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ABSTRACT
Complex databases are challenging to explore and query by users
unfamiliar with their schemas. Enterprise databases often have
hundreds of inter-linked tables, so even when extensive documen-
tation is available, new users must spend a considerable amount of
time understanding the schema before they can retrieve any infor-
mation from the database. The problem is aggravated if the docu-
mentation is missing or outdated, which may happen with legacy
databases.

In this paper we identify limitations of previous approaches to
address this vexing problem, and propose a principled approach to
summarizing the contents of a relational database, so that a user
can determine at a glance the type of information it contains, and
the main tables in which that information resides. Our approach
has three components: First, we define the importance of each ta-
ble in the database as its stable state value in a random walk over
the schema graph, where the transition probabilities depend on the
entropies of table attributes. This ensures that the importance of
a table depends both on its information content, and on how that
content relates to the content of other tables in the database. Sec-
ond, we define a metric space over the tables in a database, such
that the distance function is consistent with an intuitive notion of
table similarity. Finally, we use a Weighted

�
-Center algorithm

under this distance function to cluster all tables in the database
around the most relevant tables, and return the result as our sum-
mary. We conduct an extensive experimental study on a benchmark
database, comparing our approach with previous methods, as well
as with several hybrid models. We show that our approach not only
achieves significantly higher accuracy than the previous state of the
art, but is also faster and scales linearly with the size of the schema
graph.

1. INTRODUCTION
Enterprise databases often consist of hundreds of inter-linked ta-

bles, which makes them challenging to explore and query by new
users. Even when extensive documentation is available (and this is
by no means the rule), there is a steep learning curve before users
can interact with the system.
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Recent database work has recognized the importance of devel-
oping tools that can help users significantly reduce the time they
spend understanding an unfamiliar system. A strong research direc-
tion considers so-called structure-free query models, that allow the
user to pose queries without having to understand the schema struc-
ture. The simplest such model is keyword search [1]. Increasingly
more sophisticated mechanisms, such as query relaxation [3] and
meaningful summary query [12], allow users to pose more com-
plex queries, that include non-trivial structure requirements (e.g.,
joins). While the majority of the work in this area is for XML
schemas, recent results have also specifically addressed relational
databases [7]. An excellent overview of many other approaches can
be found in [6].

However, the ability to pose queries is not the only end-goal of
users interacting with unfamiliar systems. While tools that improve
the usability of a system have clear and immediate benefits, their
very goal is to shield users from the complexity of the underlying
structure. This is perfectly acceptable for casual users, but insuf-
ficient for users who wish to familiarize themselves with a com-
plex schema. Such users may include new database administrators,
analysts trying to extract useful information out of the database,
or developers who want to create new tools and forms on top of
that database. While they may eventually need to acquire detailed
knowledge of the system, their ability to do so would be greatly
improved if they could start with a simplified, easy-to-read schema.
(We ourselves have benefited from such an approach while becom-
ing acquainted with the TPCE benchmark we use in this paper: we
started by understanding the schema in Figure 2, before reading
several dozen pages of documentation). Early work in this area has
focused on ER model abstraction [2]. However, unlike ER models,
XML and relational schemas do not have semantic information at-
tached to the schema edges. Recognizing the importance of schema
summarization, Yu and Jagadish [11] proposed the first algorithms
for automatically creating database summaries. Further discussion
of related work appears in Section 3.

The method of [11] was developed for XML schemas, but, as the
authors state, it can also be applied to relational databases. How-
ever, relational schemas come with specific challenges that are not
usually encountered in XML schemas. In fact, the two main as-
sumptions on which the model of [11] is based can both fail, even
on relatively simple relational schemas. The reasons for such fail-
ures are intrinsic to the design and functionality of database sys-
tems, so they cannot be avoided. We defer a detailed discussion of
this issue to Section 3, as we need to introduce several notations
and definitions in order to better explain it. In addition to these in-
trinsic differences between XML and relational schemas, there are
additional challenges that arise from inconsistent or missing data
in relational databases. In particular, the existence of schema-level



join relationships does not necessarily imply that all instances in
a table satisfy that join. As our experiments show in Section 7,
the method of [11] does not work well on the benchmark relational
schema over which we conduct our study. Therefore, we propose a
novel approach for summarizing relational schemas, that addresses
the specific challenges associated with them in a principled manner.
Our contributions are as follows:� We propose a new definition for the importance of tables in a

relational schema. The definition is based on information
theory and statistical models, and reflects the information
content of a table, as well as how that content relates to the
content of other tables.� We define a metric space over tables in a relational schema,
by introducing a novel distance function that quantifies the
similarity between tables. We believe this distance may be
of independent interest.� We propose using a Weighted

�
-Center algorithm for schema

summarization, and conduct an extensive experimental study
using the TPCE benchmark data to justify our approach.

2. NOTATIONS
The schema graph �������
	��� is defined in the usual way for re-

lational databases: The nodes correspond to tables ���
� , and the
(undirected) edges to database joins. Each table � is a ����� ma-
trix, where the columns are the attributes ����	�������	���� associated
with � , and the rows are the table tuples  !��	�������	" �# . We denote by�$� ��% the column corresponding to an attribute �&% in table � . If
there is a join relationship between table � on attribute � and table'

on attribute ( , then the corresponding edge in the schema graph
is labeled ��� ��) ' � ( (note that in general, there may be multi-
ple edges between the same pair of nodes, labeled by different join
attributes).

For example, all four cases in Figure 1 correspond to the same
schema graph that consists of two nodes and one edge ��� ��) ' � ( .
However, while the schema graph is the same, different cases arise
at the tuple level. We call the graphs in Figure 1 instance-level
graphs: they are obtained by drawing the join edges between tu-
ples, rather than tables. If a pair of tuples  *�+� and  -,.� '
satisfies the join condition ��� �/) ' � ( , we say that the tuples  0	" ,
instantiate the schema edge. For example, in Figure 1 (d), the first
tuple of � and the first tuple of

'
instantiate the edge ��� �1) ' � ( .

For a fixed tuple  2�3� , the fanout of  along edge ��� �4) ' � ( is
the number of different tuples  5,6� ' so that �� 0	" 5,7 instantiate this
edge. Thus, in Figure 1 (d), the first tuple of

'
has fanout 4, while

the last tuple of
'

has fanout 0 (this tuple does not instantiate the
edge).

DEFINITION 1. Let 89�:��� �4) ' � ( be an edge in the schema
graph �;�<���
	��= . The average fanout of � with respect to 8 is
defined as

>5?A@ �B�9C� D #%FE � ?5> �HGJI5K @ �� % � 	
where  � 	�������	" # are all the tuples of � , and ?5> �LGMINK @ �� �%O is the
fanout of  % along edge 8 .

Let P be the number of tuples in � for which ?5> �LGJI5K @ �� �%ORQ:S .
Then the matching fraction of � with respect to 8 is ? @ �B�TU�VPXWJ� ,
and the matched average fanout of � with respect to 8 is

� >N? @ �B�TU� D #%FE � ?5> �LGMI5K @ �� % P �

If the edge 8 is clear from the context, we omit it from the nota-
tion. By definition, for any edge 8 , ?J@ �B�TZY:[ and � >5?A@ �B�9Z\][ .
However, >5? @ �B�T^� ? @ �B�99_5� >N? @ �B�T can be either larger or
smaller than 1; see, for example, >N? � '  in Figures 1 (c) and (d).
This observation will be used in Section 5, and underscores the
computational efficiency of our approach.

If the edge ��� ��) ' � ( is instantiated as in Figures 1 (a) and
(c), it is usually called a pk-pk edge, since ��� � and

' � ( are both
primary keys. If it is instantiated as in Figures 1 (b) and (d), it is
called an fk-pk edge, since only one of its endpoints (i.e.,

' � ( ) is
a primary key, while the other endpoint is a foreign key.

REMARK 1. A join relationship between two tables may in-
volve multiple attributes, e.g., “R.A = S.B and R.C = S.D.” In that
case, the edge in the graph is labeled by all the attributes involved,
and two tuples  `�a� and  , � ' instantiate the edge if they sat-
isfy all the join conditions. Definition 1 extends naturally to such
edges. Our experiments handle edges between multiple attributes.

Throughout this paper we use the TPCE benchmark schema [10],
both to illustrate our ideas, and for experimental purposes. The
schema graph is shown in Figure 2. It consists of 33 tables, pre-
classified in four categories: Broker, Customer, Market and Dimen-
sion. The database models a transaction system in which customers
trade stocks. Various additional information is stored about cus-
tomers, securities, brokers, a.s.o. Join attributes are enumerated
below each table name; tables also contain non-joining attributes
(not depicted), which we will discuss whenever necessary. Edges
are shown directed from foreign key to key. The directions are for
ease of reading only: in our experiments, we consider the graph
undirected.

The reason for using this schema is that it allows us to develop
objective measures for the accuracy of summarization approaches,
by comparing the generated summaries with the pre-defined table
classification provided as part of the benchmark. Previous mea-
sures for summary accuracy were based on query logs, by relat-
ing the significance of a table to its frequency in the log. In the
next section, we discuss scenarios in which this is not necessar-
ily true for a relational database. By contrast, the human-designed
pre-classification of TPCE is as close to the ground truth of sum-
marization as we expect to find.

Figure 2 illustrates the typical approach for summarizing a re-
lational schema: By clustering the tables into a few labeled cat-
egories (and color-coding the graph), the result gives any casual
reader a rough idea about what the database represents. This clas-
sification was done manually by the designer of the benchmark.
More importantly, the category labeling was also decided by the
designer. In this paper, we propose a statistical model that allows us
to automatically classify and label tables in a schema. We evaluate
the accuracy of our approach, as well as that of competing meth-
ods, by comparing the automatically generated summaries with the
one in Figure 2. Formally, we define a summary as follows.

DEFINITION 2. Given a schema graph ���*���
	��= for a rela-
tional database, a summary of � of size

�
is a

�
-clustering b:�cMd ��	�������	 dZeMf of the tables in � , such that for each cluster

d % a
representative table g�8��hK"8�iN� d % &� d % is defined. The summary is
represented as a set of labelsc g�8A�hKj8Ai0� d �kl	�������	"g�8A�hKj8Ai0� dZe  f 	
and by a function g�mFILn�K"8�i.op�rqsb which assigns each table to a
cluster.

(This definition is consistent with the one in [11], but translated into
our notations).
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Figure 1: Four instance-level graphs for the schema graph � c ��	 ' f 	 c ��� �:) ' � ( f  : (a) >N? �B�Tt�+� >N? �B�T�� ? �B�T��u[ , >N? � ' &�� >N? � ' .� ? � ' v�w[ ; (b) >5? �B�9x�y� >N? �B�Tx� ? �B�T.�w[ , >N? � ' .�z� >N? � ' .�{��|�}]~$}]�X"WJ~a�<~ , ? � ' .�w[ ; (c) >5? �B�9x�>N? � ' t�+�MWM~ , � >N? �B�TR��� >N? � ' R��[ , ? �B�TR� ? � ' R�+�MWM~ ; (d) >N? �B�TZ��� >5? �B�9t� ? �B�TR��[ , >N? � ' R�u��|&}4~&}4�X"WM�v�*�XWX� ,� >N? � ' U����|�}a~�}/�X"WJ~���~ , ? � ' C��~!WX� .
3. A PRINCIPLED APPROACH

Clearly, not all tables in a database have the same importance.
However, it is not always easy to decide between two tables which
one is more important. Different users may have different opin-
ions. To design an automatic process for schema summarization,
we propose starting from a few basic principles in order to build a
complex model. The first principle is that, at the most basic level,
a database table is characterized by its attributes, its tuples, and its
join relations. We therefore need a way of integrating information
about all three into a single measure of table importance.

The second principle is that there exist a few database tables for
which the majority of humans can agree that they either have a
lot of importance, or very little importance. For example, in the
TPCE schema, table Status Type has 2 attributes and five tuples,
while table Trade contains 14 attributes and ���j[�SX�A tuples. We
believe that most people would readily agree that Status Type has
very small importance, while Trade is very important.

Any automatic model must distinguish between tables that hu-
mans easily classify as having high, resp. low, importance. Thus,
we arrive at our third principle: compare pairs of clearly impor-
tant and clearly unimportant tables, and include in the model those
features that always differentiate between them. We illustrate this
process on the TPCE schema. One postulate in [7, 11] is that the
importance of a table is proportional to its number of tuples. How-
ever, table Trade History is one of the largest, with ���j[�S��� tuples,
but a casual examination would convince users that it is not a par-
ticularly relevant table: it contains only old transactions, which in
a real-world system could also be stale. On the other hand, table
Customer, with ���j[�SX�A tuples, is quite important to the database:
it contains information on the people who initiate all the transac-
tions in the system. More precisely, Customer has 23 attributes,
the most of any table; by comparison, Trade History only has 2
attributes. Using our third principle, it appears that the table impor-
tance should be proportional to the number of attributes. However,
a more in-depth analysis shows that among the 23 attributes, table
Customer contains a ’status id’ attribute which has only 5 distinct
values, and a ’customer id’ attribute which has 1000 distinct val-
ues. Clearly, they shouldn’t count equally towards the importance
of the table. Rather, the amount of information contained in each
attribute should count towards table importance. Since entropy is
the well-known measure for information [4], we propose that a ta-
ble’s importance should be proportional to the sum of its attribute
entropies. However, we do not wish to completely ignore the con-
tribution of the number of tuples to the importance of a table, as that

would be unreasonable. We propose to strike a balance between tu-
ples and attributes by allowing the number of tuples, dampened by
the ���X� function, to be added to the importance. The ���X� function
insures that the number of tuples does not dominate the entropy
values. Formal definitions are in Section 4.

A second postulate of previous work is that the importance of a
table is proportional to its connectivity in the schema graph. How-
ever, table Status Type has 6 join edges - the second most in the
schema - yet it is arguably the least significant of the entire database.
But, just as with the first postulate, we do not wish to completely
negate this principle, as we do need to quantify how join relations
contribute to table importance. Ignoring their contribution alto-
gether would lead to a situation in which table Trade History, due
to its very large number of tuples and high attribute entropy, would
rank in the top third. Since this table has only one join edge, it
becomes clear that its connectivity must play a role in dampen-
ing its importance. By contrast, a table such as Company, which
also ranks in the top third based on its tuples and attributes, should
gain importance via its connectivity. How can we then automati-
cally distinguish between the high connectivity of Company, which
should allow it to increase its importance, and the high connectiv-
ity of Status Type, which should play only a minor role? Previous
methods distinguished edges based on their average fanout. As we
discuss in the following sections, and show via experiments, tables
such as Status Type significantly increase their importance in this
model: not the desired result. Instead, we propose that it is not the
number, but the quality, of join instantiations that counts. Thus,
we assign weights to join edges proportional to the entropies of the
participating attributes.

Stable distribution in random walks The discussion above illus-
trates the need to take into account both the information content
of a table, and its (weighted) join edges, to come up with a sin-
gle value for the importance of the table. Intuitively, join edges
can be viewed as vehicles for information transfer between tables,
since their weights depend on the entropies of their respective at-
tributes. It is therefore natural to define a random walk process
on the schema graph, whereby each table starts with its informa-
tion content, and then repeatedly sends and receives information
along its join edges, proportional to their weight. If the underlying
schema graph is connected and non-bipartite, it is well known that
this process converges to a stable distribution. We will define the
importance of a table as the value of this stable distribution for that
table.
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Figure 2: TPCE schema graph.

Previous Work The most closely related work is the schema
summarization proposed in [11], in the context of XML schemas.
Although the authors discuss how the approach extends to rela-
tional database schemas, their model makes the two crucial as-
sumptions we mentioned above: that the importance of a table is
proportional to its number of tuples, and to its number of join edges.
These are reasonable assumptions for XML schemas, but they can
both fail in relational databases: In data warehouse systems, the
largest tables are often those containing historical, possibly stale,
data (such as Table History). Moreover, enterprise systems tend
to have many so-called dimension tables (such as Status Type and
Zip Code), i.e., tables with only a few attributes that contain com-
panion information for other tables in the schema. Dimension ta-
bles are usually highly connected, but have little relevance for a
summary. As a side note, the definition of table importance in this
model is equivalent to the stable distribution of a random walk (dif-
ferent than the one we propose), though it is not recognized as such
in [11].

Another recent result [7] applies the same two assumptions specif-
ically to relational schemas, in the context of computing the so-
called querability of a table or attribute; i.e., how likely the ta-
ble/attribute is to appear in a representative query log. This value is
then used to automatically design forms for querying the database.
We do not know how likely these assumptions are to succeed or
fail in this context. However, we note that the querability of a table
is not necessarily correlated to its relevance in a schema summary.
For example, one might frequently compute statistics on the trans-
actions of customers in a specific town, requiring all such queries
to include a join with table Zip Code. However, we believe few
people would consider this table important enough to include in a

summary.
An important contribution of this paper is a definition of a metric

space over database tables, so that the distance function is consis-
tent with an intuitive notion of table similarity. Other graph-based
notions of similarity have been proposed in the IR community. Ko-
ren et al. [9] define the similarity between two nodes n and K to
be proportional to the probability that a random walk starting at n
reaches K without revisiting n . Such a definition of similarity works
well when all edges represent the same kind of relation (e.g., num-
ber of phone calls between two customers). However, in the case of
schema graphs, different join edges represent different conceptual
relations, so the definition is less useful. We have implemented the
method of [9], and include it as part of our extensive comparison
study.

4. TABLE IMPORTANCE
The entropy of an attribute � in table � is defined as �^�B��� �&��D e%7E �M� % ���X�h�j[�W � %  , where ��� ��� c > ��	�������	 > eXf are all the values

of attribute ��� � , and � % is the fraction of tuples in � that have
value > % on attribute � . For example, in Figure 1(d), �^�B��� �9&���|�WJ�!N���M�h�B�!WJ|!�}��j[AWJ~!N���X��~R}:�O�MWM�X0���X�L�B�!WM�XC��[X� �M~ .

For each table � we create a primary key ��� �28�� consisting of
all the attributes in the table, and add a self-loop ��� �28��9)3��� �28��
in the schema graph (we do this even if � already has a primary
key, for consistency). Intuitively, this self-loop serves to keep a
certain amount of information in the table. It also serves to add, in
a uniform way, the contribution of the number of tuples � �x� to table
importance; see below.

DEFINITION 3. We define the information content of a table �



as � d �B�T��V���X�&� ����}���=� �9�^�B��� �9l	
where � �x� is the number of tuples in � , and the sum ranges over all
attributes ��� � in table � . Hence,

� d �B�9 is the sum of entropies of
all the attributes ��� � , plus the entropy of ��� �28�� , which is ���X�&� ��� .

Intuitively, the value

� d �B�T is the importance of table � in the
absence of any join information. As discussed in the previous sec-
tion, we must also take into account the information transfer be-
tween tables in a connected schema graph. More precisely, we
define an �1�`� probability matrix � , where � is the number of
tables in the database (by probability matrix we mean a matrix of
non-negative numbers so that each row sums up to 1). There is a
non-zero value on position ��� ��	 '�  if and only if there is at least
one join edge between tables � and

'
in the schema. The value��� ��	 '�  reflects the “information transfer” along such an edge. If

there are multiple join edges between � and
'

, the information
transfer along all edges is summed up. The exact definition is as
follows.

DEFINITION 4. Let � denote a schema graph. The entropy
transfer matrix � associated with � is defined as follows: Let8��s�$� ��) ' � ( be a join edge in � . Let P � denote the total
number of join edges involving attribute �$� � , including the edge�$� �28��$)^��� �28�� . We define

(VE) ¡9iN�B�$� �4q ' � (�t� �^�B��� �9���X�&� ����} D ��� �L¢ P � ¢ _A�^�B��� � , 
� �^�B��� �9� d �B�TL} D ��� �L¢ ��P �L¢ )/[AU_��^�B��� � , 

(where the sum ranges over all attributes �$� � , of table � ). We
refer to this model as the variable transfer entropy model, or (VE),
for reasons that we explain later in this section. We then define

��� ��	 '=  � ��=� ��£h¤�� ¥$¡9i0�B��� �Vq ' � (�l	
where the sum ranges over all edges between � and

'
in the graph.

In addition, we define

��� ��	j�   ��[Z)*�¤H¦E �t��� ��	 '�  �
to account for the edge �$� �28��$)^��� �28�� .

We now define the importance of a table � as the stable-state
value of a random walk on � , using probability matrix � . More
precisely,

DEFINITION 5. Let § denote the stationary distribution of the
random walk defined by the probability matrix � , i.e., § is the (row)
vector with the property that §
�T�:�a§ . The importance of a table���2� , denoted §R�B�T , is the value of § on table � .

For example, consider the triangle graph obtained by restricting
TPCE to 3 tables: Trade, Trade Request, and Security (T, TR and S
for short). The edges are

' � ' ' �p��¨M)Z©R� © ' ' �p��¨ , ' � ' ' �p�ª¨M)©���� ©�� ' ' �p�ª¨ , and ©t� © �p« )/©���� ©&� © �p« . Let ¬�	0®	0¯=	° 	5± be the entropies of the attributes
' � ' ' �0��¨M	p©R� © ' ' �p�ª¨J	©���� ©�� ' ' �p�ª¨ , ©R� © �p« and ©���� ©�� © �p« , resp. Then the

entropy transfer matrix is:' © ©&�' ²k³=´ ¤pµ²k³�´ ¤0µ7¶6·¹¸ ¸²k³�´ ¤pµº¶H·¹¸ ¸²l³=´ ¤pµº¶H·¹¸© »²l³=´�¼ µ7¶ » ¶L½ ²k³=´�¼ µ²k³=´�¼ µº¶ » ¶h½
½²k³=´�¼ µº¶ » ¶h½©�� ¾²k³=´�¼ µº¶ ¾ ¶L¿

¿²k³=´�¼ µº¶ ¾ ¶H¿ ²k³=´�¼ µ²k³�´À¼ µº¶ ¾ ¶H¿

It is well known that, for any connected, non-bipartite graph � ,
and for any probability matrix � over � , there exists a unique
stationary distribution § ; see, e.g., [8]. Thus, the importance of
a table is well-defined. Vector § can be computed using classi-
cal eigenvector methods, or by the following iterative approach:
Start with an arbitrary non-zero vector ÁLÂ , and repeatedly computeÁ-% ¶ � �ÃÁ-%Ä�2� until Å�Æ¹n�K��OÁ-%¹	kÁ-% ¶ � TY�± ( Å�Æ¹n�K is usually defined
by the Ç®È -metric). Setting ±��ÉS means that the process stops
when the stationary distribution is reached. Although the vector§ does not depend on the initial values Á-Â , it is useful to start the
process with Á Â �B�9.� � d �B�T for each table � . This helps our
intuitive understanding of information transfer. Moreover, if the
values

� d �B�9 and §R�B�T are not too different, the number of itera-
tions required to converge is small. In our experiments, we use this
iterative approach.

Comparison with previous work The definition of table impor-
tance in [11] is equivalent to the stationary distribution of a random
walk process. The crucial difference from our approach is that the
probability matrix is defined by

��� �$	 '�  � >N?J@ �B�T"W � @ ¢ >N? @ ¢ �B�Tl	
where 8 is the edge between � and

'
, and the sum ranges over all

join edges 8�, incident to � . (If there are multiple edges between �
and

'
, the numerator is the sum of their respective >5? values.) As

a result, dimension tables like Status Type gain large importance,
which is not desirable. To understand why this happens, refer to
the example in Figure 1 (d), and assume that it is part of a larger
graph, in which

'
has several other join edges: a typical scenario

when
'

is a dimension table. For simplicity, assume that � has no
other edges. When the random walk starts, the information in table� is defined to be � �x� , and this entire information is transferred
to
'

in the next step, since ��� ��	 '�  �Ê[ . However, two steps
later, � gets less importance back from

'
, since ��� ' 	"�  UË [ . As

the process continues,
'

becomes a net gainer of importance from� , and possibly from its other neighbors. The more tables
'

is
connected to, the more likely it is to increase its final value.

We note that in [11], the authors allow, in fact, a fraction � of
the current information of � to remain inside � : for our example,
this means ��� ��	"�   � � and ��� ��	 '�  �y[T) � . Thus, adjusting
the value of � might appear to alleviate the problem. However,
this is false: the stationary distribution of matrix � is the same
as that of matrix � � }Ã�j[$) � ¹� , for any connected graph (

�
is

the identity matrix). Therefore, parameter � is irrelevant for the
final value of table importance, and only influences the number of
iterations. Different values of � must be used in each table for the
outcome to be altered. However, fine-tuning so many parameters is
very difficult.

By contrast, in our model, ��� ��	��   is different for each � , but
depends on the information content of � , rather than on an arbi-
trary parameter. Moreover, for the example in Figure 1 (d), the
total information that � gives to

'
in the first step is slightly less

than �^�B��� �&Ä�Ã[X� �M~ , instead of � �x�5��� . This is consistent with
the intuitive perception of ’information transfer’ along an edge: one
cannot transfer more information via a join attribute than the total
information content of that attribute, no matter what the informa-
tion of the entire table is.

A second important distinction from previous models is that we
explicitly take into account the information content of attributes
that do not participate in any join edges, other than the self-loop��� �28��.)4�$� �28�� . Thus, two tables of equal size and connectiv-
ity in the schema graph may have very different information con-
tent, if one of the tables contains significantly more attributes than



the other. By defining the primary key ��� �28�� , and the self loop�$� �28��
):�$� �28�� , we insure that the information content of all
non-joining attributes of � remains in � , and thus contributes to
the final value §t�B�9 .

Alternative Models We discuss alternative models to those in
Definition 4, obtained by changing the formula for ¡9i0�B��� �Ìq' � (� (the definitions for ��� ��	 '=  and ��� �$	��   remain the same).
The most intuitive formula would be ¡9i0�B��� �Vq ' � (�C�rÍ ´ ��� �Hµ²k³�´ �Hµ .
However, since ��� � may participate in many join edges, such a
formula could result in

D ¤ ��� �$	 '�  Q:[ , violating the property of
a probability matrix. Therefore, we inforce this property by using
the values P � in the denominator. An alternative formula is

(CE) ¡9iN�B�$� �4q ' � (�U� �j[AWJP � j�^�B�$� �&� d �B�T �
This, however, reflects to a lesser extent the information transfer
that occurs via database joins. Intuitively, in Definition 4 we as-
sume that each attribute ��� � can transfer its entire information to
any attribute it joins with, no matter how many such attributes there
are. By contrast, in the above formula, we assume that ��� � has
a constant amount of information it can transfer, and it divides it
among its P � incident edges. It is often the case that, when �$� � is
a primary key, it is connected via several fk-pk edges to attributes
in other tables. The more edges incident to ��� � , the less informa-
tion ��� � can transfer on any one of them. On the other hand, a
corresponding foreign key

' � ( connected to �$� � usually has no
other join edges. Hence, the transfer of entropy between ��� � and' � ( is heavily skewed in favor of ��� � , and table � gains too much
importance from its neighbors. We discuss such a case in Section 7,
for �:���tÅ�Å�iX8JnAnX� For clarity, we refer to the entropy transfer ma-
trix in Definition 4 as variable entropy tranfer (VE for short), and
to the matrix defined above as constant entropy transfer (CE).

We also consider a conceptually different approach, as follows.
If a join edge between tables � and

'
requires ��� �r� ' � ( , let� ¥ � c > % �!Îp¨"Ï.�^(.	 > % ��¨jÏ f . Thus, � ¥ is the subset of values

in ��� � that have non-empty join in
' � ( . We define

�^�B� ¥ 2� �Ð�ÑjÒ �HÓ � %H_��Ô�M�h� [� % l	
i.e., �^�B� ¥  is the entropy of � ¥ . Then, there are two alternative
definitions for ¡9iMGJ¨X�B��� ��q ' � (� , as follows:

(VJE) ¡9iN�B�$� �4q ' � (�C� �^�B� ¥ ���M�9� �x��} D ��� � ¢ P �L¢ _A�^�B��� � ,  	
or

(CJE) ¡9i0�B��� �Vq ' � (�U� �j[�WJP �L¢ j�^�B� ¥ � d �B�T �
We call the first variant variable joinable entropy transfer (VJE),

and the second one constant joinable entropy transfer (CJE). The
problems that occur for either of these variants are more subtle. We
illustrate them via table Zip Code, which ends up with significant
importance in the VJE and CJE models. The reason is that table
Zip Code contains all zip codes in US, the majority of which do
not instantiate the join edge to table Address (which contains the
addresses of customers and companies in the database). Hence, for�$� �<�wÕZÆ � d GMÅp8!� Õ d d GMÅp8 and

' � (Ì�É��Å�Å�iM8MnAnX� Õ d d GJÅp8 ,
we have �^�B� ¥  ËTË �^�B��� �9 , but �^�B( � T�Ö�^� ' � (� . There-
fore, the VJE matrix transfers much less information from Zip Code
to Address than the VE matrix, and allows Zip Code to acquire
higher importance (similarly for CJE versus CE). If the database

required Zip Code to contain only zip codes associated with ad-
dresses, we conjecture that its importance would significantly de-
crease. We have tested this conjecture, and found it to be true; see
Table 4. However, adding tuples that instantiate no joins to a table
should not significantly alter its importance. We have conducted
experiments for all four definitions of the entropy transfer matrix,
and verified that the VE matrix is indeed the best model.

5. TABLE SIMILARITY
As discussed in the Section 3, our schema summarization ap-

proach also requires a similarity measure between tables. Before
defining it formally, we must clarify what properties we wish the
measure to satisfy. Refer again to the examples in Figure 1.

In the first case, the edge ��� ��) ' � ( is a pk-pk join, and all
values in ��� � match with all values in

' � ( . In the second case, the
edge is a fk-pk join, such that all values in ��� � have a non-empty
join in

' � ( and viceversa. In the third case, the join is another
pk-pk, but only �MWM~ of the values in ��� � instantiate the join (and
similarly for

' � ( ). Most people would agree that the strongest
connection between tables � and

'
occurs in the first case. This

is particularly intuitive when comparing the first and third cases.
Simply put, in Figure 1 (a), ��� �w� ' � ( , whereas in Figures 1
(c), ��� �Ø×� ' � ( . We therefore postulate the following (refer to
Definition 1).

Property 1: The similarity of tables � and
'

(with respect to an
edge 8 that connects them) is proportional to the matching fractions?A@ �B�T and ?A@ � '  .

However, just looking at the fraction of tuples in � that instan-
tiate the join does not explain our intuition that the first case illus-
trates a stronger connection than the second case. The difference
is that in Figure 1 (b), there are significantly more edges between
tuples in the two tables. The more edges there are, the farther away
the join is from a one-to-one connection.

Property 2: The similarity of tables � and
'

(with respect to an
edge 8 that connects them) is inverse proportional to the matched
average fanouts � >5? @ �B�T and � >N? @ � ' l�

We now propose the following definition for the similarity mea-
sure between tables, which we call strength.

DEFINITION 6. Let � and
'

be two tables in the schema graph� . If there exists a join edge 8 between � and
'

in the graph, then
the strength of � and

'
with respect to 8 is

n�KjiM8��LÙ�KjÚ @ �B�$	 ' ®� ?J@ �B�9 ?J@ � ' � >5? @ �B�9¹� >N? @ � '  �
Let Û�oU�r�;�&ÂT)1�$�R):�����5)1� ¸ � ' be a path of arbitrary
length ¬r\s[ in � , and let 8A%ª�*Û be the edge between �9% £ �
and � % � Define n�KjiM8A�hÙ�KjÚ-ÜL�B�$	 ' ��]� ¸%7E � n�KjiM8��hÙ�K"Ú @ Ñ �B� % £ ��	k� %  .
Then

n�K¹iX8��hÙ�K"Ú��B�$	 ' U��ÝvÞAßÜ n�KjiM8��hÙ�K"Ú-Ü-�B��	 ' l�
Since edge 8������ �28A�®).��� �28�� is in the schema graph, and by

definition ?J@ �B�TR��� >N?A@ �B�TR��[ , we have n�K¹iX8��hÙ�K"Ú @ �B��	��9t�[ . Below, we show that n�K¹iX8��hÙ�K"Ú��B�$	 ' ÄY][ , à ' , so our definition
implies that n�KjiM8��hÙ�K"Ú��B��	¹�TU��[9\4n�KjiM8A�hÙ�KjÚ��B��	 ' l	Hà ' ×�:�$�

PROPOSITION 1. (i) For any two tables � and
'

,S�Y4n�KjiM8A�hÙ�KjÚ��B��	 ' �Y][X�
(ii) For any three tables � ,

'
and © , n�K¹iX8��hÙ�K"Ú6�B��	¹©&®\n�KjiM8��LÙ�KjÚ��B��	 ' �_Jn�K¹iX8��hÙ�K"Ú�� ' 	O©9 .



PROOF. The first claim follows from the fact that for any edge8 , ?J@ �B�9l	 ?A@ � ' �Yu[ and � >N?A@ �B�Tl	¹� >N?J@ � ' �\u[ , as discussed
in Section 2. For the second claim, let Û�� be a path for whichn�K¹iX8��hÙ�K"Ú��B�$	 ' U�]n�K¹iX8��hÙ�K"Ú ÜMá �B��	 '  , and Û · be a path for whichn�K¹iX8��hÙ�K"Ú�� ' 	¹©&2�Øn�KjiM8��LÙ�KjÚ-ÜAâ!� ' 	¹©9 . Let Û � �sÛ��jÛ · be the
concatenation of the two paths. Then

n�K¹iX8��hÙ�K"Ú��B�$	ã©&ä\ n�KjiM8��hÙ�K"Ú-ÜAå!�B��	j©&� n�KjiM8��hÙ�K"Ú��B��	 ' �_�n�KjiM8A�hÙ�KjÚ�� ' 	ã©&
For our clustering method, it is convenient to use a distance mea-

sure, rather than a similarity one. We define the distance between
tables � and

'
as

Å�Æãn�K"æM�B�$	 ' ®��[Z)^n�KjiM8A�hÙ�KjÚ��B��	 ' l�
PROPOSITION 2. ���
	�Å�Æãn�K æ  is a metric space. In particular,Å�Æãn�K"æ has the triangle inequality.

PROOF. Let � ,
'

and © be three tables. For any two numbersSvYVç�	j�ªY�[ , it is readily verified that [�)�ç-�ªY��j[t)`çL�}:�j[t)�N . Substituting ç`�Ãn�KjiM8��hÙ�K"Ú��B��	 '  , �
�+n�KjiM8A�hÙ�KjÚ�� ' 	ã©& , and
using Proposition 1 (ii), we obtain that Å�Æ¹n�K��B��	¹©&�Y/Å�Æ¹n�K��B��	 ' J}Å�Æãn�K�� ' 	j©&l�
For a fixed table � , all the values n�K¹iX8��hÙ�K"Ú��B�$	 '  , ' ×�z� , can
be computed in èé ��� �x�  using Dijkstra’s shortest paths algorithm as
follows. Define the weight of an edge 8 between tables � and

'
to

be êRK��B8JT�Ö���X�h�j[�WXn�KjiM8��LÙ�KjÚ @ �B�$	 ' "�\�Sp� For any path Û as in
Definition 6,

êRK���Û�C�
¸
� %FE � êtK��B8J%OU�V���X�L�j[AWA�

¸%FE � n�K¹iX8��hÙ�K"Ú @ Ñ �B�&% £ � 	���%¹"l�
Thus, the shortest-weight path between � and

'
has weight equal

to ���X�h�j[AWMn�KjiM8A�hÙ�KjÚ��B��	 ' " . Let � be the number of tables in the
database. Since schema graphs are sparse, � �x�!� é ���6 , so we con-
clude that all � distances from a fixed table � can be computed inèé ���6 . All � · distances between tables can be computed in èé ��� ·  .

In our experiments, we also study two alternative similarity mea-
sures between tables, as proposed in previous work. The proximity
measure defined in [9] requires

é ��� �  to compute all the � · prox-
imity values simultaneously. We are not aware of any faster method
to compute fewer proximity values. The coverage measure de-
fined in [11] requires, as a first step, the computation of a so-called
affinity measure along edges and paths, similar to n�KjiM8��LÙ�KjÚ at first
glance. However, the affinity along edge 8ë�u�;q '

is defined
as >N?h? �B��	 ' ��y[AW >N?A@ �B�Tl	 so ���X�L�j[�W >N?h? �B��	 ' " may be nega-
tive, and Dijkstra’s method does not apply. Moreover, the affinity
along a path Û depends on the number of edges in Û , so there is
no clear correspondence between affinity and shortest paths, even
with negative weights. The authors compute affinity and coverage
by exploring all cycle-free paths between each pair of tables. Since
there are combinatorially many distinct paths, this step becomes
very expensive for large schema graphs.

6. WEIGHTED � -CENTER
Defining good clustering criteria for a specific problem is of-

ten an overlooked step. However, as we show in our experimental
study, the quality of the results may vary greatly, depending on this
step. For schema summarization, we propose a min-max optimiza-
tion problem, i.e., we wish to minimize the maximum distance be-
tween a cluster center and a table in that cluster. (The other option

GREEDYCLUS( �1�����
	��� , � )b
� cMd � f : current clustering;
1. g�8A�hKj8Ai0� d � U��� � s.t. §R�B� � U�VÝvÞJß � ÒMì §t�B�9lí
2. g�m7ILn�K"8�i0�B�TU� d � 	¹àL����� : assign all tables to

d � ;
3. for Æ=�]� to

�
/* î��B�TU�a§t�B�9¹Å�Æ¹n�K��B��	jg�8A�hKj8Ai0��g�mFILn�K"8�iN�B�9"" */

4. g�8��hK"8�i0� d % U�:� % s.t. î��B� % U�:ÝvÞAß � î��B�9lí
5. for each ���ª�
6. if ( Å�Æãn�K��B�$	jg�8��hK"8�i0��g�m7Ihn�Kj8�iN�B�T""®Q/Å�Æãn�K��B��	j�&%ã )
7. g�m7Ihn�Kj8�iN�B�T�� d % ;
8. endfor
9. bª�4b.ï cMd % f
10. endfor
11. return ( b , g�mFILn�K"8�iN�j_  )

Figure 3: Greedy Algorithm for Weighted
�

-Center.

is to minimize the sum of such distances, which sometimes results
in a few significantly different tables being classified together).

However, using a strictly distance-based approach may result
in undesirable artifacts, such as grouping the top-2 most impor-
tant tables in the same cluster

d
. Since only one table can serve

as g�8��hK"8�i0� d  , the other one is excluded from the summary. To
achieve a tradeoff between importance and distance, we propose
using Weighted

�
-Center clustering [5], where the weights are the

table importance values. More precisely, we want to minimize the
following measure for a set of

�
clusters bª� cMd ��	�������	 dZeXf :

ð �ºb6U�V� > ç e%FE � ÝvÞJß� Ò ³ Ñ §R�B�T¹Å�Æãn�K��B��	ãg�8��hK"8�iN� d % "l�
Weighted

�
-Center is NP-Hard, but admits fast approximation

algorithms. The most popular one is the greedy approach described
in Figure 3. It starts by creating one cluster and assigns all tables to
it. It then iteratively chooses the table �&% whose weighted distance
from its cluster center is largest, and creates a new cluster with � %
as its center. All tables that are closer to �9% than to their current
cluster center are reassigned to cluster

d % .
THEOREM 1. For any schema graph � , algorithm GREEDY-

CLUS of Figure 3 computes an ¬ -approximate Weighted
�

-Center
in èé � � � �x�  time, where

¬ñ��Ý.ò�ó c ~p	�ÝvÞJß� §R�B�T"W=Ý.ò�ó� §t�B�9 f �
PROOF. The approximation factor for the greedy algorithm was

proved in [5]. The running time follows from the observation that
the double loop in steps 3–9 requires

� � distance computations,
where �1�<� �3� is the total number of tables. More precisely, for
each new cluster center � % , we must compute Å�Æãn�K��B� % 	k�Tl	ãàh� . By
the observation in Section 5, for a fixed �&% , all � distances can be
computed in èé ��� �x�  , and the result follows.

7. EXPERIMENTAL EVALUATION
We have conducted an extensive experimental study to compare

our approach with the method of [11], as well as with several hy-
brid methods that are described in this section. We first validate
each of the three components of our method: the model for table
importance we defined in Section 4, our novel distance functionÅ�Æãn�K"æ (Section 5), and our conjecture that Weighted

�
-Center is an

appropriate clustering for schema summarization. We study the
properties of each component, and compare it with alternatives, as
follows:



� Alternative table importance: We study the definition of ta-
ble importance proposed in [11]. Since the importance is ini-
tialized as table cardinality, we denote this approach by

� ³ .
By contrast, the model we introduced in Definitions 4 and 5
is based on entropy, so we use the notation

�Jô
to denote it.� Alternative distance functions: We study two alternative dis-

tance functions, based on previously proposed similarity mea-
sures. The first function is

Å�Æãn�K¹õZ��[Z)`g�GJöp8Ai > Ù08J÷T	
where g�GJöp8�i > Ù08 ÷ is the normalized glGMöp8�i > Ù08 from [11].
More precisely,

g�GJöp8�i > Ù08J÷T�B��	 ' C��Ý.ò�ó c glGMöp8�i > Ù08��B��	 ' "WN� ' � 	J[ f �
(We also studied the distance [�WJg�GJöp8�i > Ù08��B��	 '  , but con-
cluded it was not a good alternative, so for the sake of clar-
ity, we exclude it from the results). In addition, we study the
distance function

Å�Æãn�KãøT��[Z) � iJGMç5ÆO��Æ�Kj�h	
where � iJGMç5ÆO��Æ�Kj� is the measure proposed in [9] to quantify
the similarity of two nodes in a directed graph with speci-
fied edge weights. The sum of weights over all edges out
of a node is 1. In our case, the graph is obtained from the
schema graph by replacing each undirected edge 8&���1) '
with two directed edges, �*q '

and
' qù� . The weights

are defined as êRK�� �sq '�  � >N? @ �B�9"W D @ ¢ >N? @ ¢ �B�T andêRK�� ' qú�   � >N? @ � ' "W D @ ¢ >5? @ ¢ � ' l	 where the first sum
ranges over all (undirected) edges 8A, incident to � , and the
second sum ranges over all (undirected) edges 8 , incident
to
'

. We implemented the FastAllDAP algorithm (Table 4
in [9]) for computing the proximity between all pairs of ta-
bles in the directed graph thus obtained.� Alternative clustering algorithm: The method of [11] pro-
poses a Balanced-Summary algorithm for schema cluster-
ing, which uses a min-sum criterion for clustering. We im-
plemented this algorithm and compared it with Weighted

�
-

Center.

Table 1 summarizes the three dimensions along which we con-
duct our evaluation. We first compare the choices for importance
and distance independently, using the pre-defined categories of the
TPCE benchmark to define objective accuracy measures. We then
study various summarization methods obtained by choosing one
entry in each column. Our novel algorithm, which we propose as
the method of choice, is the one that uses the first entry in each col-
umn, i.e., Table Importance =

�Aô
, Distance = Å�Æ¹n�K"æ , and Clustering

= Weighted
�

-Center. The current state-of-the-art [11] corresponds
to the second entry in each column, i.e., Table Importance =

� ³ ,
Clustering = Balanced-Summary, but uses g�GJöp8�i > Ù08 as a similar-
ity measure, rather than distance Å�Æãn�K"õ . Finally, we consider several
hybrid methods, such as Table Importance =

�Aô
, Distance = Å�Æãn�K õ ,

and Clustering = Weighted
�

-Center.

7.1 Experimental Setup
We conduct our study over the TPCE schema. This benchmark

database is provided by TPC [10] to simulate the On-Line Trans-
action Processing (OLTP) workload of a brokerage firm. As men-
tioned before, it consists of 33 tables. However, since no active
transactions are considered, table Trade Request is empty. There-
fore our experiments are performed only on the remaining 32 ta-
bles. Recall that the tables are pre-classified in four categories:

Table Importance Distance Clustering�Aô Å�Æãn�K æ Weighted
�

-CenterÅ�Æãn�Kjõ� ³ Balanced-SummaryÅ�Æãn�K ø
Table 1: Dimensions of experiments.

Parameters TPCE-1 TPCE-2
Number of Customers 1,000 5,000
Initial Trade Days 10 10
Scale Factor 1,000 36,000

Table 2: Parameters of EGen for TPCE.

Broker, Customer, Market and Dimension. Category Dimension
consists of dimension tables (hence the name) which share no join
edges among themselves, except for one edge between Address and
Zip Code. For the purpose of evaluating the quality of schema sum-
maries, we consider these dimension tables to be outliers. Thus, we
are interested in discovering only the other three categories.

We use EGen1 to generate two significantly different database
instances for the schema, which we call TPCE-1 and TPCE-2. The
different parameter settings for EGen are shown in Table 2. The
purpose of generating two instances is to study the sensitivity of
various summarization methods to significant changes at the data
level. Note that the schema graph remains the same, so ideally, the
summaries for TPCE-1 and TPCE-2 should be consistent with each
other, and with the pre-defined categories. The main differences
between the two instances are as follows.

In TPCE-2, the size of table Customer increases by a factor of
5. The change of the scale factor, from 1,000 to 36,000, affects
the size of the majority of other tables, and therefore the values¡9iJGM¨M�B��� ��q ' � (� and n�KjiM8A�hÙ�KjÚ��B��	 '  for most pairs. In addi-
tion, the >N? and � >N? values change for 24 out of 86 edges. In the
following sections, whenever not explicitly stated, the experimen-
tal results are for TPCE-1. All methods are implemented in Java,
and evaluated on a PC with 2.33GHz Core2 Duo CPU and 3.25G
RAM.

7.2
� ô

Models
Before comparing the two table importance models,

�Jô
and

� ³ ,
we first conduct a study of different definitions for

� ô
. Recall that

in Section 4 we discussed three alternative models, CE, VJE and
CJE, for defining the entropy transfer matrix, in addition to the VE
model of Definition 4. Based on the semantics of each model, we
conjectured that each of them has shortcomings when compared to
VE. We now validate this intuition by a comparison study.

Table 3 shows the top-5 important tables according to each tran-
sition matrix. With the exception of VE, the other methods all rank
at least one dimension table among the top 5. Thus, CE ranks Ad-
dress as the 4th most important. In Section 5, we explained our
intuition that constant entropy models lead to unbalanced transfers
of importance on fk-pk edges, with the table containing the pri-
mary key being a disproportionate gainer from its neighbors. This
is clearly the case for Address, which is the primary key table for
three fk-pk edges (to Customer, Company, and Exchange).

As for the VJE and CJE models, they both rank Zip Code as the
most important table. In Section 5, we gave an intuitive explana-
tion for why this table absorbs large amounts of entropy from its

1EGen is a software package provided by TPC [10].



Rank VE CE VJE CJE
1 Trade Customer Zip Code Zip Code
2 Security Security Trade Address
3 Customer Company Customer Customer
4 Financial Address Security Company
5 Holding Financial Address Security

Table 3: Effects of entropy transfer matrix on table importance��ô
.

Rank VE

� ô
VJE

� ô
1 Trade 57.498 Trade 62.323
2 Security 41.191 Customer 44.826
3 Customer 36.015 Security 34.707
4 Financial 30.489 Address 34.307
5 Holding 28.717 Financial 26.446

Table 4: Table importance
� ô

after removing non-joinable tu-
ples from Zip Code.

neighbors under these models. Our reasoning was that matrices
based on joinable entropy transfer allow tuples that instantiate no
joins to have an inordinate influence on the final result. In partic-
ular, by varying the number of non-joining tuples in Zip Code, we
can greatly affect the value �^�B� ¥  from Zip Code to Address (i.e.,�$� �Ö�rÕZÆ � d GJÅp8!� Õ d d GMÅp8 and

' � (y�u��Å�Å�iM8MnAnX� Õ d d GJÅp8 ),
while the value in the opposite direction remains the same.

To test the extent to which such a local modification of �^�B� ¥ 
can influence the overall results, we conducted the following ex-
periment. We removed from Zip Code all the tuples that did not
instantiate the edge to Address. This reduced the size of Zip Code
by about �MS!û . No other modifications were made to the database.
We then computed the table importance, under VE and VJE, for
the modified data. The results are shown in Table 4. The top-
5 tables for VE remain the same and there are negligible changes
in their

�Aô
values. By contrast, the changes for VJE are signifi-

cant. The importance of Zip Code decreases from [��Xü to [�ý , and
its rank changes from 1st to 12th. We conclude that VJE is highly
unstable under local modifications in the data, but that VE is consis-
tent. Furthermore, computing the matrix for VJE and CJE is very
time-consuming, as it requires executing all data joins to calculate�^�B� ¥  . Therefore, for the remainder of this section, the entropy-
based importance

�Aô
is computed using the VE matrix.

7.3 Table Importance
We now compare the

� ô
and

� ³ models for table importance.
While both models use stable state values in a random walk over the
schema graph, the respective transition matrices are conceptually
quite different. For

�Aô
, the matrix depends on the entropy of the

join columns, while for

� ³ , it depends on the average fanouts >N? .
Tables 5 and 6 show the top-5 important TPCE tables obtained

in each model. Recall that we compute the importance in

�Jô
, resp.

Rank Table Info. Content

� ô � ³ Rank
1 Trade 39.730 57.798 1
2 Security 37.350 41.405 4
3 Customer 45.781 36.202 17
4 Financial 43.575 30.647 16
5 Holding 26.112 28.866 11

Table 5: Top-5 important tables based on
�Aô

.

Rank Table Card.

� ³ � ô
Rank

1 Trade 576000 1805787.6 1
2 Trade History 1382621 659751.7 14
3 Status Type 5 503280.9 32
4 Security 685 487461.5 2
5 Holding History 722143 321415.2 9

Table 6: Top-5 important tables based on
� ³ .

� ³ , via an iterative process which starts by initializing the impor-
tance of each table to its information content, resp. its cardinality.
Hence, for each of the top-5 tables, we show the values of their
initial importance, their final importance, and their corresponding
rank in the competing model. Although the initial importance does
not influence the final value, but only the number of iterations, it
is still instructive to compare the two sets of values. For exam-
ple, in Table 5, Trade and Security have smaller initial values than
both Customer and Financial, but end up being more important,
due to their connectivity in the graph. A similar observation holds
for Trade and Trade History in Table 6. Hence, table connectivity
makes a difference in both models. However, the way it influences
the result in each case is quite different.

Notice that only 2 out of the top-5 tables are the same in Ta-
bles 5 and 6: Trade and Security. In general,

� ³ favors large tables,
which is an expected consequence of the model. However, tables
Trade History and Holding History, which have the highest, resp.
3rd highest, cardinality in TPCE-1, and are among the top-5 in

� ³ ,
contain only historical data and are of limited importance to the
database. By contrast,

� ô
ranks Trade History as the 14th in im-

portance, and Holding History as the 9th. We noted before that
such examples of’‘history’ tables are quite typical in warehouse
databases, so the ability to distinguish between the size and overall
significance of a table is clearly a desirable property for a model.

On the other hand, table Status Type is the smallest one in the
database, yet still ends up in the top-5 in

� ³ . This is due to its
high connectivity - 6 join edges - as well as the extremely large >N?
values on those edges, which make it a net gainer of importance
from all its neighbors. Again, this is a direct consequence of the

� ³
model, as discussed in Section 4. By contrast,

�Jô
ranks this table

as the least important in the schema, which is what most humans
would also probably do.

Finally, we note that while both models rank in the top 5 at
least one table from each of the three main categories (i.e.., Broker,
Customer, and Market), category Customer is better represented in� ô

(by Customer and Holding) than in

� ³ (by Holding History).
Although being among the top-5 does not automatically make a
table part of the summary, it is nevertheless more likely that a
summarization method using

� ³ will choose table Holding History
to summarize this category (as, indeed, is the case in our experi-
ments).

A different type of comparison between

� ³ and

� ô
is depicted

in Table 7, which shows the top-7 tables computed over TPCE-
1 and TPCE-2. As discussed above, while the schema remains
the same for both databases, the entries in the probability matrices
change, since they depend on the data. We achieve similar results
on both TPCE-1 and TPCE-2 for

�Jô
. Although TPCE-1 differs

from TPCE-2 in both table sizes and join selectivity, our entropy-
based approach is quite stable in the way it ranks important tables.
By contrast,

� ³ is more sensitive to data variations. Among its top
tables, not only the ranks change, but also two out of seven tables
are different.

These experiments demonstrate that our entropy-based model



Rank

� ô
/TPCE-1

� ô
/TPCE-2

1 Trade Trade
2 Security Security
3 Customer Customer
4 Financial Financial
5 Holding Company
6 Company Customer Account
7 Customer Account Holding

(a)

� ô
Rank

� ³ /TPCE-1

� ³ /TPCE-2
1 Trade Security
2 Trade History Daily Market
3 Status Type Watch Item
4 Security Watch List
5 Holding History Trade
6 Daily Market Trade History
7 Customer Account Customer Account

(b)

� ³
Table 7: Comparison of Top-7 Important Tables for

� ô
and

� ³ .

All tables No Dimension tables
TPCE-1 TPCE-2 TPCE-1 TPCE-2Å�Æãn�K æ 0.659 0.649 0.72 S0� üMSX�Å�Æãn�K¹õ 0.589 0.621 0.619 S0� ýXýX�Å�Æãn�K ø 0.5 0.557 0.529 S0� ýXSp[

Table 8: Accuracy of distance functions.

outperforms the previously proposed approach in both accuracy
and consistency.

7.4 Distance Between Tables
In this section, we study the properties of the metric distanceÅ�Æãn�K"æR��[Z)^n�K¹iX8��hÙ�K"Ú , and compare it with the distances Å�Æãn�K õ �[R)`g�GJöp8�i > Ù08J÷ and Å�Æ¹n�K ø ��[R) � iMGJç-ÆB�ªÆ�K¹� .
We first examine the accuracy with which each of the three dis-

tances reflects table similarity. To define an objective measure for
this comparison, we make the following observation. Since TPCE
is pre-classified into four categories, it is reasonable to assume that
tables within one category are more similar to each other than tables
in different categories (except for Dimension tables). Therefore, for
each table � , its distances to tables within the same category should
be smaller than its distances to tables in different categories. For
any distance function Å and some fixed value P , let ���B�T denote
the number of tables in the same category as � among its top- P
nearest neighbors under distance Å . Let �U�B�T denote the number
of top- P nearest neighbors of � (in general, �U�B�TC�:P , but if there
are ties, we include all relevant tables). We define the accuracy of
distance Å as

> glgX��Å0U� D � � ´
�Lµ

# ´ �Lµ� 	
where � is the number of database tables.

Table 8 reports the accuracy of the three distance functions over
TPCE-1 and TPCE-2, computed for top-5 nearest neighbors. We
report both the average over all 32 tables (first two columns), as
well as the average over the 28 tables that are not in the Dimension
category. In both cases, the distance Å�Æãn�K æ achieves the highest
accuracy, on both databases. The standard deviation of the values�`�B�T"WJ�U�B�T is about Sp� � for all distance functions.

Figure 4 illustrates how the top-5 nearest neighbors of table Cus-
tomer change for each distance function. For Å�Æ¹n�K æ , 3 of the near-
est neighbors (tables Customer Account, Customer Taxrate, and
Watch List) are in the Customer category. On the other hand, the
nearest neighbors found based on Å�Æãn�K õ and Å�Æãn�KOø have only 2 ta-
bles from the Customer category. Moreover, Å�Æãn�K õ finds 3 of the
top-5 nearest neighbors from the Dimension category.

Additional considerations: By the definition of glGMöp8�i > Ù08 in [11],
it is possible to have glGMöp8�i > Ù08p�B�$	 ' �Q/g�GJöp8Ai > Ù08��B��	"�T for some' ×�;� . Similarly, it is possible to have glGMöp8�i > Ù08p�B�$	 ' "WN� ' ��Qg�GJöp8�i > Ù08J÷9�B��	��TZ��[ (thus, the definition g�GJöp8�i > Ù08J÷��B��	 ' t�Ý.ò�ó c g�GJöp8�i > Ù08��B��	 ' "W0� ' � 	�[ f ). This undesirable artifact, which
runs counterintuitive to the notion of a similarity measure, is a con-
sequence of the formula for >N?h? ÆB�LÆBK¹� - a component of glGMöp8�i > Ù08 .
From the discussion in [11], the >5?h? ÆB�LÆ�Kj� between any pair of
tables is intended to be at most 1. However, by definition, the>N?h? ÆB�HÆ�K¹� between � and

'
is a maximum value over all paths

connecting � and
'

; and the value along a specific path Û from� to
'

contains factors of the type [AW >N? @ , for edges 8��:Û . As
we saw in Section 2, it is possible that >N?J@ Ë [ for some low-
selectivity edges 8 . Thus, if tables � and

'
are connected by a path

with low-selectivity edges, their affinity is boosted to a value larger
than 1. This situation does, in fact, occur in TPCE:

>N?h? ÆB�HÆ�K¹�H�OÕZÆ � d GJÅp8!	 d ILn�KjGJ�
8�iX®Q�[M	
and

glGMöp8�i > Ù08��OÕZÆ � d GMÅp8!	 d ILn�K¹GM�ª8AiXäQg�GJöp8�i > Ù08��OÕRÆ � d GJÅp8!	kÕZÆ � d GJÅp8Ml�
An important property of Å�Æãn�K"æ is that it is a metric. Thus, it is

symmetric and it satisfies the triangle inequality. Neither of these
properties is satisfied by Å�Æãn�K õ , nor by Å�Æãn�Kãø , so no approximation
guarantees are likely for any clustering algorithm that uses them.

Time complexity: As discussed in Section 5, all n�KjiM8��hÙ�K"Ú val-
ues can be computed in èé ��� ·  using Dijkstra’s algorithm, while� iJGMç5ÆO��Æ�Kj� requires

é ��� �  , and g�GJöp8�i > Ù08 may explore combina-
torially many paths in the schema graph. In our experiments, the
average time for computing the similarity between a pair of tables
was ���j[�S £L·  ms for n�KjiM8A�hÙ�KjÚ and � iJGMç-ÆB��ÆBK¹� , and ���j[�S ·  ms forg�GJöp8�i > Ù08 . Hence, while all these computations are fast, the run-
ning time for computing glGMöp8�i > Ù08 is nevertheless four orders of
magnitude higher, which indicates that it is unlikely to scale well
for large schema graphs (many hundreds of tables) in real database
systems.

7.5 Clustering Algorithms
In this section, we compare the two clustering methods, Balanced-

Summary and Weighted
�

-Center, by fixing the other two dimen-
sions. More precisely, we use

� ³ and glGMöp8�i > Ù08 for Balanced-
Summary, and

� ³ and Å�Æãn�Kjõ for Weighted
�

-Center. To evaluate
the quality of the summary, we propose a similar approach to the
one we used for measuring the accuracy of distance functions. In
this case, we consider that for a cluster

d % , the table g�8��hK"8�i0� d % 
chosen as the representative of the cluster(by either Weighted

�
-

Center or Balanced-Summary) determines the category for the en-
tire cluster. Thus, if g�8A�hKj8Ai0� d %  belongs to, e.g., category Market,
then all the tables in

d % are categorized as Market in the summary.
We then measure how many tables are correctly categorized, as
follows. Let ��� d %O denote the number of tables in

d % that be-
long to the same category as g�8��hK"8�iN� d %  , in the pre-defined la-
beling (including g�8��hK"8�iN� d %B ). Then the accuracy of a summary
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Figure 4: Nearest neighbors for table Customer under the three distance functions.

bª� cMd ��	�������	 dZeXf is

> g�gM�ºb6U� D
e%FE � ��� d % � 	

where � is the total number of database tables. We also define
the accuracy of each cluster as > g�gM� d % ��Ö��� d % "WA�C� d %  , where�U� d %ã is the total number of tables in cluster

d % . This allows a
more detailed view of where the inaccuracies occur.
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Figure 5: Comparison of Balanced-Summary and Weighted
�

-
Center.

Balanced-Summary: We implemented the Balanced-Summary
algorithm described in Figure 7 in [11], which is shown to be better
than several alternatives. It chooses cluster centers in decreasing or-
der of table importance

� ³ , provided that a new center is not “dom-
inated” by existing centers. The dominance relationship is defined
in terms of g�GJöp8Ai > Ù08 , and reflects whether the clustering measure
(which is a sum of g�GJöp8�i > Ù08 values) would increase or decrease
if a cluster center was replaced by a different table. Moreover, if
a newly chosen cluster center dominates an existing center, the old
center is deleted from the summary. This approach tries to bal-
ance the role of table importance and table coverage for a min-sum
clustering measure, roughly analogous to what Weighted

�
-Center

does for the min-max clustering. The algorithm stops when it picks�
centers, or sooner, if all tables are dominated by existing centers.

After all centers are chosen, each remaining table is assigned to the
cluster whose center best covers it. Although we can set the desired
number of clusters

�
in the algorithm, it may return fewer clusters

due to dominance. This is the problem we encountered in our ex-
periments. For TPCE-1, the method returns 2 clusters, no matter
the value

� \�� . The first cluster contains only table Trade, which
has the highest

� ³ ; and the second cluster contains all the remain-
ing tables, with Trade History as its center (table Trade History
dominates all other tables except Trade). For TPCE-2, the method
only generated one cluster with center Daily Market, because this
table has the highest

� ³ in this case, and it dominates all the other
tables. Clearly, the Balanced-Summary approach does not work
well on TPCE.

Figure 5 plots the accuracy for the method above, as well as the
alternative Weighted

�
-Center. Clearly, Weighted

�
-Center per-

forms better. For a full comparison of accuracy, see also the graphs
in Figure 6.

7.6 Summarization Algorithms
Given the results in the previous subsection, we limit our com-

parative study of summarization algorithms to methods based on
Weighted

�
-Center. This includes our novel approach, as well

as several hybrid methods. We report detailed results for

�Jô
and

the three distance functions from Table 1. The accuracy of meth-
ods using

� ³ is smaller (refer to Figure 5 for one such method).
Since the distances Å�Æãn�Kjõ and Å�Æãn�K ø are asymmetric, we need to
specify which direction we use in lines 4 and 6 of the algorithm
from Figure 3. Nodes can be clustered to a center by minimizing
either Å�Æãn�K���g�8A�hKj8Ai0� d % l	��T or Å�Æãn�K��B��	jg�8��LKj8�iN� d % " , which may
lead to very different results. We first compare the clustering re-
sults for Å�Æãn�Kjõ and Å�Æãn�K ø based on the two directions for the dis-
tance function. The results are shown in Table 9. For Å�Æãn�K��Å�Æãn�Kjõ , although the clustering using direction Å�Æãn�K��B��	¹g�8��hK"8�iN� d %ã"
is more balanced than the other one (in terms of cluster sizes), it
picks two centers from category Market and none from Customer;
while the clustering based on the direction Å�Æãn�K���g�8A�hKj8Ai0� d % l	��T
picks one center from each of the 3 main categories, and even ob-
tains a cluster with > g�gX�Bþ9ÆB� > �Lg�Æ > m�T�r[ . For Å�Æ¹n�K9�ÃÅ�Æãn�K ø , the
same cluster centers are chosen for each direction. However, the
clustering using Å�Æãn�K��B��	¹g�8��hK"8�i0� d %O" is more balanced than the
other one. Therefore, in the following experiments, we use the di-
rection Å�Æ¹n�K���g�8��hK"8�iN� d %Bl	��9 for Å�Æãn�K.�yÅ�Æãn�Kjõ , and the directionÅ�Æãn�K��B��	¹g�8��hK"8�iN� d % " for Å�Æãn�K9�+Å�Æ¹n�Kãø . Recall that Å�Æãn�K"æ is sym-
metric, so both directions are identical.

Table 10 shows the clustering results based on the three distance
functions. For

� ��� clusters, there is not much difference among
the three distance functions, although the summary for Å�Æãn�K æ is
slightly more balanced, as well as more accurate. For

� ��~ clus-
ters, the summary for Å�Æãn�K æ is the most balanced and has the highest
accuracy, while the summaries for Å�Æãn�K õ and for Å�Æãn�KOø each contain
one big cluster consisting of more than �MSXû of all tables. We now
analyze the results for

� �s| clusters. Notice that in this case
the summary for Å�Æ¹n�K"æ becomes unbalanced for the first time, with
one cluster, centered at Financial, containing only one table. This
trend continued for

� �ÿ� , which we do not show due to space
constraints. Thus, the summary computed via Å�Æãn�K��*Å�Æãn�K æ gives
a clear signal that there are only 3 categories in the data, and that
computing

�
clusterings for

� \;| is meaningless. By contrast,
the 4-clusterings computed for Å�Æãn�K õ and Å�Æãn�Kãø are now more bal-
anced, because they each split the biggest cluster of the previous 3-
clustering into two smaller clusters. Moreover, their accuracy also
goes up, as this split separates tables that belong to different cate-
gories. However, this improved overall quality comes at the cost of
splitting one natural cateogry. More precisely, the pre-defined cate-
gory Market is represented by two smaller clusters in the summary,
one centered at Security and the other at Financial. We conclude
that the clustering for Å�Æãn�K2�ÌÅ�Æãn�K"æ is the most consistent with
the predefined classification of TPCE, and the only one capable
of automatically discovering the correct number of categories, i.e.,� ��~ .

The above results are from TPCE-1. Due to space limitations,



d % Å�Æãn�K���g�8A�hKj8Ai0� d %Bl	��T Å�Æãn�K��B��	¹g�8��hK"8�iN� d %B"
center(

d % ) �U� d %  ��� d %  > glgX� d %  center(
d % ) �U� d %  ��� d %  > g�gM� d % 

1 Trade 19 8 0.42 Trade 11 7 0.64
2 Financial 7 7 1.0 Security 8 4 0.5
3 Customer 6 3 0.5 Financial 13 7 0.54

(a) Å�Æãn�KU�VÅ�Æãn�Kjõd % Å�Æãn�K���g�8A�hKj8Ai0� d % l	��T Å�Æãn�K��B��	¹g�8��hK"8�iN� d % "
center(

d % ) �U� d %O ��� d %B > glgX� d %O center(
d % ) �U� d %O ��� d %B > g�gM� d %O

1 Trade 2 2 1.0 Trade 21 8 0.38
2 Security 1 1 1.0 Security 6 4 0.67
3 Customer 29 9 0.31 Customer 5 2 0.4

(b) Å�Æãn�KU�VÅ�Æãn�Kãø
Table 9: The effect of directional distance on clustering.

� d % Å�Æãn�K æ Å�Æãn�K¹õ Å�Æãn�K ø
center(

d % ) �U� d %  ��� d %  > g�gX� d %  center(
d % ) �U� d %  ��� d %  > glgX� d %  center(

d % ) �U� d %  ��� d %  > g�gX� d % � 1 Trade 9 6 0.67 Trade 25 8 0.32 Trade 26 8 0.31
2 Security 23 11 0.48 Financial 7 7 1.0 Security 6 4 0.67

~ 1 Trade 9 6 0.67 Trade 19 8 0.42 Trade 21 8 0.38
2 Security 13 11 0.85 Financial 7 7 1.0 Security 6 4 0.67
3 Customer 10 6 0.6 Customer 6 3 0.5 Customer 5 2 0.4

| 1 Trade 9 6 0.67 Trade 13 7 0.54 Trade 14 8 0.57
2 Security 12 10 0.83 Financial 7 7 1.0 Security 6 4 0.67
3 Customer 10 6 0.6 Customer 6 3 0.5 Customer 5 2 0.4
4 Financial 1 1 1.0 Security 4 6 0.67 Financial 7 7 1.0

Table 10: Comparison of Weighted
�

-Center clustering over the three distance functions.

we do not show detailed results for TPCE-2: they follow a similar
trend. However, in Figure 6, we plot the values > g�gX�ºb6 for the
different clusterings b , over both TPCE-1 and TPCE-2. The graph
clearly shows that the most accurate summaries are obtained for
the distance Å�Æãn�K"æ , on both TPCE-1 and TPCE-2. Although the
differences among the three choices decrease on TPCE-2, Å�Æãn�Kkæ
still outperforms the others.
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Figure 6: Summary accuracy for Weighted
�

-Center with
�Mô

.

We have also performed experiments using

� ³ instead of

�Aô
, and

compared the results of Weighted
�

-Center for the three distance
functions. The resulting summaries all had low > g�g values, and
unbalanced clusters. Due to lack of space, we omit those graphs.

8. CONCLUSIONS
In this paper, we proposed a novel approach for summarizing re-

lational schemas, justified by limitations of previous methods. We
have defined a new model for table importance using well-known
principles from information theory and statistics. One of our main
contributions is the definition of a metric distance over schema ta-
bles, which allows us to develop a summarization algorithm with
provable guarantees, and may prove of independent interest. Fi-
nally, we have conducted an extensive study on an independent

benchmark schema, showing that our approach is accurate and ro-
bust under changes in the data.
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