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ABSTRACT

User generated content has been fueling an explosion imtbarat
of available textual data. In this context, it is also comnion
users to express, either explicitly (through numericaings) or
implicitly, their views and opinions on products, events,. €This
wealth of textual information necessitates the developroemovel
searching and data exploration paradigms.

In this paper we propose a new searching model, similar it spi
to faceted search, that enables the progressive refinefreeképword-
query result. However, in contrast to faceted search whiitizes
domain-specific and hard-to-extract document attribtbesefine-
ment process is driven by suggesting interesérpgansion®f the
original query with additional search terms. Qquery-driven and
domain-neutralapproach employs surprising word co-occurrence
patterns and (optionally) numerical user ratings in ordédentify
meaningful topk query expansions and allow one to focus on a
particularly interesting subset of the original result set

The proposed functionality is supported by a framework that
computationally efficient and nimble in terms of storageuiest
ments. Our solution is grounded on Convex Optimizationgin
ples that allow us to exploit the pruning opportunities etk by
the natural tope formulation of our problem. The performance
benefits offered by our solution are verified using both sgtith
data and large real data sets comprised of blog posts.

1. INTRODUCTION

The amount of available textual data has been growing ata sta
gering pace. Besides the adoption of digital text (at theersp
of paper) as the primary means of exchanging and storingumst
tured information, this phenomenon has also been fuelechby t
transformation of the Web into an interactive medium. Weérsis
have transcended their role as simple consumers of infamainhd
now actively participate in the generation of online cont&logs,
micro-blogging services, wikis and social networks aré¢ gxam-
ples of an online revolution taking place in social media.

In this context, it is also common for users to express, eitixe
plicitly or implicitly, their views and opinions on produgtevents,
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etc. For example, online forums such as customer feedbaek po
tals offer unique opportunities for individuals to engagéhveell-

ers or other customers and provide their comments and expes.
These interactions are typically summarized by the asségrof

a numerical or “star” rating to a product or the quality of avéee.
Numerous such applications exist, like Amazon’s custoraedf
back and Epinions. Any major online retailer engages one avay
another to consumer-generated feedback.

But even if ratings are not explicitly provided, sentimenah
ysis tools [15] can identify with a high degree of confidenke t
governing sentiment (negative, neutral or positive) esged in a
piece of text, which in turn can be translated into a numératang.
This capability enables the extraction of ratings from fessal re-
views, typically encountered in blogs. Extending this obaton,
such tools can be employed to identify the dominant sentimen
only towards products but also events and news storiesualiyt
any text document can be associated with a rating signiftfieg
author’s attitude towards some event.

This trend is reminiscent of the explosion in the availapibf
structured data that was witnessed during the 1990s anda lid t
introduction of OLAP tools [7]. Similarly, given the vasitaepos-
itories being accumulated, there is a pressing need foniggbs
to efficiently and effectively navigate them.

Faceted searcl3] is one example of a successful technique for
effective textual data navigation. In this searching payad each
document is associated with a set of well-defined catedogica
tributes (meta-data) referred to faxets The meta-data domains
are usually organized in a hierarchy, much like tmensionat-
tributes of an OLAP application. Then, the result of a vaniiey-
word query is refined by “drilling-down” the facet hierarehi This
interactive process effectively places and graduallytégh con-
straints on the meta-data, allowing one to identify and $ooco a
fraction of the documents that satisfy a keyword query. Flite
of the original result set possesses properties that arsidemed
interesting, expressed as constraints on the documentdatda

One major drawback of the faceted search model is its radianc
on domain-specific and hard-to-extract document attritaefa-
cilitate data navigation. This limitation renders the ajgmh in-
applicable to document domains that exhibit high varianctheir
content, like blog posts or review collections of arbitragms. In-
stead, we would like to suggest ways to refine the originalcbea
result in aquery-driven, domain-neutrahanner that is indifferent
to the presence of document meta-data, other perhaps thamth
nipresent user ratings.

To realize things concrete, consider a search for “Canor08D7
on a popular consumer electronics site. We would like to be ab
to identify on the fly product features, e.g., “lens” or “SL&pabil-
ity”, which are discussed in the reviews. This capabilitywaobe



extremely helpful, especially for less prominent prodwgth more
obscure features, and would enable the refinement of thealig
query result to reviews that discuss a certain feature efést.

In addition, we are interested in incorporating user feekba
the refinement process. Besides simply identifying prodeat
tures, we would like to locate the ones, e.g., the cameraiss”lin
our example, which are mentioned in reviews for which usaxg&h
providedhigh on average ratings. Similarly, we should be able to
automatically locate other features, for instance the cals&SLR
capability”, which are discussed in reviews wittw on average
ratings. Finally, another helpful possibility is identifig features
mentioned in reviews witbhonsistentunanimous ratings, indepen-
dently of whether they are actually good, bad or neutral.

Such functionality is quite powerful; it provides goal-emted
navigation of the reviews, as we can interactively idenrttify prod-
uct features (keywords) mentioned by satisfied consumegh (h
ratings), dissatisfied consumers (low ratings) or consaitheit have
reached a consensus (consistent ratings) and use thermo tredi
initial query result and drill down to examine the relevamtiews.

In this spirit, we propose a new data analysis and explaratio
model that enables the progressive refinement of a keywaedyq
result set. However, in contrast to faceted search whidizesi
domain-specific and hard-to-extract document attributies, re-
finement process is driven by suggesting interestxgansion®of
the original query with additional search terms extractednfthe
text collection. We refer to this iterative exploratory pess as
Measure-driven Query Expansiollore specifically,

e We introduce three principled scoring functions to quantit
tively evaluate in a meaningful manner the interestingoéss
a candidate query expansion. Our first scoring function uti-
lizes surprising word co-occurrence patterns to singlérout
teresting expansions (e.g., expansions correspondingde p
uct features discussed in reviews).
functions incorporate the available user ratings in order t
identify expansions that define clusters of documents with
either extreme ratings (e.g., product attributes mentidne
highly positive or negative on average reviews) or constste
ratings (e.g., features present in unanimous reviews).

e The query expansion functionality is supported by a unified,
computationally efficient framework for identifying tthemost
interesting query expansions. Our solution is grounded on
Convex Optimization principles that allow us to exploit the
pruning opportunities offered by the natural tbgermula-
tion of our problem.

e We verify the performance benefits of the solution using both
synthetic data and large real data sets comprised of bldg.pos

The remainder of the paper is organized as follows: In Sectio
2 we survey related work. Section 3 formally introduces thery
expansion problem, while Section 4 describes our basetipéer
mentation. Section 5 introduces our improved solution, sehsu-
periority is experimentally verified in Section 6. Lastlyedion 7
offers our conclusions.

2. RELATED WORK

The availability of raw data on a massive scale requireséield
opment of novel techniques for supporting interactive esqibry
tasks. This necessity became evident with the prolifenaifstruc-
tured data and led to the development of OLAP tools [7].

An approach that resembles the OLAP cube, but for unstruc-
tured textual data, is thiaceted searcimodel [3] which extends
the plain keyword search model. The documents are assdciate

Our second and third

with orthogonal attributes with hierarchical domainsereéd to as
facets These hierarchies are navigated in order to refine thetresul
of a keyword query and focus on a subset that satisfies camstra
on the attribute values. The facet domains and their hibieat
organization can be either set manually by an expert or aatiom
cally extracted from the document collection on indeximgeti[9].
These document attributes tend to be highly domain-spedifits

is reasonable as very generic attributes would not offenifsognt
opportunities for identifying interesting refinements. ©a down-
side, the need for domain-specific attributes reduces flity aif
faceted search in more general document domains.

Recent work [19] on improving faceted search proposed the us
of “dynamic” facets extracted from the content of the docotae
a result set can be further refined using frequent phrasesaepg
in the documents comprising the result. This approach idlasim
in spirit to the query expansion functionality that we preppas it
does not rely (exclusively) on the document meta-data tedhe
refinement process. Nevertheless, the proposed query g&pan
technique suggests refinements in a manner that is morei-princ
pled and elaborate (we suggest refinementsgtimizingthree di-
verse measures of interestingness, two of which utilizeiprasent
user ratings) and scalable (we utilize pairs of tokens faargbc-
uments; [19] stores and manipulates phrases of length up to 5

Most major search engines provide query expansion furetion
ity in the form of query auto-completion. However, the susjgd
expansions are ranked incuery-independenand data-agnostic
manner such as based on their popularity in query logs [2].

Two of the scoring functions that we propose to drive the guer
expansion process rely on the presence of explicit or dé(ieough
sentiment analysis [15]) numerical ratings. The Live.caarsh
engine performs sentiment analysis on product reviews cetir
fies the reviewer’'s sentiment towards certgiredefinedproduct
features (e.g., ease of use, battery life) and cites the aumwmb
positive comments for each feature. However, our use of nager
ings/sentiment is both more general and more elaboraggyrating
sentiment into general query processing.

The computational framework that we developed in order ps su
port the query expansion functionality leverages two péuenath-
ematical techniques: the Ellipsoid Method and Maximum &pyr
reconstruction of a probability distribution.

The Ellipsoid Method is widely known in the context of Linear
Programming that deals with the optimization of linear fiimres in
the presence of linear constraints. Nevertheless, it isra generic
technique that can be used to solve Convex Optimizationlgmub
[5]. [4] surveys the history, operation and applicationshaf tech-
nique. The Principle of Maximum Entropy [8] is widely applie
for fully reconstructing a probability distribution whemly partial
information about it is observed. The principle maintalmst since
we have no plausible reason to bias the distribution towarcksr-
tain form, the reconstructed distribution should be asarnifand
“uninformative” as possible, subject to the observed auairsts.
The technique has been successfully applied for purpos@iasi
to our own before [14, 16, 12, 13].

3. MEASURE-DRIVEN QUERY EXPANSION

Consider a collection of documents denotedZdyand a set of
words )V that can appear in the documents of our collection. The
composition oV depends on the application context and will not
affect our subsequent discussion. As an example, it can\sinep
the full set or a subset of the words comprising the documéms
contents of a dictionary, or a well-specified set of wordsveht to
the application.

DEFINITION 1. Aword-setF' is a set ofr distinct words from



W, i.e.,F € PowersefW) and |F| = r.

DEFINITION 2. A collection of word-set&, (w1, ..., w;),l <
r is comprised of all word-set§” with F¥ € PowersetyV) and
|F| =randwi,...,w; € F.

Thus, a word-set is a set of distinct words from, while col-
lection F. (w1, . . ., w;) consists of all word-sets of size subject
to the constraint that they must always contain wards. . . , w;.
The following example clarifies the definitions and illuseésihow
they relate to our goal of suggesting interesting query esjoas.

EXAMPLE 1. Let D be a set of documents and the set of
words appearing irD, after the removal of common and stop words.
A query that retrieves all the documentgirtontaining wordw; is
issued. Let us denote the result of this queryPas . At this point,
we suggest a small numbérof potential expansions of the origi-
nal query by two additional keywords (the size of the exjmmisia
parameter). The candidate expansions are the word-setsgiglg
to F3(w1) (sets containing 3 words, one of which is definitely).
Therefore, our goal is to suggektexpanded querieGvord-sets)
from F3 (w1 ) that can be used to refine the initial search resultin a
manner that is interesting and meaningful.

As the above example illustrates, at each step the funditipna
of suggesting ways texpandthe keyword query) = w1, ..., w;
and refine the current set of results in an interesting manner can
be formulated as the selection fword-sets from a collection
Fr(wi, ... ,wp).

MEASUREDRIVEN QUERY EXPANSION: Consider a document
collectionD and a keyword query) = w1, ...,w; onD. LetDg
be the set of documents 1 that satisfy the query@ can either
be the first query submitted to the system, or a refined quety th
was already proposed. Then, the problengofry expansiois to
suggestt word-sets of size from F, (w1, ..., w;) that extendQ
and can be used to focus on a particularly interesting subsEX,.

Notice that the ability to perform this operation implie® thse
of conjunctive query semantics, i.e., a document needsntairo
all search terms in order to be considered a valid result.

So far in our discussion we have purposefully avoided mantio
ing what would constitute a query expansion that yields atef
esting” refinement of the initial result. In order to be aldesingle

outk expansions to a keyword query, we need to define quantitative

measures of interestingness. In what follows, we offer gtamof
interesting and meaningful query refinements that we sulessty
formalize into concrete problems that need to be addressed.

3.1 Defining interesting expansions

EXAMPLE 2. Consider a search for “digital camera” on a col-
lection of product reviews. In the documents that conta@séh
query terms and comprise the result set, we expect to ermount
terms such as “zoom”, “lens” or “SLR” frequently. The reason
is that these terms are highly relevant to digital camerad are
therefore used in the corresponding reviews. Thus, thegtnitiby
of encountering such terms in the result set is much higtear that
of encountering them in general text, unrelated to digitaheras.

We formalize this intuition with the notion cfurprise[18, 6,
10]. Letp(w;) be the probability of wordv; appearing in a doc-
ument of the collection ang(w1, ..., w.) be the probability of
wordsws, . . . , w, co-occurringin a documentt If wordsw, . . ., w,

Lif considered appropriate, more restrictive notions obcourrence can also be used,
e.g., the words appearing within the same paragraph in anciecu

were unrelated and were used in documéndependentlyof one
another, we would expect thatws, ..., w,) = p(w1) - - - p(wr).
Therefore, we use a simple measure to quantify by how much the
observed word co-occurrences deviate from the indeperdasic
sumption. For a word-sdf = wq, ..., w,, we define

p(wi, ..., wr)

p(w1) - p(wr)

We argue that when considering a number of possible query
expansionsF, (w1, . ..,w;), word-sets with high surprise values
constitute ideal suggestions: we identify coherent chgstédocu-
ments within the original result set that are connected kynanaon
underlying theme, as defined by the co-occurring words.

The use of surprise (unexpectedness) as a measure of interes
ingness has also been vindicated in the data mining litergii8,

6, 10]. Additionally, the definition of surprise that we caier is
simple yet intuitive and has been successfully employedQg,

ExAamMPLE 3. Consider a collection comprised of 250k docu-
ments and query “table, tennis”. Suppose that there exisidi«
uments containing “table”, 2k documents containing “tesinand
1k documents containing both words “table, tennis”. We lkyasi
compute thaSurprisétable,tennis)=25.

Let us compare the surprise value of two possible expansions
with term “car” (10k occurrences) and term “paddle” (1k occu
rences). Suppose (reasonably) that “car” is not particujare-
lated to “table, tennis” and therefore co-occurs indepentlg with
these words. Then, there exist 40 documents in the coltetiat
contain all three words “table, tennis, car” (Figure 1). Wempute
that Surprisétable,tennis,car)=25. While this expansion has a sur-
prise value greater than 1, this is due to the correlationwaesn
“table” and “tennis”.

Now, consider the expansion with “paddle” and assume that
500 of the 1000 documents containing “table, tennis” alsm-co
tain “paddle” (“table, tennis, paddle”). We compute th&ur-
prisgtable,tennis,paddle)=3125. As this example illustrates-
hancing queries with highly relevant terms results in exbaims
with considerably higher surprise values than enhancirggrtiwith
irrelevant ones.

Surpris F') =

surprise(table tennis)=25

5k 2k 5k
table —i— tennis

/

2k
table —iw— tennis

\ 40 \ ...... /
% 0 590
N/ \i/

car paddle

10k 1k

surprise(table tennis,car)=25 surprise(table,tennis,paddle)=5000

Figure 1: Query expansion based on the Surprise measure.

The maximume-likelihood estimates of the probabilitiesuiegd
to compute the surprise value of a word-set are derived fitzen t
textual data of the document collecti@hunder consideration. We
usec(F) = c¢(ws,...,w,) to denote the number of documents in
a collectionD that contain all- words of F'. In the same spirit,
we denote by:(w;) the number of documents that contain ward
andc(e) the total number of documents in the collection. Then, we
can estimatg(ws, ..., w,) = c(wi,...,w,)/c(e) andp(w;) =
c(w;)/c(e). Using these estimates, we can write

c(F)/c(e)

c(wi)/c(e) - c(wr)/c(e)

Therefore, one of the problems we need to address in order to
suggest meaningful query expansions is,

Surpris€ F') =

@



PrRoOBLEM 1. Consider a collectiorD of documents and a word-
set@Q = wi,...,w;. We wish to determine theword-setsF' €
Fr(wi, ..., w) with the maximum value of Surprige).

Ouir first function does not assume the presence of meta-data i
addition to the textual content of the documents. As a matter
fact, the query refinement solution based on the notion ¢fr=e
can be applied to any document corpus. Nevertheless, famaur
subsequent formulations of interestingness, we make thergs
tion that every document is associated with a numericalrigat
from a small domain of values, . . ., s,. As we discussed in Sec-
tion 1, this could be the user-supplied rating to the prodhaihg

documents with extreme ratings (e.g., features mentiamadyhly
positive on average reviews) and Problem 3 expansionsnigadi
to documents with consistent ratings (e.g., features roeed in
unanimous reviews).

Notice also that Problems 1,2 and 3 specify two input pararaet
in addition to the query) to be expanded: the length of the expan-
sionr and the number of required expansidns The techniques
that we subsequently develop can handle arbitrary valugisose
parameters. Appropriate values foandk depend on the applica-
tion. However, in practice the number of suggested expagsidll
normally be a fixed small constant (e.§.= 10, see examples in

reviewed in the document, or even a measure of how positive or [31)- Likewise, aquery will be expanded by 1 or 2 additioretts,

negative is the sentiment expressed in the document [15].

The presence of numerical ratings associated with the dectsm
points to two natural and meaningful ways of suggestingyjegs
pansions. Notice that every possible expandioa F. (w1, ..., w;)
of the initial query is associated with a subset of our doaurael-
lection denoted a®r. Then, themean ratingand thevariance
of the ratingsof the documents i can be used to quantify the
interestingness of the query expansion considered.

ExamMPLE 4. Assume that our document collection is comprised
of electronic gadget reviews, associated with the “starting that
the reviewer assigned to the device. Then, if the originargus
“Canon SD700”, we can strengthen it with additional termiated
to product features, so that the expanded query leads tosterlof
reviews with high on average “star” ratings, e.g., “Canon 300
lens zoom”. Such expansions would be highly interestingaadd
users to quickly identify the product attributes for whit¢her con-
sumers are satisfied. Another alternative is to offer suiyes
that would lead to groups of reviews with consistent ratigigsv
variance), thus facilitating the location of features fonieh a con-
sensus on their quality has emerged.

More formally, for a word set?” wi,...,wr, let Dr be
the documents iD that contain all words if". Furthermore, let
c(F|s;) be the number of documents I that are rated witls;.

Then, the average rating of the document®in is
b

Average RatingAvg(F) = >

i=1

The variance of the ratings iR is equal to

b

Var. of Ratings:Var(F) = >
i=1

b
sic(Flsi)/ > e(F|si) @)
=1

b
sic(Flsi)/ Y e(Flsi) — Avg(F)*  (3)

i=1

i.e.,r =1+ 1orr =1+ 2, wherel is the length of query.

IMPLEMENTING QUERY EXPANSION

Let us concentrate on Problem 1 that involves identifyirgih
word-setsF' € F. (w1, ..., w;) that maximize expression (1). The
problem can be solved by computing the surprise value ofyever
candidate word-set and identifying the tbpnes. We argue that
the main challenge in solving the problem in that manner lisLea
lating the surprise value of a candidate word-set.

The difficulty arises from our need to determine the value of
c(F), i.e., the number of documents that contain all word$"in
Of course, expression (1) requires the number of occurseirce
the corpus for single words, as well as the size of the coripels,
countsc(w;) andc(e) respectively. However, for all practical pur-
poses, these counts can be easily computed and manipulated.
order to compute a word-set’s surprise value we need to foous
attention on determining the value ofF’). This observation is
also valid for Problems 2 and 3: in this case the challenge is t
determine counts(F'|s;), i.e., the number of word co-occurrences
conditioned on the numerical rating of the documents, wisch
problem equally hard to determinirgF").

In what follows, we argue that the naive approachedudf
materializingand retrieving on-demand (Section 4.1) all possible
word co-occurrences(F) is infeasible for large document collec-
tions, while performingno materialization(Section 4.2) at all is
extremely inefficient. Instead, we propose an alternatpm@ach
that is based oestimatingco-occurrences(F’) by utilizing ma-
terialized, lower-order co-occurrences of the words casimy F
(Section 4.3).

4.1 Full Materialization
Suppose that we allow query expansions up tosize5. Then,

4.

Having demonstrated how to compute the mean value and the e fy|| materialization approach would need to generateesand

variance of the ratings associated with the result of a garpan-
sion, we can formally state the two additional problems that
need to address.

PrROBLEM 2. Consider a collectiorD of documents rated with
numerical valuess, . . ., sy, and a word-set) = w1, ..., w;. We
wish to determine the word-setsF' € F,.(ws, . . ., w;) with either
theminimumor themaximumvalue ofAvg(F).

ProBLEM 3. Consider a collectiorD of documents rated with
numerical values, .. ., s, and a word-set) = ws, ..., w;. We
wish to determine thé word-setsF’ € F.,.(wi,...,w;) with the
minimumvalue ofVar(F).

Hence, the problem of suggesting a few meaningful and inter-
esting query expansions is formulated as three separatepoqb-
lems (Problems 1, 2 and 3). Addressing Problem 1 produces the
word-sets/expansions with the highest surprise values, (erod-
uct features related to the query), Problem 2 expansioknigao

manipulate all two, three, four and five-way word co-occoces.
However, this is infeasible even for moderately large atiées.

Let us demonstrate this using a simple example and contentra
on the computation part for the occurrences of word-setszef s
four. The pre-computation of these occurrences would w&/pto-
cessing the collection one document at a time, generatiriguat
word combinations present in the document and temporaoly s
ing them. Then, that data would need to be aggregated aretistor
If on average a document contains 200 distinct words, each do
ument would generate 65 million four-word tuples. If themo
contains 10 million documents, we would need to generateagnd
gregate 650 billion tuples. As this trivial exercise denimatgs, the
combinatorial explosion in the amount of generated datde®en
the explicit handling of high-order co-occurrences imiass

4.2 No Materialization

While materializing all high-order word co-occurrencesns
possible for large document collections, materializingnforma-



tion at all would be extremely inefficient. As an example, con
sider a two-word query that we wish to expand with two addi-
tional words. Since we have no knowledge of four-way word co-
occurrences, in order to evaluate the candidate expansensuld
need to compute them on the fly. That would involve performing
random /O in order to retrieve all documents that satisé/dhg-
inal query and process them in order to compute all two-wagdwo
co-occurrences in the documents (since two words out ofahe r
quired four are fixed). It is evident that the I/O and CPU cdst o
this operation is prohibitively high. It would only make serif the
original result was comprised of a handful of documentsjrtitat
case, the refinement of such a result wouldn’t be necessary.

4.3 Partial Materialization

The proposed implementation of the query expansion funatio
ity lies in-between the two aforementioned extremes, féea so-
lution that is both feasible (unlike full materializatiomd efficient
(unlike no materialization at all). To accomplish this, wepose
the materialization of low-order word co-occurrences drartuse
in the subsequergstimationof higher-order word co-occurrences.
This process involves the computation and storage of tharecc
rences of word-sets up to sizdor a reasonable value gfand their
use in the estimation of the occurrences of arbitrary sizelvgets.

Based on this high-level idea, algorithmAzEcT (Algorithm 1)
presents a unified framework for addressing problems 1, 23and
Given a query®, we need to suggegét expansions of size that
maximize either one of the three scoring functions. In otdedo
so, we iterate over all candidate word-séts F..(Q). For every
candidate word-sef’, we use the low-order co-occurrences (up to
sizel) of the words comprisindg” andestimatethe number of doc-
umentsc(F') that contain all the words ifi". For scoring functions
(2) and (3) that require the co-occurrence values conditoon
the document rating, we derive a separate estimate for eztng
value. Finally, the estimated high order co-occurrencesused
to evaluate the interestingness of the candidate expamasidrits
value is compared against the current list of fopxpansions.

Algorithm 1 DIRECT

Input: Query Q, expansion sizer, result sizek

TopK = 0
Iterator.ini( Q , r)

while Iterator.hasMorg) do
(F, Countsn) = Iterator.getNext)

fori = 1tobdo
c(F|s;) = Estimatg (Countsr ) )

Scorg F') = Computéc(F|s1), ..., c(F|sp))

if Scorg( F') > TopK.thresholdhen
Topk.updaté F")

return  TopK

A natural question that arises at this point is why, unlikengna
other topk query evaluation problems, we need to examine ev-
ery candidate word-set iff,-(@). Indeed, there exists a wealth of
techniques that support the early termination of the&ammpu-
tation, before examining the entire space of candidatel dad
without sacrificing correctness. However, these algorithequire
the scoring function to be monotone. It has been establited
the co-occurrence estimation process does not exhibit toniwe
ity properties that can be exploited. Discussion relatetthéonon-
monotonicity of measures like the one adopted herein idablai
elsewhere [10, 6].

In order to realize algorithm [RECT, we need to address in an
efficient manner two challenges: (a) the progressive géoearaf
candidate expansions and the retrieval of the correspgridin-

order word co-occurrences and (b) their use in the estimafithe
desired high-order co-occurrences.

4.3.1 Generation of candidate word-sets

The solution suggested pre-computes and manipulates the oc
currences of word-sets up to sizeFor most applications, the use
of two-word co-occurrencepresents the most reasonable alterna-
tive. Co-occurrences of higher order can be utilized at #peese
of space and, most importantly, time. For the scale of thdi-app
cations we envision, materializing co-occurrences oftlefgher
than two is probably infeasible.

Two-word co-occurrences can be computed and stored efficien
as described in [1]. This involves the computation of a sblite
consisting of triplets(w;, w;, {(c(w;,w;))s). Every such triplet
contains the number of co-occurrence$w;, w;))s of wordsw;
andw; for all document ratings . A special tupl&w;, w;, (c(ws, w;))s)
stores the occurrences of worg. If two words in)V do not co-
occur we simply don't store the corresponding tuple.

Then, one can use the tuples in the list of two-word co-oenaes
and “chain” together pairs of words in order to progressigen-
erate all word-sets of a collectiaf, (Q), while at the same time
retrieving the corresponding one-word and two-word cauifigh
some careful indexing and engineering this can be achieitadut
generating a candidate word-set more than once and with ia min
mum amount of I/O. Thus, we can efficiently implement the-iter
ator utilized by algorithm DRECT, which progressively retrieves
word-set candidates and their low-order word co-occuesnc

Although we suggest the use of two-word co-occurrences and
base the remainder of our presentation on this assumptioof a
our techniques can be easily adapted to handle the use adrhigh
than-two word co-occurrences.

4.3.2 Estimation of Word Co-occurrences

Having established a methodology for efficiently geneathre
candidate word-sets and retrieving the correspondingesingrd
and two-word countse(w;), ¢(w;, w;)), we need to focus on how
to utilize them in order teestimatehigher-order co-occurrences
c(wi,...,wy). The estimation approach that we use is based on
the widely accepted Principle of Maximum Entropy [8] and has
been successfully employed before [14, 16, 12, 13].

A basic observation is that a given word-gét= wy, ..., w,
defines a probabilistic experiment and consequently a piliya
distribution over the possible outcomes of the experim&iven
a documentD € D, we identify which of the wordsv; of F' are
contained inD. We associate with each wotd; a binary random
variableW;, such thaiV; = 1 if w; € D andW,; = 0 otherwise.
Therefore, the experiment has= 2" possible outcomes that are
described by the joint probability distributigr{1, ..., W,.).

If we had knowledge of that joint probability distributionew
could easily estimate the number of co-occurrendes, . . . , wy)
using its expected value(ws, ..., w,) = p(1,...,1)c(e), where
c(e) is the number of documents 1. But although we do not
know the distribution, we are not completely ignorant aiththe
pairwise co-occurrences and single-word occurrences ratlisu
posal provide us with some knowledge abp(#/1, ..., W;).

ExAMPLE 5. In order to ease notation, let us concentrate on a
word-setF' = a, b, ¢ of sizer = 3 that defines an experiment with
n = 8 possible outcomes and is described by the joint distriloutio
p(A, B,C). Our fractional knowledge about this distribution is
in the form of simple linear constraints that we can derivanir
the pre-computed co-occurrences. For example, we can a&stim
that p(A = 1,B = 1) = c¢(a,b)/c(s). Butp(A = 1,B
1) = p(1,1,0) + p(1,1,1). In the same mannes(A = 1)



c(a)/c(e) = p(1,0,0) +p(1,0,1) +p(1,1,0) +p(1,1,1).

Let us introduce some notation that will allow us to describe
succinctly our knowledge about the joint distributipn Each of
then = 2" possible outcomes of the experiment describecg by
is associated with a probability value. Recall that eacltame
is described by a tupléiy, ..., W), where variablé/¥V; is ei-
ther O or 1, signifying the existence or not of waid in the doc-
ument. Then, lep; be the probability of outcoméo, ..., 0,0),
p2 of outcome(0,...,0,1), ps of (0,...,1,0) and so on and so
forth so thap,, is the probability of outcomél, . . ., 1). Therefore,
the discrete probability distribution can be described hyeetor
p = (p1,...,pn)T. Elementp, is used to provide the high-order
co-occurrence agwi, . . ., Wr) = pnc(e).

As we discussed in Example 5, each two-word co-occurrence
counte; provides us with some knowledge about the distribution in
the form of a linear constraint! p = ¢;. a; is a vector with ele-
ments that are either 1 or 0, depending ongtliethat participate in
the constraint. This is also true for the single word ocawes, as
well as the fact that the probabilities must sum up to 1. laltate
have at our disposah = 1+r+r(r—1)/2independenlinear con-
straints:r(r — 1) /2 from the two-word co-occurrencesfrom the
single-word occurrences and 1 from the fact that probaslinust
sum up to 1. Therefore, our knowledge of the probabilityriist
tion can be represented concisely in matrix formdas<»p = c,

p > 0, where each row ofi and the corresponding element®f
correspond to a different constraint.

EXAMPLE 6. LetF' = a,b,c be aword-set. Then= 3, n =
8 andm = 7. We can describe our knowledge of the distribution
p > 0 defined byF' in matrix formAp = ¢, i.e.,
pP1

P2
P3

c(a, b)/c(e)

c(a, c)/c(e)

c(b, c)/c(e)
c(a)/c(e)
c(b)/c(e)
c(e)/c(e)
c(e)/c(e)

P4
P5
P6
P7
P8

mooocooo
HFROOOOCO
mormoOOO
O ROO
mooroOOO
HHEORFRORO
HORROOR
[ =y .
Il

The constraints can also be viewed as a system of linear equa-

tions. However, the systemp = c is under-defined, as there are
less equations (constraints) than variabjes). Therefore, this in-
formation by itself does not suffice to uniquely determine jiiint
probability distributionp. It is important to note that we could
inject additional constraints by utilizing informatiorkdé the num-
ber of documents irD that contain wordw;, but not wordw;.
The number of such documents is simplyw;, w;) = c(w;) —
c(w;,w; ). However, all such additional constraints can be derived
by the original constraints defined bByandc, therefore no supple-
mentary knowledge can be gained in that manner.

When only partial information about a distribution is ohaet
(such as in our case) the well-known information-theoretiaici-
ple of Maximum Entropj8] is widely applied in order to fully re-
cover it [14, 16, 12, 13]. The principle maintains that simeehave
no plausible reason to bias the distribution towards a iceftam,
the reconstructed distribution should be as symmetric amih*
formative”, i.e., as close to uniforriil/n,...,1/n) as possible,
subject to the observed constraints. In that manner, ndiadai
information other than the observed constraints is ingkcte

More formally, the information entropy of discrete distriton
p is defined asH (p) = — >, pilogp;. Theuniquedistribu-
tion p* that maximizesH (p) subject toAp = candp > 0 is
the maximum entropy distributioand satisfies the aforementioned
desirable properties. Having computed the maximum entdigy
tribution p*, we estimate the desired high-order co-occurrence as
c(w17 e ,’U_)»,«) = p:LC(.)'

EXAMPLE 7. Let us revisit Example 3 (Section 3.1) where we
compare the surprise value of two possible expansions feryqu
“table, tennis”: with irrelevant term “car” and highly releant
term “paddle”. Using the two-way word co-occurrences dépit
in Figure 1 (Section 3.1) and the Maximum Entropy Principle,
estimate that there exist 40 documents containing all theems
“table, tennis, car” (true value is 40) and 462 containingdhle,
tennis, paddle” (true value is 500). While the reconstroetpro-
cess does not perfectly recover the original distributie,accu-
racy is compatible with our goal of computing tépexpansions:
we estimate thaBurprisé€table,tennis,car)=25 (true value is 25),
Surprisétable,tennis,paddle)=2888 (true value is 3125), i.e., we
are able to distinguish beyond doubt between interestirdyraon-
interesting candidate expansions.

Entropy maximization is aonvex optimizatioproblem [5]. Al-
though there exists a variety of optimization techniquesitiress-
ing convex problems, the special structure of the entropyimization
task, its importance and the frequency with which it is emtered
in practice, has to led to the development of a specializéichiqa-
tion technique known akerative Proportional Fitting(IPF) [8].
The IPF algorithm is an extremely simple iterative techeiduat
does not rely on the heavyweight machinery typically emgtblgy
the generic convex optimization techniques and exhibiteynuke-
sirable properties. In what follows, we offer a brief deptidn of
the algorithm and highlight some of its properties. Moreadstare
available elsewhere [8].

Initially, vector p is populated with arbitrary values. The choice
of the starting point does not directly affect the speed ef dk
gorithm, while the starting values do not even need to satisf
constraintsAp = c¢. Then, the algorithm iterates over the linear
equality constraints (the rows of matrik) and scales by an equal
amount the variables gf participating in the constraint, so that the
constraint is satisfied. This simple process, convergesotmai
cally to the maximum entropy distribution.

A last point to note is that, due to the form of the entropy fiorc
H (p), if we scale the right hand side of the problem constraints by
a scalarm > 0, i.e., Ap = ac, then the optimal solution will also
be scaled by, i.e., the optimal solution will bep*. Therefore, we
can scale the right hand side of the constraints(sy so that we di-
rectly use the low-order occurrence counts in the solutfgorab-
lem (Example 6) and get the expected number of co-occursence
c(wi,...,wy) = prc(e) directly from the value op;,. The IPF
procedure is also unaffected by this scaling.

5. WORKING WITH BOUNDS

The query expansion framework implemented by algorithrn D
RECT (Algorithm 1) incrementally generates all candidate query
expansions and for each candiddteit solves an entropy maxi-
mization problem to estimate the co-occurrence ceght) from
lower-order co-occurrences. Hence, the bulk of the contiounal
overhead can be attributed to the maximum-entropy-bagéedaes
tion step. In this section, we focus our attention on redy¢his
overhead. Let us begin by making two important observatibas
will guide us towards an improved solution.

e First, the IPF procedure, or any other optimization aldonit
for that matter, “over-solves” the co-occurrence estiorati
problem, in the sense that it completely determines the max-
imum entropy distributiorp™, relevant to the candidate ex-
pansion under consideration. However, recall that we only
utilize a single element op*, namelyp},, which provides
the required co-occurrence estimate (Section 4.3.2). &her



mainingn — 1 values of the optimal solution vectgr* are
of no value to our application.

e Second, besides requiring a single element from the maxi-
mum entropy distributiorp™, we do not always require its
exact value: in most cases a bound aropf)dvould work
equally well. Remember that we only need to determine the
top-k most interesting query expansions. Therefore, a bound
on the estimated co-occurrence cowmhjich translates into
a bound on the score of the expansion considemeidht be
sufficient forpruning the candidate: if the upper bound on
the score of the candidate is less than the scores of the top-

expansions that we have computed so far, we do not need to

evaluate its exact score as it can never make it to thé:top-

Hence, we require much less than what the IPF techniqueyor an
other optimization algorithm provides: we only need bouoiishe
value ofp}, (high-order co-occurrence) instead of the exact solution
p” of the entropy maximization problem.

In order to exploit this opportunity we develop.EMAX, a
novel iterative optimization technique. E.IMAX is capable of
computing the exact value @f;, but does so by derivingrogres-
sively tighter boundsround it. As we elaborate in Section 5.1,
each iteration of the E.1 MAX technique results in a tighter bound
aroundp;,. This is a property that neither IPF, nor any other opti-
mization algorithm possesses.

The unique properties of theLEI MAX technique are leveraged
by algorithm BounD (Algorithm 2), an improved framework for
computing the tope candidate expansions. AlgorithnoBND pro-
cesses candidate expansions one at a time, as algoritRmcD
does. However, it utilizes thelEEI MAX technique to progressively
bound the co-occurrences of candidate expangioand conse-
quently its score. The algorithm stops processing canelilaas
soon the upper bound on its score becomes less than the §toee o
expansions currently in the topheap. In the case that a candidate
cannot be pruned since it needs to enter thektdyeap, the E-
LIMAX technique is invoked until the bound on its score tightens
enough to be considered a singular value.

The advantage offered by algorithnoBND over algorithm D-
RECT presented before is its ability to prune candidate expassio
that cannot appear in the tdpresult,without incurring the full cost
of computing their exact scarén most cases, only a handful of E
LIMAX iterations should be sufficient for eliminating a candidate
from further consideration.

Algorithm 2 BOUND

Input: Query Q, expansion sizer, result sizek

TopK = 0
Iterator.ini( Q, r)

while Iterator.hasMorg) do
(F, Countsr) = Iterator.getNext)
Scorgy i (F) = —oo, Scorgnax (F) = +oo
while Scorgnax (F') — Scorgy iy, (F)) > edo
for i = 1tobdo
Tighten[cypin (F54), cmax (F|s;)] using ELIMAX
Tighten[Scorgyysy, (F), S0t ax (F)] Usng[emin (Fls;), emax (Fls;)]

if Scorgnax (F') < TopK.thresholdhen
Break

Topk.updaté F)

retum  TopK

Before we proceed with the presentation of the B AX tech-
nique, let us briefly verify that a bound on the estimated nemath
word co-occurrences is actually translated into a bouncherirt-
terestingness of the candidate expansion, for all thregrgrfunc-
tions that we consider.

e Surprise (1): It is not hard to see that a bound on the es-
timated number of co-occurrences< ¢(F) < b bounds

surprise between a/c(e < SurpriséF) <

)
TR (wi)/c(e) - e(wr) /c(e)
b/c(e)

c(wi)/c(e)--c(wr)/c(e)"

e Average Rating (2): Let assume that we have obtained bounds
a; < ¢(F|s;) < b;. Additionally, let us also assume that rat-
ings s; are positive. Then, in order to get an upper bound
on Avg(F') we need to set the numerator to its largest possi-
ble value and the denominator to its smallest possible. Rea-
soning in the same manner for the lower bound, we obtain

Zz;b“ < Avg(F) < Zz—“‘a" A similar process can pro-

1

vide us with bounds when some of thgs are negative.

e Variance of Ratings (3): The variance equation is comprised
of two terms. We can compute bounds on the first term using
the process we just described, while the second is simply
Avg(F)?, for which we demonstrated how to derive bounds.

5.1 Progressive Bounding of Co-occurrences

The iterative ELI MAX technique that we develop for providing
progressively tighter bounds around the estimated numtigghb-
order co-occurrences,, is based on the principles underlying the
operation of the Ellipsoid algorithm for solving Convex @piza-
tion problems. We briefly survey these topics in Sectionl5.4s
they are vital for understanding of tha.E MAX technique, sub-
stantiated in Section 5.1.2.

5.1.1 Convex optimization and the Ellipsoid method

The entropy maximization problem, whose optimal solutign
provides the estimatg), of the desired high-order co-occurrences,
is aconvex optimizatichproblem [5].

min—H(p), Ap=c¢, p>0 4

DEFINITION 3. AsetD € R" is convex ifvz,y € D and
0<6<1,0z+(1—-8)yeD.

Less formally, a seD is convex if any line segment connecting
two of its points lies entirely iD. Therefore, convex domains are
continuous subsets & without any “cavities”.

DEFINITION 4. A functionf : D — R, D C R" is convex
if its domain D is a convex set andz,y € D and0 < 6 < 1,

[0z + (1 =0)y) <0f(x)+ (1 —-0)f(y)

It is not hard to demonstrate that both the optimization fiamc
—H (p) and thefeasible areaf the problem, defined by constraints
Ap = c,p > 0 areconvex A desirable property of convex opti-
mization problems is the following.

THEOREM 1. [5] Any locally optimal point of a convex opti-
mization problem is also globally optimal.

A corollary of this important property is that most convextiop
mization problems have a unique optimal solution. This ie of
the reasons that convex optimization is a tractable projgame it
allows the development of efficient, greedy iterative teghes (de-
scent and interior-point) that progressively move towahgsopti-
mal solution. Nevertheless, these algorithmsabikviousof their
current distance to the optimum.

There exists, however, a different class of optimizatiothte
nigues known as localization methods that progressivelywidhe

2We formulate the entropy maximization problem as a minitiareproblem in order
to conform with the established optimization terminology.



optimal solution within a shrinking container. When the t@iner
becomes small enough, a point inside it is used to approgitat
solution. Most prominent among this class of algorithmsesHl-
lipsoid Method which utilizes an ellipsoidal container to bound the
optimal solution.

The Ellipsoid Method can be used to solve convex optimimatio
problems of the formmin f(p) subject toAp < b, wheref is a
convex function. At a high level, it utilizes an ellipsoid @ander to
contain the problem’s optimal solution. An ellipsdds described
by means of a matri® and its centeo, so that the points inside it
satisfy€ = {p: (p —0)" P~ '(p —o0) < 1}.

The algorithm commences with an ellipsafid that contains
the entire feasible region, as defined by the problem cansra
Ap < b. Then, at each iteratioty it queries anoracle which
provides the algorithm with a hyperplane passing throughctir-
rent ellipsoid’s centeo;. The hyperplane is described by a vector
h; perpendicular to the hyperplane. Using this represemtatice
pointsp on the hyperplane satisty! (p — o;) = 0. The guarantee
we are offered by the oracle is that the optimal solutighis lo-
cated on the positive side of the hyperplane, h¢.(p* —o;) > 0.
Having obtained thiseparating hyperplanethe algorithm com-
putes the uniqueninimum volume ellipsoid;+, which contains
the half of the current ellipsoid: that lies on the positive side of
the hyperplane. Notice that the invariant maintained by phb-
cedure is that the current ellipsaf alwayscontains the optimal

solutionp®. When the ellipsoid becomes small enough, we can use

its center as an adequate approximation to the optimalisplut
Although the iterations of the ellipsoid algorithm mightese
heavyweight, they are actually efficient and come with a ttbieo
cal guarantee concerning the amount of shrinkage they gatdm
In case the cost functiofiis differentiable, as is the case for the en-
tropy function, the separating hyperplane is simply mimegra-
dient of the function at the ellipsoid center, i.dy; = —V f(o:)
[5]. In the event the ellipsoid center lies outside the felasie-
gion, any violated constraint (rows fromip < b) can serve as a
separating hyperplane. Having obtained the separatingrpignme,
determining the next ellipsoid involves a few simple mairector
multiplications involving matrixP; and vectorsh:, o:. The total
cost of an iteration i®)(n?) (n is the problem dimensionality) and

1
reduces the containing ellipsoid’s volume by at least+D [4].

5.1.2 TheeLLiMax technique

The ellipsoid method offers a unique advantage not proviyed
IPF or any other convex optimization technique. Nartaly pro-
gressively shrinking ellipsoid can be utilized to derivaibds on
any elemenp; of the optimal solutionHowever, this process is far
from straightforward. There are a numbersajnificant challenges
that need to be addressefficientlyin order to substantiate theLE
LIMAX optimization technique to used by algorithnoBND.

e Remove equality constraints: As we discussed in our overvie
of the ellipsoid method for convex optimization, it is appli
cable in the presence of inequality constraints of the form
Ap < b. However, our optimization problem (4) contains
equality constraints that need to be efficiently removed.

e Update bounds around;: We need to work out the details
of how to translate the ellipsoidal bound around the optimal
solutionp™ into a one-dimensional bound fpf, .

e Identify a small starting ellipsoid: The ellipsoid methaat r
quires a starting ellipsoid that completely covers theifeas
ble region. Since our motivation for utilizing the ellipdoi

method is to derive a tight bound around the optimum as fast

as possible, it is crucial that we initiate the computatiathw

the smallest ellipsoid possible, subject to the constrthiat
its determination should be rapid.

In the remainder of the Section, we focus on providing effitie
solutions for these tasks. The efficiency of the solutionals®
experimentally verified in Section 6.4.1.

Removing the equality constraints and moving to thex-space

The ellipsoid method cannot handle equality the equality-co
straints of the entropy maximization problemg = c) because
such constraints cannot provide a separating hyperplathe icase
the ellipsoid’s center violates one of them. Therefore, grablem
needs to be transformed into an equivalent one that doexaet f
ture equality constraints. In order to perform this transfation
we utilize linear algebra tools [20].

DEFINITION 5. The null spaceof matrix A,,x», denoted by
N (A), is the space of vectors that satisfyAr = 0. The null
space is §n — m)-dimensional subspace Bf*.

LEMMA 1. A vectorp with Ap = c can be described as the
sum of two vectorp = q + r, whereq is any vector that satisfies
Aq = c andr is a vector that lies in the null space df

The null space of4, like any vector space, can be described by
anorthonormal basisi.e., a set of orthogonal, unit vectors. Such
a basis can be computed using one of a number of available tech
niques, like the Singular Value Decomposition. The basisigts
of g = n — m, n-dimensional vectors.

LEMMA 2. Lete,..., e, With g = n —m be an orthonormal
basis forA'(A). ThenAr =0 < r = Y 7 | Xie;, with\; € R.

To ease notation, le/ = [e: ...e4] be a matrix whose columns
are the basis vectors ¢ (A). Then,Ar =0 < r=UA.

The aforementioned lemmas allow us to eliminate the congsra
Ap = c by simply enforcingp = q + UX. Observe that a vector
A € RY fully defines a vectop € R™. Then, we can substitute
p in the cost function withq + UX and express it as a function
of A. We will denote the entropy function expressed as a function
of A with H»(\). Itis easy to show that Hx(\) is also convex.
Additionally, the constrainp > 0 becomed/A > —q. Putting it
all together, the optimization problem that we need to askiie

min —Hy(\), UX> —q ®)

Problem (5) is equivalent to problem (4), but (a) it does not
contain equality constraints and (b) it is of smaller dimenal-
ity g = n —m, sincep € R" while A € R"™™. We will say that
the original problem (4) lies in the-space, while the transformed
problem (5) lies in the\-space.

The remaining question is whether this transformation can b
computed efficiently. The answer is positive and this is dua t
simple observationmatrix A is always the same for all instances
of problem (4) Although the constraints are different for every
instance, what varies is the values of veator This is intuitive,
as the only change from instance to instance are the low-cme
occurrence counts populating vecwoand not the way that vari-
ablesp; are related, which is described by matAxXSection 4.3.2).

Therefore, the null space gf and consequently matriX can be
pre-computed using any one of available techniques [20].cave
also use pre-computation to assist us in determining aropppte
vectorq, such thatdq = c. A solution to this under-defined sys-
tem of equations can be computed by means of eitheftReor
LU decomposition ofd [20]. As with the null space, the decom-
position of A can be pre-computed.

Translating the ellipsoidal bound in the A-space to a linear bound
in the p-space



At each iteration, the ellipsoid method provides us with @n u
dated ellipsoic€ = {\ : (A —0)"P~'(XA — 0) < 1}. The chal-
lenge we need to address is how to translate this ellipsbinlahd
in the A-space into a linear bound for variahklg in the p-space.
The following theorem demonstrates how this is done.

THEOREM 2. LetE = {A: (A —0)TP7'(A —0) < 1} be
the bounding ellipsoid in the.-space. Let us also define vector
d = (e1n,...,egn)T. Then, variable, in thep-space lies in

Pn € lgn +d70 —VdTPd, ¢, + d" o + VdT Pd|

PROOF We can verify thatp,, = ¢, + d7o + d¥m, with
m”P~'m < 1, using thep-space to\-space mapping. Due to
the positive-definiteness d?, there exists real, invertible matrix
V such thatP = VVT. Thus, the constraint om becomes
(V7'm)T (V"'m) < 1. We setv = V"'m and have that
pn = o +dTo + (VTd)Tv, with vT'v < 1. In other words,
v is a vector of length at most 1 ang, is maximized when prod-
uct (VT'd)"v is maximized. In order to accomplish this, vector
v must be aligned with vectdr ”d and its length must be set to
its maximum value, i.e., 1. Hence, the valuevofnaximizingp,
isv = VTd/||VvTd||. By substituting (and using the fact that

vxTx = ||x]||) we obtainp,’s maximum value. [

Based on the aforementioned result, the translation ofltige e
soidal bound in the\-space to a linear bound for variablg in the
p-space can be computed analytically by employing a few efiici
vector-vector and matrix-vector multiplications.

Identifying a compact starting ellipsoid

Identifying a compact starting ellipsoid is an integral tpaf
the BELLIMAX technique. Nevertheless, determining such an el-
lipsoid presents a performance (computation cost)/effagi€ellip-
soid size) trade-off. For example, we can formulate the lpralof
identifying the minimum volume ellipsoid (known as Lown#shn
ellipsoid) covering the feasible region of problem (5) aawex
optimization problem [5]. However, the resulting problestharder

than the problem we need to solve. Therefore, it does not make

sense to determine the best possible starting ellipsoidcét cost.

In what follows, we present aanalytical procedure for identi-
fying a compact starting ellipsoid. The procedure is effitias it
involves a handful of lightweight operations, and is coregdi of
three steps: (a) identifying an axis-aligned bounding bmuad
the feasible region in thg-space, (b) using the box in thespace
to derive an axis-aligned bounding box in thespace and (c) cov-
ering the latter bounding box with the smallest possiblipsdid.

Let us concentrate on the first step of the procedure. Théfeas
region in thep-space is described by the linear constraifits= ¢
andp > 0. Every row of A along with the corresponding element
of ¢, define a linear constraint that sums some ofzhe so that
they equal a value (Example 6). Then, sincg > 0, the elements
of p that participate in the constraint cannot be greater thaimce
that would require some element in the constraint to be hegat

Therefore, by iterating once over all the constraintsijp = ¢
we can get an upper bound for every elementAt that point we
can make another pass over the constraints in order to dateem
lower bound tighter than 0: by setting all variables but an¢he
maximum value that they can assume, we can use the lineaFr equa
ity to derive a lower bound for our free variable. By repeatihis
process for all constraints and variables we identify lobh@unds
for all variablesp;.

EXAMPLE 8. Suppose that we only have 2 constraipis+
p2 = 2 andps + p3 = 4. From the first constraint we can
derive thatp; < 2 andp2 < 2, while the second one provides

p2 < 4 (for which we already acquired a better bound) g <

4. We then use these upper bounds to derive the lower bounds
P1 2 2_p2,maz :>p1 2 pr2 2 2_p1,maz :>p2 2 Oand

P3 > 4— D2,maz = P3 > 2.

We now need to translate the derived bounds< p; < b; into
bounds in the\-space. Let; = (0,...,1,...,0) be a basis
vector of thep-space. Then,

g
p:(I+Z>\iei and p =
i=1

n g n
vai =q+ Z Aie; = Z Pivi
i=1 i=1 i=1

Let us multiply both sides of the equation with vectqr, keep-
ing in mind that vectore; form an orthonormal basis.

g
q+ Z Aie;
i=1

Getting a bound on\; is now straightforward. Each constraint
a; < p; < b; is multiplied by (v7ey,), so that

n n
= Z pivi= A =—q e + Zpi(v;'[ek)
i=1 i=1

T
7

-ek)>0
Te) <0

ai(vier) <pi(vier) < bi(vier), if (

bi(v?ek) < pi(v;ek) < ai(v?ek), if (

\%
v
Adding these constraints up and further adding” e, to both
the lower and upper bound, we get a bound\gn

Lastly, the minimum volume ellipsoi covering an axis-aligned
box can also be analytically determined. Intuitivelyjs an axis-
aligned ellipsoid whose center coincides with the box’se Teémgth
of V's axis parallel to the\;-axis is equal tq /g times the box’s ex-
tent across that axis.

THEOREM 3. Consider ag-dimensional, axis-aligned box so
that A™ < X\; < A Then, the minimum volume ellipsoid
V={A:(A-0)TP7* (A —o0) < 1} covering the box is

o= AT
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)\;nln + )\;nax
2
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_)\r_nin 2
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6. EXPERIMENTAL EVALUATION

6.1 Summary of Contributions

Before we proceed with our evaluation, let us recapitulate o
contributions and the algorithms introduced and subsetyueval-
uated. In Section 3 we formulated the problem of refining a key
word query result by suggesting interesting and meanirgyiakry
expansions. We introduced three scoring functions to dfasimely
evaluate the interestingness of candidate query expaaimhsin-
gle out thek expansions with maximum (or minimum) score values
(Problems 1, 2 and 3).

In Section 4 we observed that the main challenge in evalgatin
the score of a candidate expansiBiiies in computing the number
of documentg:(F") containing all the words comprising and jus-
tified the use of two-word co-occurrences in order to eséro@t).

To this end, we introduced AlgorithmIRECTwhich incrementally
generates all candidate query expansions and for eachoeaedi

it (a) solves an entropy maximization problem (many in theeca
of Problems 2 and 3) to estimatéF’) (Section 4.3.2) and (b) uses
this estimate to computé&”s score. Algorithm DRECT uses the
specialized IPF technique in order to solve the entropy mezd-
tion problem.

Algorithm BouND (Section 5) improves upon IRECT by ex-
ploiting the natural topge formulation of the query expansion prob-
lem. By leveraging the novellE1 MAX technique (neither IPF nor



any other algorithm can be used) in solving the entropy mepdam
tion problem, it can progressively boun@F') and subsequently the
score of a candidate expansifhand eliminate it as soon its upper
bound is lower than the candidates in the fopeap.

While we introduced ELI MAX for use with algorithm BUND
and apply it on the entropy maximization problem, it shou&d b
noted that it is anovelandgenericoptimization technique and can
be applied orany convex optimization problein order to derive
progressively tighter bounds around parts of its optimum.

6.2 Expansion Length and Problem Dimen-
sionality

Let us now briefly discuss how the lengthof the candidate
query expansions affects the overall complexity of our fmob
This length defines the size of the resulting entropy maxation
problem which in turns contributes to the difficulty of ouoptem.

Estimating the occurrences for a word-set of sizequires the
solution of a convex optimization (entropy maximizatiomplpiem
involvingn = 2" variables andn = 1+r+r(r—1)/2 constraints
(Section 4.3.2). In the case of the lEMAX technique we intro-
duced in Section 5.1, removal of the equality constraints results
in an optimization problem that lies in tliedimensional\-space,
whereg = n—m. Table 1 summarizes the values of these variables
for three reasonable valuesaf

n | m|g
r =3 8 7 1
r=4 16| 11| 5
r=5 |32 16| 16

Table 1: Word-set size effect on problem size.

As the length of the candidate expansions increases, salipes
complexity of the entropy maximization problem. This hasadn
verse effect on the running time of both the IPF (used lyHZT)
and the ELIMAX (used by BDuND) algorithms. An interesting
observation is that for = 3, the BE.LIMAX technique handles a
1-dimensional problem. Effectively, the feasible regidnha con-
vex optimization problem in tha-space is a line segment. In this
case, the ELI MAX technique collapses to a bisection method that
bounds the optimal solution by iteratively cutting the fbesline
segment in half.

6.3 Experimental Setting

Both the IPF process and the lH MAXx algorithm are optimiza-
tion techniques that iteratively converge towards the lerols op-

2.4Ghz Opteron processor with 16GB of memory, although both
optimization techniques have miniscule memory requireéserhe
methods were implemented in C++, while the vector and marix
erations were supported by the ATLAS linear algebra libfaj.

6.4 Experimental Results

6.4.1 Evaluation of theLLiMax Technique

The initialization of the ELIMAX technique includes the re-
moval of the equality constraints and the transition to Xhepace
where the algorithm operates, as well as the computatiorcofra
pact starting ellipsoid. An iteration involves the compiaa of
a cutting hyperplane, its use in updating the ellipsoidaitaimer
and the derivation of a linear bound for variabplge Each iteration
guarantees a reduction of the ellipsoid’s volume by at leasttain
amount. Although this reduction cannot be directly trateslanto
a reduction in the size of the bound arouysjd it provides us with
some information about the effectiveness of each iterafiable 2
summarizes this information.

Initialization (us) | Iteration (us) | Vol. reduction%
r=3 1.8 0.5 50
r=4 4.6 2.6 8
r=5 12.00 7.9 3

Table 2: Performance of the B.LI M AX method.

As we can observe, both the initialization and iterationrape
tions are extremely efficient. Nevertheless, as the prolsiemin-
creases (expansion length two sources contribute in the method’s
performance degradation: (a) the iterations are more exmEand
(b) more iterations are required in order to decrease thedou
aroundp;, by an equal amount. Such trends are consistent as the
value ofr increases.

6.4.2 Synthetic data

For our first set of experiments, we applied both algorithm D
RECTand algorithm B UND to a stream of 100k synthetically gen-
erated candidate expansions and measured the total CP(sper&
in IPF calls by DRECT and E.LIMAX iterations by BOUND) re-
quired in order to identify the top-10 expansions. As we utsed,
since the purpose of computing expansions is to present them
user, only a handful of them need to be computed.

A candidate expansion is generated by assigning valueseto th
low-order co-occurrences that describe it. Equivalerity,every
candidate we need to assign values to the constraint veabits
corresponding entropy maximization problem (4). For Reois

timum. The methods terminate when they are able to provide an 2 and 3, the required low-order co-occurrences conditiarethe

approximation to the optimal solution within a desired degof
accuracy. In our experiments, we set this accuradptd in abso-
lute terms, i.e., we declared convergence when— p;,| < 107°.

In order to guarantee that the convergence condition is yniteb
IPF, we required that two iterations fail to change the valokall
variablesp; by more tharl0~° [14]. At this point, the IPF’s most
recent estimate fop;, is returned to Algorithm 1. The I MAX
technique derives progressively tighter bounds aroundethaired
optimal valuep;,. Unless the method is terminated by algorithm
BouND, due to the algorithm being able to prune the candidate,
the BELLI MAX technique stops when the bound aropijdbecomes
smaller tharl0~°. Then, the middle-point of the interval is used to
approximate the true value pf, with accuracy withinl0=°.

In our timing experiments we concentrated on the CPU time re-
quired by algorithms IRECT and BouUND, since the 1/0 compo-
nent is identical for both algorithms. The CPU time of altjum
DIRECT s consumed by IPF calls, while the CPU time abBND
is consumed by E.1MAX iterations. Our test platform was a

document rating, are generated for each rating value imdizpely.

Our first data generator, denoted by works as follows. In-
stead of directly populating vectat, its values are generated in-
directly by first producing the underlying probability disution
p that the maximum entropy process attempts to reconstruet. R
call that low-order co-occurrences appearing in vectare related
to the underlying distribution that we estimate throughstmints
Ap = c. Then, sinceA is fixed andp known, we can generate
vectorc. These constraints are tloaly information used by IPF
and E_.LIMAX in order to estimatp,,. The data distribution vector
p is populated with uniformly distributed values from a sfieci
range (5,10000] in our experiments). We experimented with other
skewed data distributions and the results were consistihttiae
ones we subsequently present.

During our experimentation we observed a dependence of the
performance of the IPF technique (and consequently of ifgor
DIRECT) on the degree gbairwise correlationbetween the words
comprising a word-set. We quantify the correlation betweends



w; andw; by employing ratios(w;, w;) /c(w;) ande(ws, w;)/c(w;):
the closer the value of these ratios is to 1, the more frefueantds

w; andw; co-occur in the document collection. As we will discuss
in more detail, we observed that the convergence rate of 18- w
adversely affected by the presence of strong correlations.

Our second data generator, denoted’hgynthetically produces
co-occurrences with a varying degree of pairwise cormtatilts
first step is to randomly generate two-word co-occurrentes, w; )
from a uniform distribution over the interval00, 1000]. These co-
occurrences are subsequently used in the generation oinjle s
word occurrences(w; ): for every wordw;, the ratiomax; c(w;, w;)
/c(w;) is sampled uniformly from an intervgd, b]. Using this ra-
tio we can derive a value far{w;). Controlling the intervala, b]
allows us to control the degree of pairwise correlation wedn
Therefore, we experimented with 5 data sét§;, where we sample
from the interva[0.01, 0.99], C'1 from the interval0.01, 0.25], C2
from [0.25, 0.50], C3 from [0.50, 0.75] andC'4 from [0.75, 0.99].
Intuitively, data setC'0 is comprised of candidates with a varying
degree of correlation, while data s&t4 to C'4 contain candidates
that exhibit progressively stronger correlations.

The experimental results for Problem 1 are presented inr&igu
2. The left bar chart depicts the results for expansionszefisi=
3, while the right bar chart for expansions of size= 4. At a
high level, it is evident that algorithm ®JND clearly outperforms
DIRECT by orders of magnitude. @UND'’s superior performance
can be attributed to the fact that once a few of highly-sisipg
candidates are encountered, the pruning of subsequentdzied
is relatively easy, requiring only felLLI MAX iterations

Problem 1, r=3 Problem 1, r=4

40

[__IDirect 71s [IDirect 5533
I 5ound 250 | I Bound
30
200
Z Z
_E 20 _ﬂé 150
= =
100
10
50
0 O H 0 - o [l
U co Cc1 cCc2 cC3 c4 U Co C1 cCc2 C3 cC4

Data Set Data Set

Figure 2: Problem 1 performance on synthetic data sets.

Additionally, the performance of [RECT in Figure 2 verifies
our previous observation, i.e., IPF’'s performance dee<as the
degree of two-way correlation between the words increagats (

algorithm DRECT. In practice we expect hardly ever to encounter
close to uniform (uncorrelated) text. Correlations arevglent in
real data sets and this points to the advantage of our prbposa

Problem 1, r=3 Problem 1, r=4
100 1000
[ IDirect 208s [ IDirect 1647s
0| | I Bound oo | I Bound
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Figure 3: Problem 2 performance on synthetic data sets.

The reason for the, perhaps surprising, gap in the perfarenan
of the BouND algorithm fromr = 3 to r» = 4 is the following.
Due to the complexity of scoring functions (2) and (3), wedee
to derive relatively tight bounds on the estimated co-o@naes in
order for them to be translated into a sufficient for pruniogiid
around the expansion’s score. But, in order to achieve thaseds,
BounbD for » = 4 must perform more, yet less efficient B M Ax
iterations than for = 3 (Section 6.4.1).

Problem 1, r=3 Problem 1, r=4
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Figure 4: Problem 3 performance on synthetic data sets.

We also performed experiments to examine whether enaltieng t
use of more rating values adversely affects the pruningpadnce
of the BouND. Figure 5 presents its performance for documents
with 3, 5 and 10 possible ratings, under thelata set. The running
time scales linearly, as desired: 3, 5 and 10 instances d&lthe-
Max technique need to run and provide bounds for couf#ys; )
in parallel, therefore this linear scale-up is expectedupes-linear
increase would imply a reduction in pruning efficiency, ihis tvas
not observed. The performance of IPF also scales lineadyisan

setsC1 to C'4). The absence of pairwise correlations suggests that therefore omitted from the graphs. This result was consiste

the underlying text is mostly uniform. Given that the maximu
entropy principle underlying the operation of IPF is essdiyta
uniformity assumption, this effect is understandable: rttoze the
ground truth about the data distribution (pairwise co-ommnces)
deviates from the technique’s assumptions (uniformityg,glower
its convergence.

We consider this behavior as a major drawback of the IPF tech-
nigue and algorithm DRECT since we are, by the definition of our
problem, interested in discovering words that are highlyedated
and define meaningful and significant clusters of documéertiss
trend in the performance of IPF is consistent throughoueaper-
imental evaluation.

For Problems 2 and 3 we used three ratings: 0, 1 and 2. Our

experimental results are depicted in Figures 3 and 4 respbct
Forr = 3 the BouND algorithm outperforms DRECT by a large
margin. Forr = 4 the image is mixed, although theoBND algo-
rithm performs clearly better for all data sets other tharandC'2.

Recall that these two data sets exhibit exclusively very dowe-
lations, a scenario which as we discussed is beneficial foatitl

all synthetic data sets.
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Figure 5: Performance vs number of possible ratings.

6.4.3 Real data

We also performed experiments using massive, real data sets
comprised of blog posts. To evaluate the performance ofettie-t
niques on Problem 1, we used a sample consisting of 2.7 mil-
lion posts, retrieved daily during February 2007. In ordere-
duce the search space of the algorithms and prune uniriteyest

10



co-occurrences, we only maintained counfs;,w;) such that
c(wi,w;)/c(ws) > 0.05 ande(w;, wj)/c(w;) > 0.05. We posed
random single-keyword queries and present the average iGiRU t
required by the techniques in Figure 6. As it is evident, tioeJBD
method has a clear advantage overECT, offering significantly
better performance.

on a particularly interesting slice of the relevant posts.iRstance,
expansions with high surprise value identify a subset ofgdis-
cussing particular features of interest, e.g, “cartriigeSterna-

tively, we have the option to focus on posts with low averagees,

discussing a problematic aspect of the product, e.g., ftacah

[ Query ] Surprise [ Max. Avg. Score| Min. Avg. Score |
=3 - cartridge network toner
! 100 - hp printer laser mobile cartridge
6 ink ebay graphics
s & autofocus viewfinder slr standard canon click
" nikon digital cmos viewfinder slr tone camera file
o e cmos autofocus slr stabil manual images
Es E o acer netbook laptop camera eee install
, asus eee netbook mobile model eee linux
2 acer eee core mobile laptop pc
1
0 0

Direct Bound Direct Bound

7. CONCLUSIONS

Motivated by the accumulation of vast text repositories tred
limitations of existing techniques, we introduced a nevadatal-

In Ol’del’ to eVaIUate performance on PrOblemS 2 and 3, we Used aysis and exp|0rati0n model that enables the progressi\mmﬁnt
Sample of 68 thousand pOStS from the day of 13/02/2008. W& use Of a keyword_query resu't set. The process is driven by wgge
a custom sentiment analysis tool based on [15] to associte e  ing expansions of the original query with additional seaiims
post with a rating (O for negative, 1 for neutral and 2 for fige). and is supported by an efficient framework, grounded on Gonve
As before, we removed uninteresting co-occurrences taceethe Optimization principles.
search space in a similar manner and posed random singté-wor aAcknowledgements: The work of Gautam Das was supported in
queries. Figure 7 presents the average CPU time requiretleby t part by the US National Science Foundation under grants@845

Method

Figure 6: Problem 1 performance on real data.

Method

algorithms to solve Problem 2. The results for Problem 3fedd
the same trend and are therefore omitted. As it is evideafpthn-
ing opportunities exploited by thed®ND algorithm enable us to
deliver superior performance tolRECT.

=4

Direct Bound Direct Bound

Method

Figure 7: Problem 2 performance on real data.

Method

6.4.4 Qualitative results on real data

Finally, we conclude our experimental evaluation with aebri
case study regarding the query expansions suggested bgabur t
nigue. We used blog post data for the day of 26/08/2008, pro-
cessed by the same sentiment analysis tool as before. @y st
words were removed. Below we present the top-3 expansiagis su
gested using the scoring functions discussed in Sectionf@rl
a small sample of product-related queries, in order to yagifr
claims from Sections 1 and 3 and demonstrate the utility ef th
query expansion framework. Notice that the expansions rare i
deed comprised of terms (mostly products and product fesfur
relevant to the original query, e.g., “toner” (feature) fprery “hp
printer” (product), or “eee netbook” (product line) and éamet-
book” (competitor) for query “asus” (manufacturer).

The expansions suggested would be invaluable for inteigcti
with the underlying document collection. For example, wergu
thegeneric and diversblog post collection for the day of 26/08/2008
in order to unearth discussion, reviews and opinions abbpt “
printer(s)”. Without further assistance from the query angion
framework, manual browsing of hundreds matching blog pestdd
be the sole option for discovering more useful informatitwoet
the subject. The expansions allow us to rapidly identify fowlis

and 0812601, unrestricted gifts from Microsoft Researchwkia
Research, and start-up funds from the University of Texasrat
lington.
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