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ABSTRACT
Time series arise in many different applications in the form
of sensor data, stocks data, videos, and other time-related
information. Analysis of this data typically requires search-
ing for similar time series in a database. Dynamic Time
Warping (DTW) is a widely used high-quality distance mea-
sure for time series. As DTW is computationally expensive,
efficient algorithms for fast computation are crucial.

In this paper, we propose a novel filter-and-refine DTW
algorithm called Anticipatory DTW. Existing algorithms
aim at efficiently finding similar time series by filtering the
database and computing the DTW in the refinement step.
Unlike these algorithms, our approach exploits previously
unused information from the filter step during the refine-
ment, allowing for faster rejection of false candidates. We
characterize a class of applicable filters for our approach,
which comprises state-of-the-art lower bounds of the DTW.

Our novel anticipatory pruning incurs hardly any over-
head and no false dismissals. We demonstrate substantial ef-
ficiency improvements in thorough experiments on synthetic
and real world time series databases and show that our tech-
nique is highly scalable to multivariate, long time series and
wide DTW bands.

1. INTRODUCTION
Time series data is important for commerce, science, and

engineering. It frequently serves as a basis for decision and
policy-making. Large amounts of time-dependent data are
created, acquired, and analyzed. Examples include stock
market data analysis on prices of publicly traded securities
and sensor-based monitoring of seismic activities.

The analysis of this data requires a notion of similarity
between time series to determine alike patterns. A simple
approach for comparing time series consists of aggregating
the differences in values for each point in time (e.g., by using
the L2 norm). While computationally inexpensive, similar-
ity measures that regard time series in a point-in-time by
point-in-time manner are inadequate for many applications.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

A slight shift in the start time or in the length of a relevant
pattern causes large differences and thus disproportionally
low similarity scores.

The Dynamic Time Warping (DTW) concept was intro-
duced in the field of speech recognition [5] to address the
shortcomings that stem from inflexibility along the time
axis. The DTW distance computes an optimal alignment
of two time series by allowing for stretching and squeezing
of the time series. This flexibility led to the adoption and
adaptation of DTW for many application domains outside
speech recognition [1, 7, 17, 2] and gave rise to research
on efficient retrieval using DTW [29, 14, 32, 23, 22, 31, 4].
An extensive study of DTW and other time series distance
measures can be found in [10].

The DTW distance can be computed using dynamic pro-
gramming techniques. In this general formulation, the DTW
is typically too costly for comparing longer time series as
the computational complexity is quadratic in the length of
the time series. An important parameter for DTW is the
permissible amount of stretching and squeezing along the
time axis, the k-band. A wider band allows more flexibility
(useful for smaller databases) but also induces higher com-
putational cost.

A further challenge for efficient DTW query processing lies
in multivariate time series, where not just a single but sev-
eral attributes are recorded for each point in time. Examples
of multivariate time series include monitoring the overall
state of a system that cannot sufficiently be described with
only a single value. In a stock market scenario, a number of
securities might be aggregated to a multivariate time series
in order to watch for monetary shifts (e.g., from mortgage-
backed securities to commodities).

In this work, we propose a novel approach called Antici-
patory Pruning (AP) for speeding up DTW-based retrieval
on both univariate and multivariate time series. Intuitively
speaking, AP anticipates the DTW refinement result by ex-
ploiting previously computed information in multistep filter-
and-refine algorithms.

Traditional filter-and-refine algorithms compute the full
DTW if the filter distance does not exceed the current prun-
ing distance. An existing improvement of this technique is
known as early stopping [23] or abandoning [17], where the
computation is stopped as soon as an intermediate result
exceeds the pruning distance.

Our anticipatory approach goes beyond early stopping. In
each step of DTW computation, we derive a lower-bounding
anticipatory distance that takes the intermediate DTW dis-
tance computed so far and greatly improves the approxi-



mation quality of the lower bound by anticipating the re-
maining steps of the full DTW computation. This antici-
patory component is derived from the previously computed
filter step, thus re-using information that is ignored in ex-
isting approaches. In this manner, the incremental DTW
computation is stopped as soon as the anticipatory distance
exceeds the pruning threshold.

Anticipatory pruning is lossless for a certain class of lower
bounding filters, which we characterize in this work. We
prove that the most widely used state-of-the-art approaches
are in this class. Intuitively, the filters have to be lower
bounding themselves, piecewise, and reversible to be usable
in our approach.

As anticipatory pruning is orthogonal to existing lower-
bounding filtering, indexing, and dimensionality reduction
techniques, it can be flexibly combined with such techniques
for additional speed-up.

In the next section, we review related work. Section 3
introduces time series and the DTW as a distance function
for similarity search on time series. We then detail how
we derive our anticipatory pruning technique in Section 4.
Experiments demonstrate the performance of anticipatory
pruning in Section 5.

2. RELATED WORK
A number of approximate techniques have been proposed

for speeding up DTW queries. In [29] an approximate em-
bedding of DTW into Euclidean space is proposed. This
technique is extended to a Haar wavelet transform based
technique for fewer false positives [6], but possibly more false
negatives. Iterative Deepening DTW computes different lev-
els of dimensionality reduction from piecewise linear approx-
imations [9]. Using a probabilistic model based on sample
approximation errors, time series are either pruned or com-
pared at a finer level of approximation. The FastDTW ap-
proach computes approximations of the warping path at dif-
ferent levels of granularity [24, 25]. The recent Embedding-
Based Subsequence Matching hashes subsequences of the
original time series to vectors based on their DTW distance
to reference time series [4]. Subsequences that are identified
as potentially similar to the query are then refined using the
DTW. All of these techniques provide efficiency gains by sac-
rificing the correctness of the result as they are approximate
in nature. Our approach guarantees correct results.

Correctness of the result is guaranteed in lower bounding
filter-and-refine techniques [11, 26]. An efficient filter dis-
tance function that always underestimates the true DTW
distance is used to prune the majority of time series. Only
for the remaining candidates the exact DTW is computed.
No false negatives can occur.

The Piecewise Aggregate Approximation (PAA) represen-
tation is composed of averages of consecutive values along
the time axis [16]. The Adaptive Piecewise Constant Ap-
proximation adapts the number of values that are averaged
to reduce the approximation error [15]. For these representa-
tions, lower-bounding distance functions for DTW have been
proposed. Another lossless approach is based on four charac-
teristic values of time series: their starting and ending value,
their minimum, and their maximum [18]. LBKeogh provides
a lower-bound that uses the warping path constraint to com-
pute an envelope on the warping cost for PAA segments [14].
This approach has been extended to 2-dimensional envelopes
around trajectories in [28, 20]. Improved versions of the en-
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Figure 1: Euclidean Distance (left) & DTW (right)

velope technique have been proposed in [32] and [30]. The
Fast search method for Time Warping (FTW) uses different
resolutions to gradually refine the optimal warping path [23].
Using early stopping, only the warping paths with a DTW
distance not exceeding some pruning distance are evaluated.
This technique is also known as early abandoning [17].

Our technique can be integrated with these lower bound-
ing distance functions to improve performance. We give
more details in Section 4 and discuss their possible integra-
tion in Section 4.7.

3. DYNAMIC TIME WARPING
Time series record the value of one or more attributes as

they change over a span of time. E.g., temperature measure-
ments from several spatial locations of observation could be
recorded at each full hour for each full year enabling year to
year climate change analysis. Another example where the
value of a number of attributes is recorded are digital videos.
In this case, each point in time corresponds to a frame of
the video and the values in the time series are either the raw
pixel values of each frame or features that describe charac-
teristic properties such as the distribution of colors or the
overall lightness.

Formally, a time series is a sequence of (feature) vectors
for consecutive points in time:

Definition 1. Time series.
A time series t of length n is a temporally ordered sequence
t = [t1, ..., tn] where point in time i is mapped to a d-dimen-
sional attribute vector ti = (ti1 , ..., tid) of values tij with
j ∈ {1, ..., d}. A time series is called univariate for d = 1
and multivariate for d > 1.

In many applications, time series are very long. For exam-
ple, stock data and temperature measurements are recorded
at high frequency over long periods that may span several
years or decades. This observation induces that similarity
measures for time series have to scale well with the length of
the time series in order to be useful for these applications.

The most widely used distance functions for assessing the
similarity between time series are the Euclidean distance
and Dynamic Time Warping. Further examples of distance
functions for time series can be found in [8].

Comparing univariate time series based on Euclidean dis-
tance is straightforward. The differences between values of
corresponding points in time are squared and summed up:
Eucl(s, t) :=

√∑n
i=1 (si − ti)2. The definition can easily

be extended to multivariate time series. The Euclidean dis-
tance ignores differences in the scale of the time axis as well
as shifts along the time axis. As a consequence, two time
series that exhibit a very similar pattern from the user’s
point of view might incur a high distance value when com-
pared using Euclidean distance. To account for this, DTW
allows for scaling and shifting of the time axis to model the
similarity more appropriately.

For illustration purposes, an example for the simple uni-
variate case with a single attribute is given in Figure 1. Two



time series are compared using the Euclidean Distance (left)
and DTW (right). Horizontal lines indicate which values are
matched by the respective distance functions. As Figure 1
demonstrates, the Euclidean distance computes a large dis-
tance between the two time series even though they show the
same pattern shifted along the time axis. Dynamic Time
Warping matches the time series such that the pattern is
aligned by warping the time axis.

For long time series, infinite warping is typically not de-
sirable. To avoid degenerated matchings where many val-
ues of one time series are matched to very few values of
the other one, warping is usually restricted via global con-
straints termed bands. A band describes how much warping
is allowed (i.e., how far apart any two aligned points can be
with respect to the time axis).

DTW computes the best possible match between time se-
ries with respect to the overall warping cost under the band-
width constraint. It is defined recursively on the length of
the sequences. Formally, the definition of k-band DTW is:

Definition 2. k-band DTW.
The Dynamic Time Warping distance between two time se-
ries s, t of length n,m (w.l.o.g. n ≤ m) with respect to a
bandwidth k is defined as:

DTW ([s1, ..., sn], [t1, ..., tm]) =

distband(sn, tm)+min

DTW ([s1, ..., sn−1], [t1, ..., tm−1])
DTW ([s1, ..., sn], [t1, ..., tm−1])
DTW ([s1, ..., sn−1], [t1, ..., tm])

with

distband(si, tj) =

{
dist(si, tj) |i−

⌈
j·n
m

⌉
| ≤ k

∞ else

DTW (∅, ∅) = 0, DTW (x, ∅) =∞, DTW (∅, y) =∞

Thus, DTW is defined recursively on the minimal cost of
possible matches of prefixes shorter by one element. There
are three possibilities: match prefixes of both s and t, match
s with the prefix of t, or match t with the prefix of s. The dif-
ference between overall prefix lengths is restricted to a band
of width k in the time dimension by setting the cost of all
overstretched matches to infinity. Note that the above def-
inition corresponds to a so-called Sakoe-Chiba band where
the bandwidth is fixed [21]. Another frequently used band,
the Itakura band, adjusts the band such that less warping
is allowed at the beginning and end [12]. An adaptive ap-
proach is presented in [19], where so-called R-K bands are
learned from data. In this paper, we assume the Sakoe-
Chiba band for ease of discussion, but our technique can be
easily adapted to the other two band types as well.

Euclidean distance can be seen as a special case of DTW
with bandwidth 0. This corresponds to no warping along
the time axis, and thus reduces DTW to summing up the
differences of values for corresponding points in time only.

DTW can be computed via a dynamic programming algo-
rithm in O(mn) time, where m,n are the lengths of the time
series. Using a k-band, this is reduced to O(k ∗max{m,n}).
Instead of computing all possible alignments between the
two time series, the recursive definition of DTW is used to
fill a cumulative distance matrix. Each matrix entry corre-
sponds to the best alignment between the sub-time series of
the corresponding length.

This is illustrated in Figure 2. The two time series are de-

dist(si,tj) + min{ci-1,j-1,ci,j-1,ci-1,j}

si

tj

Figure 2: Warping matrix

picted to the left (rotated) and at the top of the figure. Their
optimal alignment corresponds to matching of the points in
time as indicated by the black line in the matrix. For exam-
ple, the horizontal segment at the lower left indicates that
the first six points in time of the time series at the top are
matched to the first element of the time series at the left.
Assuming a bandwidth of two, the black path is invalid. The
green path above it corresponds to the best alignment under
this bandwidth constraint.

The DTW cumulative distance matrix is filled analogously
to the formula in Definition 2. More precisely, a matrix
(C=[ci,j ]) for two time series s=[s1, ..., sn] and t=[t1, ..., tm]
is filled, where each entry ci,j corresponds to the minimal
distance between the subsequences [s1, ..., si] and [t1, ..., tj ].

Definition 3. Cumulative distance matrix.
The cumulative distance matrix C = [ci,j ] for two time series
s = [s1, ..., sn] and t = [t1, ..., tm] is computed recursively
such that its entries are calculated as

ci,j = dist(si, tj) +min{ci−1,j−1 , ci,j−1 , ci−1,j}
c0,0 = 0, ci,0 =∞ for i ≥ 1, c0,j =∞ for j ≥ 1

Thus, the entries of the cumulative distance matrix are
filled with the minimum of the three cases to be considered
(cf. Fig. 2). The best alignment between the time series is
recursively obtained from the alignments that are possible
for the time series shorter by one. Intuitively, this means
that the entry ci,j is computed from its three adjacent entries
ci−1,j−1, ci−1,j , and ci,j−1 to its bottom left.

The global warping path constraint expressed in the band-
width parameter corresponds to setting the distance in cells
that are not within the band to infinity.

Definition 4. Matrix band.
The valid cells in the cumulative DTW distance matrix of
size n×m (w.l.o.g. n ≤ m) with respect to a band parameter
k are

band =
⋃

1≤j≤m

bandj

with bandj as the valid cells in column j:

bandj = {(i, j) | 1 ≤ i ≤ n , | i−
⌈
j · n
m

⌉
|≤ k}

For initialization, the non-band entries of the matrix are
set to infinity. The calculation proceeds column-wise. Start-
ing with entry c1,1 the entries within the band of each col-
umn are calculated before continuing with the next column
to the right. The DTW distance is the value of entry cn,m in
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the top right corner. It corresponds to an alignment called
the warping path, which can be visualized in the cumulative
distance matrix as a sequence of adjacent entries, beginning
in cell (0, 0) and ending in cell (n,m).

Definition 5. Warping path.
For two time series s = [s1, ..., sn] and t = [t1, ..., tm] the
warping path P is defined as a series of matrix cells

P = p1, ..., pl with p1 = (0, 0), pl = (n,m)

For any two pi = (k, l), pi+1 = (q, r) the following holds:

• monotony: q − k ≥ 0 ∧ r − l ≥ 0

• continuity: q − k ≤ 1 ∧ r − l ≤ 1

• alignment: cq,r = dist(sq, tr) + ck,l

From the cumulative distance matrix the warping path
which shows the actual minimal alignment can easily be con-
structed as a sequence of matrix cells that correspond to a
series of minima that connect the beginnings and ends of the
two time series. A warping path is monotonic in the sense
that the time does not go backwards. The path is continu-
ous in that there are no omitted points in time; successive
path elements correspond to consecutive points in time. The
alignment property ensures that each cell pi arose from its
direct predecessor pi−1.

4. ANTICIPATORY DTW
Our approach in speeding up DTW extends the classical

algorithms for DTW that use a multistep filter-and-refine ar-
chitecture. We call our extended filter-and-refine algorithm
Anticipatory DTW. It is based on a number of properties
(Sections 4.3 to 4.5) and makes use of our anticipatory prun-
ing distance (Section 4.6). We show that the anticipatory
pruning distance is a lower bound which implies that Antic-
ipatory DTW guarantees no false dismissals (Theorem 3).

4.1 Filter and Refine
As illustrated in the left part of Figure 3, the basic idea in

any multistep algorithm is to devise a filter function. This
filter quickly retrieves a set of candidates from the entire
database. Only these candidates are refined, i.e., the actual
distance (here: DTW) is computed to obtain the final result.

A good filter function should be selective (i.e., the number
of candidates should be small). It should also be efficiently
computable (i.e., its runtime should be significantly smaller
than the DTW runtime itself). And finally, lower bounding
filters that always underestimate the true DTW distance
ensure that the filter is complete in that there are no false
dismissals, which in turn implies that the final result after
the refinement step is the same as if the complete database
had been queried using only DTW [3, 11, 26].

In multistep filter-and-refine algorithms (e.g., GEMINI or
KNOP [11, 26]), the filter distance is compared to some
pruning threshold max. In range queries, this max value is
the range itself. If the distance with respect to a lower bound
exceeds the range, then the exact distance (here: DTW)
does so as well. Hence, lossless pruning is possible. In k-
nearest neighbor queries, the max threshold corresponds to
the maximum distance of the current k nearest neighbor
candidate set. If the lower bound exceeds this value, then
the exact distance exceeds it, too. The pruning in existing
filter-and-refine approaches is based on a single comparison
of this filter distance and the max value. If the filter dis-
tance is below max, DTW is computed. This approach can
be considered to be without memory in the sense that all
information computed in the filter step is ignored later on.

4.2 Overview Over Our Proposed Method
We propose a technique that is orthogonal to existing

DTW speed-up techniques based on filter-and-refine frame-
works. It plugs into these frameworks as illustrated in the
right part of Figure 3. Instead of directly computing the
complete (and thus costly) DTW refinement after the filter
step, our anticipatory pruning distance (AP) is incremen-
tally computed. If it at any time exceeds the given pruning
threshold max, the time series can be ruled out as part of
the result set – safely discarding many computation steps.
If no pruning is possible in intermediate steps, the last step
produces the exact DTW distance. By using distance in-
formation from the filter step for our AP distance in the
refinement step, we are able to provide a lower bounding es-
timate of the still to be calculated DTW steps. Thus, we go
beyond previous approaches known as early stopping[23] or
early abandoning[17], which also partially avoid the compu-
tation of DTW distances but do not anticipate future com-
putation steps. As our technique shows, this greatly reduces
the number of computations in the refinement step.

Our anticipatory pruning distance is based on three prop-
erties: First, DTW computation is incremental, i.e., the
entries in the warping matrix increase with the sequence
length. Second, many existing lower bounding filters for the
DTW distance can be characterized as piecewise, i.e., a sub-
sequence of the filter computation is a valid filter for the
subsequences themselves. And finally, DTW is reversible,
i.e., computing the warping path from the beginning to the
end is the same as doing so from the end to the beginning.

The Anticipatory DTW algorithm uses these three prop-
erties by calculating piecewise filter distances on reversed
time series in the filter step of a filter-and-refine framework.
During the incremental computation of the DTW, the in-
formation from the piecewise filter is a lower bounding an-
ticipatory estimate of the DTW parts yet to be calculated.
The exploitation of this additional information allows for
stopping the DTW calculation sooner than would have been
possible without the anticipatory part. If no stopping is pos-
sible, the last step of computing AP corresponds to the last
step of computing the DTW.

Our approach is highly flexible in that it can be combined
with many existing lower bounding filters. It is easy to inte-
grate with these approaches, as all the information required
for anticipatory pruning is easily derived from existing filter
calculations. Moreover, the pruning capability of Anticipa-
tory DTW comes at hardly any additional cost, as the filter
distances have been computed in the filter step already.
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Figure 4: Overview of our technique

4.3 Incremental Computation of DTW
Anticipatory pruning uses filter information to perform

additional pruning checks in the refinement. These checks
are based on our new anticipatory estimate and the fact
that DTW is incremental (i.e., the column minima of the
cumulative distance matrix increase with the length of the
time series).

Theorem 1. DTW is incremental.
For any cumulative distance matrix C = [ci,j ] as defined
in Definition 3, the column minima are monotonically non-
decreasing

min
i=1,...,n

{ci,x} ≤ min
i=1,...,n

{ci,y} for x < y.

Proof. The proof is straightforward from the definition
of the cumulative distance matrix:
ci,j = dist(si, tj) + min{ci−1,j−1 , ci,j−1 , ci−1,j}. Any
element ci,y in a column y is based on at least one value
from the same or a preceding column plus a non-negative
distance between the two time series entries si and ty. If the
value is from the preceding column, the theorem holds. If
the value is from the same column, it is based on the entry
immediately below (i.e., ci−1,y). For this entry, the same
argument holds. There is a finite number of steps in which
the entry can be based on an entry in the same column. As
soon as the boundary of the k band is reached, the choice of
minimum has to be based on the preceding column. Thus,
the theorem holds.

Consequently, many DTW computations do not have to
be fully processed, but can be interrupted once the column
minimum exceeds the max value. A similar idea, called early
stopping, in the FTW approach is used to avoid refinement
of approximate warping paths at different levels of granu-
larity [23]. In our anticipatory pruning technique, we use
Theorem 1 for exact DTW computations, but go beyond
column minima as we add pieces of filter information for a
much closer estimate of the DTW.

Entries ci,j in the cumulative distance matrix correspond
to the cost of possible warping paths between subsequences
[s1, ..., si] and [t1, ..., tj ]. For the remaining alignment and
its cost, we do not yet have the entries in the cumulative
distance matrix. We do, however, have a filter distance for
the warping path of the complete time series. Provided that
we can decompose this filter into one that serves as a lower
bound on the remaining warping path, we may combine the
filter components with the column minimum for an overall
estimate which we call anticipatory pruning distance.

4.4 Piecewise Filter Computation for DTW
Anticipatory pruning can be understood as an incremental

refinement of the filter with DTW distance information. As
illustrated in Figure 4, the cumulative distance matrix for

DTW computation is filled as usual. For example, columns
1 to 5 have been computed in the leftmost figure. As seen
above, the column minimum in the fifth column is a lower
bound for the DTW distance between the two time series
depicted to the left and at the top of the cumulative distance
matrix. We do know, however, that only partial time series
have been accounted for, namely up to the fifth entry in
the time series at the top, and up to the seventh entry (5
plus band of width 2) in the time series to the left. For the
remaining subsequences of the time series, starting in the
sixth column, we derive an estimate from the preceding filter
step. This is illustrated in the darker area at the top right for
columns 6 to 15. The estimate is a piece of filter information
corresponding to these last columns (the anticipatory part).

This estimate on partial time series alignments requires
that the filter be piecewise, i.e. decomposable into a series
of lower bounds for all subsequences of increasing lengths
that start at the beginning of the time series.

Definition 6. Piecewise DTW lower bound.
A piecewise lower bounding filter for the DTW distance is a
set f = {f0, ..., fm} with the following property:

j = 0 : fj(s, t) = 0

∀j > 0 : fj(s, t) ≤ min
(i,j)∈bandj

DTW ([s1, ..., si], [t1, ..., tj ])

Intuitively speaking, a piecewise lower bounding filter can
be decomposed into a series of lower bounds for all possible
partial DTW warping paths that start at the beginning of
both time series and end in a respective column. The piece-
wise property is not a major constraint, as most existing
lower bounding filter for DTW can be decomposed in such
a manner. We will prove this property for some of the most
widely used approaches in Section 4.7.

4.5 Reversible Computation of DTW
The piecewise property of a DTW lower bound and the

incremental computation property of DTW together do not
suffice to be able to combine pieces of the filter with partial
DTW computation for a close lower bound of DTW. To de-
rive an overall lower bound, we require a combination of a
partial DTW computations up to some column j of the cu-
mulative distance matrix and piecewise filter information for
the remaining columns (j+1), ...,m. However, the piecewise
filter only provides information for ranges of columns start-
ing with the first column. Fortunately, DTW computation
is reversible, i.e., computing the distance for the reversed
time series (from the end to the beginning) yields exactly
the same result as computing it for the original time series.

Theorem 2. DTW is reversible.
For any two time series [s1, ..., sn] and [t1, ..., tm] their DTW
distance is the same as for the reversed time series:

DTW ([s1, ..., sn],[t1, ..., tm]) = DTW ([sn, ..., s1],[tm, ..., t1])

Proof. Assume that this does not hold and to the con-
trary (w.l.o.g.):
DTW ([s1, ..., sn], [t1, ..., tm]) < DTW ([sn, ..., s1], [tm, ..., t1]).
Let p1, ..., pl and p←1 , ..., p

←
l̂

be warping paths with minimal
cost for the non-reversed and for the reversed time series.
Since reversing path p1, ..., pl also yields a valid warping path
for the reversed time series (properties monotony, continu-
ity, and alignment of Definition 5 follow from the according
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properties of the non-reversed path) and since its cost equals
DTW ([s1, ..., sn], [t1, ..., tm]), it follows that p←1 , ..., p

←
l̂

can-
not be a warping path with minimal cost. As this contradicts
the assumption, DTW is reversible.

Reversibility is important for our anticipatory pruning, as
it allows deriving a lossless estimate of the DTW from any
piecewise lower bounding filter. By reversing the order of
time series during filter computation, we obtain the same
filter distance. However, we may now use the pieces of the
filter computation from the end of the time series backwards
up to the current point of DTW computation as an estimate
of the remaining path cost. As this estimate is lower bound-
ing, and so are column minima, anticipatory pruning is lower
bounding as well, as we will prove formally in Theorem 3.

4.6 Anticipatory Pruning Distance
Anticipatory DTW includes a sequence of pruning checks.

After every column of the cumulative distance matrix that
has been computed, piecewise filter information is added to
yield an overall lower bound for the exact DTW distance.
It can therefore be seen as a series of m filters for time
series s, t of length n,m, where the final step provides the
actual DTW distance. Formally, our Anticipatory Pruning
Distance is defined as:

Definition 7. Anticipatory Pruning Distance.
Given two time series s and t of length n and m, a cumula-
tive distance matrix C = [ci,j ] as defined in Definition 3,
a piecewise lower bounding filter f for the reversed time
series s← and t← as defined in Definition 6, and a value

j ∈ {1, ...,m}, the jth step of the Anticipatory Pruning
Distance for the k-band DTW distance between s and t is
defined as

APj(s, t) := min
i=1,...,n

{ci,j}+ fm−j(s←, t←).

The definition of anticipatory pruning distance is thus a
set of DTW column minima with added pieces of filter in-
formation for the remainder of the time series. During each
incremental computation step j, the column minimum of
the partial path between [s1, ..., si] and [t1, ..., tj ] according
to DTW is combined with the anticipatory information for
the rest of the alignment available from the lower bound
from the filter step. The resulting estimate of the entire
path in step j is APj .

Let us illustrate anticipatory pruning in the small example
depicted in Figure 5. The upper part of the Figure shows
two univariate time series: a query q, a database element
t, and the corresponding cumulative distance matrix. For
reasons of simplicity, this example uses an L1-based variant
of the LBKeogh lower bound (which is piecewise as discussed
later on). The relationship between the DTW distance (35),
the pruning threshold (22), and the components of APj are
depicted in the lower part of Figure 5.

The filter distance between q← and t← yields the following
piecewise results: f(q←, t←) = (0, 7, ..., 18). Thus, the filter
step distance is 18. To make the computation of our an-
ticipatory pruning distance more intuitive to the reader, we
reversed the piecewise results in the figure: f←j (s←, t←) :=
fm−j(s←, t←). Assume that our current pruning threshold
max is 22. Hence, the filter step distance of 18 does not
exceed max, and t cannot be pruned by the filter. As illus-
trated at the top of Figure 5, we start filling the cumulative
distance matrix for DTW (q, t) and compute the minimum
of column j (denoted by min{}) in step j. For example,
the first column minimum is 2, which accounts for the map-
pings of the 1-prefix of t to those prefixes of q permitted by
band1. As can be seen in the figure, the minima of the first
few columns are only loose bounds. For anticipatory prun-
ing, we add the first filter entry f←1 , which lower bounds all
possible reversed alignments starting in (10,10) and ending
in column 2. We obtain “min+f” = 2 + 18 = 20 as the first
anticipatory pruning distance, which is much closer to the
DTW distance than the column minimum alone. Yet it still
is less than the pruning threshold max. Continuing with
filling the matrix, the second column minimum is 5, and the
filter entry f←2 is 15, yielding 20 again. We proceed until
step 5, where the column minimum is 13. Combined with
the corresponding filter distance of 10, the sum is 23, which
exceeds the pruning threshold max. Hence, we may im-
mediately stop the DTW computation, skip the remaining
five columns, and discard t. In this example, early stopping
without our anticipatory component takes 5 more steps be-
fore the time series can be pruned and thus our technique
saves considerable computational cost.

We now prove that the anticipatory pruning distance is
indeed a lower bound of the DTW and therefore guarantees
lossless query processing:

Theorem 3. AP lower bounds DTW.
The anticipatory pruning distance APj as defined in Defini-
tion 7 lower bounds the k-band DTW distance between two
time series s and t of length n and m.

APj(s, t) ≤ DTW (s, t) ∀ j ∈ {1, ...,m}



Proof. Anticipatory pruning is essentially a series of par-
tial DTW paths combined with a lower bound estimate of
the remainder taken from the previous filter step. We show
that it lower bounds DTW by arguing that (1) for all pos-
sible steps j, 1 ≤ j ≤ m, the column minimum lower bounds
the true path. It holds (2) that DTW is reversible, i.e., we
can replace a path between two time series by the path be-
tween reversed time series. Finally, in (3) we show that we
can combine the first two properties to derive anticipatory
pruning as a lower bound of DTW.
(1) The cost of any DTW warping path ending in col-
umn j of the cumulative distance matrix C = [ci,j ] is obvi-
ously lower bounded by the minimum cost of all these paths
mini=1,...,n{ci,j}.
(2) As Theorem 2 states, DTW is reversible. Thus, we can
make use of the fact that DTW ([s1, ..., sn], [t1, ..., tm]) =
DTW ([sn, ..., s1], [tm, ..., t1]) in (3).
(3) We now prove that anticipatory pruning, as the sum of a
column minimum and a lower bound of any valid path that
starts in the subsequent column (or reverse path that ends
in this column), lower bounds DTW.

APj(s, t) := min
i=1,...,n

{ci,j}+ fm−j(s←, t←) ≤ DTW (s, t)

Due to the continuity of DTW, the minimal path (see Defi-
nition 5) passes through all columns, and thus also through
both column j and column j + 1. The optimal path P =
p1, ..., pl for DTW (s, t) can be decomposed into two parts:
the first part from the beginning to column j: p1, ..., pu and
one which continues in column j+ 1 to the end: pu+1, ..., pl.
(If more than one of the pk is in column j, let pu denote
the last one). Let the positions pu := (x, j) and pu+1 :=
(y, j+ 1). Then, we can rewrite the right side of the inequa-
tion as DTW (s, t) = cpu +DTW ([sy, ..., sn], [tj+1, ..., tm]).
From (1), we have that mini=1,...,n{ci,j} ≤ cpu .
From (2), we have that DTW ([sy, ..., sn], [tj+1, ..., tm]) =
DTW ([sn, ..., sy], [tm, ..., tj+1]) , which is underestimated by
fm−j(s←, t←) by definition of f . Thus, we indeed have that
anticipatory pruning lower bounds the DTW.

Now that we have shown that anticipatory pruning is a
lower bound of the actual DTW, it immediately follows that
query processing with anticipatory pruning is lossless in mul-
tistep filter-and-refine algorithms. More details and proofs
that lower bounding guarantees completeness can be found
in [11, 26]. Moreover, we can easily see from the definition
of anticipatory pruning that eventually the series of compu-
tations results in the exact DTW distance between the two
time series. Our approach incurs very little overhead, as we
only maintain piecewise information on the filter distances.

Our approach can also easily be generalized to multiple
filter steps. As long as the filters are both lower bounding
and piecewise, anticipatory pruning can be applied to any
step in the filter chain. As the filter is computed for increas-
ing time series length, an estimate on the remainder of the
time series can be obtained from the previous filter step. To
do so, merely the order in which the filter steps process the
time series has to be alternated between steps.

Anticipatory pruning is computed as outlined in the pseudo
code in Algorithm 1. Given two time series q, t, a pruning
thresholdmax, and a vector f = (f0(q←, t←), ..., fm(q←, t←))
that represents the distances of the piecewise lower bounding
filters, we start by initializing a column vector col. Then, in
each incremental step j, the next column of the exact DTW

Algorithm 1 Anticipatory pruning

Procedure AP (Time series q, t, Real max, Vector f)
1: Vector col[q.length +1] = [0,∞, ...,∞] . first index is 0
2: for j = 1 to t.length do
3: col = CalcDTWMatrixColumnBand(q, t, col, j)
4: Real APj = min(col[1],...,col[q.length])+f[t.length-j]
5: if APj > max then
6: return ∞ . pruning

7: if col[t.length] > max then
8: return ∞ . pruning

9: return col[t.length] . no pruning, return DTW

computation is calculated by CalcDTWMatrixColumnBand
and the new anticipatory pruning distance APj(q, t) is com-
puted as APj. The value APj is used for pruning iff it
exceeds max. Otherwise, the next pruning value APj+1 is
computed. If no pruning is possible, the exact DTW (q, t) is
returned unless it itself exceeds max.

In the next section, we study different existing lower bound-
ing filter techniques for DTW. We show that they are indeed
piecewise and thus can be used for our Anticipatory DTW.

4.7 Piecewise Lower Bounding Filters
In this section, we describe state-of-the-art methods that

provide lower bounding filter distances for DTW. While the
methods themselves have been introduced elsewhere, our
contribution lies in showing that all of these different meth-
ods fulfill the requirement of being piecewise as defined in
Definition 6. From this, we have with Theorem 3 that an-
ticipatory pruning of DTW with these methods is lossless.

The lower bounds presented in Sections 4.7.1 and 4.7.2 are
only capable of comparing sequences of the same length n,
while FTW in Section 4.7.3 can cope with different lengths.

4.7.1 Linearization
The basic idea for linearization of the DTW computa-

tion for efficient and exact indexing is based on the idea of
computing an envelope of upper and lower values U and L
around the query time series q with respect to the k-band:

Ui = maxi−k≤j≤i+k{qj}
Li = mini−k≤j≤i+k{qj}.

The squared Euclidean distance between values above or be-
low the envelope of the other time series t lower bound the
exact k-DTW distance [14].

LBKeogh(q, t) =
√∑n

i=1MinDist(ti, Li, Ui) with

MinDist(ti, Li, Ui) =

 (ti − Ui)
2 ti > Ui

(ti − Li)
2 ti < Li

0 else

An extension providing a tighter envelope when PAA di-
mensionality reduction is applied is given in [32] as:

U i = N
n

(u n
N

(i−1)+1 + ...+ u n
N

(i)) and

Li = N
n

(l n
N

(i−1)+1 + ...+ l n
N

(i)).

As we can see from the definition of LBKeogh, this ap-
proach is a dimension-wise summation of distances. Thus,
it constitues a piecewise lower bound of DTW.



Theorem 4. LBKeogh is a piecewise lower bounding fil-
ter as defined in Definition 6.

Proof. Decomposition into a set of filters fj for increas-
ing sequence length is straightforward:

fj =

√√√√ j∑
i=1

MinDist(ti, Li, Ui).

That is, the summation up to the current subsequence length
j. For both U,L and U,L [14, 32] prove that the lower
bounding property holds.

In our experiments, we evaluate anticipatory pruning for
LBKeogh with the tighter envelope U,L.

4.7.2 Corner Boundaries
A different type of lower bound can be obtained as piece-

wise corner-like shapes in the warping matrix through which
every warping path has to pass [30]. Formally, for a time
series q, its corner shapes are:

CL
i (q) =

{
minmax(1,i−k)≤j≤i{qj} i ≤ dn

2
e

mini≤j≤min(n,i+k){qj} i > dn
2
e ,

CU
i (q) =

{
maxmax(1,i−k)≤j≤i{qj} i ≤ dn

2
e

maxi≤j≤min(n,i+k){qj} i > dn
2
e ,

Ci(q) = (CL
i (q), CU

i (q)).

These approximations are constructed for both time series
and enclose the positions in the time series that correspond
to the corner shapes in the warping matrix. A corner shape
i in the warping matrix for two time series t and q is a com-
bination of the two envelope positions Ci(q) and Ci(t). In
[30], experiments showed that a hybrid approach of corner
shapes at the beginning and the end of the warping ma-
trix and straight line shapes in the middle leads to an even
tighter lower bound called LBHybrid. The idea of straight
line shapes is very similar to the LBKeogh approach, thus
the hybrid corner approach is defined as

LB2
Hybrid(q, t)=

n∑
i=1

{
MinDist(ti, Li, Ui) k+2≤ i≤n−k−1
min{CDi(q, t),CDi(t, q)} else

with the Corner Distance CDi that calculates the minimal
distance for a warping path that passes through the corner
shape i:

CDi(q, t) =

 (qi − CU
i (t))2 qi > CU

i (t)
(qi − CL

i (t))2 qi < CL
i (t)

0 else

Theorem 5. LBHybrid is a piecewise lower bounding fil-
ter as defined in Definition 6.

Proof. Since LBHybrid uses the linearization of LBKeogh

in the first case, this part of the proof follows from Theorem
4. In the corner case, we immediately obtain the pieces fj

from the definition of the corner shapes.

In our experiments, we demonstrate the usefulness of an-
ticipatory pruning for corner boundaries in terms of its prun-
ing capability.

4.7.3 Path Approximation
Another approach for speeding up DTW is taken in the

FTW (Fast search method for Dynamic Time Warping)
technique [23]. The idea is to generate approximations of
the optimal warping. It works for DTW with and without
band constraints by checking continuously for any approxi-
mate segment of the time series whether the max value of
the current candidates has been exceeded. If this is not
the case, a finer approximation is generated. The efficiency
gains are based on the fact that coarse DTW computations
are computationally less expensive.

At differing levels of granularity, segments are approx-
imated using minimum and maximum values U,L. The
Lower Bounding distance measure with Segmentation (LBS)
is exactly the DTW on the approximated segments. For time
series segments of different lengths a normalization factor is
used. The distance is refined locally (i.e., each segment is
only refined while below the max value).

Since LBS is the DTW distance on segments, it also con-
stitutes a piecewise lower bound:

Theorem 6. FTW is a piecewise lower bounding filter as
defined in Definition 6.

Proof. We obtain a series of piecewise filters as fj =
DTW ([Q1, ..., QJ ], [T1, ..., TJ+K ]) where Q and T are ap-
proximations of time series q and t. J denotes the smallest
value such that the approximated segment [Q1, ..., QJ ] fully
contains all points of the time series up to index j. Similarly,
J+K denotes the smallest value such that the approximated
segment [T1, ..., TJ+K ] fully contains all points of the time
series up to index j + k. While the exact value of J and
J+K may vary for individual time series, at least the coars-
est level of approximation is computed for the entire time
series, yielding valid pieces for the entire length. As the
computation is in the same cumulative matrix procedure as
for DTW, we obtain a piecewise filter via column minima as
desired. For the lower bounding property see [23].

We study the performance of anticipatory pruning for FTW
in our experimental section.

4.7.4 Dimensionality Reduction and Indexing
Dimensionality reduction is a very useful technique for ef-

ficiency gains in time series similarity search as many time
series are very long, i.e., high dimensional. Several ap-
proaches have been suggested, such as the Piecewise Ag-
gregate Approximation (PAA) used, e.g., in the LBKeogh

approach. The idea is to replace parts of the original time
series by constant approximations. All segments, either of
fixed or of adaptive length (e.g., Adaptive Piecewise Con-
stant Approximation (APCA) [15]), are piecewise by their
very nature. Consequently, they fulfill the requirements
for anticipatory pruning and can be used with Anticipatory
DTW as well.

A number of DTW speed-up techniques also use indexing
structures (e.g., R-trees in [14] or sequential structures in
[23]). As anticipatory pruning is orthogonal to such tech-
niques, the efficiency benefit is maintained in our approach.
Using anticipatory pruning requires merely a change in the
computation of the refinement step, which is independent of
any underlying indexing approach.
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Figure 7: Absolute efficiency improvement (average query time) for different reductions on RW2
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Figure 6: Sample of synthetic time series

5. EXPERIMENTS
All experiments were executed on 2.33GHz Intel XEON

CPU cores running JAVA implementations. The follow-
ing default parameters were used where not stated other-
wise: width of DTW band k = 40, length of the time se-
ries n = 512, number of nearest neighbors retrieved 10 (per
query). The query workload was 200. Several synthetic data
sets for scalability studies and real world data sets for differ-
ent parameters were used. For scalability in the number of
attributes per point in time, we generated two multivariate
random walk data sets (univariate examples are shown in
Figure 6). Both contain time series of length 512 and are of
cardinality 10, 000. The number of attributes d was varied
between 1 and 50.

RW1: The non-normalized value of the jth component
(j ∈ {1, ..., d}) of ti+1 is a random value drawn from a nor-
mal distribution with parameters µ = 0, σ2 = 1 added to
the value of the jth component of ti: t(i+1)j

= tij +N(0, 1).
RW1 was normalized to an average value of 0.

RW2: The first two elements of the time series are gen-
erated as in RW1. For the remaining points in time of RW2,
the average value µ depends on the last increase/decrease:
t(i+1)j

= tij + N(tij − t(i−1)j
, 1). As early values of RW2

have a low variance while the later values have a high vari-
ance, RW2 was normalized to an average value of 0.

In addition to these synthetic time series, we use three
multivariate real world data sets.

SignLanguage: This multivariate data set is derived
from the 11 real valued attributes of the sign language finger
tracking data from [13]. For the efficiency experiments, the
time series were created from the concatenated raw data by
extracting non-overlapping windows of equal length. The
length n of the non-overlapping time series was varied be-
tween 64 and 512 and the band k was varied between 10 and
150. The number of time series was fixed at 1, 400.

Video: We use two video data sets. The first one is
the TRECVid benchmark data [27]. The second dataset,
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Figure 8: Relative improvement (average query
time) on RW2

NEWSVid, consists of TV news we recorded at 30 fps. 20-
dimensional HSV histograms were computed for each video
frame (i.e., the time series are multivariate with d = 20).
The length n of the non-overlapping video sequences was
varied between 64 and 2048 frames. The cardinality of the
database depends on the length of the time series and varies
between 650 and 2, 000 for the TRECVid data and between
2, 000 and 8, 000 for the TV news.

In the experiments, we thoroughly investigate the run-
time improvements of anticipatory pruning over the three
piecewise base techniques Linearization (LBKeogh), Corner
boundaries (LBHybrid), and Path Approximation (FTW ).

5.1 Dimensionality Reduction
We start by evaluating the efficiency of anticipatory prun-

ing with respect to dimensionality reduction on the RW2
data set. Figure 7 shows the average runtime for the three
lower bounding filters on a logarithmic scale. Anticipatory
pruning, denoted as AP, yields substantial runtime improve-
ments compared with the base methods LBKeogh, FTW ,
and LBHybrid. It also outperforms the early stopping ap-
proach (ES) [23] for all three methods. Anticipatory prun-
ing is especially helpful for strong reductions where it makes
up for the loss in information of the filter step by pruning
during DTW refinement. Figure 8 summarizes the gains by
showing the relative improvement for the same experiment.
To abstract from implementation issues, Figure 9 demon-
strates that the runtime gains are due to a reduction in the
number of required calculations.

For the second synthetic data set, a summary of relative
improvement with respect to the required number of calcu-
lations is given in Figure 10. We observe similar gains in
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Figure 9: Efficiency improvement (#calc.) for vary-
ing reductions on RW2
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Figure 10: Efficiency improvement (#calc.) for
varying reductions on RW1

performance, where the difference for the LBHybrid method
is most pronounced and shows a reduction from around 75%
(AP) to 40% (for early stopping).

On the real world NEWSVid data set, the behavior is sim-
ilar for LBKeogh and LBHybrid (see Figure 11). For FTW,
however, we observe relatively little improvement for low
reductions, but rapid improvement for strong reductions.

5.2 Univariate and Multivariate Time Series
Our next set of experiments evaluates the effect of the

number of attributes on the performance of anticipatory
pruning. Based on the results of the preceding section, a
reduction to 16 dimensions was chosen. As depicted in Fig-
ure 12 for the RW2 data set, the general tendency is the
same as for the dimensionality reduction. The performance
gain of anticipatory pruning even increases with the number
of attributes. While anticipatory pruning avoids some DTW
computations in the univariate case, this effect is much more
pronounced for multivariate time series.

Figure 13 shows the same experiment for the RW1 data
set. For this dataset, univariate time series benefit consid-
erably from anticipatory pruning and the behavior is fairly
consistent over the evaluated range of attributes.

5.3 Bandwidth
In Figure 14, we study the influence of the bandwidth con-

straint on the NEWSVid dataset. Dimensionality reduction
was again set to 16 dimensions. A remarkable reduction in
the number of calculations can be observed for all three lower
bounding filters. There is a slight decrease with respect to
the bandwidth, but even for extremely wide bands of 150,
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Figure 11: Efficiency improvement (#calc.) for dif-
ferent reductions on NEWSVid
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anticipatory pruning yields substantial improvements. This
effect is also present on the TRECVid data set (Figure 15)
and the SignLanguage data set (Figure 16).

5.4 Length of Time Series
Our next study empirically validates the scalability of an-

ticipatory pruning with respect to the length of time series
on three multivariate time series data sets. Because of the
varying length, no fixed dimensionality reduction was pos-
sible; thus, reduction was carried out with a segment length
of 4 (e.g., a sequence of length 256 was reduced to 64 di-
mensions). Figure 17 shows performance gains for all three
lower bounding filters on the NEWSVid data set with re-
markable improvements for LBKeogh and LBHybrid. These
gains scale very well with the length of the time series.

As shown in Figure 18, the results are similar for the
smaller SignLanguage data set with sequences of length up
to 512. Even though this data set shows a jump in the prun-
ing power of FTW for length 128, the performance gains of
anticipatory pruning are robust.

On the third real world data set, TRECVid, anticipatory
pruning shows similar pruning power and scalability (see
Figure 19).

5.5 Number of Nearest Neighbors
In our last experiment, we evaluate the effect of vary-

ing the number of nearest neighbor retrieved during query
processing. This parameter has only very limited effect on
the pruning capability of our technique as demonstrated in
Figure 20 by the great performance gains of anticipatory
pruning for the NEWSVid data set.
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6. CONCLUSION & OUTLOOK
In this work we speed up DTW (Dynamic Time Warp-

ing), a widely used distance function for time series simi-
larity search. Our novel anticipatory pruning makes best
use of a family of speed-up techniques based on multistep
filter-and-refine architectures. By computing an estimated
overall DTW distance from already available filter informa-
tion, a series of lower bounds of the DTW is derived that
requires hardly any overhead. Our experimental evaluation
demonstrates a substantial reduction in the number of cal-
culations and consequently a significantly reduced runtime.
Our technique can be flexibly combined with existing and
future DTW lower bounds. Based on the reduction of cal-
culations, in future work we plan on exploring the combi-
nation of the DTW with complex ground distances such as
the Earth Mover’s Distance for multivariate time series.
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