
Optimal Random Perturbation at Multiple Privacy Levels

Xiaokui Xiao Yufei Tao Minghua Chen
Nanyang Technological University Chinese University of Hong Kong
50 Nanyang Avenue, Singapore New Territories, Hong Kong

xiaokui@ntu.edu.sg {taoyf@cse, minghua@ie}.cuhk.edu.hk

ABSTRACT
Random perturbation is a popular method of computing
anonymized data for privacy preserving data mining. It is simple
to apply, ensures strong privacy protection, and permits effective
mining of a large variety of data patterns. However, all the exist-
ing studies with good privacy guarantees focus on perturbation at a
single privacy level. Namely, a fixed degree of privacy protection is
imposed on all anonymized data released by the data holder. This
drawback seriously limits the applicability of random perturbation
in scenarios where the holder has numerous recipients to which dif-
ferent privacy levels apply.

Motivated by this, we study the problem of multi-level pertur-
bation, whose objective is to release multiple versions of a dataset
anonymized at different privacy levels. The challenge is that var-
ious recipients may collude by sharing their data to infer privacy
beyond their permitted levels. Our solution overcomes this obsta-
cle, and achieves two crucial properties. First, collusion is useless,
meaning that the colluding recipients cannot learn anything more
than what the most trustable recipient (among the colluding recipi-
ents) already knows alone. Second, the data each recipient receives
can be regarded (and hence, analyzed in the same way) as the out-
put of conventional uniform perturbation. Besides its solid theoret-
ical foundation, the proposed technique is both space economical
and computationally efficient. It requires O(n+m) expected space,
and produces a new anonymized version in O(n+log m) expected
time, where n is the cardinality of the original dataset, and m the
number of versions released previously. Both bounds are optimal
under the realistic assumption that n � m.

1. INTRODUCTION
Privacy preserving data mining (PPDM) has received consider-

able attention from the database community in recent years. Given
a dataset D, the objective of PPDM is to discover interesting pat-
terns in D (such as various statistics, decision trees, association
rules, and so on) without deriving any private data. Input perturba-
tion (IP) [3, 4, 11, 12, 18, 19, 21, 26, 28] is a well-adopted method-
ology to achieve this goal. Generally speaking, IP converts D to
another dataset D∗ that permits effective knowledge learning of D,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

and at the same time, adequately protects the sensitive information1

in D. Such a D∗ can therefore be released to a data miner to per-
form PPDM.

Random perturbation [3,4,31] is a simple yet effective IP method
that provides rigorous privacy guarantees. In this paper, we focus
on a specific random perturbation technique [31], which we refer to
as uniform perturbation. Given a retention probability p, uniform
perturbation computes D∗ from D as follows. First, D∗ preserves
all the non-sensitive values in D. For each sensitive value x, we
toss a coin with head probability p. If the coin heads, x is retained
in D∗. Otherwise (the coin tails), we replace x with a random value
in its domain. The value of p controls the tradeoff between the ef-
fectiveness of data mining, and the strength of privacy protection.
When p equals 1, D∗ is exactly D, thus maximizing the accuracy of
mining, although all private information is revealed. On the other
extreme of p = 0, all the sensitive values in D∗ are completely ran-
domized. In this case, privacy is fully protected, but the precision
of mining is the lowest.

1.1 Perturbation at multiple privacy levels
All the previous studies (with some exceptions that are vulner-

able in privacy protection; see Section 2) on IP methods focus on
perturbation at a single privacy level, namely, the anonymized data
released to all recipients provides the same degree of privacy pro-
tection. The motivation of this work is that, in practice, it is often
necessary to release numerous versions with different privacy lev-
els. This is typical when the data holder has recipients that are
not equally trustable. For example, it is reasonable to give a less
perturbed version to a government agency, and a heavily perturbed
version to an unknown organization. Unfortunately, the existing
techniques allow us to prepare only one version that either fails to
meet the precision requirement of the government agency, or leaks
more information than we should to the unknown organization.

Multi-level perturbation is even compulsory if the data holder
wants to make profits by charging a cost according to the requested
privacy level. This makes sense because various data mining tasks
have different precision requirements. For instance, estimating the
population of pneumonia patients obviously demands more accu-
rate data than estimating the population of patients having respira-
tory problems in general. Hence, a recipient is well motivated to
pay the minimum cost in exchange of the precision level that just
meets her/his needs.

A naive solution to multi-level perturbation is to compute each
perturbed version independently. The problem, however, is that

1As in the privacy literature, a sensitive value refers to a value that
its owner may not be willing let others associate with her/him, in
order to protect her/his reputation, interests, and so on. The oppo-
site is called a non-sensitive value.

Alice

Bobretained with
probability

retained with
probability

Figure 1: Failure of independent perturbation

this approach fails when two (or more) recipients share their data.
To explain, suppose that we employ uniform perturbation to pub-
lish data to two recipients Alice and Bob, for whom the retention
probability is 40% and 20%, respectively. Let us assume a simple
case where D has a single (sensitive) value HIV, and the disease
domain has 1,000 distinct values. Figure 1 shows a possible out-
come of independent perturbation, where HIV is retained for both
Alice and Bob. Note that, without sharing their data, both Alice and
Bob have low confidence in believing the real value is HIV. Specif-
ically, to Alice (Bob), the HIV value she (he) receives may have
been a random value with 60% (80%) probability. However, once
they share their data, they will realize that their received values are
unlikely to be random. This is because the chance for both inde-
pendently perturbed values to be HIV is small (it is less than 1%2).
Consequently, they will have much higher confidence in believing
the original value is HIV. The problem becomes much more severe
and complicated when more than two recipients are involved.

1.2 Contributions
We present the first algorithms of multi-level uniform perturba-

tion that are theoretically robust even under the collusion of recipi-
ents. Specifically, our algorithms achieve two crucial properties.

1. By sharing data, recipients gain nothing more than having
only the data of the most trustable recipient whose retention
probability is the highest (among all the recipients participat-
ing in the sharing). For example, in Figure 1, we ensure that
Alice and Bob learn nothing more than Alice herself (without
sharing). The above property holds regardless of the number
of sharing recipients.

2. Each recipient’s data can be used in the same way as if it
was computed via ordinary uniform perturbation. This is im-
portant because effective algorithms have been developed to
use the output of uniform perturbation to perform analytical
tasks such as frequent itemset mining [4, 11, 12], classifica-
tion by decision trees [8,29], counting [3], etc. Every recipi-
ent, therefore, is able to apply those algorithms directly.

In addition to their solid theoretical foundation, the proposed al-
gorithms are both space economical and computationally efficient.
Specifically, let n be the cardinality of the underlying dataset D,
and m the number of recipients so far. Our algorithms store in-
formation that consumes totally O(n + m) expected space, and
produces a new perturbed version in O(n + log m) expected time.
For large datasets, n is by far greater than m, in which case the ex-
pected space and time complexities are both O(n). This is optimal,
noticing that D itself already occupies Ω(n) space, and writing n
records incurs Ω(n) time. Our technique is incremental, because it
does not assume that the privacy levels of future releases are known
in advance. Instead, a new request can arrive at any time, at any

2It may be deceivingly obvious that this probability ought to be
48%. It is not, because the size of the disease domain plays a cru-
cial role in calculating the probability. The formulae for correct
calculation will be given later.

privacy level, no matter how many requests have been handled pre-
viously.

The rest of the paper is organized as follows. Section 2 reviews
the previous approaches that adopt the IP methodology. Section 3
elaborates the details of uniform perturbation, and its privacy guar-
antees. Section 4 formally defines the problem of multi-level uni-
form perturbation. Section 5 gives the details of the proposed al-
gorithm, and analyzes its theoretical properties. Section 6 explains
how to implement the algorithm with the minimum space and com-
putational cost. Section 7 evaluates our technique with extensive
experiments. Finally, Section 8 concludes the paper with a sum-
mary of our results.

2. RELATED WORK
In this section, we discuss the existing input perturbation (IP)

approaches, which can be divided into two categories: partition-
based and randomization-based.

Partition-based Approaches. Given a dataset D, a partition-based
approach works by first dividing tuples of D into disjoint groups,
and then releasing some general information of each group. There
have been a plethora of studies on partition-based approaches, such
as generalization [28], anatomy [33,35], condensation [1]. Despite
the popularity of these approaches, they are vulnerable to various
types of privacy attacks, as pointed out in [16, 26, 32].

With the exceptions of [7, 17, 30, 34], all the existing partition-
based approaches consider only one-time publication (i.e., only one
anonymized version is released); hence, they cannot be applied to
multi-level perturbation. The solutions of [7, 17, 30, 34], on the
other hand, cannot tackle our problem either. Specifically, [17, 30]
focus on anonymizing marginals (a marginal is a projection of the
dataset on a subset of its attributes), while [7,34] deal with dynamic
anonymization, i.e., how to anonymize a dataset in the presence of
updates. The meanings of “re-publication” in the above approaches
are all different from our work. They still assume a single, univer-
sal, privacy level for all the releases, while we allow the publisher
to freely choose the amount of anonymization on each release.

Randomization-based Approaches. A randomization-based ap-
proach anononymizes a dataset D, by converting D into another
dataset D∗ through a randomized process. In particular, random
perturbation [3, 12, 14, 27, 31] transforms D by replacing some
values in D with randomly selected values. The techniques in
[2, 5, 6, 10, 24] obtain D∗ by adding noise to the numeric values
in D. The method in [22] synthesizes D∗ based on a model con-
structed from D.

The random nature of many of these approaches allows them to
provide, at least to some extent, protection against collusion. How-
ever, to the best of our knowledge, none of them can achieve the
same strength of protection as described in Section 1.2. The works
closest to ours are those on differential privacy [9,10,13,24]. They
can be employed to publish several anonymized versions which,
even put all together by an adversary, still ensure privacy to some
extent. Nevertheless, as shown in [24], the combination of any two
anonymized versions D∗

1 and D∗
2 can offer only a privacy guaran-

tee that is strictly worse than that provided by D∗
1 or D∗

2 alone.
This contradicts our goal: the combination of multiple anonymized
versions should guarantee the same privacy as the least perturbed
version. Li and Chen [20] approach the multi-level problem with
additive Gaussian noise, but their method does not provide any for-
mal guarantee on the amount of private information that may be in-
ferred by an adversary; furthermore, it is known that additive Gaus-
sian noise can be compromised by simple denoising methods [15].

Single-level Perturbation Multi-level Perturbation
Partition-based Randomization-based Partition-based Randomization-based

Generalization [28] Noise adding [2]
Anatomy [33, 35] Random perturbation [3, 12, 14, 27, 31] Open This paper∗
Condensation [1] Synthetic data generation [22]

∗Earlier work with weaker privacy guarantees than our paper includes [10, 13, 20, 24].

Table 1: Summary of IP methodologies

Summary. Table 1 gives a summary of the existing IP approaches.
These approaches, as mentioned before, focus mostly on single-
level perturbation. In Section 5, we will present a new solution
to multi-level perturbation that can be counted as a randomization-
based approach. It remains open whether the same degree of pri-
vacy can be provided by a partition-based technique.

3. PRELIMINARIES
Random perturbation is type of randomization-based approach

that converts a dataset D to its anonymized version D∗ by (i) copy-
ing the non-sensitive values of D to D∗, and (ii) substituting each
sensitive value x of D with a value sampled from a replacement
distribution. Depending on the choice of replacement distribution,
there exist several variations of random perturbation [3, 4, 14, 31].
In this paper, we focus on uniform perturbation [31] because, as
shown in [4], it is stronger in privacy protection than other varia-
tions.

As explained in Section 1, uniform perturbation processes each
sensitive value x of D by tossing a coin with head probability p,
where p is a parameter called retention probability. If the coin
heads, x is retained in D∗; otherwise, it is replaced with a random
value in its domain. Algorithm uni-pert in Figure 2 summarizes the
perturbation process.

More formally, the replacement distribution of uniform pertur-
bation is defined as follows. Let X be a random variable denoting
the original value, and Y a random variable denoting the output of
perturbation. Both X and Y distribute in a domain DOM with
size s. Then, the probability of perturbing a value x ∈ DOM to
y ∈ DOM is given by:

Pr[Y = y|X = x] =

{
p + (1 − p)/s if x = y
(1 − p)/s if x �= y

(1)

Let us explain the equation by focusing on the case x = y,
namely, the original value X equals the perturbed value Y (the
other case x �= y is simpler and can be understood similarly). This
happens under either of the following disjoint events: (i) X is re-
tained directly, or (ii) X is replaced by a random value from DOM ,
and this value happens to be x. Event (i) occurs with probability
p (the retention probability). The probability of event (ii) equals
(1 − p) · (1/s), where (1 − p) is the probability that we decide
not to retain X, and 1/s the probability that x is picked randomly
from a domain of size s. Hence, the chance that at least one event
happens is p + (1 − p)/s.

Privacy guarantees. Uniform perturbation can ensure several dif-
ferent types of privacy guarantees, such as ρ1-ρ2 privacy [11] and
δ-growth [29]. Specifically, both ρ1-ρ2 privacy and δ-growth im-
pose constraints on adversaries’ prior and posterior beliefs about
any sensitive value X in the input data. Let Q(X) be any pred-
icate on X, Y be an anonymized version of X, and Pr[Q(X)]
(Pr [Q(X) | Y]) be the adversary’s belief in Q(X) before (after)
observing Y . ρ1-ρ2 privacy requires that

Pr[Q(X)] < ρ1 =⇒ Pr[Q(X) | Y] < ρ2,

and Pr[Q(X)] > ρ2 =⇒ Pr[Q(X) | Y] > ρ1.

Algorithm uni-pert (x, p)

/* x is the value being perturbed, and p the retention probability */

1. toss a coin with head probability p
2. if the coin heads then return x
3. else return a random value in the domain of x

Figure 2: Algorithm of uniform perturbation

where ρ1 and ρ2 are two constants in (0, 1] such that ρ1 < ρ2. On
the other hand, δ-growth ensures that

Pr[Q(X) | Y] − Pr[Q(X)] < δ.

In Section 5, we will present a multi-level perturbation algorithm
that achieves both ρ1-ρ2 privacy and δ-growth.

It is noteworthy that, uniform perturbation tends to provide a
weaker degree of privacy protection, when there exist correlations
among the sensitive values that are known to the adversary [26].
This issue is not specific to uniform perturbation: as pointed out
in [25], most existing input perturbation methodologies consider
adversaries with no prior knowledge of tuple correlations. In fact,
it has been proved in [26] that, if an adversary knows arbitrary cor-
relations among the tuples in D, then no input perturbation algo-
rithm can produce useful anonymized data without enabling the
adversary to learn significant information about a predicate Q(X)
of some sensitive value X in D. A complete treatment of tuple
correlations is beyond the scope of our work.

4. PROBLEM DEFINITION
We assume that the dataset D has a sensitive attribute A with

domain DOM , and a set B of non-sensitive attributes. All the
tuples of D are considered to have been independently drawn from
an identical distribution. Our solutions are applicable, even if there
are multiple sensitive attributes A1, A2, ..., Az. In that case, we
can simply view all of them as a single attribute with domain A1 ×
A2 × ... × Az, and then, apply the proposed technique in exactly
the same way. A similar approach has also been adopted in [26].

We aim at enabling the holder of D to satisfy an infinite num-
ber of requests for an anonymized version of D. Each request is
associated with a retention probability p. This value represents the
trustability level of the data recipient. That is, the recipient is more
(less) trustable if her/his p is higher (lower). The holder must send
to the recipient a dataset D∗ that can be regarded as the output of
uniform perturbation with retention probability p.

Different recipients may collude by sharing their (anonymized)
data, in an attempt to infer the original dataset D to a precision be-
yond their trustability levels. The best way to discourage collusion
is to make sure that it will be useless. Notice that, the sharing recip-
ients will obviously glean at least the same knowledge as the most
trustable recipient among them. Thus, the best the holder can do
is to ensure that nothing more can be derived. Next, we formulate
this requirement mathematically.

It suffices to enforce the requirement on individual tuples, be-
cause both uniform perturbation and our algorithms anonymize the

Symbol Description
D The original dataset
A The sensitive attribute of D
B The set of non-sensitive attributes of D

DOM The domain of A
s The size of DOM
n The cardinality of D
H The set of recipients we responded to before
m The size of H
pi The i-th highest retention

(1 ≤ i ≤ m) probability of the recipients in H
D∗

i The perturbed version of D returned to the
(1 ≤ i ≤ m) recipient with retention probability pi

p The retention probability of the incoming request

Table 2: Frequently used symbols

tuples of D independently. Let t be an arbitrary tuple in D. Con-
sider a set Sshare of recipients that are colluding to evaluate the
chance that the sensitive value X of t satisfies a predicate Q(X).
Each recipient has a perturbed copy of X derived using her/his re-
tention probability. Denote by L the set of those perturbed val-
ues, among which let best(L) be the one contributed by the most
trustable recipient in Sshare. We will guarantee

Pr[Q(X)|L] = Pr[Q(X)|best(L)], (2)

where Pr[Q(X)|L] is the confidence that the recipients of Sshare

can derive on conjecture Q(X) by putting their data together, and
Pr[Q(X)|best(L)] is their confidence by looking at only best(L)
itself. Equation 2, therefore, ensures that collusion yields nothing
more about Q(x) than what the most trustable recipient in Sshare

can already tell alone. In other words, any ρ1-ρ2 privacy or δ-
growth requirement (as discussed in Section 3) we impose on the
most trustable recipient still holds under collusion.

Now we are ready to formally define the problem of multi-level
uniform perturbation. Note that it is trivial to handle the first re-
quest, because we can simply return the output of conventional uni-
form perturbation. The problem kicks in at the second request. In
general, let H be the set of all recipients we have already responded
to in history, and |H | ≥ 1. Now, given a new request with retention
probability p, we aim at returning a dataset D∗ where every tuple
t∗ corresponds to a tuple t ∈ D such that

• t∗ keeps all the non-sensitive values of t.

• Let X (Y) be the sensitive value t (t∗). The distribution of Y
is given in Equation 1, namely, same as uniform perturbation
with retention probability p.

• Equation 2 holds for any non-empty subset L of all the per-
turbed values of t we returned (including the one to the cur-
rent recipient).

We do not put any constraint on the sequence of recipients,
namely, their requests can arrive in any order of their retention
probabilities. Furthermore, we deal with the online setting where
the retention probabilities of future requests are unknown in ad-
vance. In analyzing the space and time complexities, we assume
that all retention probabilities are at least a small constant c > 0.
This is reasonable because, in practice, it does not make sense to
perform perturbation with an excessively low retention probability.
In that case, most sensitive data will be replaced by random values,
rendering it impossible to carry out meaningful data mining. In
practice, a good choice of c can be 0.001. Table 2 lists the symbols
that will be used frequently.

5. MULTI-LEVEL UNIFORM PERTURBA-
TION

Following the notations in Section 4, denote by H the set of
recipients we have responded to previously. Let m be the size of H .
Recall that each recipient is associated with a retention probability.
Denote by p1, p2, ..., pm the retention probabilities associated with
the recipients in H , sorted in non-ascending order, namely, p1 ≥
p2 ≥ ... ≥ pm. Let D∗

i (1 ≤ i ≤ m) be the anonymized version
of D returned to the recipient with retention probability pi.

The goal of this section is to design an algorithm for computing a
new version D∗ for an incoming request with retention probability
p. We consider that p is not equivalent to any of p1, p2, ..., pm.
Otherwise, assume p = pi for some i ∈ [1, m]; it suffices to return
D∗

i . Apparently, in this case, it is not necessary to add the recipient
to H . Hence, in the sequel, we consider that all p1, p2, ..., pm

are mutually different. Section 5.1 first presents the details of our
algorithm, and then, Section 5.2 analyzes its theoretical properties.

5.1 Algorithm
Derivation of D∗ must be somehow related to D∗

1 , D∗
2 , ..., D∗

m

(as explained in Section 1.1, independent perturbation may lead to
severe privacy breach under collusion). It turns out that, as proved
in the next subsection, the correct way to calculate D∗ requires at
most only two tables from {D∗

1 , D∗
2 , ..., D∗

m}. Specifically, let pl

(1 ≤ l ≤ m) be the smallest probability in {p1, p2, ..., pm} that
is larger than p, and similarly, pr (1 ≤ r ≤ m) be the largest
probability in the same set that is smaller than p. Then, the two
tables needed are D∗

l and D∗
r .

There are two special cases that must be clarified. First, p may
be greater than all the retention probabilities received previously,
and hence, pl does not exist. In this case, we define pl = 1, and
D∗

l to be the original dataset D. Second, p may be smaller than all
the previous retention probabilities, and hence, pr does not exist.
In this case, we leave pr and D∗

r undefined.
Our algorithm behaves differently depending on whether pr ex-

ists. Next, we elaborate the details, concentrating on the sensitive
values because all the non-sensitive values are directly kept.

• In case pr does not exist, we use only D∗
l to generate D∗.

For each tuple tl ∈ D∗
l , create a sensitive value Y in D∗ as

follows. Toss a coin with head probability p/pl. If the coin
heads, Y equals the sensitive value of tl. Otherwise (the coin
tails), it is randomly drawn from the domain DOM (of the
sensitive attribute).

• In case pr exists, both D∗
l and D∗

r are deployed to derive
D∗. Note that every tuple tl ∈ D∗

l has a matching tuple
tr ∈ D∗

r such that tl and tr perturb the same tuple in the
original dataset D. Denote the sensitive values of tl and tr

as yl and yr , respectively.

Given tl and tr, we create a sensitive value Y in D∗ by
throwing a coin that heads, tails, or stands with probability
u, v, and 1 − u − v respectively, where

u =

{
p/pl if yl = yr

(p − pr)/(pl − pr) if yl �= yr
(3)

v =

{
(1 − p

pl
)(1 − 1−pr/p

(s−1)pr/pl+1
) if yl = yr

pr(pl−p)
p(pl−pr)

if yl �= yr
(4)

where s is the size of DOM . If the coin heads (tails), Y
equals yl (yr). Otherwise (the coin stands), it is a random
value in DOM .

Algorithm multi-pert (p)

/* p is the retention probability of a new request */

1. let p1, p2, ..., pm be the retention probabilities of the
previous requests in non-ascending order

2. if p equals pi for any i ∈ [1, m], then return D∗
i

3. l = the largest subscript i ∈ [1, m] such that pi > p
/* pl = the lowest of p1, p2, ..., pm greater than p */

4. if pl does not exist then pl = 1 and D∗
l = D

5. r = the smallest subscript i ∈ [1, m] such that pi < p
/* pr = the greatest of p1, p2, ..., pm lower than p */

6. if pr does not exist
7. for each tuple tl ∈ D∗

l
8. create a tuple t∗ in D∗ with t∗[B] = tl[B]

/* B is the set of non-sensitive attributes */
9. set t∗[A] to tl[A] with probability p/pl, or to a

random value in DOM with probability 1 − p/pl
/* A is the sensitive attribute */

10. else
11. for each tuple tl ∈ D∗

l
12. identify its matching tuple tr ∈ D∗

r
13. create a tuple t∗ in D∗ with t∗[B] = tl[B]
14. set t∗[A] to tl[A] with probability u, to tr [A] with

probability v, or to a random value in DOM with
probability 1 − u − v, where u, v are given in
Equations 3 and 4, respectively

15. return D∗

Figure 3: Algorithm of multi-level uniform perturbation

Algorithm multi-pert in Figure 3 formally summarizes the above
procedures. Next, we will illustrate the intuition behind the algo-
rithm using two examples.

Example 1. Assume that the original dataset D has only a single
(sensitive) value x = HIV. Alice issues the first data request with re-
tention probability 40%, which is handled by conventional uniform
perturbation. Suppose that HIV is retained, and sent to Alice. So,
at this moment, H includes only Alice, and p1 = 40%.

Now, Bob issues the second request with retention probability
p = 20%. As p is smaller than every previous retention probabil-
ity, pr does not exist. On the other hand, pl = 40%, and we will
compute the value Y sent to Bob based on only the value HIV sent
to Alice. Specifically, we do so by tossing a coin with head proba-
bility p/pl = 50%. Y equals HIV if the coin heads, or otherwise a
random value from the disease domain DOM .

To verify the correctness of the above strategy, we need to show
that (i) Y follows the same distribution as the output of uniform per-
turbation, namely, using algorithm uni-pert in Figure 2 to perturb
HIV with retention probability p = 20%, and (ii) the collusion be-
tween Alice and Bob tells no more than what Alice already knows
by herself. In fact, fact (ii) is obvious, because Bob’s value is com-
puted solely from Alice’s value, and therefore, hints no more than
what Alice’s value already hints. Next, we will explain fact (i).

Let us discuss the probability of Y = HIV, assuming that the
disease domain DOM has size s = 10. By our algorithm, Y
equals HIV under each of the following disjoint events:

I. Alice receives HIV, and the coin we toss for Bob heads.

II. Alice receives HIV, the coin we toss for Bob tails, and the
random value we draw from DOM happens to be HIV.

III. Alice does not receive HIV, the coin we toss for Bob tails,
and the random value we draw from DOM happens to be
HIV.

Since Alice’s value is output by uni-pert with retention probability
40%, by Equation 1, she gets the value HIV with probability 0.4 +

(1 − 0.4)/10 = 0.46. As a result, Event I occurs with probability
0.46 × 0.5 = 0.23 (recall that the coin tossed for Bob has head
probability 50%). Event II has probability 0.46 × 0.5 × (1/10) =
0.023, and Event III probability (1−0.46)×0.5×(1/10) = 0.027.
Therefore, overall Y has probability 0.23 + 0.023 + 0.027 = 0.28
to be HIV.

On the other hand, given retention probability p = 20%, algo-
rithm uni-pert also has probability 0.2 + (1 − 0.2)/10 = 0.28
(Equation 1) to perturb value HIV to itself. In a similar fashion,
it is not hard to verify that Y has the same probability to take any
value as the output of uni-pert. This establishes the correctness of
fact (i).

Example 2. Let us consider another scenario where everything re-
mains the same with the first recipient Alice, but the second recip-
ient Bob has retention probability p = 80%. In this case, both pl

and pr exist, and equal 1 and 40%, respectively. Accordingly, we
will calculate Y (the value for Bob) using two values: the original
value yl in D, and the value yr Alice received. Here, yr happens
to coincide with yl = HIV.

Assuming that DOM has size s = 10, we calculate the values
of u and v using Equations 3 and 4, obtaining u = 80% and v =
17.8%. Thus, we throw a coin that heads with probability 80%,
tails with probability 17.8%, or stands with probability 2.2%. Y
is set to yl if the coin heads, to yr if it tails, or drawn randomly
from DOM otherwise. As yl = yr = HIV, it follows that that Y
also equals HIV with 97.8% chance, or a random value with 2.2%
probability.

Next, we give the rationale behind the derivation of u and v in
Equations 3 and 4 (see Section 5.2 for a rigorous proof). Recall that
u (v) is the head (tail) probability of the coin we toss for Bob. For
each probability, we need to decide two values for the case yl = yr

and yl �= yr, respectively. Let u1 (u2) be the head probability
under yl = yr (yl �= yr), similarly, v1 and v2 for tail. Our goal
is to find equations from which we can solve u1, u2, v1, and v2

precisely.
Let random variable X denote the original value in D, and ran-

dom variable Ya (Yb) denote the value Alice (Bob) receives. Re-
member that Alice and Bob have retention probabilities pa = 40%
and pb = 80%, respectively. Our algorithm must ensure two goals.
First, collusion is useless, namely,

Pr[Q(X)|Ya = ya, Yb = yb] = Pr[Q(x)|Yb = yb] (5)

must hold for any values x, ya, yb in the domain DOM . Second,
Yb is statistically the same as output perturbation, that is

Pr[Yb = yb|X = x] =

{
pb + (1 − pb)/s if x = yb

(1 − pb)/s if x �= yb
(6)

It turns out that (as shown in the proof of Lemma 1) Equations 5
and 6 both hold when

Pr [Yb = yb|Ya = ya, X = x]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(pb+ 1
s
(1−pb))(pa/pb+ 1

s
(1−pa/pb))

pa+ 1
s
(1−pa)

if ya = yb = x
(1−pb)(1−pa/pb)

s2(pa+ 1
s
(1−pa))

if ya = x �= yb

1−pb
1−pa

(pa/pb + 1
s
(1 − pa)) if ya = yb �= x

1−pa/pb
1−pa

(pb + 1
s
(1 − pb)) if x = yb �= ya

(1−pb)(1−pa/pb)
s(1−pa)

otherwise

(7)

Four equations can be established based on the first four cases of the
above equation set (the last case is redundant as the probabilities of
all five cases must sum up to 1). We will explain only the equation

arising from the case ya = yb = x because the other equations can
be formulated similarly.

Notice that ya = x is exactly the scenario we demonstrated ear-
lier, where the value of Alice is identical to the original value in D
(i.e., yl = yr). In this case, our algorithm gives Bob the same value
(i.e., Y = yl = yr) under either of the following disjoint events:

I. The coin we toss for Bob heads or tails.

II. The coin stands, and the random value we draw from DOM
happens to be x.

Event I occurs with probability u1 + v1, whereas Event II happens
with probability (1−u1 − v1)/s. Hence, the resulting equation is:

u1+v1+(1−u1−v1)/s =
(pb + 1

s
(1 − pb))(

pa
pb

+ 1
s
(1 − pa

pb
))

pa + 1
s
(1 − pa)

.

5.2 Theoretical analysis
In this subsection, we will formally prove the correctness of our

algorithm by establishing two properties. First, collusion is use-
less. Second, the anonymized version every recipient obtains can
be regarded as the output of conventional uniform perturbation.

As the tuples of the original dataset D are anonymized indepen-
dently, it suffices to focus on one individual tuple t ∈ D. Let ran-
dom variable X denote the sensitive value of t. Recall that p1, p2,
..., pm are the retention probabilities of the recipients in H , sorted
in descending order. D∗

i (1 ≤ i ≤ m) is the anonymized version
we sent to the recipient with retention probability pi. Let random
variables Y1, Y2, ..., Ym denote the perturbed versions of X in D∗

1 ,
D∗

2 , ..., D∗
m, respectively. All of X, Y1, Y2, ..., Ym distribute in

domain DOM .
Let L be any non-empty subset of {Y1 = y1, Y2 = y2, ..., Ym =

ym}, where Yi = yi represents the observation that the recipient
with retention probability pi obtains a concrete value yi ∈ DOM .
As mentioned in Section 4, proving the futility of collusion is
equivalent to verifying the validity of Equation 2 for any L. On
the other hand, to convince the recipient with retention probability
pi (1 ≤ i ≤ m) that the Yi s/he obtains can be regarded as the out-
come of uniform perturbation, we must show that Yi is statistically
the same as the output of uni-pert (Figure 2), namely:

Pr[Yi = yi|X = x] =

{
pi + (1 − pi)/s if x = yi

(1 − pi)/s if x �= yi
(8)

for any x, y1, y2, ..., ym in DOM .
For notational convenience, let p0 = 1 and Y0 = X. We first

present a key lemma that is useful in the subsequent analysis.

LEMMA 1. For any i ∈ [1, m], we have

Pr[Yi = yi|Y0 = y0, Y1 = y1, ..., Yi−1 = yi−1]

= Pr[Yi = yi|Yi−1 = yi−1], (9)

and

Pr[Yi = yi|Yi−1 = yi−1]

=

⎧⎨
⎩

pi
pi−1

+
(
1 − pi

pi−1

)
/s if yi = yi−1(

1 − pi
pi−1

)
/s if yi �= yi−1

(10)

for any y0, y1, ..., ym in DOM .

PROOF. See Appendix 1.

Intuitively, Equation 9 means that, among X, Y1, Y2, ..., Yi−1,
it is the last value Yi−1 that has the greatest impact on Yi. In fact,

the impact is so heavy that even Yi−1 itself is already sufficient for
analyzing Yi. Furthermore, Equation 10 tells us another interesting
fact: Yi can actually be regarded as the output of uni-pert when the
original value is Yi−1, and the retention probability is pi/pi−1!

Now, we are ready to show that collusion is useless.

THEOREM 1. Equation 2 holds for any L ⊂ {Y1 = y1, Y2 =
y2, ..., Ym = ym}.

PROOF. It suffices to show that the equation is correct when
Q(X) takes the form X = x for any x ∈ DOM . Let us intro-
duce I as:

I = {i | (Yi = yi) ∈ L, 1 ≤ i ≤ m},
namely, I collects all the subscripts i ∈ [1, m] such that Yi belongs
to a colluding recipient. Denote by b (w) as the smallest (largest)
value in I . In other words, Yb (Yw) is the value contributed by
the most (least) trustable recipient among the colluding recipients.
Note that the best(L) in Equation 2 is exactly Yb. Define Ī as the
set of integers between b and w that are not captured by I . Namely

Ī = {i | b ≤ i ≤ w, i /∈ I}.
Consider the subsequence of variables Yi, Yi+1, ..., Yj , where

i, j are any integers satisfying b ≤ i ≤ j ≤ w. Given concrete
values zi, zi+1, ..., zj in DOM , let Wi,j(zi, ..., zj) be the (joint)
event where the previous variables are instantiated as

Yi = zi, Yi+1 = zi+1, ..., Yj = zj .

We are interested in only those events where zk is fixed to yk,
as long as k belongs to I . In other words, if Yk is defined for a
colluding recipient, we always instantiate it to the value yk received
by that recipient. Define

L̄i,j(zi, ..., zj) = Wi,j(zi, ..., zj) \ L, (11)

which is the event

Yk = zk,∀k such that k ∈ Ī and i ≤ k ≤ j,

In the sequel, when zi, ..., zj are clear from the context, we simplify
Wi,j(zi, ..., zj) to Wi,j , and L̄i,j(zi, ..., zj) to L̄i,j .

Equipped with the above definitions, rewrite Pr[X = x|L] (i.e.,
the posterior confidence of the colluding recipients) as

Pr[X = x|L] =

∑
zk∈DOM,∀k∈Ī

Pr[X = x, Wb,w]

Pr[Wb,w]
Pr[L̄b,w|L]. (12)

The rest of the proof will show that, regardless of the values of zk

(k ∈ Ī), it always holds that

Pr [X = x, Wb,w] = Pr[X = x|Yb = zb] · Pr [Wb,w] . (13)

Thus, Equation 12

=
∑

zk∈DOM,∀k∈Ī

Pr[X = x|Yb = zb] · Pr[L̄b,w|L]

= Pr[X = x|Yb = zb]

which is exactly the right hand side of Equation 2.
It remains to verify Equation 13. First, from Equation 9, it is not

hard to derive

Pr[Wb+1,w|Yb = zb, X = x] = Pr[Wb+1,w|Yb = zb].

The above equation can be intuitively understood as follows. Equa-
tion 9 indicates that, as long as Yb is present, we do not need X in

analyzing Yb+1. In turn, Yi (b + 1 ≤ i ≤ w − 1) allows us to
analyze Yi+1. Hence, the chain effect is that, given Yb, X is not
needed in calculating the chance of event Wb+1,w. Therefore,

Pr[X = x, Wb,w]

= Pr[Yb = zb, X = x] · Pr[Wb+1,w|Yb = zb, X = x]

= Pr[Yb = zb, X = x] · Pr[Wb+1,w|Yb = zb]

= Pr[X = x|Yb = zb] · Pr[Wb,w]

validating Equation 13.

Finally, we prove that every Yi (1 ≤ i ≤ m) is statistically the
same as the output of algorithm uni-pert.

THEOREM 2. Equation 8 holds for all 1 ≤ i ≤ m.

PROOF. We prove the theorem by induction on i. According
to Equation 10 (setting i = 1), Equation 8 is correct for i = 1.
Assuming the correctness of Equation 8 for all i ≤ k ≤ m − 1,
next we show it must also hold for i = k + 1.

Equation 9 indicates

Pr[Yk+1 = yk+1|Yk = yk, X = x] = Pr[Yk+1 = yk+1|Yk = yk].

Hence,

Pr [Yk+1 = yk+1|X = x]

=
∑

yk∈DOM

(
Pr[Yk+1 = yk+1|Yk = yk, X = x] ·

Pr[Yk = yk|X = x]
)

=
∑

yk∈DOM

Pr[Yk+1 = yk+1|Yk = yk] · Pr[Yk = yk|X = x]

By our inductive hypothesis, Pr[Yk = yk|X = x] can be solved as
in Equation 8. Doing so and solving Pr[Yk+1 = yk+1|Yk = yk]
with Equation 10, the above summation results in:{

pk+1 + (1 − pk+1)/s if x = yk+1

(1 − pk+1)/s if x �= yk+1

thus completing the proof.

Remark. It is worth mentioning that, although in this paper we
focus on uniform perturbation, the idea behind multi-pert can also
be applied to convert some other methods, which currently support
only a single level of privacy, to variations that can support multi-
level privacy. Examples include perturbation with non-uniform re-
placement distributions [3], noise adding methods [2, 20], and so
on. Note, however, it does not imply that those variations are able
to secure as strong privacy as the techniques proposed in this paper.
As mention earlier, for instance, uniformity in general outperforms
other replacement distributions in privacy preservation [4], whereas
adding Gaussian noise is known to be defective [15].

6. MINIMIZING SPACE AND TIME
In this section, we discuss how to implement the algorithm multi-

pert in Figure 3 efficiently. As before, let H be the set of recipients
we have responded to in history, and m = |H |. Let p1, p2, ...,
pm be the retention probabilities of the recipients in H , sorted in
descending order. Denote by D∗

i (1 ≤ i ≤ m) the anonymized
version of the original dataset D we returned to the recipient with
retention probability pi. As mentioned in Section 4, we consider
that all p1, p2, ..., pm are at least a small constant c > 0.

Recall that, given a new request with retention probability p,
multi-pert computes an anonymized version D∗ using at most
two tables D∗

l and D∗
r from the set {D∗

1 , D∗
2 , ..., D∗

m}. Specif-
ically, l (r) is the largest (smallest) subscript i ∈ [1, m] such
that pi is greater (lower) than p. Once these two tables are iden-
tified, multi-pert produces D∗ by generating at most 2n random
numbers, where n is the cardinality of D. Assuming that all of
D∗

1 , D∗
2 , ..., D∗

m are materialized, the overall running time of multi-
pert is O(n + log m) (where O(log m) is the time needed to find l
and r).

The problem with the above implementation is that storing
D∗

1 , D∗
2 , ..., D∗

m incurs totally Ω(nm) space, which is expensive.
Next, we will reduce the space to O(n + m), without affecting the
query complexity O(n + log m).

Obviously, since we never change any non-sensitive value, the
non-sensitive values in the original dataset D need to be stored
only once, regardless of the number of recipients. In the sequel,
we will concentrate on compressing sensitive values. Furthermore,
as tuples are anonymized independently, it suffices to clarify the
compression for a single tuple.

A constant-space compression scheme. Consider any tuple t ∈
D. Let random variable Yi (1 ≤ i ≤ m) denote its perturbed sensi-
tive value in D∗

i . The crucial observation behind our compression
scheme is that, many consecutive values in the list of Y1, Y2, ..., Ym

are identical, and therefore, can be represented using less space.
Specifically, the m values make m−1 consecutive pairs: (Y1, Y2),
(Y2, Y3), ..., (Ym−1, Ym). Let us say a pair is disparate if the two
values are different. Denote by disp(t) the number of disparate
pairs. Interestingly, the expected value of disp(t) is bounded by a
constant independent of m, as shown next.

LEMMA 2. E[disp(t)] < ln(1/c).

PROOF. For each i ∈ [1, m − 1], let us introduce a random
variable Vi which equals 1 if (Yi, Yi+1) is disparate, or 0 otherwise.
Hence,

disp(t) =

m−1∑
i=1

Vi.

The expected value E[Vi] of Vi equals the probability Pr[Yi �=
Yi+1] that Yi and Yi+1 are not identical. In turn, this probability
can represented as:

Pr[Yi �= Yi+1] =
∑

∀y∈DOM

Pr[Yi+1 �= y|Yi = y] · Pr[Yi = y]

where DOM is the domain of Yi and Yi+1.
Equation 10 implies that Pr[Yi+1 �= y|Yi = y] = s−1

s
(1 −

pi+1/pi), where s is the domain of DOM . Therefore,

Pr[Yi �= Yi+1] =
∑

∀y∈DOM

s − 1

s

(
1 − pi+1

pi

)
Pr[Yi = y]

=
s − 1

s

(
1 − pi+1

pi

)
< 1 − pi+1

pi
.

From the above analysis, we know

E[disp(t)] =

m−1∑
i=1

E[Vi] <

m−1∑
i=1

1 − pi+1

pi
.

Under the constraint that 1 ≥ p1 ≥ p2 ≥ ... ≥ pm ≥ c,∑m−1
i=1 (1 − pi+1/pi) is maximized when p1 = 1 and pi+1/pi =

c1/(m−1) for all i ∈ [1, m − 1], namely:

E[disp(t)] < (m − 1)(1 − c1/(m−1)).

The right hand side of the above inequality increases monotonically
with m. Furthermore,

lim
m→∞

(m − 1)(1 − c1/(m−1)) = ln(1/c).

Thus, we arrive at E[disp(t)] < ln(1/c).

Note that ln(1/c) is very small. For example, as mentioned in
Section 4, in practice a reasonable value for c would be 0.001. In
that case, ln(1/c) < 7, namely, on average a tuple has less than 7
disparate pairs regardless of the number m of recipients.

We are ready to explain how to store Y1, Y2, ..., Ym compactly.
In fact, it suffices to build a simple list history(t), where elements
have the form 〈p, Y 〉. First, put 〈p1, Y1〉 in history(t). Then, for
every disparate consecutive pair (Yi, Yi+1) (1 ≤ i ≤ m − 1), add
an element 〈pi+1, Yi+1〉 to history(t). By Lemma 2, history(t)
occupies O(1) space in expectation.

Given any retention probability pi (1 ≤ i ≤ m), history(t)
allows us to retrieve the corresponding Yi in O(1) expected time,
even if pi is not captured by history(t). For this purpose, we find
the smallest probability in history(t) that is at least pi, and return
the perturbed value associated with that probability. As an example,
assume m = 5, and Y1 = Y2 = HIV, Y3 = Y4 = pneumonia, Y5 =
HIV. Thus, history(t) consists of 〈p1, Y1〉, 〈p3, Y3〉, and 〈p5, Y5〉.
To obtain the perturbed value corresponding to p2, first identify p1,
which is the lowest probability in history(t) at least p2 (recall that
p1, p2, ..., p5 are in descending order). Hence, the answer is the
value Y1 associated with p1.

Optimal implementation of multi-pert. We need to keep the m
retention probabilities of all recipients in H . Furthermore, for each
tuple t in the original dataset D, we store its non-sensitive values
and the list history(t). The entire storage occupies O(n + m)
expected space.

Given an incoming request with retention probability p, multi-
pert first decides pl and pr in O(log m) time. Then, it constructs
D∗

l (D∗
r) in O(n) time by retrieving, for each tuple t ∈ D, its per-

turbed value at pl (pr) from history(t). Finally, the anonymized
dataset D∗ is derived from D∗

l and D∗
r in O(n) time. The overall

computation cost is therefore O(n + log m).
The history(t) of each tuple t ∈ D can be updated easily in

O(1) time. Specifically, let Y be the perturbed sensitive value of t
in D∗. First identify the element 〈p′, Y ′〉 where p′ is the smallest
probability in history(t) larger than p. Add an element 〈p, Y 〉,
if p′ does not exist (i.e., p is greater than all the probabilities in
history(t)), or Y is different from Y ′. Then, find the element
〈p′′, Y ′′〉, where p′′ is the largest probability in history(t) lower
than p. Remove 〈p′′, Y ′′〉 if Y ′′ and Y are equivalent. The above
description results in the following theorem.

THEOREM 3. There exists an implementation of algorithm
multi-pert that consumes O(n + m) expected space, and computes
an anonymized version for an incoming request in O(n + log m)
expected time.

For large datasets, the cardinality n is by far greater than the
number m of recipients. In this case, both the expected space and
computation complexities are O(n) which is optimal.

7. EXPERIMENTS
This section presents an experimental study of the proposed tech-

nique. First, we will verify that our algorithm works fairly well in
practice with a pseudo-random generator. Second, we will demon-
strate the failure of independent perturbation, thus confirming the

motivation in Section 1.1. Finally, we will evaluate the space and
computation overhead of our solution. All experiments are per-
formed on a computer with a 4GHz Pentium IV CPU and 2GB
memory.

Usefulness of collusion. In Section 5.2, we have rigorously proved
that our algorithm multi-pert (Figure 3) effectively thwarts collu-
sion. Implicit in the proof is an assumption that we can generate a
sequence of numbers that are truly random. As in practice random
generation can only be simulated by a pseudo-random generator
(such as the Mersenne twister algorithm [23] used in our imple-
mentation), a natural question is whether multi-pert is still effective
in that case.

To answer the question, we consider a scenario where the data
holder must respond to recipients Alice, Bob, and Charlie (in this
order) with retention probabilities pa = 30%, pb = 10%, and pc

= 50%, respectively. Note that the ordering ensures that all cases
of multi-pert (as explained in Section 5.1) will be executed. Let
random variable X denote an original sensitive value, in a discrete
domain DOM with size s. Let random variables Ya, Yb, and Yc

describe the perturbed values sent to Alice, Bob, and Charlie, re-
spectively. If their collusion is useless, equation

Pr[X = x|Ya = ya, Yb = yb, Yc = yc] = Pr[X = x|Yc = yc]
(14)

must hold for arbitrary x, ya, yb, and yc in DOM . Remember
that the theoretical correctness of Equation 14 has been formally
established in Theorem 1. Nevertheless, since our purpose here
is practical verification, we must empirically calculate both sides,
and then check if they are identical. Next, we explain a statistical
approach to achieve this.

We start by choosing a probability density function pdf(x) of
X, and preparing a 4D array F [X, Ya, Yb, Yc] with all the (totally
s4) cells set to 0. Next, repeat the following simulation a huge
number of times (1010 in our experiments). In each simulation,
first generate a sensitive value x following the distribution pdf(X).
Then, invoke multi-pert to compute the perturbed values ya, yb, yc

of x for Alice, Bob, and Charlie, respectively. Finally, increase the
cell F [x, ya, yb, yc] by 1. After all simulations, Pr[X = x|Ya =
ya, Yb = yb, Yc = yc] can be approximated by

F [x, ya, yb, yc]∑
∀x′ F [x′, ya, yb, yc]

and Pr[X = x|Yc = yc] by∑
∀y′

a,y′
b
F [x, y′

a, y′
b, yc]∑

∀x′,y′
a,y′

b
F [x′, y′

a, y′
b, yc]

.

We examine 4 different choices of pdf(x). The first two are
synthetic distributions: uniform and Gaussian, both in a domain
DOM of size s = 50, as shown in Figures 4a and 4b respec-
tively. The other two distributions are taken from a real dataset
Adult that is commonly used in the literature of privacy preserva-
tion. This dataset is the product of the Minnesota Population Center
(http://ipums.org), and contains the information of 600k Americans
on 5 attributes: Age, Gender, Education, Occupation, and Salary.
Figure 4c (4d) demonstrates the distribution of Salary (Occupa-
tion), whose domain size is 50 (27). Both distributions are respec-
tively selected as the underlying pdf(x).

As it is infeasible to visualize a 4D array directly, we instead aim
at presenting the cases where the two sides of Equation 14 differ
most. First, notice that if we fix ya, yb, and yc but enumerate x
through the entire domain DOM , the left hand side of Equation 14
is in fact a distribution fya,yb,yc(x), which corresponds to the re-

25 50
x

10

0.01

0.02

0.03

0.04

0.05
pdf(x)

25 50
x

0

0.01

0.02

0.03

0.04

0.05

1

pdf(x)

0

0.01

0.02

0.03

0.04

0.05

25 50
x

1

pdf(x)

0

0.05

0.1

0.15

0.2

0.25

1 13 27
x

pdf(x)

(a) Uniform (b) Gaussian (c) Salary (d) Occupation

Figure 4: Distribution of sensitive values

Pr[X = x | Ya = ya, Yb = yb, Yc = yc]approximated Pr[X = x | Yc = yc]approximated

1 50
x

0
0.1
0.2
0.3
0.4
0.5
0.6

16 1 50
x

410
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

(a) Uniform (ya = 26, yb = 15, yc = 16) (b) Gaussian (ya = 28, yb = 19, yc = 41)

1 50
x

300
0.05

0.1
0.15
0.2

0.25
0.3

0.35

27
x

1610
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(c) Salary (ya = 6, yb = 46, yc = 30) (d) Occupation (ya = 26, yb = 19, yc = 16)

Figure 5: Effect of collusion

cipients’ knowledge about X after collusion. Similarly, the right
hand side is also a distribution fyc(x), which represents the knowl-
edge of Charlie before collusion. Ideally, fya,yb,yc(x) should be
identical to fyc(x) for all x ∈ DOM , but discrepancy can arise
due to pseudo-randomness, precision loss in float calculation, in-
sufficient simulations, etc. We can quantify the dissimilarity of the
two distributions using the standard L2 norm:√∑

∀x

(fya,yb,yc(x) − fyc(x))2. (15)

Among all the combinations of ya, yb, yc, Figure 5a presents the
pair of distributions fya,yb,yc(x) and fyc(x) that are most dissim-
ilar, when pdf(x) is uniform (specifically, the largest dissimilarity
is observed at ya = 26, yb = 15, yc = 16). Figures 5b, 5c, 5d give the
corresponding results when pdf(x) follows the Gaussian, Salary,
and Occupation distributions (see Figure 4), respectively. Clearly,
in all cases, both sides of Equation 14 agree with each other very
well, indicating that the proposed algorithm multi-pert has success-
fully prevented collusion.

Noteworthily, the fact that there appears a standing-out column
in all the distributions in Figure 4, is an intrinsic property of uni-
form perturbation (which our technique is identical to, as empiri-
cally verified shortly) – the perturbed value (in our case, that re-
ceived by Charlie) always has the highest chance in the recon-
structed distribution, even when the value is not equivalent to the
original one.

Equivalence to uniform perturbation. Besides anti-collusion,

multi-pert needs to to make sure that every anonymized version can
be regarded as the output of conventional uniform perturbation. In
the context of the previous experiments, it implies that equation

Pr[Yi = yi|X = x] =

{
pi + (1 − pi)/s if x = yi

(1 − pi)/s if x �= yi
(16)

must hold for any i ∈ {a, b, c}, and any values of x and yi in
DOM . Theorem 2 has proved the equation in theory. Next, we
provide empirical evidence of its correctness in practice.

We follow a strategy similar to Figure 5. Specifically, given i =
a (the cases of i = b and c are similar), Pr[Ya = ya|X = x] can
be approximated as ∑

∀y′
b
,y′

c
F [x, ya, y′

b, y
′
c]∑

∀y′
a,y′

b
,y′

c
F [x, y′

a, y′
b, y

′
c]

.

where F is the array produced by the simulations described earlier.
By fixing x and enumerating yi in DOM , the left hand side of
Equation 16 can be regarded as a distribution fx(yi) of Yi. Given
the theoretical values on the right hand side of Equation 16, the
error of fx(yi) can again be quantified by the L2 norm:√√√√(

fx(x) −
(

pi +
1 − pi

s

))2

+
∑

∀yi,yi �=x

(
fx(yi) − 1 − pi

s

)2

.

Among all combinations of i ∈ {a, b, c} and x ∈ DOM , Fig-
ure 6a shows the most erroneous distribution fx(yi) when pdf(x)
is uniform, as well as the corresponding theoretical values (specif-
ically, the highest error is observed in the distribution with i = c

Pr[X = x | Yi = yi]approximated theoretical values

501 34
yi

0
0.1
0.2
0.3
0.4
0.5
0.6

50yi
10

0.05
0.1

0.15
0.2

0.25
0.3

0.35

(a) Uniform (Charlie, x = 34) (b) Gaussian (Alice, x = 50)

501 22 yi

0
0.1
0.2
0.3
0.4
0.5
0.6

271
yi

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

22

(c) Salary (Charlie, x = 22) (d) Occupation (Alice, x = 22)

Figure 6: Equivalence to uniform perturbation

number m of releases

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

average reconstruction probability

multi-pert

independent perturbation

Figure 7: Vulnerability of independent perturbation

and x = 34). Figures 6b, 6c, 6d illustrate the results for the other
distributions. In all cases, the empirical values perfectly match the
theoretical ones, confirming that the output of multi-pert is statisti-
cally equivalent to that of uniform perturbation.

Failure of independent perturbation. The remaining experiments
will use all the attributes of the Adult dataset, treating Salary as the
only sensitive attribute. In Section 1.1, we argue that independent
perturbation may lead to severe privacy breach. The next experi-
ment will validate the argument. Specifically, we will show that,
when the number m of recipients is large, their collusion may re-
construct the whole dataset with high probability.

We generate all retention probabilities uniformly in the range
[0.001, 0.5]. For each tuple of Adult, define its reconstruction prob-
ability as the chance that the collusion of all m recipients success-
fully restores its actual sensitive value (see Appendix 2 for how
to derive this probability). We continuously monitor the average
reconstruction probability of all tuples as m increases. Figure 7
shows the results of independent perturbation and our algorithm
multi-pert. Independent perturbation is clearly a vulnerable ap-
proach, noticing that its average reconstruction probability quickly
surges to nearly 1 after only 30 releases, implying that at this time
almost all the tuples are precisely revealed. In contrast, multi-pert
is much more robust, by retaining an average reconstruction prob-
ability of around 30%.

descendingascending random

1 2k 4k 6k 8k 10k
number m of releases

0
1
2
3
4
5
6
7
8

average size of history(t)

0.2

1 2k 4k 6k 8k 10k
number m of releases

0
0.05

0.1
0.15

0.25
0.3

0.35
0.4

0.45
computation time (sec)

(a) Space vs. m (b) Time vs. m

Figure 8: Overhead of multi-pert

Space and computation cost. We examine three sequences of re-
tention probabilities: random, ascending, and descending. A ran-
dom sequence consists of 10,000 probabilities drawn uniformly
from the interval [0.001, 0.5]. The ascending (descending) se-
quence sorts those probabilities in the random sequence in ascend-
ing (descending) order.

Multi-pert stores all the non-sensitive values only once. Hence,
compared to the original dataset, the extra space overhead is deter-
mined by how many (perturbed) sensitive values we must keep for
each tuple t, namely, the size of its structure history(t) (see its def-
inition in Section 6). Figure 8a plots the average size of history(t)
as a function of m. As predicted by Lemma 2, the size history(t)
is bounded by a constant (here, 7) for all arrival orders. In fact, by
slightly modifying the proof of Lemma 2, we can tighten the upper
bound to 1 + ln(pmax/pmin), where pmax (pmin) is the high-
est (lowest) retention probability seen so far. This explains why
random (descending) demands the most (least) space for small m,
noticing that it causes the fastest (slowest) growth of pmax/pmin.

The last experiment inspects the computational efficiency of
multi-pert. As the whole dataset is small (around 10 mega bytes),
we load everything into memory, and measure the CPU time. Fig-
ure 8b demonstrates the performance as m increases. Evidently,
the algorithm is very efficient. It computes an anonymized dataset
in less than half a second in all cases.

8. CONCLUSIONS
Random perturbation is a classic data anonymization technique

that has significant importance in practice. It is easy to apply, en-
sures strong privacy protection, and enables effective data mining.
Unfortunately, all the existing studies are restricted to perturbation
at a single privacy level. This is a serious problem, because a data
holder often needs to perform anonymization for multiple recipi-
ents that are not equally trustable, and hence, should be assigned
different privacy levels. In this paper, we have settled the problem
with a novel algorithm for randomly perturbing a dataset at an infi-
nite number of privacy levels. Our solution is robust even when re-
cipients attempt to infer extra sensitive information by sharing their
data together. Furthermore, the algorithm works in the online set-
ting where the privacy levels of future data requests are unknown in
advance, and can arrive at an arbitrary order. Finally, in addition to
its rigorous and strong privacy guarantees, the proposed technique
is also highly efficient, as its expected space and time complexities
are asymptotically optimal.

Acknowledgements
This work was supported by GRF 4173/08, 4161/07, and 1202/06
from HKRGC.

9. REFERENCES
[1] C. C. Aggarwal and P. S. Yu. A condensation approach to privacy

preserving data mining. In EDBT, pages 183–199, 2004.
[2] R. Agrawal and R. Srikant. Privacy-preserving data mining. In

SIGMOD, pages 439–450, 2000.
[3] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving OLAP.

In SIGMOD, pages 251–262, 2005.
[4] S. Agrawal and J. R. Haritsa. A framework for high-accuracy

privacy-preserving mining. In ICDE, pages 193–204, 2005.
[5] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and

K. Talwar. Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In PODS, pages 273–282, 2007.

[6] A. Blum, K. Ligett, and A. Roth. A learning theory approach to
non-interactive database privacy. In STOC, pages 609–618, 2008.

[7] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization for
incremental datasets. In SDM, pages 48–63, 2006.

[8] W. Du and Z. Zhan. Using randomized response techniques for
privacy-preserving data mining. In SIGKDD, pages 505–510, 2003.

[9] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.
[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise

to sensitivity in private data analysis. In TCC, pages 265–284, 2006.
[11] A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy

breaches in privacy preserving data mining. In PODS, pages
211–222, 2003.

[12] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy
preserving mining of association rules. In SIGKDD, pages 217–228,
2002.

[13] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition
attacks and auxiliary information in data privacy. In SIGKDD, pages
265–273, 2008.

[14] Z. Huang and W. Du. OptRR: Optimizing randomized response
schemes for privacy-preserving data mining. In ICDE, pages
705–714, 2008.

[15] Z. Huang, W. Du, and B. Chen. Deriving private information from
randomized data. In SIGMOD, pages 37–48, 2005.

[16] D. Kifer. Attacks on privacy and de finetti’s theorem. In SIGMOD,
2009.

[17] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In
SIGMOD, pages 217–228, 2006.

[18] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In SIGMOD, pages 49–60, 2005.

[19] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and �-diversity. In ICDE, pages 106–115, 2007.

[20] Y. Li and M. Chen. Enabling multi-level trust in privacy preserving
data mining. Technical Report UCB/EECS-2008-156, EECS
Department, University of California, Berkeley, Dec 2008.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. �-diversity: Privacy beyond k-anonymity.
In ICDE, page 24, 2006.

[22] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In ICDE,
pages 277–286, 2008.

[23] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. TMCS, 8(1):3–30, 1998.

[24] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, pages 94–103, 2007.

[25] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy:
Output perturbation for queries with joins. In PODS, 2009.

[26] V. Rastogi, S. Hong, and D. Suciu. The boundary between privacy
and utility in data publishing. In VLDB, pages 531–542, 2007.

[27] S. Rizvi and J. R. Haritsa. Maintaining data privacy in association
rule mining. In VLDB, pages 682–693, 2002.

[28] P. Samarati. Protecting respondents’ identities in microdata release.
TKDE, 13(6):1010–1027, 2001.

[29] Y. Tao, X. Xiao, J. Li, and D. Zhang. On anti-corruption privacy
preserving publication. In ICDE, pages 725–734, 2008.

[30] K. Wang and B. C. M. Fung. Anonymizing sequential releases. In
SIGKDD, pages 414–423, 2006.

[31] S. L. Warner. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American Statistical
Association, 60(309):63–69, 1965.

[32] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack
in privacy preserving data publishing. In VLDB, pages 543–554,
2007.

[33] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy
preservation. In VLDB, pages 139–150, 2006.

[34] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving
re-publication of dynamic datasets. In SIGMOD, pages 689–700,
2007.

[35] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query
answering on anonymized tables. In ICDE, pages 116–125, 2007.

Appendix 1. Proof of Lemma 1
We prove the lemma by induction on m. For m = 1, there is
only one possible choice for i (i.e., 1), in which case the lemma is
vacuously true. Assuming the lemma’s correctness for all m ≤ k,
next we show that it also holds for m = k + 1.

Assume, without loss of generality, that the last, (k + 1)-st,
request has retention probability pj (recall that the past retention
probabilities p1, p2, ..., pm+1 have been sorted in descending or-
der). The proof is simple if j = k + 1. Specifically, in this sce-
nario, Yj is computed only from Yk. In other words, Yj is not
related to Y0, Y1, ..., Yk−1, and hence, Equation 9 is correct. Fur-
thermore, our algorithm multi-pert (Figure 3) sets Yj to Yk with
probability pk/pj , or to a random value from DOM with proba-
bility 1 − pk/pj . Therefore, Equation 10 is also correct.

For j < k + 1, multi-pert computes Yj from Yj+1 and Yj−1.
Given i ∈ [0, j − 1], Equations 9 and 10 trivially hold from the
inductive hypothesis, because they are not affected by Yj . The sub-
sequent analysis concentrates on i ≥ j. To simplify notations, let
Ez (1 ≤ z ≤ m) denote the event

{Y0 = y0, Y1 = y1, ..., Yz = yz} \ {Yj = yj}.

In other words, if z < j, then Ez is the joint event that variables Y0,
Y1, ..., Yz are instantiated as y0, y1, ..., yz , respectively. Otherwise
(z ≥ j), the event corresponds to the instantiation of Y0, ..., Yj−1,
Yj+1, ..., Yz.

Case 1: i = j . To verify Equation 9, derive

Pr[Yj = yj |Ej−1] =
∑

yj+1∈DOM

(
Pr[Yj = yj |Ej+1] ·

Pr[Yj+1 = yj+1|Ej−1]
)

(17)

Observe that Pr[Yj = yj |Ej+1] equals Pr[Yj = yj |Yj−1 =
yj−1, Yj+1 = yj+1], because our algorithm picks only Yj−1 and
Yj+1 to calculate Yj even though all of Y1, Y2, ..., Yj−2 are
also present. Furthermore, by our inductive hypothesis that Equa-
tion 10 holds before Yj exists, we have Pr[Yj+1 = yj+1|Ej−1] =
Pr[Yj+1 = yj+1|Yj−1 = yj−1]. Thus, Equation 17 evolves into

=
∑

yj+1∈DOM

(
Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·

Pr[Yj+1 = yj+1|Yj−1 = yj−1]
)

= Pr[Yj = yj |Yj−1 = yj−1].

To verify Equation 10, we first write down

Pr[Yj = yj |Yj−1 = yj−1]

=
∑

yj+1∈DOM

(
Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·

Pr[Yj+1 = yj+1|Yj−1 = yj−1]
)
. (18)

As Equation 8 holds before Yj exists, we know

Pr[Yj+1 = yj+1|Yj−1 = yj−1]

=

{ pj+1
pj−1

+ (1 − pj+1
pj−1

)/s if yj+1 = yj−1

(1 − pj+1
pj−1

)/s otherwise
(19)

Meanwhile, according to how multi-pert works, we also have

Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ρ1+ 1
s
(1−ρ1))(ρ0+ 1

s
(1−ρ0))

ρ2+ 1
s
(1−ρ2)

if yj = yj+1 = yj−1

(1−ρ1)(1−ρ0)

s2(ρ2+ 1
s
(1−ρ2))

if yj �= yj+1 = yj−1

1−ρ1
1−ρ2

(ρ0 + 1
s
(1 − ρ0)) if yj = yj+1 �= yj−1

1−ρ0
1−ρ2

(ρ1 + 1
s
(1 − ρ1)) if yj = yj−1 �= yj+1

(1−ρ1)(1−ρ0)
s(1−ρ2)

otherwise

(20)

where ρ1 = pj/pj−1, ρ2 = pj+1/pj−1, ρ0 = pj+1/pj . Plug-
ging Equations 19 and 20 into Equation 18, it is easy to verify that
Equation 10 is correct.

Case 2: i = j + 1.

Pr[Yj+1 = yj+1|Ej−1, Yj = yj]

= Pr[Yj = yj |Ej+1] · Pr[Yj+1 = yj+1|Ej−1]

Pr[Yj = yj |Ej−1]

= Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·
Pr[Yj+1 = yj+1|Yj−1 = yj−1]

Pr[Yj = yj |Yj−1 = yj−1]
. (21)

Plugging Equations 18, 19 and 20 into Equation 21, we obtain

Pr[Yj+1 = yj+1|Ej−1, Yj = yj]

=

{ pj+1
pj

+ (1 − pj+1
pj

)/s if yj+1 = yj

(1 − pj+1
pj

)/s if yj+1 �= yj
(22)

We now show Pr[Yj+1 = yj+1|Yj = yj] has the same expres-
sion as in Equation 22, which will validate both Equations 9 and

10. First,

Pr[Yj+1 = yj+1|Yj = yj]

=
∑

yj−1∈DOM

(
Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·

Pr[Yj+1 = yj+1|Yj−1 = yj−1]
Pr[Yj−1 = yj−1]

Pr[Yj = yj]

)
. (23)

On the other hand,

Pr[Yj = yj]

=
∑

yj−1∈DOM

Pr[Y = yj |Yj−1 = yj−1]Pr[Yj−1 = yj−1]

= (pj/pj−1) · Pr[Yj−1 = yj] + (1 − pj/pj−1)/s. (24)

To compute Pr[Yj+1 = yj+1|Yj = yj], we fit Equations 19,
20 and 24 into Equation 23, and simplify the resulting formulae
as much as possible. During the derivation, the unfriendly term
Pr[Yj−1 = yj] cancels nicely. At the end, we arrive an expression
that is exactly the one shown in Equation 22.

Case 3: i ∈ [j + 2, k + 1]. Equation 10 holds directly from
the inductive hypothesis, because it is not related to Yj . To verify
Equation 9, derive

Pr[Yi = yi|Ei−1, Yj = yj]

= Pr[Yj = yj |Ei]
Pr[Ei]

Pr[Ei−1, Yj = yj]

= Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·
Pr[Yi = yi|Ei−1]

Pr[Yj = yj |Ei−1]

= Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1] ·
Pr[Yi = yi|Yi−1 = yi−1]

Pr[Yj = yj |Yj+1 = yj+1, Yj−1 = yj−1]

= Pr[Yi = yi|Yi−1 = yi−1].

Appendix 2. Reconstruction probability
We borrow the notations D, t, m, pi (1 ≤ i ≤ m), X, Yi, yi

defined in Section 5.2. The reconstruction probability of t equals:

Pr[X = t[A]|Y1 = y1, ..., Ym = ym], (25)

namely, the probability that the collusion of all m recipients reveals
the actual sensitive value t[A] of t. Under independent perturba-
tion, Equation 25 evolves into

Pr[Y1 = y1, ..., Ym = ym|X = t[A]] · Pr[X = t[A]]

Pr[Y1 = y1, ..., Ym = ym]

=
Pr[X = t[A]] · ∏m

i=1 Pr[Yi = yi|X = t[A]]∑
∀x

(
Pr[X = x] · ∏m

i=1 Pr[Yi = yi|X = x]
) ,

where Pr[Yi = yi|X = x] is given in Equation 1. Under
the proposed algorithm multi-pert, Equation 25 equals Pr[X =
t[A]|Y1 = y1], which, in turn, can be solved as

Pr[X = t[A]] · Pr[Y1 = y1|X = t[A]]∑
∀x (Pr[X = x] · Pr[Y1 = y1|X = x])

.

