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ABSTRACT
Cloud storage solutions promise high scalability and low cost. Ex-
isting solutions, however, differ in the degree of consistency they
provide. Our experience using such systems indicates that there is
a non-trivial trade-off between cost, consistency and availability.
High consistency implies high cost per transaction and, in some
situations, reduced availability. Low consistency is cheaper but it
might result in higher operational cost because of, e.g., overselling
of products in a Web shop.

In this paper, we present a new transaction paradigm, that not
only allows designers to define the consistency guarantees on the
data instead at the transaction level, but also allows to automatically
switch consistency guarantees at runtime. We present a number of
techniques that let the system dynamically adapt the consistency
level by monitoring the data and/or gathering temporal statistics of
the data. We demonstrate the feasibility and potential of the ideas
through extensive experiments on a first prototype implemented on
Amazon’s S3 and running the TPC-W benchmark. Our experi-
ments indicate that the adaptive strategies presented in the paper
result in a significant reduction in response time and costs includ-
ing the cost penalties of inconsistencies.

1. INTRODUCTION
Cloud storage services are becoming increasingly popular as they

promise high scalability and availability at low cost. These services
use computer farms of commodity hardware to provide remote stor-
age facilities. Existing commercial services restrict strong consis-
tency guarantees to small datasets (e.g., Microsoft’s SQL Data Ser-
vices) or provide only eventual consistency (e.g., Amazon’s S3).
If an application requires additional transactional guarantees, then
such guarantees must be implemented on top of the cloud storage
solution [7].

In this paper, we are interested in implementing database-like
facilities on top of cloud storage. In this context, strong levels
of consistency are unavoidable. The key observation behind the
work reported in this paper is that not all data needs to be treated at
the same level of consistency. For instance, in a Web shop, credit
card and account balance information naturally require higher con-
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sistency levels, whereas user preferences (e.g., “users who bought
this item also bought. . . ” data) can be handled at lower consistency
levels. This distinction is important because, in cloud storage, con-
sistency not only determines correctness but also the actual cost per
transaction.

The price of a particular consistency level can be measured in
terms of the number of service calls needed to enforce it. Since
existing platforms provide only basic guarantees, additional levels
of consistency (significantly) increase the cost per operation. Sim-
ilarly, the price of inconsistency can be measured in terms of the
percentage of incorrect operations that are caused by using lower
levels of consistency. This percentage can often be mapped to an
exact cost in monetary terms (e.g., the penalty costs of compen-
sating a booking error or of losing a customer). These figures are
typically well known to the companies offering such services.

To find the right balance between cost, consistency, and avail-
ability is not a trivial task. In large scale systems, high consistency
implies high cost per transaction and reduced availability [7] but
avoids penalty costs. Low consistency leads to lower costs per op-
eration but might result in higher penalty costs (e.g., overselling
of products in a Web shop). To make matters more complicated,
this balance depends on several factors, including the application
semantics. In this paper we propose to bypass this dilemma by
using a dynamic consistency strategy: reduce the consistency re-
quirements when possible (i.e., the penalty cost is low) and raise
them when it matters (i.e., the penalty costs would be too high).
The adaptation is driven by a cost model and different strategies
that dictate how the system should behave. We call this approach
Consistency Rationing in analogy to Inventory Rationing [27]. In-
ventory rationing is a strategy for inventory control where invento-
ries are monitored with varying precision depending on the value
of the items. Following this idea, we divide the data into three cate-
gories (A, B, and C), and treat each category differently depending
on the consistency level provided.

The A category contains data for which a consistency violation
would result in large penalty costs. The C category contains data
for which (temporary) inconsistency is acceptable (i.e., no or low
penalty cost exists; or no real inconsistencies occur). The B cat-
egory comprises all the data where the consistency requirements
vary over time depending on, for example, the actual availability
of an item. This is typically data that is modified concurrently by
many users and that often is a bottleneck in the system. In this pa-
per we focus on the B category. It is in this category where we can
make a significant trade-off between the cost per operation and the
consistency level provided. We describe several use cases motivat-
ing such B category data. We then develop a cost model for the
system and discuss different strategies for dynamically varying the
consistency levels depending on the potential penalty costs. The



goal of these strategies is to minimize the overall cost of operating
over the cloud storage. Our experiments on a cloud database ser-
vice implemented on top Amazon’s S3 show that significant cost
benefits can be obtained from the Dynamic policies we introduce
in this paper. The paper makes the following contributions:

• We introduce the concept of Consistency Rationing, which al-
lows applications to obtain the necessary levels of consistency
at the lowest possible cost.
• We define and analyze a number of policies to switch consis-

tency protocols at runtime. Our experiments show that dynam-
ically adapting the consistency outperforms statically assigned
consistency guarantees.
• We introduce the notion of probabilistic guarantees for consis-

tency (i.e., a percentile) using temporal statistics for numerical
and non-numerical values. Such statistical guarantees are very
important in terms of service level agreements although, to our
knowledge, this is the first time that probabilistic consistency
guarantees are studied in detail.
• We present a complete implementation of Consistency Rationing

on top of Amazon’s S3. We report on the cost ($) and perfor-
mance of running the TPC-W benchmark [32] at several consis-
tency categories, mixes of categories, and different policies of
the B category. The results of the experiments provide impor-
tant insights on the cost of running such systems, on the cost
structure of each operation, and on how to optimize such costs
using appropriate costs models.
The remainder of this paper is organized as follows: Section 2

describes several use cases for Consistency Rationing in the cloud.
Section 3 discusses related work. Section 4 describes Consistency
Rationing, the ABC analysis and how guarantees mix. Section 5
presents a set of alternative strategies to handle B data. Section 6
covers the implementation of Consistency Rationing in the cloud.
Section 7 summarizes the results of our experiments using the TPC-
W benchmark. Section 8 concludes this paper.

2. USE CASES
The need for different consistency levels is easily identifiable in a

variety of applications and was already studied in different contexts
(e.g., in [11, 12]). In the following we present potential use cases
in which Consistency Rationing could be applied.

Web shop. Assume a conventional Web shop built on top of a
cloud storage service. A typical Web shop stores different kinds
of data [33]. There is, for example, data of customer profiles and
credit card information, data about the products sold, and records
on user’s preferences (e.g., “users who bought this item also bought
. . . ”) as well as logging information. These examples already in-
dicate that there are different categories of data in terms of value
and need for consistency. The customer’s credit card information
and the price of the items must be handled carefully. Buyer pref-
erences and logging information could even be lost without any
serious damage (e.g., if the system crashes and cached data was not
made persistent).

The designer of such a Web shop application could use Consis-
tency Rationing as follows: (1) account information is categorized
as A data accessible under strong consistency guarantees (i.e., se-
rializability). (2) Product inventory data is categorized as B data.
As long as the available stock is high enough, the system tolerates
some inconsistencies. As the available inventory drops below a
certain threshold, access should be done only under strong consis-
tency guarantees to avoid overselling. (3) Buying preferences and
logging information is classified as C data. The system does not

need to see the most up-to-date state at all times and does not need
to take any actions to grant exclusive accesses in case of updates.

Since the cost of running such a Web shop in the cloud is deter-
mined by the cost per operation, applying Consistency Rationing
will necessarily reduce the overall cost by using cheaper operations
when possible while at the same time minimizing the cost caused
by inconsistencies.

Ticket reservations for movie theaters or operas, as well as flight
booking systems of an airline company follow the same operational
model as the Web shop. The only difference is that the cost of
inconsistencies (i.e., overbooking or losing tickets) can be signifi-
cantly more expensive than in a Web shop. The advantage of Con-
sistency Rationing is that it allows designers to adjust the cost func-
tion and adaptation strategies to optimize the total operational costs.
In our approach transactions may span multiple categories and are
not restricted to operate within a single category (Section 4.4). This
allows to partition (ration) the data using any partitioning scheme
to optimize the total costs.

Auction system. Typical for an online auction system is that
an item to be auctioned starts to become very popular in the final
stages of its auction. The last minutes of an auction are usually
of the highest interest for a bidder. During this period of time,
the item’s current price should be always up-to-date and modified
under strong consistency guarantees. When the end of an item’s
auction is several days ahead, bids can be updated using lower con-
sistency levels without any effect on the system.

An auction system may utilize this information to implement dif-
ferent strategies for bringing an item up-to-date. If the end of the
auction is in the near future (e.g., in one or two hours), the item
is treated with strong consistency. Conversely, if the end of the
auction lies further away, the item is treated with lower guarantees.

The difference between the auction system and the Web shop
use case is that the selection of the consistency protocol is done on
a time basis instead on a value basis. Here, the time is used as a
threshold that determines which consistency guarantees to select.
In contrast, the Web shop example used the value of a data item as
the threshold.

Collaborative Editing. Collaborative Editing allows people
to work simultaneous on the same document or source base (e.g.,
Google Docs, Version control, Wiki’s). The main functionality of
such a system is to detect conflicts during editing and to track the
history of changes. Traditionally such systems work with strong
consistency. If the system detects a conflict, the user is usually re-
quired to resolve the conflict. Only after resolving the conflict the
user is able to submit the change as long as no other conflict was
generated in the meantime. Although in real deployments there
might be some parts of the document that are updated frequently
by different parties (e.g., the citations of a paper), people tend to
organize themselves upfront to avoid conflicts from the beginning.
Hence, conflicts are unlikely for most parts of the document and
no concurrency control is required. In contrast, those parts which
are frequently updated by several parties, would be best handled by
strong consistency guarantees to avoid conflicts all together.

Other than in the previous examples, the selection of the con-
sistency protocol is based on the likelihood of conflicts and not on
the value or time. Our General policy described in Section 5.1 ad-
dresses this use case by automatically adopting the strategy based
on the update frequency.

3. RELATED WORK
Many transaction and consistency models have been proposed in

the distributed systems and database literature. Common references



in the DB literature include [5], [34], and [24]. In distributed sys-
tems, [31] is the standard textbook that describes alternative con-
sistency models as well as their trade-offs in terms of consistency
and availability. Our work extends these established models by al-
lowing levels of consistency to be defined on a per-data basis and
adapting the consistency guarantees at runtime.

The closest approaches to what we propose in this paper are [21],
[36] and [12]. [21] presents an Infrastructure for DEtection-based
Adaptive consistency guarantees (IDEA). Upon the detection of in-
consistencies, IDEA resolves them if the current consistency level
does not satisfy certain requirements. In contrast, our approach
tries to avoid inconsistencies from the beginning by using runtime
information. [36] proposes a set of metrics to cover the consistency
spectrum (e.g., numerical error, order error) and a variety of proto-
cols to ensure those spectrums. Those protocols are similar to the
Demarcation policy (Section 5.3.2). However, their work focuses
on ensuring a maximum deviation of a value from the up-to-date
view. Our focus is on ensuring a certain consistency constraint
(e.g., a stock above 0). In [12] the authors divide data into cate-
gories, for which they provide different replication strategies. The
proposed replication strategy for stock data is again similar to the
Demarcation policy but more conservative as it will never oversell
a product and, under certain circumstances, not sell an item even if
it is still on stock.

B data resembles to certain extent IMS/FastPath and the Escrow
transactional model [13, 23]. Escrow reduces the duration of locks
and allows more transactions to run in parallel by issuing predi-
cates to a central system at the beginning of the transaction. If the
system accepts these predicates, the transaction is safe to assume
that these predicates will always hold in the future without keep-
ing locks. In comparison IMS/FastPath, does not guarantee that the
predicates will hold for the whole transaction. Instead the predi-
cates are reevaluated at commit time. Both approaches guarantee
strong consistency. We extend the ideas of Escrow and Fast Path by
means of probabilistic guarantees and adaptive behavior. Further-
more, IMS/FastPath and Escrow require global synchronization to
bring all predicates in order, whereas our approach avoids synchro-
nization as long as possible.

Along the same lines, a great deal of work has been done on dis-
tributed consistency constraints [10, 18] and limited divergence of
replicas [22, 26]. Distributed consistency constraints either ensure
strong consistency or weaken the consistency in small intervals,
which in turn can lead to inconsistencies. The work on limited
divergence relaxes the consistency criteria of replicas to increase
performance, but at the same time, limits the divergence between
the replicas (e.g, in value, or staleness). We extend these works
by means of probabilistic consistency guarantees and optimization
goals in both, performance and cost.

In [16, 19, 17], the authors propose a technique to implement
consistency constraints for local cached copies in SQL processing.
That is, user are reading from local outdated data snapshots if it
is within the bounds of the consistency constraints. All writes are
redirected to the backend, requiring traditional transaction models.
Our work does not require a centralized backend and extends the
ideas by the notion of probabilistic guarantees.

The Mariposa system is a distributed data management system
that supports high data mobility [28]. In Mariposa, clients may
hold cached copies of data items. All writes to a data item must be
performed on the primary copy. A cost model in Mariposa deter-
mines where the primary copy is placed. This work is orthogonal
to Mariposa as we do not address data locality and concentrate on
switching consistency at runtime.

The authors of [30] propose adaptive concurrency control based

on a stochastic model. However, their model does not consider
inconsistency. Instead the implementation switches between opti-
mistic and pessimistic control for the same level of guarantee.

H-Store [29, 25] tries to completely avoid any kind of synchro-
nization by analyzing transactions and partitioning the data. H-Store
provides strong consistency guarantees but requires to know all the
queries and transactions up front. We do not make such an as-
sumption. Furthermore, it might be possible to combine the two
approaches with the corresponding improvement in performance.

The work in this paper is mainly motivated by cloud database
services with exact pricing figures ($) on a per transaction basis.
Amazon’s Simple Storage Service [2] and Google’s BigTable [9]
provide eventual consistency guarantees. Recently, some research
efforts have been focused on providing stronger guarantees: Ya-
hoo’s PNUTS [11] provides monotonicity guarantees and snap-
shot isolation on a per-record basis. The motivation for that work
is similar to ours: higher consistency has higher cost and low-
ers performance. Google’s MegaStore [8] and Microsoft’s SQL
Data Services [20] offer transactional guarantees, but with restric-
tions on the size of the data (e.g., transactional guarantees with
Microsoft’s services are only provided for up to 1GB of data per
container). Even for providers offering higher consistency guar-
antees, the question of cost remains as higher consistency means
higher cost per transaction.

4. CONSISTENCY RATIONING
The use cases in Section 2 indicate that not all data needs the

same consistency guarantees. This fact is well known in standard
database applications and addressed by offering different consis-
tency levels on a per transaction basis. Although it is possible to
relax every ACID property, in this paper we focus on Isolation and
Consistency, and assume that Atomicity and Durability are given.

There is a great deal of work on relaxing consistency guarantees,
both in distributed systems (e.g., eventual consistency, read-write
monotonicity, or session consistency [31]) and transactions (e.g.,
read committed, read uncommitted, serializability, or (generalized)
snapshot isolation [4]). The main lesson learned from all this work
is that the challenge in relaxed consistency models is to provide the
best possible cost/benefit ratio while still providing understandable
behavior to the developer. With this in mind, we consider only two
levels of consistency (session consistency, and serializability) and
divide the data into three categories.

4.1 Category C - Session Consistency
The C category encompasses data under session consistency. Ses-

sion consistency has been identified as the minimum consistency
level in a distributed setting that does not result in excessive com-
plexity for the application developer [31]. Below session consis-
tency, the application does not see its own updates and may get
inconsistent data from consecutive accesses.

Clients connect to the system in the context of a session. As long
as the session lasts, the system guarantees read-your-own-writes
monotonicity. The monotonicity guarantees do not span sessions.
If a session terminates, a new session may not immediately see
the writes of a previous session. Sessions of different clients will
not always see each other’s updates. After some time (and without
failures), the system converges and becomes consistent (a property
called eventual consistency that is useful in distributed computing).
For instance, Amazon’s S3 service, intended for storing files, pro-
vides eventual consistency.

Conflict resolution in the C category for concurrent updates de-
pends on the type of update. For non-commutative updates (e.g.,
overrides), the last update wins. For commutative updates (numer-



ical operations, e.g., add), the conflict is resolved by applying the
updates one after each other. Nevertheless, both approaches can
lead to inconsistencies if, for example, the update is dropped or by
violating an integrity constraint.

Session consistency is cheap with respect to both, transaction
cost as well as response time, because fewer messages are required
than for strong consistency guarantees such as serializability. It
also permits extensive caching which even further lowers cost and
increases performance. Cloud databases should always place data
in the C category if inconsistencies cannot occur (e.g., data is never
accessed by more than one transaction at a time) or there is neither
monetary nor administrative cost when temporary inconsistencies
arise.

4.2 Category A - Serializable
The A category provides serializability in the traditional trans-

actional sense. Data in this category always stays consistent and
all transactions that modify data in the A category are isolated. In
cloud storage, enforcing serializability is expensive both in mone-
tary costs as well as in terms of performance. These overheads in
cost and performance exist because of the more complex protocols
needed to ensure serializability in a highly distributed environment
[7, 6]. These protocols require more interaction with additional ser-
vices (e.g., lock services, queueing services) which results in higher
cost and lower performance (response times) compared to ensuring
session consistency.

Data should be put in the A category if consistency as well as an
up-to-date view is a must. We provide serializability using a pes-
simistic concurrency protocol (two phase locking, 2PL). We chose
serializability over, for example, snapshot isolation to ensure trans-
actions always see the up-to-date state of the database.

4.3 Category B - Adaptive
Between the data with session consistency (C) and data with seri-

alizability (A), there exists a wide spectrum of data types and appli-
cations for which the required level of consistency depends on the
concrete situation. Sometimes strong consistency is needed, some-
times it can be relaxed. Given the double impact of transactional
consistency in cloud database settings (cost and performance), we
introduce the B category to capture all the data with adaptive con-
sistency requirements.

It is also the case that for many of the applications that would
run in a cloud database setting, the price of inconsistencies can be
quantified (see the use cases above). Examples include: refunds to
customers for wrong delivered items, overheads for overbooking,
costs of canceling orders, etc. Cost in this sense can refer to either
cost in actual money, or e.g., reduced user experience or the admin-
istrative overhead to resolve a conflict. Because not all the updates
to B data automatically result in a conflict (Section 2), a non-trivial
trade-off exists between the penalty cost for inconsistencies and the
advantages of using relaxed consistency.

In our implementation, data in the B category switches between
session consistency and serializability at runtime. If it happens that
one transaction operates at session consistency and another trans-
action operates under serializability for the same B data record, the
overall result is session consistency.

In the remainder of this paper we analyze in detail different poli-
cies to switch between the two possible consistency guarantees.
These policies are designed to make the switch automatic and dy-
namic, thereby reducing costs for the user of the cloud infrastruc-
ture both in terms of transaction costs as well as in terms of the
costs of inconsistencies.

4.4 Category mixes
Our cloud database infrastructure provides consistency guaran-

tees on the data rather than on transactions. The motivation is that
data has different characteristics in terms of cost. For example,
bank accounts and product stocks require isolation; logging data or
customer profiles do not. Defining consistency on data, rather than
on transactions, allows to handle the data according to its impor-
tance. A side effect of this approach, however, is that transactions
may see different consistency levels as they access different data.

If a single transaction processes data from different categories,
every record touched in a transaction is handled according to the
category guarantees of the record. Therefore, operations on A data
read from a consistent view and modifications will retain a consis-
tent state. Reads from A data will always be up-to-date. Reads
from C data might be out of date dependent on caching effects. As
a logical consequence, the result of joins, unions, and any other
operations between A and C data provide only C guarantees for
that operation. In most situations, this does no harm and is the
expected/desirable behavior. For example, a join between account
balances (A data) and customer profiles (C data) will contain all
up-to-date balance information but might contain old customer ad-
dresses.

If it is necessary from the application point of view, transactions
are allowed to specify which guarantees they need. This allows a
transaction to see the most up-to-date state of a record. However, it
does not guarantee that the transaction has the exclusive right to up-
date the record. If one transaction writes under session consistency
and another under serializibility, inconsistency can still arise.

4.5 Development model
Consistency Rationing introduces additional complexity into the

development process of applications running over cloud storage.
First, the data must be rationed into consistency categories. This
process is driven by the operational costs of transactions and of in-
consistencies. Second, the required consistency must be specified
at the collection (i.e., relation) level together with the policy and all
integrity constraints. This can be done similarly to [35] by annotat-
ing the schema.

We envision that the development process of an application and
Consistency Rationing can be split into different processes. Dur-
ing the development process, strong consistency guarantees are as-
sumed. The programmer will follow the usual database program-
ming model of explicitly stating transactions. Independent of the
categorization, the programmer will always issue a start transaction
command at the beginning of a transaction and a commit transaction
command at the end of a transaction. When the application gets de-
ployed, the data is rationed according to cost. The rationing may be
done by a person not from the development department. Of course,
the assumption is that this split of development and rationing does
not effect the correctness of the system. Which properties an appli-
cation has to fulfill in order to split the development process is out
of the scope of the paper and part of future work.

5. ADAPTIVE POLICIES
In this section, we present five different policies to adapt the

consistency guarantees provided for individual data items in cat-
egory B. The adaptation consists in all cases of switching between
serializability (category A) and session consistency (category C).
The policies differ on how they determine that a switch is necessary.
Thus, the General policy looks into the probability of conflict on a
given data item and switches to serializability if this probability is
high enough. The Time policy switches between guarantee levels
based on time, typically running at session consistency until a given



point in time and then switching to serializability. These two first
policies can be applied to any data item, regardless of its type. For
the very common case of numeric values (e.g., prices, inventories,
supply reserves), we consider three additional policies. The Fixed
threshold policy switches guarantee levels depending the absolute
value of the data item. Since this policy depends on a threshold that
might be difficult to define, the remaining two policies use more
flexible thresholds. The Demarcation policy considers relative val-
ues with respect to a global threshold while the Dynamic policy
combines the idea of the General policy for numerical data by both
analyzing the update frequency and the actual values of items.

5.1 General policy
The General policy works on the basis of a conflict probabil-

ity. By observing the access frequency to data items, it is possi-
ble to calculate the probability that conflicting accesses will occur.
Higher consistency levels need to be provided only when the prob-
ability of conflict is high enough.

5.1.1 Model
We assume a distributed setup with n servers (i.e., threads are

considered to be separate servers) implementing the different levels
of consistency described in Section 3. Servers cache data with a
cache interval (i.e., time-to-live) CI . Within that interval, C data
is read from the cache without synchronizing. Furthermore, two
updates to the same data item are always considered as a conflict
(we use no semantic information on the operations). If we further
assume that all servers behave similarly (i.e., updates are equally
distributed among the servers and independent from each other),
the probability of a conflicting update on a record is given by:

Pc(X) = P (X > 1)| {z }
(i)
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X is a stochastic variable corresponding to the number of up-
dates to the same record within the cache interval CI . P (X > 1)
is the probability of more than one update over the same record
in one cache interval CI . However, a conflict can only arise if
the updates are issued on different servers. Hence, the remaining
part (ii) of the equation calculates the probability that the concur-
rent updates happen on the same server and subtracts this from the
probability of more than one update. The equation does not con-
sider the probability of conflicting on the same record twice. This
is because we assume that conflicts can be detected and corrected
(e.g., by simply dropping conflicting updates) and that the proba-
bility of two conflicts on the same record is negligible in the time it
takes to detect a conflict (e.g., the cache-interval).

Similar to [30], we assume that the arrival of transactions is a
Poisson process, which allows to rewrite equation (1) around a sin-
gle variable with mean arrival rate λ. Since the probability density
function (PDF) of a Poisson distribution is given by:

Pλ (X = k) =
λk

k!
e−λ (2)

Equation (1) can be rewritten as:
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(3)

If n > 1 and if the probability of a conflict is supposed to be rather
small (e.g., 1% or less), the second term (iv) can be disregarded
(simulations show that the terms for k > 3 are negligible). Hence,

the following expression can be considered an upper bound for the
probability of conflict:

PC(X) =
“

1− e−λ (1 + λ)
”

(4)

If more precision is needed the first one or two summands of (iv)
can also be taken into account.

5.1.2 Temporal statistics
To calculate the likelihood of a conflict at runtime without re-

quiring a centralized service, every server gathers temporal statis-
tics about the requests. We use a sliding window with size w and
sliding factor δ. The window size defines how many intervals a
window contains. The sliding factor specifies the granularity at
which the window moves. For every time window, the number of
updates to each B data is collected. All complete intervals of a win-
dow build a histogram of the updates. Hence, the window size acts
as a smoothing factor. The larger the window size, the better are the
statistics and the longer the time to adapt to changes in arrival rates.
The sliding factor affects the granularity of the histogram. For sim-
plicity, the sliding factor δ is assumed to be a multiple of the cache
interval CI . To derive the arrival rate λ for the whole system from
the local statistics, it is sufficient to calculate the arithmetic mean x̄
of the number of updates to a record and multiply it by the number
of servers n (which is assumed to be globally known) divided by
the sliding factor δ:

λ =
x̄n

δ
(5)

As the statistics are gathered using a sliding window, the system is
able to dynamically adapt to changes in the access patterns.

As the update rate of an item has to be small for handling it as
a category C item, local statistics can easily mislead the statistics
for small window sizes. To overcome the problem, the local statis-
tics can be combined into a centralized view. The simplest way to
achieve this would be to broadcast the statistics from time to time
to all other servers. Furthermore, if the record itself carries its sta-
tistical information (see Section 6), even the broadcast is for free.
Thus, by attaching the information to the record, the statistical in-
formation can be collected when a data item is cached.

5.1.3 Setting the adaptive threshold
When to switch between consistency levels is a critical aspect of

the approach as it affects both costs and correctness.
Let Cx be the cost of an update to a record in category x. This

cost reflects only the additional cost per record in a running trans-
action without the setup cost of a transaction. Let CO be the cost
of consistency violations. A record should be handled with weak
consistency only if the expected savings of using weak consistency
is higher than the expected cost of inconsistency EO(X):

CA − CC > EO(X) (6)

If CA−CC > EO(X) then the record should be handled with ses-
sion consistency (C data). If CA − CC < EO(X), the record
should be handled with strong consistency (A data). Assuming
EO(X) = PC(X) ∗ CO , a record should be handled with weak
consistency if the probability of conflict is less then (CA − CC) /CO:

PC(X) <
CA − CC
CO

(7)

The same equation can be used for optimizing parameters other
than cost. For example, if the throughput of a system is to be opti-
mized and we assume that resolving conflicts reduces performance,
the same formula can be used by substituting the costs for perfor-
mance metrics.



A key aspect of the General policy is that a user can simply spec-
ify either a fixed probability of inconsistency or provide a cost func-
tion independently of what cost in the particular case means. The
rest is handled automatically by the system. Consistency, in this
sense, becomes a probabilistic guarantee. The probability of incon-
sistencies will be adjusted depending on how valuable consistency
is for a user.

5.2 Time policies
The time policies are based on a time stamp that, when reached,

indicates that the consistency guarantees must change. All such use
cases tend to follow an auction-like pattern that raise consistency
levels when a deadline approaches.

The simplest of all time policies is to set a predefined value (e.g.,
5 minutes). Up to 5 minutes before the deadline, the data is handled
with session consistency only. Afterwards, the consistency level
switches to strong consistency. Hence, this policy is the same as
the Fixed threshold policy below, except that the decision when to
switch consistency guarantees is time-based instead of value-based.

As before, defining this threshold is critical. Similar to the Gen-
eral policy, we can define the likelihood of an conflictPc(XT ). The
difference is that the stochastic variable XT changes with respect
to time t.

In this context, it is often not meaningful to gather statistics for
a record. For example, in the case of an auction, a record sees
the number of accesses increase as the deadline approaches and
then drops to zero once the deadline is reached. Based on this, a
simple method to set the threshold is to analyze a sample set of past
auctions and derive the likelihood of a conflict in minute t before
the time expires. More advanced methods can be adopted from
inventory management or marketing, as similar methods are used
to predict the life-cycle of products. However, such methods are
beyond the scope of this paper.

5.3 Policies for numeric types
In many use cases, most of the conflicting updates cluster around

numerical values. For example, the stock of items in a store, the
available tickets in a reservation system, or the account balance
in a banking system. These scenarios are often characterized by
an integrity constraint defined as a limit (e.g., the stock has to be
equal or above 0) and commutative updates to the data (e.g., add,
subtract). These characteristics allow us to further optimize the
General policy by considering the actual update values to decide
on which consistency level to enforce. This can be done with one
of the following three policies. The Fixed threshold policy looks at
the actual value of an item and compares it to a threshold. The De-
marcation policy applies the idea of the Demarcation protocol [3]
and considers a wider range of values to make a decision. Finally,
the Dynamic policy extends the conflict model of the general policy
to numeric types.

5.3.1 Fixed threshold policy
The Fixed threshold policy defines that if the value of a record is

below a certain threshold, the record is handled under strong con-
sistency guarantees. Thus, a transaction that wants to subtract an
amount ∆ from a record, applies strong consistency if the current
value v minus ∆ is less than or equal to the threshold T :

v −∆ ≤ T (8)

In comparison to the general policy, the fix threshold policy does
not assume that updates on different servers conflict. Updates are
commutative and can, therefore, be correctly resolved. Neverthe-
less, inconsistency can occur if the sum of all updates on different
servers lets the value under watch drop below the limit.

Similar to finding the optimal probability in the General policy,
the threshold T can be optimized. A simple way to find the opti-
mal threshold is to experimentally determine it over time. That is,
by adjusting T until the balance between runtime cost and penalty
cost is achieved. To find a good starting point for T , one can al-
ways consider the statistics from the sales department in the com-
pany. Normally, the sales department applies similar methods to
determine prices or to control the inventory.

The biggest drawback of the Fixed threshold policy is the static
threshold. If the demand for a product changes or if hot spot prod-
ucts are present, the Fixed threshold policy behaves sub-optimally
(see Experiment 2 in Section 7).

5.3.2 Demarcation policy
The Demarcation protocol [3] was originally proposed for repli-

cated systems. The idea of the protocol is to assign a certain amount
of the value (e.g., the stock) to every server with the overall amount
being distributed across the servers. Every server is allowed to
change its local value as long as it does not exceed a local bound.
The bound ensures global consistency without requiring the servers
to communicate with each other. If the bound is to be violated, a
server must request additional shares from other servers or synchro-
nize with others to adjust the bound. This protocol ensures that the
overall value never drops below a threshold and that coordination
occurs only when needed.

We can adopt the basic idea behind the Demarcation protocol
as follows. Every server gets a certain share of the value to use
without locking. In the following we assume, without loss of gen-
erality, that the value of the limit for every record is zero. If n is
the number of servers and v the value (e.g., the stock of a product),
we define the share a server can use without strong consistency as¨
v
n

˝
. Hence, the threshold T is defined as:

T = v −
j v
n

k
(9)

All servers are forced to use strong consistency only if they want to
use more than their assigned share. By applying strong consistency,
a server sees the current up-to-date value and inconsistencies are
avoided. As long as all servers behave similarly and decrease the
value in a similar manner, this method will ensure that the threshold
will not fall below zero. In our context of cloud services, the De-
marcation policy might not always ensure proper consistency be-
cause it is assumed that servers cannot communicate between each
other. Only after a certain time interval (i.e., the cache interval), a
record is brought up-to-date. It can happen that a server exceeds the
threshold and continues to, for example, sell items (now in locking
mode) while another server sells items up to its threshold without
locking. In such situations, the value can drop below the estab-
lished bound. The idea behind the Demarcation protocol is nev-
ertheless quite appealing and we can assume that such scenarios
occur only rarely.

An additional drawback of the Demarcation policy is, that for a
large number of servers n, the threshold tends towards v and the
Demarcation policy will treat all B data as A data. Thus, almost
all transactions will require locking. Skewed distribution of data
accesses is also a problem: if an item is rarely or unevenly used,
the threshold could be lowered without increasing the penalty cost.

5.3.3 Dynamic policy
The Dynamic policy implements probabilistic consistency guar-

antees by adjusting the threshold.

Model. As for the General policy we assume a cache interval CI
and that updates are equally distributed among severs. Hence, the



probability of the value of a record dropping below zero can be
written as:

PC(Y ) = P (T − Y < 0) (10)

Y is a stochastic variable corresponding to the sum of update val-
ues within the cache interval CI . That is, Y differs from X of
equation 1 as it does not reflect the number of updates, but the sum
of the values of all updates inside a cache interval. P (T − Y < 0)
describes the probability that the consistency constraint is violated
(e.g., by buying more items before the servers apply strong consis-
tency).

Temporal statistics. To gather the statistics for Y we again use
a window with size w and sliding factor δ. Unlike for the General
policy, we assume that the sliding factor δ is a factor of the check-
point interval CI rather than a multiple. This has two reasons:
First, the Dynamic policy requires to determine the variance. The
variance can be precisely derived with smaller sliding factors. Sec-
ond, the policy concentrates on hot spots and not on rarely updated
values. Events (i.e., updates) are not rare and hence, the required
amount of data can be collected in less time.

For every sliding interval, the values with regard to all updates
to B data in that interval are collected. In contrast to the General
policy, this value contains the cumulated sum of all updates in-
stead of the number of updates. All complete intervals of a window
build a histogram of the updates. If a transaction wants to update a
record, the histogram of the moving window is used to calculate an
empirical probability density function (PDF) f using the standard
formula. f is then convoluted CI/δ times to build the PDF for the
whole checkpoint interval fCI :

fCI = f ∗ f ∗ · · · ∗ f| {z }
CI/δ times

(11)

Convolution is needed, as it is important to preserve the variance.
To reason about the updates in the whole system, the number of

servers n has to be known. Convoluting fCI again n times will
form the PDF of the updates in the whole system:

fCI∗n = fCI ∗ fCI ∗ · · · ∗ fCI| {z }
n times

(12)

Given fCI∗n, the cumulative distribution function (CDF) FCI∗n
can be built, which finally can be used to determine the threshold
for P (T −X < 0) by looking up the probability that:

FCI∗n(T ) > PC(Y ) (13)

To optimize PC(Y ) we can use the same method as before:

FCI∗n(T ) >
CA − CC
CO

(14)

Note that the threshold T is defined in terms of when the probability
is higher than PC(Y ), not smaller.

Although there exist efficient algorithms for convoluting func-
tions, if n∗CI/δ is big enough and/or the item is often updated, the
central limit theorem allows us to approximate the CDF with a nor-
mal distribution. This permits a faster calculation of the threshold
to guarantee the percentile of consistency. The arithmetic mean x̄
and the sample standard deviation s can be calculated using statis-
tics of the histogram of the sliding window. That is, one can ap-
proximate the CDF FCI∗n by using the normal distribution with
mean:

µ = x̄ · CI/δ · n
and standard deviation:

σ =
p
s2 · CI/δ · n
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Figure 1: Architecture

We use statistics gathered at runtime to set the threshold for each
individual record depending on the update frequency of the item.
As we show in Experiment 2 in Section 7, this Dynamic policy
outperforms all other policies in terms of overall performance and
cost. As the statistics are gathered at runtime, the system is also
able to react to changes on the update rate of records.

6. IMPLEMENTATION
This section describes the implementation of Consistency Ra-

tioning on top of Amazon’s Simple Storage Service (S3). The im-
plementation is based on the architecture and protocols presented in
[7]. The system in [7] already offers different levels of consistency
on top of Amazon’s S3 and has been commercialized as Sausalito
[1]. At the end of this section we also sketch out how to implement
Consistency Rationing on other platforms, such as Yahoo PNUTs.

6.1 Architecture
Figure 1 shows the general architecture we have adapted from

[7, 1]. Clients connect through the internet to one of the applica-
tion servers. The application servers run inside the cloud on top of
Amazon’s Elastic Computing Cloud (EC2), a virtual machine ser-
vice. The architecture further combines database and application
server together into one system and uses Amazon’s Simple Storage
Service as a persistent store. Hence, data is stored in form of pages
on S3 and directly retrieved from the application server similar to
a shared-disk database. In order to coordinate writes to S3, every
application server implements a set of protocols. The protocols pre-
sented in [7] follow a layered design in which every layer increases
the level of consistency. A B-tree is used as an index structure,
which in turn is also stored on S3.

We leveraged the protocols of [7] and have built on top protocols
for session consistency and serializability. Furthermore, we im-
prove the logging mechanism by means of logical logging. In order
to implement adaptive consistency guarantees, we implemented the
necessary meta data management, policies, and the statistical com-
ponent to gather the required temporal statistics.

6.2 Protocol implementation
The basic idea to achieve higher consistency on top of S3 is to

temporarily buffer updates to pages in queues, shown in step 1 of
Figure 2. The queues used in the first step are referred to as pending
update queues (PU queues). After a certain time interval, one server
exclusively merges the updates buffered in a PU queue with the
respective page on S3 by acquiring a lock for the queue beforehand.
This is referred to as checkpointing (step 2 in Figure 2).
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Figure 2: Basic Protocol

6.2.1 Session consistency
[7] already discusses a protocol for read-your-writes monotonic-

ity. The idea is, to keep the highest commit timestamp for each
page a server has cached in the past. If a server receives an old
version of a page from S3 (older than a version the server has seen
before), the server can detect this and re-reads the page from S3.

Redirecting all requests from the same client to the same server
inside a session ensures session consistency. The routing in our
implementation is done by using a session ID and forwarding the
request accordingly.

Additional assigned vector clocks to messages before sending
them to the queues and checking those together with integrity con-
straints during checkpointing allows to detect and, if needed, to
resolve conflicts.

6.2.2 Serializbility
To provide the serializability needed by A data, we implemented

a two-phase locking protocol (2PL). 2PL is especially robust against
heavy conflict rates [14] and therefore well-suited if conflicts are
expected. In order to achieve the exclusive access rights required
by 2PL, we have implemented a locking service. To always see the
most up-to-date view of a record, we had to implement an advanced
queue service that provides higher guarantees than Amazon’s Sim-
ple Queue Service. In particular, all messages are returned at all
times and message identifiers (ID) are monotonically increasing.

Based on the increasing message identifiers in our advanced queue
service, we were able to simplify the monotonicity protocol pre-
sented in [7]. Storing only the latest applied message ID in a page
is sufficient to ensure monotonicity. If the system re-reads a page
with an older message ID, we know that this page needs an update.
To bring a page up-to-date, we rely on retrieving all messages from
the queue and applying only messages with a higher ID than the
page’s ID.

Because we focus on switching consistency protocols at runtime,
we will not elaborate on the implementations of 2PL, monotonicity,
or the advanced services further. The interested reader will find
more information in [6].

6.3 Logical Logging
In order to allow higher rates of concurrency without inconsis-

tencies, we have implemented logical logging. A logical log mes-
sage contains the ID of the modified record and the operation Op
performed to this record. To retrieve a new state of a record (e.g.,
when checkpointing the record), the operation Op from the PU
queue is applied to the item.

The protocols presented in [7] use physical logging. Logical up-
dates are robust against concurrent updates as long as the opera-

tions are commutative. That is, an update is never lost because it
is overwritten and, independent of the order, all updates will be-
come visible. However, non-commutative operations may still lead
to inconsistent results. To avoid problems with different classes
of commutative operations (e.g., multiplication) we have restricted
our implementation to add and subtract. Logical logging works
only for numerical values. For non-numerical values (e.g., strings)
logical logging behaves as physical logging (i.e., the last update
to the string wins). Our Consistency Rationing approach supports
both types of values (see Section 5).

6.4 Meta data
Every collection in our system contains meta data about its type.

This information is stored on S3 along with the collection informa-
tion. Given the collection a record belongs to, the system checks
which consistency guarantees should be enforced. If a record is
classified as A data, the system knows that it must apply strong
guarantees for this item. On the other hand, if an item is classified
as C data, the system operates at lower guarantees. For these two
data categories (i.e., A and C data), the type-checking operation
is enough to decide on the consistency protocol. For B data, the
meta data contains further information: the name of the policy and
additional parameters for it.

6.5 Statistical component and policies
The statistical component is responsible for gathering statistics

at runtime. The statistics are collected locally. Based on these local
information, the component reasons about the global state (Sec-
tion 5). Using this reasoning, a single server is able to decide
locally which protocol to use (i.e., Session consistency or 2PL).
Only if all servers make the same decision to use A consistency, the
stronger consistency level is ensured. Thus, no centralized server
is required to make qualified decisions as long the window size
is reasonable big and all requests are evenly distributed across the
servers. However consolidating statistics and broadcasting certain
decisions from time to time would make the system more robust.
We consider consolidating statistics and broadcasting as part of our
future work.

The probabilistic policies differ in the kind of statistics they re-
quire. The General policy handles records where parallel updates
on different servers are unlikely with C guarantees. Therefore, the
policy needs information on the update frequency and is particu-
larly interested in rarely updated items. On the other hand, the
Dynamic policy is especially interested in hot spot items. The pol-
icy allows a high rate of parallel updates with C guarantees until
the likelihood of falling below a limit becomes too high.

For both policies, we store the statistical information directly
with the record. For the General policy we reduce the required
space for the statistics by using a simple approximation. If we aim
for a conflict rate of less than 1%, simulations using Equation (3) of
Section 5.1.1 shows, that the arrival rate has to be less than ≈ 0.22
independently of the number of servers. Having a sliding factor of
δ, the average number of updates inside a cache interval to qualify
for session consistency is less than 0.22∗δ. We use this property by
bounding the value space per slide accordingly and by introducing
a special value for update rates beyond the value space.

For example, if we assume a window size of 1 hour with a sliding
factor of 5 minutes and a cache interval of 1 minute, 12 window
slides need to be stored. The average update rate per slide has to
be ≈ 1.1. By allowing some variance, we can use 4 bit per value,
reserving one value, here number 16, to stand for updates above
15 and to be further treated as infinite. The window then requires
12 ∗ 4bits = 48bits per record, which is an acceptable size.



The operations to gather the statistics are rather simple: per in-
coming update a simple increment is needed to increase the number
in the current slide. Slides are updated in a round robin fashion and
an additional number indicates the freshness of the data. Special
intention is given to new records: a special flag is set, to avoid mis-
behavior before sufficient statistics for a new record are gathered.

Collecting statistics for the Dynamic policy works in a similar
way. The main difference is that the sum of update values is col-
lected (instead of the number of updates). Therefore, the space
to gather the statistics cannot be optimized as before. For effi-
ciency reasons, we only gather the complete statistics for hot spot
records. All other records are treated using a default threshold
value. The statistics gathered are rather small and may be kept
in main memory. For example, in a system with 10,000 hot spot
records within the B category, a window size of 100 values and 32
bits to maintain the number of updates per entry and record, only
10, 000 ∗ 100 ∗ 32 ≈ 4 MB are needed.

The remaining calculations are described in Section 5. To reduce
the estimation error, we convolute the distributions exactly if less
than 30 updates were performed inside the window for a specific
record. Otherwise, the normal distribution approximation is used
to improve the calculation performance as described in Section 5.
Another problem which occurs within the Dynamic policy is the
start of the system, when no statistics are available. We solved
the problem by using the Demarcation policy at the beginning and
switching to the Dynamic policy after sufficient statistics have be-
come available.

6.6 Implementation Alternatives
The architecture of [7, 1] assumes a storage service which pro-

vides eventual consistency guarantees. Higher levels of consistency
are achieved by using additional services and by means of proto-
cols. Lately, several systems have appeared that provide higher
levels of consistency such as Yahoo PNUTS [11].

Yahoo PNUTS provides a more advanced API with operations
such as: Read-any, Read-latest, Test-and-set-write(required ver-
sion) etc. Using these primitives, it is possible to implement session
consistency directly on top of the cloud service without requiring
additional protocols and queues. Serializability cannot be imple-
mented by the API, but PNUTS offers Test-and-set-write (required
version) which does support implementing optimistic concurrency
control for A data. The meta data, statistical component, and poli-
cies we described in the paper could be directly adapted. Unfortu-
nately, Yahoo PNUTS is not a public system. Hence, we could not
further investigate the implementation nor include it in our experi-
ments. Nevertheless, the authors of PNUTS state that for example,
Read-any is a cheaper operation than Read-latest. Hence, the same
trade-offs between cost and consistency exist and Consistency Ra-
tioning could also be applied to PNUTS to optimize for cost and
performance.

Another recent system is the Microsoft SQL Data Services [20].
This service uses MS SQL Server as an underlying system, and
builds on top replication and load balancing schemes. By using
MS SQL Server, the system is able to provide strong consistency.
However, a strong assumption underlies the system: data is not
allowed to span several servers and transactions cannot span over
several machines. Hence, the scalability of the system is limited.

Consistency Rationing could be also implemented inside MS
SQL Data Services. In particular, the A and C categories and the
simple strategies such as the Demarcation policy can help to im-
prove performance. However, as achieving strong consistency is
much cheaper in this scenario because no messages between differ-
ent servers are required, the savings are most likely not as big as

in a real distributed setup where data can grow infinitely and gets
distributed over several machines.

Finally, Consistency Rationing is also a good candidate for tra-
ditional distributed databases such as cluster solutions. If relaxed
consistency is acceptable, Consistency Rationing can help to re-
duce the number of messages to guarantee strong consistency. Again,
most of the components can be applied directly.

7. EXPERIMENTS
This section describes the experiments we performed to study the

characteristics and trade-offs of different consistency policies. Our
experiments are based on the TPC-W benchmark [32]. The TPC-W
benchmark models a Web shop and aims to provide a fair compar-
ison in terms of system performance. In all our benchmarks we
report on response time and on cost per transaction. These num-
bers stand exemplary for one scenario and show the potential of
Consistency Rationing.

7.1 Experimental setup
TPC-W benchmark. The TPC-W benchmark models a Web
shop, linking back to our first use case in Section 2. The TPC-
W benchmark specifies that customers browse through the website
of a Web shop and eventually buy products. In total, there exist
14 different actions (e.g., product search, register a customer, and
purchase a product) and three different mixes of these 14 actions.
The most write intensive mix is the Ordering Mix, in which 10% of
the actions are product purchases. In all our experiments, we used
the Ordering Mix to better reveal the characteristics and trade-offs
of our Consistency Rationing approach.

The database defined by the TPC-W benchmark contains 8 dif-
ferent data types (e.g., item data, containing the product informa-
tion including the product stock). Furthermore, the TPC-W bench-
mark states that all database transactions require strong consistency
guarantees. In our experiments we relax this requirement. In order
to study the characteristics of Consistency Rationing, we assign
different consistency categories to the data types (see below).

Before each experiment, the stock of each product is set to a
constant value. The TPC-W benchmark defines that the stock of
a product should be refilled periodically. In this case, the bench-
mark can run forever without a product’s stock dropping below a
certain threshold. We are interested in inconsistent states of the
database in which the stock of a product drops below zero, because
of non-isolated, parallel transactions. To be able to measure these
inconsistencies, we do not refill the product’s stock but stop the
experiment after a given time and count the oversells. All experi-
ments were scheduled to run for 300 seconds and were repeated 10
times.

The Ordering Mix defines that 10% of all actions are purchase
actions. One purchase action may request to buy several different
products at once. The total number of products in one purchase is
set to a random number between 1 and 6 (inclusively). That is, at
most 6 products are bought at once. The number of how many indi-
vidual items to buy of one product follows the 80-20 rule [15]. We
implemented the 80-20 rule using Gray’s self-similar distribution
with the parameters h = 0.2 and N = 4 [15]. At most 4 items are
bought of any single product.

Data categorization. In our experiments, we study the effects
of different settings of categorizations. That is, we assign consis-
tency categories to the data types of the TPC-W benchmark: (1)
A data, (2) C data, and (3) mixed data.

(1) First, we categorize all data types as A data. That is, all
database transactions are isolated and preserve consistency. Cate-



Data Category

XACTS A (very valuable)
Item B (dependent on item’s stock)
Customer C (few parallel updates)
Address C (few parallel updates)
Country C (few parallel updates)
Author C (few parallel updates)
Orders C (append-only, no updates)
OrderLine C (append-only, no updates)

Table 1: Data categorization

gorizing all data types as A data complies with the requirements of
the TPC-W benchmark.

(2) Second, we categorize all data types as C data. Database
transactions are are only session consistent. Data might be stale
and consistency is not preserved. In particular, oversells of products
might occur as product purchases are not exclusive.

(3) Last, we define a mix of data type categorizations. This mix
contains A data, C data, and B data. Given the data types of the
TPC-W benchmark, we categorized these data types as shown in
Table 1. Credit card information (XACTS) is defined as A data.
Items (i.e., products) are categorized as B data as they contain a
numerical value that is used as threshold (i.e., the stock). The rest
of the data is categorized as C data.

Costs. In all our experiments, the database is hosted in S3 and the
clients connect to the database via application servers that run on
EC2. The runtime cost is the cost ($) of running the EC2 applica-
tion servers, to host the data in S3, and to connect to our additional
services (i.e., the advanced queue service and the locking service).
The cost of running EC2 and using S3 is provided by Amazon. The
cost of connecting to and using our additional services is defined by
us and follows the pricing model of Amazon’s SQS. In particular,
the pricing of our advanced queue service is the same as Amazon’s
SQS WSDL 2008-01-01 pricing. We used these prices to avoid
making a difference between Amazon’s services and our additional
services. The price to request and to return a lock equals the price to
read a message from a queue in SQS. We measure the runtime cost
in dollars per 1000 transactions. One transaction relates to exactly
one action defined by the TPC-W benchmark.

The penalty cost of inconsistencies is the cost that a company
incurs when a promised service can not be established. Here, it is
the cost of oversold products, which can not be shipped and result
in disappointed customers. In larger companies the penalty cost is
usually well known. Because we extremely stress our system (see
below), the penalty cost of one oversold product was set to $0.01
per oversold product. The overall cost is the sum of the runtime
cost and the penalty cost.

Parameters. In our experiments we used 10 application servers
hosted on EC2. These application servers carried out transactions
following the Ordering mix defined by the TPC-W benchmark. The
number of products in the system was 1000. The stock of each
product is set to a uniformly distributed value between 10 and 100.
The checkpointing interval was set to 30 seconds. Thus, after at
most 30 seconds, the up-to-date version of a page is written to S3.
The time to life of a page was set to 5 seconds. The window size
of the Dynamic policy was set to 80 seconds, the sliding factor to
5. That is, it normally takes 80 seconds to adapt to a distribution of
updates in our database.

To clearly reveal the individual characteristics of the different
consistency categories and strategies to switch consistency levels,
we stress test our system. In the 300 seconds of benchmark time, up
to 12,000 items are sold. That is more than a quarter of the overall
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available products. This stress of the system allowed us to produce
stable and repeatable results. Of course, real world scenarios have
much less load but also a higher penalty cost for oversells. Produc-
ing stable results for such workloads requires extremely long run-
ning times making an extensive performance study nearly impossi-
ble, which is why we report only on the numbers for our stressed
system. However, by running some experiments in more realistic
scenarios we observed comparable behavior.

7.2 Experiment 1: Cost per transaction
One of the main points of this paper is to optimize the overall

cost of a transaction – measured in dollars. This cost includes the
cost to run the transactions as well as the penalty cost that occurs
when having oversold products. In our first experiment, shown in
Figure 3, we compare the overall cost per transaction for different
consistency guarantees. The cost of A data is about 0.15$ per 1000
transactions. The cost of C data significantly varies with the distri-
bution of updates. For the highly skewed 80-20 distribution, many
oversells occur because of the high contention of writes to few data
records. For the adaptive guarantee we have chosen the Dynamic
policy as this policy suits best the shopping scenario. The cost is
the least of all three policies. Thus, the Dynamic policy finds the
right balance between weak consistency (to save runtime money)
and strong consistency (to not oversell products).

The penalty cost has of course a big influence on the overall
cost. Figure 4 shows this influence by varying the penalty costs.
For A data the overall cost is constant because no inconsistencies
occur and no penalty cost exists. With an increasing penalty cost,
the overall cost for the Dynamic policy converges to the cost of
A data. The Dynamic policy adapts itself to the penalty cost (see
Section 5.3.3) and enforces more and more transactions at strong
consistency with increasing penalty cost. The cost of C data be-
comes amazingly high. At a penalty cost of $0.1 the C data’s over-
all cost is $0.74 ($23) per 1000 transactions for the uniform distri-
bution (80-20 distribution). Therefore, the overall cost of C data is
not shown in Figure 4.

Extrapolating the savings of the Dynamic policy to real world
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applications (such as Amazon or Ebay), the overall savings in IT
costs can be rather significant.

7.3 Experiment 2: Response time
Having a closer look at the performance of our system, we mea-

sured the response times of single actions of the TPC-W bench-
mark. Figure 5 shows the main findings. The response time of
A data is the slowest of all policies. Each transaction of A data has
to get a lock before any reads or writes can be performed. In con-
trast, C data shows the fastest response times, as no locks need to be
gathered. The Dynamic policy is 24% slower than C data because
it sometimes requires locks in order to not oversell products. We
conclude that the Dynamic policy is able to compete with state of
the art policies in terms of performance and enables us to optimize
for cost as well (see previous experiment).

7.4 Experiment 3: Policies
Experiment 3 studies the differences of several adaptive poli-

cies in detail. We focus on the numerical policies as those are the
ones that apply for the book-shop scenario, and compare the Fixed
threshold policy (with thresholds T = 40 and T = 12) with the
Demarcation policy and the Dynamic policy. Nevertheless, as the
Dynamic policy for numerical data is just an advanced form of the
General policy, and the Time policy is just a special setting for the
Fixed threshold policy, the results here also serve as examples for
the Time and General policy.

Figure 6 shows the cost per 1000 transactions in dollars. The
Fixed threshold of T = 12 has been optimized for the uniform dis-
tribution of updates to data records (see Experiment 4). The Fixed
threshold policy with T = 12 proves to be the cheapest policy for
uniformly distributed updates. The same threshold shows a very
high cost for skewed updates. Setting the threshold to T = 40
lowers the cost for skewed updates but at the same time raises the
cost for uniformly distributed updates. We conclude that the Fixed
threshold policy is highly dependent on the threshold and is out-
performed by more sophisticates policies. The Demarcation policy
shows already a lower cost for both distributions of updates and the
Dynamic policy is even able to outperform the Demarcation policy.

Figure 7 displays the response times of the different policies. As
can be seen, the Dynamic policy has the fastest response times of
all policies. If the stock of a product in the database falls below a
the fixed threshold, the Fixed threshold policy will operate in strong
consistency. The higher the threshold is set, the earlier this policy
will start to require strong consistency. Therefore, the Fixed thresh-
old policy shows a slower response time for the higher threshold.
Even for T = 12, the Fixed threshold policy requires unnecessarily
many locks compared to the Dynamic policy and the Demarcation
policy.

Hence, the Dynamic policy outperforms all other policies that
have been described in this paper in terms of cost and response
time. This is possible by utilizing statistics gathered at runtime, a
possibility ignored by the other, more static policies.

7.5 Experiment 4: Fixed threshold
Our last experiment goes into further detail of the Fixed thresh-

old policy. The goal is to experimentally determine the optimal
threshold for our benchmark setup. We expect to gain further in-
sight into this value-based decision policy as well as the general
Consistency Rationing approach. In this benchmark, the updates
were uniformly distributed among all products in the database.

Figure 8 shows the runtime cost of the Fixed threshold policy,
A data, and C data in dollars per 1000 transactions. We vary the
threshold of the Fixed threshold policy. As A data and C data are
not affected by this threshold, their costs remains constant. The
runtime cost of the Fixed threshold policy increases as the threshold
is increased. The higher the threshold is set, the earlier the policy
will switch to strong consistency, which is more expensive (e.g.,
because of requiring locks and sending more messages).

Figure 9 shows the oversells per 1000 transactions. In our stressed
benchmark situation, C data shows almost 7 oversells per 1000
transactions. A data, of course, has no oversells at all because the
data is always updated with strong consistency guarantees. The
higher the threshold is set for the Fixed threshold policy, the less
oversells occur. That is, because the Fixed threshold policy will
start to operate in strong consistency mode earlier. For a threshold
of T = 14, no oversells occur.



Given these two figures, Figure 10 shows the overall cost per
transaction for A data, C data, and the Fixed threshold policy. The
overall cost is the sum of the runtime cost and the number of over-
sells times the penalty cost per oversell. The cost of the Fixed
threshold policy has a minimum at T = 12. Both, A and C data,
have a higher cost per transaction as the optimal setting of the Fixed
threshold policy.

These figures demonstrate well how adaptation at runtime lets
the consistency vary between the two extreme guarantees of session
consistency and serializability.

8. CONCLUSION
In cloud computing storage services, every service request has

an associated cost. In particular, it is possible to assign a very pre-
cise monetary cost to consistency protocols (i.e., the number of ser-
vice calls needed to ensure the consistency level times the cost per
call). Therefore, in cloud storage services, consistency not only in-
fluences the performance and availability of the systems but also
the overall operational cost. In this paper, we proposed a new con-
cept called Consistency Rationing to optimize the runtime cost of a
database system in the cloud when inconsistencies incur a penalty
cost. The optimization is based on allowing the database to exhibit
inconsistencies if it helps to reduce the cost of a transaction but
does not cause higher penalty costs.

In our approach we divide (ration) the data into three consistency
categories: A, B, and C. The A category ensures strong consistency
guarantees and shows high cost per transaction. The C category
ensures session consistency, shows low cost, but will result in in-
consistencies. Data in the B category is handled with either strong
or session consistency depending on the specified policy. In this
paper we present and compare several of such policies to switch
consistency guarantees including policies providing probabilistic
guarantees. As shown in our experiments, Consistency Rationing
significantly lowers the overall cost and improves the performance
of a cloud-based database systems. Our experiments show further
that adapting the consistency by means of temporal statistics has
the best overall cost while maintaining acceptable performance.

In our opinion, the statistical policies introduced in this paper
are just the first step towards probabilistic consistency guarantees.
Future work will include exploring the many possible improve-
ments: better and faster statistical methods, automatic optimiza-
tions with regards to other parameters (e.g., energy consumption),
adding budget restrictions to the cost function, and relaxing other
principles of the ACID paradigm (e.g., durability).
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