space (which may cause a page split), it

goes against the basic reason for these operations.

We show that delta compression with variable byte encoding

followed by 2 bit based pattern elimination is delete safe as long

as the space saved in the deltas does not exceed 12 bits for 2 byte

slots. Given that we use 2 bits for pattern identifiers, we can

eliminate patterns of upto 14 bits and yet be delete safe. The

following is the proof

Claim 1: Deletion of a rid does not cause an expansion in space

when using delta with variable byte encoding for rid list

compression.

Proof: Since variable byte encoding is a monotonic step function,

it suffices to prove that deletion of a rid does not cause an

expansion in the space when using delta with binary encoding.

Consider the delta-ridflag list (d1,f1),(d2,f2), where after deletion

of (d1,f1), the delta-ridflag list becomes (d2',f2) where

d2' = d1 + d2.

Let b(i) represent the size in bits of the binary encoding of i.

We want to show that,

 b(d1) + b(f1) + b(d2) + b(f2) >= b(d2') + b(f2).

Given b(f1) = b(f2) = 8, the above is equivalent of

 b(d1) + b(d2) + 8 >= b(d1+d2). (1)

Without loss of generality suppose d1 > d2.

Binary addition guarantees that

 b(d1) <= b(d1+d2) (2a)

 b(d1+d2) <= b(d1) + 1 (2b)

Hence, b(d1) + b(d2) + 8 >= b(d1).

This is equivalent of b(d2) + 8 >= 0. (3)

To get a tighter bound, consider also,

 b(d1) + b(d2) + 8 >= b(d1) + 1.

This is equivalent of b(d2) + 7 >= 0 (4)

If (4) is true, (1) will also be satisfied because of (2b).

In our case, since b(.) is always > 0, (1) is always true.

Claim 2: Deletion will not result in a space expansion, when

pattern elimination is used on the deltas in the rid list if the

number of bits saved by the pattern elimination is less than

b(d2)/2 + 3.5.

Proof: Let

k be the number of bits saved by pattern elimination

p(i) be the length in bits of the binary representation of

i after pattern elimination.

 p(i) = b(i) - k (5)

Consider the delta-ridflag list (d1,f1),(d2,f2). After deletion of

(d1,f1), the delta-ridflag list becomes (d2',f2),

where d2' = d1 + d2.

Consider the worst case scenario when pattern elimination has

been applied onto d1 and d2, but not on d2'.

We want to find the conditions when,

 p(d1) + 8 + p(d2) + 8 >= b(d2') + 8

equivalent to p(d1) + p(d2) + 8 >= b(d1+d2)

equivalent to b(d1) + b(d2) - 2k + 8 >= b(d1+d2) (6)

Without loss of generality, suppose d1 > d2.

Using Eqn (2a),

 b(d1) + b(d2) - 2k + 8 >= b(d1)

equivalent to b(d2) - 2k + 8 >= 0

equivalent to k <= b(d2)/2 + 4 (7)

To get a tighter bound, consider

 b(d1) + b(d2) - 2k + 8 >= b(d1) + 1

equivalent to b(d2) - 2k + 7 >= 0

equivalent to k <= b(d2)/2 + 3.5 (8)

By Eqn (2b), (8) => (6)

for rids with a 2 byte slot, pattern elimination is only done

when the delta contains a change in the page number,

 b(d2) >= 17

Hence,

 k <= 12 (9)

As long as (9) is true, (6) is true.

(9) means that the savings from pattern elimination should not

exceed 12 bits for rids with 2-byte slots.

For single byte slots b(d2) >=9 and thus k<=8.

6. PREFIX KEY COMPRESSION
Keys in an index page are stored in some collation order (e.g.

alphabetical order) and often two adjacent keys are very similar

and have a prefix in common. In single column indexes, e.g.

OLTP applications, the common prefix can be a partial keypart. In

multi-column indexes, e.g. data warehouse applications, the

common prefix of two keys may contain zero or more complete

keyparts, followed by a partial keypart. The common prefix

proposes a certain degree of redundancy, which could be reduced

when keys are stored in compressed format.

We propose a two layer delta-coding scheme where each key is

coded as a (prefix, suffix) pair, depicted in Fig.9. Prefixes are

extracted from one or more consecutive keys that share a common

prefix. For example, in Fig.9, the first three keys have prefix1 in

common. This layout supports typical index operations, i.e.

INSERT, DELETE and binary search, without the need to de-

compress index pages. Furthermore, it imposes three enhancement

opportunities upon compressed indexes:

• Common prefixes are repeated patterns that occupy more

space on an index page if stored separately for each key. A

single common prefix could as well represent a subset of

keys that share the common prefix, without information loss.

• The two layer structure can improve the performance of

binary search, because the prefix layer could prune

unnecessary keypart comparisons. The reduction in the

number of comparison in turn improves performance of

binary search, mostly for multi-column indexes and/or long

keys.

Figure 9: The Two-layer layout of a leaf index node

• Materializing a key requires joining the corresponding prefix

and suffix, versus performing a look-up in dictionary based

coding or reading previous keys in pure delta-coding. This is a

benefit for index scan queries (forward/reverse) and could be

used to prune evaluating predicates on a number of keys by

considering the prefixes.

6.1 Prefix Optimization

To leverage the power of the two layer index page layout, an

optimal set of prefixes need to be identified. This requires

comparing consecutive prefixes to identify common prefix

between two keys and then comparing common prefixes to

possibly merge two common prefixes. Each prefix is actually

stored on an index page as a prefix and some overhead. The

overhead depends on the data type of the keypart and the size of

metadata in prefix slot directory. In one extreme case, the

overhead is minimized when there is only one prefix for all keys

on the page. This might not be an optimal prefix selection, in

particular when the keys are partitioned into two (or more) blocks

and the keys in each block have a long prefix in common.

Obviously, in this case a better solution is to consider two (or

more) prefixes, one for each block. As the number of key blocks

on an index page increases, so does the number of prefixes, and

the overhead associated with the metadata required to represent

prefixes.

The prefix selection problem can be formulated as an optimization

problem, with the cost function being the space requirement for

prefix section plus the space requirement of the suffixes. Note that

the space requirement for prefix section includes the storage for

common prefixes, the penalty for breaking splittable keyparts

(such as VARCHAR, DATE, NUMERIC, TIMESTAMP), and

the space for storing entries on the prefix slot directory. In case

two adjacent keys have nothing in common, a special NULL

prefix is considered as their common prefix to be consistent with

the two layer storage scheme. Variables of this optimization

problem are the number of prefixes as well as the keys that fall

under each prefix group. The number of prefixes is at least one

and at most the number of keys on the page minus one (a common

prefix for every two consecutive keys). An O(n3) dynamic

programming approach finds the optimal two layer layout of an

index page with n keys.

The prefix optimization step is triggered on special occasions

during insert. If an index page has enough room to insert a new

key, an aggressive approach would propose to use either the

common prefix of the new key and the key before this on the

index page or re-use an existing prefix which belongs to the

previous key. However, when an index page is almost full or a

duplicate key is being inserted to an almost full page, and index

cleanup cannot free enough space on the page, the prefix

optimization is triggered to analyze the page and re-consider the

set of prefixes, in order to free space for next insert (if possible).

The computational complexity of the dynamic programming

approach is prohibitive for two reasons. First, it compares many

keys on the page and key comparison is an expensive operation,

specially for long keys and multi-column indexes. Second, the

performance degrades when the number of keys on the index page

increases, which can be the case for small keys and large index

page.

Several heuristics could be used to reduce the frequency to trigger

prefix optimization during create index or massive inserts. For

instance, one may decide to trigger prefix optimization only a

fixed number of times for an index page. DB2 uses two

orthogonal heuristics to efficiently find close to optimal prefixes

using local approach instead of dynamic programming. The

heuristics, namely prefix merge and prefix expansion, analyze the

index page on a prefix level granularity, unlike the dynamic

programming which performs a key-level analysis. The main

benefit is a significantly reduced number of key comparisons,

which improves performance especially for multi-column indexes

with complex data types.

6.2 Prefix Merge

Prefix merge considers generalizing a group of prefixes into a

single shorter prefix. For each prefix pi on the index page, let npi

be the prefix in common between the last key that uses pi-1 and the

first key that uses pi. For instance, if “bd” is the prefix being

analyzed, npi is “b”.

Table 1: A Two-layer index page with corresponding full keys

Prefix Suffix Full key

a bc abc

b
bc

bcb

bbc

bbcb

bcd
db

dc

bcddb

bcddc

bcde
ee

ef

bcdeee

bcdeef

bd b bdb

We introduce the concept of ClosedRange (CR)to restrict the

scope of prefixes to be considered for merge while analyzing each

prefix. The CR for prefix pi contains all prefixes on the page

before pi that include npi as prefix. For example, “b”, “bcd”, and

“bcde” are all contained in the CR of “bd”. There are many ways

to group prefixes within the CR of a prefix. If there are m prefixes

in CR of pi, the number of possible grouping for prefixes is

()
()∑

−

= −−

−1

1)!(!1

!1n

i ini

n .

This number grows with the number of prefixes on the page.

Instead of considering all possible grouping, we propose the

concept of segments to further reduce the search space to blocks

of prefixes within a CR. Each segment is a group of consecutive

prefixes that contain at least prefix npi. By this definition, there is

at least one segment in each CR that has npi as common prefix,

but there can be more than one segment in each CR. In this

example, the segments in CR of “bd” are [‘bcd”, “bcde”] with a

common prefix of “bcd” and [“b", “bcd”, “bcde”] with a common

prefix of “b”. We analyze the segments in each CR and compute

the benefit of merging prefixes in a segment into the common

prefix of all prefixes in that segment. The result of analyzing each

prefix is either a merge, if there is space saving for the best

segment in CR, or reject. The merge considers grouping the

prefixes in the best segment into one prefix. Such a merge reduces

metadata entry of the prefix slot directory but increases space on

suffix section because the keys that used to have longer prefixes

are now using shorter prefixes and therefore, the suffixes must

grow. Algorithm.1 is a high level description of the prefix merge

heuristic.

Algorithm 1 : Prefix Merge

FOREACH prefix pi

 IF len(npi) is zero

 Find all segments in CR(pi)

 Merge best segment in CR(pi) to NULL prefix when possible

 ELSEIF len(npi) < len(pi-1)

 Find all segments in CR(pi)

 Merge best segment in CR(pi) if benefit is positive

 ENDIF

END FOREACH

6.3 Prefix Expansion

Merging prefixes could save space by removing metadata entry

from the slot directory of prefix section. This operation could

leave the index page with short length prefixes in the long term. In

contrast, the purpose of prefix expansion is to create longer

prefixes for existing suffixes. This could result into space saving

when the space required for new prefixes plus the overhead of the

metadata entry in the prefix slot directory is less than the saving

achieved when suffixes shrink. This condition often happens on

prefix boundaries, where a subset of the suffixes that use prefix pi

could also use prefix pi+1 (or the other way). If a subset of the

keys that use prefix pi+1 can use a longer prefix pi, assigning the

keys using pi+1 to use pi should result into shorter suffixes and in

some cases, could leave pi+1 empty. In another setting, the keys in

prefix boundary might use a new longer prefix where again the

overhead for this new prefix and the metadata entry of the slot

directory is still less than space saved when the corresponding

suffixes reduce. DB2 employs a variation of prefix boundary

analysis heuristics to extend prefix length and reduce space.

Table 2: Index page layout before and after prefix expansion

Before prefix expansion After prefix expansion

prefix suffix prefix suffix

ab bc, <RID list 1>

cd, <RID list 2>

ab bc, <RID list 1>

abc de, <RID list 3>

def,<RIDlist 4>

abcd k, <RID list 5>

abcd _, <RID list 2>

e, <RID list 3>

ef, <RID list 4>

k, <RID list 5>

Prefix expansion removes prefix “abc” and shrinks 3 suffixes

(keys “abcd”, “abcde”, and “abcdef”).

6.4 Logging Prefix Optimization

Similar to logging insert and delete operations for an index page,

there is need as well as technical reasons for logging prefix

optimization. For instance during roll-forward (redo) and roll-

back (undo) operations, an insert operation which requires prefix

optimization must be performed in the same way during a redo of

the same insert. Because prefix optimization is deterministic, the

direct approach is to log prefix optimization event. During redo of

an insert which caused prefix optimization, an index page

optimization could be performed to achieve the same result.

However, to ensure the best performance, DB2 implements a

minimalist log record structure to log the change in length of the

affected prefix groups, as well as the changes in prefix slot

directory. A single log record structure and a symmetric one-pass

algorithm handles both redo and undo of prefix optimization.

7. COMPRESSION ESTIMATOR
Since compressing an index is a resource intensive operation, it is

desirable to provide an estimate of the compression factor likely

to be accomplished by compression. One way of estimating the

space savings is to scan all leaf pages and simulate the

compression algorithm on the actual keys and RIDs and calculate

the space required without actually generating the compressed

pages. This method will always compute the exact compression

ratio but, since it touches all the pages, it will be almost as

expensive as actually compressing the index. The question is: can

we do better? The answer is yes, if we’re willing to trade precision

for I/O cost. We will next describe estimation algorithms for each

of our compression techniques in turn.

7.1 RID list compression estimator
As described in Section 5, RID list compression encodes each

sorted list of record identifiers by storing the first RID and

differences (deltas) of successive RIDs. In order to estimate the

space required by this representation, we need to have a sense of

the space occupied by the deltas. Since we are using a variable

length encoding scheme with 7 bits of payload in each byte, the

number of bits needed to store one delta value d is

()






⋅=

7

log
8)(

d
dl

So, in order to estimate the total space needed by a list of deltas,

we need to estimate the distribution of delta values. To this end,

we can take advantage of the available statistics that are currently

being collected on indexes. One such piece of information that

turns out to be useful is the index cluster ratio C, which is a

measure of how well does the physical order of the records match

the order of the keys. Whenever records are clustered, the delta

between two consecutive RIDs in the list is small, requiring either

one or at most two bytes, so we consider an average size of 12

bits. Therefore, the space required by the clustered deltas is:

() () 121 ⋅−⋅= kCD nCkspace

where nk is the number of RIDs in the list corresponding to key k.

To estimate the space required by the non-clustered deltas, we

consider the worst case situation where all the non-clustered RIDs

are equally spaced in the containing tablespace. If we denote the

tablespace size in pages by TS, it follows that the space required

by each non-clustered deltas is:

()





























⋅−
⋅=

7

1
log

8
k

ncd

nC

TS

size

Therefore, the space required by all non-clustered deltas will be at

most

() ()() ncdkNCD sizenCkspace ⋅−⋅−= 11

The total space needed to store a list of nk RIDs in compressed

format will therefore be bound by:

())()(_ flagsbnspacespaceRIDbkspace kNCDCDlistc ⋅+++=

where b(RID) is the size of a RID in bits (typically 48) and

b(flags) is the size of the RID flags in bits (typically 8).

The space needed to store the same list uncompressed is:

() ())()(flagsbRIDbnkspace klist +=

Therefore, the compression ratio can be estimated by the

following formula:

()()

()()∑

∑
+

+

=

−

k

list

k

listc

delta
kspacekb

kspacekb

r
)(

)(

Note that the above formula depends on the exact number of RIDs

nk for each distinct key value k. One can further approximate this

using the available histogram data for key distribution for that

index.

7.2 Prefix key compression estimator
As described in Section 6, prefix key compression stores each

common key prefix once together with a corresponding list of

suffixes. In order to estimate the total space required by this

encoding scheme, we need to estimate the number of distinct

prefixes and the number of suffixes corresponding to each prefix.

Since computing the exact number of prefixes and suffixes

requires traversing the entire index, we have to approximate that

using available statistics and some uniformity assumptions. Thus,

for a multipart key consisting of columns C1, C2, …, Cp, we can

use the distinct cardinalities of the first k key part and assume that

each combination of distinct key part values occurs equally

frequently. Then, the number of suffixes for each combination of

values for the first k key parts is:

k

suff
nnn

N
n

⋅⋅⋅
=

...21

It follows that the total space occupied by suffixes is:

() ()() () ()()
pkpksuffksuff

CbCbNCbCbnnnspace ++⋅=++⋅⋅⋅⋅=
++

......... 111

Similarly, the space required by the prefixes is:

() ()()kkpre CbCbnnnspace ++⋅⋅⋅⋅= 121

So, the compression ratio can be estimated as:

() ()() NCbCb

spacespace
r

p

suffpre

prefix
⋅++

+
=

...1

8. EXPERIMENTAL EVALUATION
For the experimental evaluation, we used a setup similar to that

used by some customers who run ERP solutions over DB2 LUW.

We used an 88 column FACT table with the majority of the

columns being either decimal or varchars. There were 12 indexes

defined on the table. One of the indexes was a 16 part unique

index defined on varchar fields. The remaining indexes were

single part, non unique dimension indexes. The table and indexes

were defined on different tablespaces but shared the same

bufferpool. This setting is common to some customers running

ERP on DB2 tables. Table 3 provides more details of the

experimental setup.

The evaluation aimed to compare parameters like space occupied,

query performance, insert and update performance. The

evaluation was done with identical set of indexes created with the

compression option on and off. In addition, we also evaluated our

compression estimator against existing indexes and compared

their estimates against actual compression that was achieved.

Table 3: Experimental setup details

Hardware

System

IBM e326 with 4GB of main memory

Processors 2 x 2.4GHz AMD64 processor

Operating

System

64 bit x86_64-Linux

DB2

Instance

DB2 LUW Cobra

Table size 9 million records with ~1KB per record

Index sizes Unique index (just 1 RID/index key) : 1, Type :

multi part key

Non unique RID indexes : 11, Type : single part

key

Table 4 shows a comparison of the space occupied in both cases

for all the user defined indexes. We see that compressing the

indexes leads to a 57% savings of space overall. The non unique

indexes benefited the most from RID list compression and the

multi part unique index benefited the most from the prefix key

compression. Out of the 57% savings, about 31% came out of

compressing RIDs, 25% came out of compressing keys and 1% by

compressing the slot directory.

267348273834

429421

622350

Pages

0

100

200

300

400

500

600

700

T
h

o
u

s
a

n
d

s

 Base

 RID Compression

 RID+Key Compression

 Overall Compression

Table 4: Overall Space Occupied By Indexes in Pages

To explore the impact of RID list compression further, we study 3

RID dominated indexes defined on the FACT table with cluster

ratios varying from 1% (very badly clustered) to 99% (very well

clustered). The Cluster Ratio refers to the degree of ordering of

the index key to the column the table is clustered on. Table 5

shows the compression savings for these indexes. We see that the

savings vary from 43% for the badly clustered case to 65% for the

best case. As the clustering worsens, the entropy in the RID list

worsens and that adversely impacts the compression savings.

43

58

65

1% CR 38% CR 99% CR

Index Cluster Ratio

0

10

20

30

40

50

60

70

C
o
m

p
re

s
s
io

n

P
e
rc

e
n
ta

g
e

Compression Percentage

Table 5: Compression Savings for RID dominated indexes

Logical
Physical

Async Page
Read Requests

0

1

2

3

4

5

T
h

o
u

s
a

n
d

s

P
a

g
e

s

Base Compressed

Select count ixscan query : 37% Runtime Improvement

Table 6: Query Performance Stats For select count query

Logical Physical

0

100

200

300

400

500

P
a

g
e

s

Base Compressed

Select max ixscan query : 27% Runtime Improvement

Table 7: Query Performance Stats for select max query

For evaluating the impact of index compression on query

processing, we ran queries which used indexes in index only as

well as index based table scans. In the former class, the scan is

limited to just the index and in the latter, table rows are accessed

via that index. Table 6 shows the performance stats for an index

only query which gets the count of records. It ran 37% faster with

drastic reduction of IO. The logical and physical reads come

down to about 54% as on the uncompressed index. No visible

increase in CPU usage was noticed. Table 7 shows the

comparison for an index only max count query. This query is

answered in a reverse scan in which we look for the maximum

value for the key. The query performance improved by 27% with

vast improvements in logical and physical page reads. The index

based table scan query that we ran, in comparison, does an access

of the table via the index. Consequently it has a lot of work other

than the index access to do. Hence in that case the performance

improvement was 3%.

In the next set of experiments, we evaluate the insert and update

performance with compressed indexes. To this end, on the same

schema, we inserted 100,000 records and compared that to the

base system. The results are summarized in Table 8. The inserts

ran 19% faster and consumed 57% less space. The bufferpool

activity also was significantly lower.

ImprovementsIndex
Compression

Baseline100K inserts

19%68.383.99Total execution time (sec)

61%649516827Bufferpool index writes

41%57939890Bufferpool index physical
reads

9%38520994224179Bufferpool index logical reads

57%267348622350Index object pages

ImprovementsIndex
Compression

Baseline100K inserts

19%68.383.99Total execution time (sec)

61%649516827Bufferpool index writes

41%57939890Bufferpool index physical
reads

9%38520994224179Bufferpool index logical reads

57%267348622350Index object pages

Table 8: Inserting 100K records

To test the updates, we ran three different update operations

which updated columns on which RID indexes were defined. As

seen in Table 9, the cumulative time taken for the updates was

18% lower for the index compression case. This gain came at a

little extra CPU overhead in user mode as shown in the CPU

usage table in Table 10. But that was compensated by the decrease

in the IO wait time.

0

10

20

30

40

50

60

T
im

e
 (

s
e

c
s
)

Base Index Compression

Table 9: Update Time Comparison

user system idle iowait

0

10

20

30

40

50

60

Base Index Compression

Table 10: Update CPU Usage

All the above tests were with indexes on relational table data.

DB2 LUW also supports XML in its pureXML storage scheme.

These also use B+ tree indexes for its internal as well as user

created indexes which indexes XML data. The internal indexes

are known as the REGION and PATH indexes. To evaluate how

index compression does in this scenario, we used a database with

approx 300000 documents of 5.6 GB total size. Each document is

of 20-30 KBs each. Table 11 shows a 38% compression savings.

Since for XML indexes we do only prefix key compression, these

savings reflect the benefits of that technology in this test scenario.

6205

9925

Storage Volume

0

2

4

6

8

10

12

T
h

o
u

s
a

n
d

s

S
to

ra
g

e
 V

o
lu

m
e

 (
G

B
)

Base

Compression

Table 11: Compression Savings for XML Indexes

8.1 Evaluation of Compression Estimator
In order to evaluate the accuracy of our compression estimator, we

examined three non-unique indexes: one with a 1% cluster ratio,

one with 38% cluster ratio and one with 99% clustering. We

considered several variants of our basic estimator model: the

model which uses the cluster ratio and the exact key distribution,

a model which assumes no clustering but uses the exact key

distribution, a model which assumes uniform distribution of the

keys and no clustering, a model which uses the exact key

distribution for the top 4 keys and assumes uniform distribution

for the rest, and a model which assumes 50% clustering and exact

key distribution. The results are shown in Figure 1. With the

exception of the last one, all the models underestimated the actual

compression ratio, as expected since the models were built on

worst-case assumptions. The reason the 50% clustering model

overestimated in the case of the 1% clustered index is precisely

because it broke the worst-case assumption and assumed a better

clustering. Among all the models, the most accurate is the first

one. This is to be expected because it uses the most information

about the index. The superiority of this model is more pronounced

for better clustered indexes. However, among the models which

ignore the clustering, it did not make much difference whether or

not we were using the exact key distribution. This is useful,

because obtaining the exact key distribution requires a pass

through the entire index, as opposed to using just the already

collected statistics.

0

10

20

30

40

50

60

70

80

1% 38% 99%

Actual

Model with CR

Model with no CR

Model with Unif Dist no CR

Model with top 4 keys

Model with 50% CR

Table 12: Comparison of Estimation Techniques

9. CONCLUSION
The DB2 LUW Index Compression mechanism provides a very

efficient and usable mechanism to compress indexes on relational

and well as XML data. In this paper, we have detailed the design

of DB2 LUW’s Index Compression feature and the challenges

that needed to be addressed to meet the goals.We have outlined

innovative prefix key and RID list compression techniques as well

as a compressor estimator.

We have shown through performance evaluations that on typical

customer scenarios, index compression delivers significant space

savings with additional benefits for query processing, insert,

update and deletes.

10. REFERENCES
[1] http://www.tpc.org/tpch/default.asp

[2] http://www.tpc.org/results/individual_results/IBM/IBM_570

_10000GB_20071015_ES.pdf

[3] Poess, M., Potapov, D.,“Data Compression in Oracle”,

Proceedings of VLDB 2003

[4] Lang, C., Bhattacharjee, B., Malkemus, T., Padmanabhan, S.,

Wang, K.,”Increasing Buffer Locality for Multiple Relational

Table Scans through Grouping and Throttling”, Proceedings

of the ICDE 2007

[5] Shim, J., Scheuermann, P., Vingralek, R.,”Dynamic caching

of query results for decision support systems”, The Proc. Int.

Conf. on Scientific and Statistical Database Management”,

1999.

[6] Padmanabhan, S., Bhattacharjee, B., Malkemus, T., Cranston

L., Huras, M., “Multi-Dimensional Clustering: A New Data

Layout Scheme in DB2”, Proceedings of SIGMOD 2003.

[7] Bhattacharjee, B., Malkemus, T., Lau, S., Mckeough, S.,

Kirton, J., Boeschoten, R., Kennedy, J., “Efficient Bulk

Deletes for Multi Dimensionally Clustered Tables in DB2”,

Proceedings of VLDB 2007

[8] Bell, T., Witten, I.H, Cleary J.G, “Modelling for Text

Compression”, ACM Computing Surveys, 1989

[9] Lelewer, D.A., Hirschberg, D.S., ”Data Compression”, ACM

Computing Surveys, 1987

[10] Storer, J.A, “Data Compression: Methods and Theory”,

Comp. Sci. Press, 1988

[11] Iyer, B., Wilhite, D., “Data Compression Support in

Databases”, Proceedings of VLDB 1994

[12] Raman, V., Swart, G., “How to Wring a Table Dry: Entropy

Compression of Relations and Querying of Compressed

Relations”, Proceedings of VLDB 2006

[13] Graefe, G., Shapiro, L.,”Data Compression and Database

Performance”, Proc. Of ACM/IEEE Computer Science

Symp. On Applied Computing, 1991.

[14] Goyal, P., “Coding methods for text string search on

compressed databases”, Information Systems, 1983

[15] Abadi, D., Madden, S.R., Ferreira, M.C., “Integrating

compression and execution in column-oriented database

systems”, Proceedings of the ACM SIGMOD, 2006

[16] Goldstein, J., Ramakrishnan, R., Shaft, U., “Compressing

Relations and Indexes”, Proceedings of ICDE 1998

[17] MacNicol, R., French, B.,”Sybase IQ Multiplex – Designed

For Analytics”, Proceedings of the 30th VLDB Conference

2004

[18] Johnson, T., “Performance measurements of compressed

bitmap indices”, Proceedings of the VLDB 1999

[19] Wu, K., Otoo, E., Shoshani, A., “Compressed bitmap indices

for efficient query processing”, Technical Report LBNL-

47807, 2001

[20] http://www.ibm.com/software/data/db2/9

[21] http://www.oracle.com

[22] http://www.microsoft.com/sql/default.mspx

[23] Berger, J., Bruni, P., “Index Compression for DB2 9 for

z/OS”, IBM Redpaper, 2007

[24] http://www.teradata.com

[25] Zukowski, M., Heman, S., Nes, N., Boncz, P., “Super-Scalar

RAM-CPU Cache Compression”, Proceedings of the ICDE

2006

[26] Witten, I.H, Moffat, A., Bell, T.C., ”Managing gigabytes (2nd

ed.) : compressing and indexing documents and images”,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1999

[27] Huffman, D., “A method for construction of minimum

redundancy codes”, Volume 40, pages 1098-1101, 1952

[28] Trotman, A., “Compressing inverted files”, Information

Retrieval, 6(1):5-19, 2003

[29] Bayer,R. , Unterauer, K., “Prefix B-trees”, ACM Transaction

of Database Systems, Volume 2, pages 11-26, 1977.

[30] Bell, T. C., Cleary, Witten I. H., “Text Compression”,

Prentice Hall, 1990.

[31] Antoshenkov G., “Dictionary-Based Order-Preserving String

Compression”, VLDB Journal, Volume 6(1), pages 26-39,

1997.

[32] López-Ortiz A., Mirzazadeh M., Safari M. A., Sheikh Attar

M. H. “Fast string sorting using order-preserving

compression”, ACM Journal of Experimental Algorithmics,

Volume 10, 2005.

[33] Srinivasan, J., Chong, E.I., Krishnan, R., Das, S., Jagannath,

M., Tran A., Banerjee, J., Freiwald C., Yalamanchi, A.,

DeFazio, S., “Oracle8i Index-Organized Table and its

Application to New Domains”, Proceedings of VLDB 2000

