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ABSTRACT
Recent interest in graph pattern mining has shifted from
finding all frequent subgraphs to obtaining a small subset of
frequent subgraphs that are representative, discriminative or
significant. The main motivation behind that is to cope with
the scalability problem that the graph mining algorithms
suffer when mining databases of large graphs. Another mo-
tivation is to obtain a succinct output set that is informa-
tive and useful. In the same spirit, researchers also proposed
sampling based algorithms that sample the output space of
the frequent patterns to obtain representative subgraphs.
In this work, we propose a generic sampling framework that
is based on Metropolis-Hastings algorithm to sample the
output space of frequent subgraphs. Our experiments on
various sampling strategies show the versatility, utility and
efficiency of the proposed sampling approach.

1. INTRODUCTION
Interest in graph mining has recently been extended to

several interdisciplinary domains, like in cheminformatics [18],
bioinformatics [13], medical informatics [1], social sciences [3],
etc. Except cheminformatics where the graphs are small and
sparse (except aromatic rings, most of the chemical graphs
are cycle-free), graphs in these domains are large and dense,
for which traditional graph mining algorithms do not scale.
For example, we ran graph mining algorithms (DMTL [8],
gaston [24]) on a small cell-graph [1] dataset that contains
only 30 graphs with an average vertex count of 2184 and
an average edge count of 36945. For this graph dataset,
none of the existing algorithms could finish in 2 full days
for 50% support on a dual-core 2.2 GHz machine with 2GB
of memory. [7] also reported similar problem with protein
interaction network graphs. This motivates the need to find
algorithms that can find a small set of interesting and useful
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patterns instead of attempting to enumerate the entire set
of patterns.

The motivation of finding smaller number of patterns also
comes from the information overload problem which is caused
by the large output set of subgraphs. Remedy to this prob-
lem is sought in compression or summarization algorithms
that obtain a succinct set of frequent patterns that are rep-
resentative (in the sense of cluster center) [32, 17], or from a
statistical summary [33, 31] of the entire pattern-set. How-
ever, the majority of these algorithms target only the item-
set pattern. In the graph domain, Yan et. al. [34] proposed
an algorithm, which employs structural proximity and fre-
quency descending mining to reduce the searchable portion
of the candidate subgraph space to obtain a small set of sub-
graph patterns with higher discriminatory score. Very re-
cently, a greedy subgraph feature selection algorithm, named
CORK [23] was proposed. It is embedded in the gSpan [35]
mining process and it can provide an approximation guar-
anty with respect to a sub-modular quality criteria. Though
these approaches solve the information overload problem by
applying efficient pruning criteria, it is not clear how scalable
they are for databases of large graphs. Furthermore, they
are not generic in the sense that when the interestingness
criteria of the subgraphs changes, the subgraph space prun-
ing criteria of these algorithms may have to be redesigned
to reflect the change.

In subgraph pattern mining, the interestingness of a sub-
graph is defined based on the anticipated usages of the pat-
tern. For exploratory data mining, frequent subgraphs with
sufficiently high support suffice; for classification task, high
quality discriminatory subgraphs are desirable, etc. In [27],
authors list twenty-one different interestingness measures;
though they are formulated with the set pattern in mind,
many of them can easily be adapted for subgraph patterns.
Frequency based interestingness (generally known as mini-
mum support) is the most popular in pattern mining because
of its anti-monotonicity; but unfortunately, many other in-
terestingness measures do not have this property. For in-
stance, measures like chi-square significance are neither mono-
tonic nor anti-monotonic (however, they are convex as proved
by [21]). For such interestingness measures, the candidate
sub-graph search space cannot be effectively pruned with a
minimum threshold value, since unlike the case of frequency
it can happen that a specialization of an un-interesting pat-
tern can turn out to be interesting and vice-versa. So, the
search space is very large and special pruning mechanisms
specifically tailored for these measures are required.

In this paper, we propose the notion of output space sam-



pling, which samples interesting subgraph patterns without
enumerating the entire set of candidate frequent patterns.
The sampling algorithm performs a random walk on the can-
didate subgraph partial order and returns subgraph samples
when the walk converges to a desired stationary distribution.
The stationary distribution is chosen based on the interest-
ingness of the subgraphs in the sample space, i.e., we want
to obtain samples from a distribution that matches a prede-
fined distribution. For instance, one may want to sample a
set of frequent patterns from a uniform distribution whereas
another may want to sample from a preferential distribu-
tion where patterns with higher significance score assume
proportionally high generation (visitation) probability.

Output space sampling has three significant benefits. First,
it is scalable in the sense that obtaining k samples is much
cheaper than running the mining algorithm in a complete
manner to obtain all qualified (say, frequent or significant)
patterns. Thus, it immediately solves the lack of scalability
and information overload problem. The output sample set
also contains high quality patterns with a statistical guar-
anty. Second, the algorithm is generic in terms of inter-
estingness criteria and the type of the pattern. Since the
interestingness is defined as a function that takes a pattern
and returns a numeric score value, changing the function
i.e., the interestingness measure, does not alter the algorith-
mic framework. This generic nature gives a user the power
to try different sampling distributions to further evaluate
the interestingness measures so that she can find the one
that best suites the application. Finally, the algorithm is
immediately parallelizable, as by running m different ran-
dom walks simultaneously, we can practically obtain m-fold
speed-up, as there is no data or process dependency among
these walks. This is a very desirable feature in the light of
the recent trend in data mining where massive efforts are be-
ing made to exert the full benefit of multiple cores of modern
CPUs [20, 5].

Our work has the following contributions:

• We propose the idea of output space sampling in the
domain of frequent subgraph mining.

• The sampling approach that we propose is generic and
is equally applicable to different kinds of patterns.

• We make extensive experiments to prove the sampling
quality and the algorithm’s performance and effective-
ness on large real-life graphs.

2. RELATED WORK
In pattern mining, researchers proposed numerous algo-

rithms [19, 35, 14, 24] to mine the complete set of fre-
quent subgraphs. There are also algorithms for mining max-
imal [15] and closed [36] frequent subgraphs. These algo-
rithms are efficient for datasets of small to moderate sized
graph (upto few hundred vertices), but they do not scale
well for datasets of larger graphs as demonstrated in [7].
The latter defines pattern representativeness and proposes
a randomized algorithm called Origami, which mines a rep-
resentative set of frequent subgraphs instead of the complete
set. Thus it solves the lack of scalability problem. Authors
in [7] further argued that the majority of knowledge mining
applications for frequent subgraphs do not require the entire
frequent pattern-set.

Beside lack of scalability, frequent subgraph mining meth-
ods also face information overload problem due to the size
of the output space (number of frequent patterns) which
prompted several researchers to propose algorithms for sum-
marization of frequent patterns [32, 33, 31, 17, 34]. Though
majority of these algorithms consider the summarization of
itemset patterns, [34, 23] consider graph patterns. In an-
other recent work in the graph domain, Hasan et. al. pro-
posed Musk [12], a sampling algorithm to uniformly sample
maximal frequent subgraphs that uses Markov Chain Monte
Carlo (MCMC) algorithm. Musk, though proposed as a fre-
quent subgraph summarization algorithm, is one of the first
algorithms that aims to sample the output space of patterns;
however, the sampling is limited to the maximal patterns
only; so the approach is very different than our approach.
In Musk, the authors employ the idea of random walk on a
weighted graph so that the sum of the weights associated to
a maximal pattern is constant. But, in this research, we use
the Metropolis-Hastings sampling, which is based on pro-
posal distribution and sample rejection. Besides Musk, the
closest work that we found is the one by Boley et.al [2] which
is proposed very recently. It uses a randomized algorithm to
uniformly sample frequent itemsets. The objective of their
work is to approximately estimate the size of the output
space by taking only polynomial number of samples. But,
the sampling algorithm that they propose is very specific
and works only for the itemset pattern.

Though sampling output space is relatively novel, sam-
pling input space i.e., the data, has a long history in fre-
quent pattern mining [28, 9, 6]. These algorithms generally
find prospective candidate patterns from a small sample of
the entire transaction-set, so that the support counting can
be performed efficiently. Sometimes, the frequent patterns
in these methods are frequent only in the statistical sense.
However, sampling output space is much more difficult than
sampling the input space, since the size and the elements of
the output space is not available immediately.

In our sampling algorithm, we use the Metropolis-Hast-
ings [25] framework. We found another recent work [16]
that uses Metropolis sampling in the domain of graph min-
ing. The objective of their work is to obtain a model that
finds subgraphs that approximate a given degree distribu-
tion. They use Metropolis algorithm and Simulated Anneal-
ing (SA) to solve the problem.

3. PROBLEM FORMULATION
A subgraph mining algorithm accepts a graph database,

D, an interestingness function, score : F → R, that maps a
subgraph to a numerical qualitative (interestingness) score
and a numeric value, threshold, that denotes the specific
minimum value for the interestingness score. The output
set of the algorithm is all possible subgraphs of the database
graphs whose score exceeds the given threshold. In case of
frequent subgraph mining, the score of a subgraph g is the
frequency of g; where frequency is denoted by the number
of the graphs in D where g occurs and the threshold value
is called the minimum support. This is the popular frequent
graph mining problem. But, one may also provide differ-
ent score function or even a conjunction of multiple score
functions together with multiple threshold values.

The above formulation poses the subgraph mining as a
constraint search problem, which has an input space which
is the span of the database graphs and a feasible output



space which is the span of the interesting subgraphs. Here,
we abuse the linear algebraic term, span to denote the com-
binatorial subgraph space. This space grows exponentially
as the graphs in the input space become larger. Now, for a
given problem instance, by sampling output space, we mean
to sample one feasible subgraph from a user-specified dis-
crete distribution. In case, the user wants to sample in pro-
portion to the interestingness score, the discrete distribution
can be constructed from the interestingness value of all the
feasible subgraphs in the output space. For example, in
case of frequent subgraph mining, if the user specifies that
the interestingness score of a subgraph is its support value,
then the normalized vector (to make it a probability vector)
of the support values of all frequent subgraphs is the de-
sired sampling distribution. One may also want to choose a
uniform distribution, for which the probability of choosing
each frequent subgraph is equal to 1

|F| , where |F| is the total

number of frequent subgraphs.

3.1 Challenges
The main challenge of output space sampling in the pat-

tern mining domain is that the search space is not immedi-
ately available. As we outline in the introductory Section, it
is also infeasible to enumerate all the subgraphs in the fea-
sible search space; after all, it is this infeasibility that mo-
tivates someone to embrace sampling. Here, “enumerate”
means to find the occurrence list (named as gidset in Sec-
tion 4.2) of the subgraph by performing the support counting
step. This is the costliest task when the database graphs are
large. The second challenge comes from the sampling objec-
tive that aims to sample from a given distribution. Note
that we do not have the score value of all the frequent sub-
graphs in the feasible search space; even worse, we do not
know the size of the search space. The only tool that we have
is that after we enumerate a subgraph we can immediately
calculate its interestingness score from the support-list. The
sampling 1 probability of this subgraph g that we want is
score(g)

Z
, where Z is the normalizing constant, whose value

is equal to
P

f∈F score(f).
Problems of the above nature generally arise in statisti-

cal physics while analyzing dynamic systems (for instance,
finding low energy state in molecular simulation) and they
are solved by an elegant method named Metropolis-Hastings
(MH) [25]. It is a Monte Carlo Markov Chain (MCMC) al-
gorithm that performs a random walk on the search space
with a locally computable probability transition matrix. We
also use the MH algorithm for output space sampling, but
adapt it appropriately based on our sampling requirements.

Our choice of MH framework for output space sampling
has some further justifications. For example, due to the
Markovian nature of this random walk, it does not remember
earlier states of the random walk; so the algorithm consumes
much less memory for the exploration purpose. On the other
hand, this is a problem for traditional subgraph mining algo-
rithms (for example, DMTL[8], Gaston[24]) that store em-
beddings of the frequent patterns. For large datasets, many
of these algorithms terminate after exhausting the virtual
memory.

1sampling and enumeration are different, as it happens fre-
quently that we enumerate a pattern and then decide not to
visit (sample) that pattern

4. BACKGROUND
In this section, we define several key concepts that will be

used throughout the paper.
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4.1 Graphs and Subgraphs
A graph G = (V, E), consists of a set of vertices V =

{v1, v2, . . . , vn}, and a set of edges E = {(vi, vj) : vi, vj ∈
V }. Let LV and LE be the set of vertex and edge labels,
respectively, and let V : V → LV and E : E → LE be the
labeling functions that assign labels to each vertex and edge.
The size of a graph G, denoted |G| is the cardinality of the
edge set (i.e., |G| = |E|). A graph of size k is also called a
k-graph. A graph is connected if each vertex in the graph
can be reached from any other vertex. All (sub)graphs we
consider are undirected, connected and labeled.

A graph G1 = (V1, E1) is a subgraph of another graph
G2 = (V2, E2), denoted G1 ⊆ G2, if there exists a 1-1
mapping f : V1 → V2, such that (vi, vj) ∈ E1 implies
(f(vi), f(vj)) ∈ E2. Further, f preserves vertex labels, i.e.,
V(v) = V(f(v))), and preserves edge labels, i.e., E(v1, v2) =
E(f(v1), f(v2)). f is also called a subgraph isomorphism from
G1 to G2. If G1 ⊆ G2, we also say that G2 is a super-graph
of G1. Note also that two graphs G1 and G2 are isomorphic
iff G1 ⊆ G2 and G2 ⊆ G1. Let D be a set of graphs, then
we write G ⊆ D if ∀Di ∈ D, G ⊆ Di. G is said to be a
maximal common subgraph of D iff G ⊆ D, and 6 ∃H ⊃ G,
such that H ⊆ D.

4.2 Mining Frequent Graphs
Let D be a database (a multiset) of graphs, and let each

graph Di ∈ D have a unique graph identifier. Denote by
t(G) = {i : G ⊆ Di ∈ D}, the graph identifier set (gidset),
which consists of all graphs in D that contain a subgraph
isomorphic to G. The support of a graph G in D is then given
as |t(G)|, and G is called frequent if |t(G)| ≥ πmin, where
πmin is a user-specified minimum support (minsup) thresh-
old. A frequent graph is closed if it has no frequent super-
graph with the same support. A frequent graph is maximal



if it has no frequent super-graph. Denote by F , C,M the
set of all frequent, all closed frequent, and all maximal fre-
quent subgraphs, respectively. By definition, F ⊇ C ⊇ M.
Fig. 1(a) shows a database with 3 graphs. With a minimum
support πmin = 2, there are nine frequent and two maximal
frequent graphs; the latter set is shown in Fig. 1(b); their
corresponding gidsets are shown in Fig. 1(c). All possible
(connected) subgraphs of the maximal frequent graphs are
frequent.
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Figure 2: Partial Order Graph of Frequent Sub-
graphs

4.3 Frequent Graph Partial Order
The set of all frequent subgraphs forms a partial order

with respect to the subgraph relationship, ⊆, which is re-
ferred to as the partial order graph (POG). Every node in
POG corresponds to a distinct frequent graph pattern, i.e.,
each graph in POG is the canonical representative (with
the minimal DFS code [35]) for all other graphs isomor-
phic to it. Every edge in POG represents a possible exten-
sion of a frequent pattern to a larger (by one edge) frequent
pattern. The maximal elements in POG correspond to M.
The bottom element in the partial order is the empty graph
(which is frequent by default). Algorithms for enumerating
all frequent subgraphs typically traverse the POG in either
depth-first or breadth-first manner, starting from the bot-
tom. Since, a graph can be constructed in many different
ways (depending on the order in which edges are added),
starting from the empty pattern, there are multiple paths
leading to a node in the partial order. Thus different nodes
in the POG have different degrees. We use dg to denote the
degree of a node g in the POG graph. Figure 2 shows the
POG for the example data in Figure 1.

4.4 Uniform Sampling
Consider a problem instance that has many feasible solu-

tions. For this, uniform sampling is an algorithmic process
which returns one of these solutions uniformly at random.
For a frequent graph mining problem instance which con-
sists of an input graph database and a user defined mini-
mum support, the problem of uniform sampling would re-
turn one frequent subgraph out of all frequent subgraphs
(feasible solutions) with a uniform probability. Such sam-
pling is interesting when the enumeration of the entire sam-
ple space is infeasible; most likely reasons for that might
be the enormous size of the sample space or the ineffective-
ness of the algorithm that enumerates the objects from that

sample space.

4.5 Markov Chains
A Markov chain is a discrete-time stochastic process de-

fined over a set of states S, in terms of a matrix P of tran-
sition probabilities. The set S is either finite or countably
infinite. The transition probability matrix P has one row
and one column for each state in S. The Markov chain is in
one state at any time, making state-transitions at discrete
time-stamps t = 1, 2, . . . and so on. The entry P (i, j) in
the transition probability matrix is the probability that the
next state will be j, given that the current state is i. For all
i, j ∈ S, we have 0 ≤ P (i, j) ≤ 1, and

P

j
P (i, j) = 1, i.e.,

all the rows add up to 1.
A stationary distribution for the Markov chain with tran-

sition matrix P is a probability distribution π, such that:

π = πP (1)

Here π is a row-vector of size |S|. Thus, the stationary
distribution is the left eigen-vector of the matrix P with an
eigenvalue of 1. We use π(i) to denote the i’th component
of this vector. A Markov chain is reversible if it satisfies the
detailed balance equation below:

π(u)P (u, v) = π(v)P (v, u), ∀u, v ∈ S (2)

Reversibility is a sufficient, but not necessary condition for
π to be a stationary distribution of the Markov chain. A
Markov chain is ergodic if it has a stationary distribution.

If the state space S of a Markov chain is the set V of a
graph G(V, E), and if for any two vertices u, v ∈ V , (u, v) /∈
E implies that P (u, v) = 0, then the process is also called a
random walk on the graph G. In other words, in a random
walk on a graph, the state transitions occur only between
the adjacent vertices.

4.6 Metropolis-Hastings (MH) Algorithm
The objective of the MH algorithm is to sample with a

target distribution. The main idea is to simulate a Markov
chain such that the stationary distribution of this chain co-
incides with the target distribution [25]. Assume that we
want to generate a random variable X taking values in
X = {1, . . . , n}, according to a target distribution π, with

π(i) =
bi

C
, i ∈ X (3)

where it is assumed that all bi are strictly positive, n is
large, and the normalizing constant C =

Pn

i=1 bi is difficult
to calculate. MH first constructs an n-state Markov chain
Xt, t = 0, 1, . . . on X whose evolution relies on an arbitrary
transition matrix Q = (qij) in the following way:

• When Xt = i, generate a random variable Y satisfying
P(Y = j) = qij , j ∈ X

• If Y = j, let

Xt+1 =



j with probability αij

i with probability 1 − αij
(4)

Where,

αij = min



π(j) qji

π(i) qij

, 1

ff

= min



bj qji

bi qij

, 1

ff

(5)



It follows that {Xt, t = 0, 1, . . .} has a one-step transition
probability matrix P , given by

P (i, j) =



qij αij , if i 6= j
1 −

P

k 6=i
qik αik, if i = j

(6)

For the above P , the Markov chain is reversible and has a
stationary distribution π, equal to the target distribution.
Here, Q and αij are called proposal distribution, and accep-
tance probability respectively.

5. SAMPLING ALGORITHMS
In this section, we show different sampling algorithms for

sampling the output space of the frequent subgraph pat-
terns.

State Space of the Random Walk: The frequent pattern
partial order graph (POG) works as the state space of the
Markov chain on which the sampling algorithms run their
simulation. Unlike traditional graph mining algorithms, like
gSpan [35], or DMTL [8], they walk on the full edge-set of the
POG. Put another way, candidate generation in sampling
algorithms allows all possible one-edge extensions without
restricting them to be on the right-most path [35, 8]. The
important point to note here is that the algorithms con-
struct the partial order graphs locally around the current
node. If the current node represents pattern p, its neighbors
consist of nodes corresponding to all frequent super-patterns
that have one more edge than p, and all sub-patterns that
have one-edge less than p. The random walk chooses one
neighbor (super- or sub-pattern) according to its transition
probability (which varies based on the desired sampling dis-
tribution). The local construction of POG is important as
it avoids the construction of the entire POG, which would
require finding all the frequent patterns.

However, we still need to prove one crucial fact that we
can design a random walk on POG that is indeed ergodic.
The following Lemma holds.

Lemma 5.1. The random walk on POG as defined above
converges to a stationary distribution.

Proof. To achieve an stationary distribution, a random
walk needs to be finite, irreducible, and aperiodic [22]. First,
POG is finite since the number of frequent patterns is finite.
Second, for any two nodes u and v in POG, there exists
a positive probability to reach from one to other, since ev-
ery pattern can reach and can in turn be reached from the
∅ pattern. Since at least one path exists between any two
patterns via the ∅ pattern, the random walk is irreducible.
Third, the POG is a layered graph (each layer contains pat-
terns of the same size), so one can make it a bipartite graph
by accumulating the vertices from alternate layers in one
partition; thus, the random walk on POG can be periodic.
However, such periodicity can easily be removed by adding
a self-loop with probability 1

2
at every vertex of the POG

[26]. Thus the claim is proved.

5.1 Convergence rate of random walk
One important aspect of any MCMC algorithm (including

MH, which is essentially a special kind of MCMC algorithm)
is the rate at which the initial distribution converges to the
desired distribution. The convergence rate of a random walk
has been studied extensively in spectral graph theory [10],
since it plays an important role in obtaining efficient MCMC

algorithms. A Markov chain is called rapidly mixing if it is
close to stationary after only a polynomial number of simu-
lation steps, i. e., after poly(lg n). Note that, n (the number
of states) can be exponentially large with respect to the al-
gorithm input. An algorithm that is rapidly mixing is con-
sidered efficient.

A method to measure the convergence rate is to find the
spectral gap of the transition probability matrix P . P has
n real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ −1.
Then, the spectral gap is defined as λ = 1−max{λ1, |λn−1|}.
Since the absolute values of all the eigenvalues are less than
one with the largest eigenvalue λ0 be exactly one, the spec-
tral gap is always between 0 and 1. The higher the spectral
gap, the faster the convergence [11]. For output space sam-
pling, the entire P is not available to us, so it is generally
difficult to measure the spectral gap.

However, convergence rate can also be approximated by
direct simulation, using the variation distance measure. The
variation distance at time t with initial state x, ∆x(t) is de-
fined as the statistical difference between distribution P t(x, .)
and π(.), which is: 1

2

P

y∈Ω |P t(x, y) − π(y)| [11].

5.2 Uniform Sampling of Frequent Patterns
Our formal goal is to simply obtain a uniform sample of

the set of all frequent subgraphs. In this sampling, the fea-
sible set consists of all subgraph patterns in the POG that
are frequent for a user defined minsup value. This sam-
pling is very useful to get some intuitive estimates about
the output space of the frequent patterns. One main prob-
lem in any frequent pattern mining is the choice of support
value [37]. By taking a small number of frequent patterns
with uniform sampling for different support values, a user
can obtain a quick estimate of the average pattern-sizes for
different supports, which may help him to choose a suitable
support value. In [2], the authors recently showed how uni-
form sampling can be used to obtain an approximate count
of the size of F by taking only a polynomial number of sam-
ples (but for itemsets only).

Below we show, how to choose the transition probability
matrix to obtain uniform samples of frequent graph patterns
from the output space.

5.2.1 Computing Transition Probability Matrix
A general random walk that selects each outgoing edge

with equal probability does not achieve the desired uniform
distribution, since different frequent patterns are of differ-
ent sizes, and consequently the number of neighbors (in the
POG) adjacent to a frequent pattern can vary a lot. Thus,
a frequent pattern is oversampled if the corresponding node
in the POG has a high degree compared to another frequent
pattern with lower degree. In fact, the stationary distribu-
tion of a node is directly proportional to the degree of that
node [10].

To obtain a uniform stationary distribution, we need to
modify the probability transition matrix to compensate for
the different values for the degrees of different nodes of POG.
The following Lemma (mentioned in exercise 6.9 of [22]) is
useful in this regard. The proof is simple that we provide
below.

Lemma 5.2. An ergodic random walk achieves a uniform
stationary distribution if and only if its transition probability
matrix is doubly stochastic.



Proof. If πu is a row vector that defines uniform proba-
bility distribution of a random walk with n states and P is
the appropriate transition probability matrix, we have from
Equation ( 1), πu = πuP . Since, there are n states, from the
uniformity assumption, πu = ( 1

n
)1T; substituting this in the

above equation, we obtain 1
n
1T = 1

n
1TP . This means that

the sum of the column vectors of P is equal to 1 for each
column of the matrix, i.e., matrix P is column stochastic
and furthermore, since P is a transition probability matrix,
it is doubly stochastic. This proves the “only if” part and
since an ergodic random walk has a unique stationary dis-
tribution, the reverse also holds.

An easy way to obtain a doubly stochastic transition prob-
ability matrix is to make the matrix symmetric, i.e. to make
P = P T . A symmetric matrix P is row stochastic because it
is transition probability matrix and by symmetry it is also
column stochastic. Now, to sample frequent pattern uni-
formly by performing a random walk on the POG, we can
use the following probability matrix, P : (see the footnote 2)

P (u, v) =

8

<

:

1
max(du,dv)

if u 6= v and v ∈ adj(u)

1 −
P

x∈adj(u) P (u, x) if u = v

0 otherwise

(7)

Here, u and v are two arbitrary nodes in POG, and dx de-
notes the degree of the node x and adj(x) is the set of neigh-
bors of a node x. If u and v are two neighboring nodes,
P (u, v) and P (v, u) is equal to min{ 1

du
, 1

dv
}, which makes

P a symmetric matrix. A self-loop of appropriate probabil-
ity ensures that the matrix P remains row stochastic. So,
based on Lemma 5.2 the above random walk obtains a uni-
form sampling of the frequent patterns, given that we can
design an ergodic random walk on POG. Also note that the
random walk is reversible as is satisfies the balance Equation
(2).

The above algorithm is just an adaptation of classical
Metropolis-Hastings (MH) algorithm where the proposal dis-
tribution is same as the transition probability matrix of a
general random walk (each neighbor is chosen uniformly,
q(x, y) = 1/dx) and the acceptance probability, as suggested
by the MH algorithm, is:

αxy = min



π(x) dx

π(y) dy

, 1

ff

= min



dx

dy

, 1

ff

Substituting the value of αxy and qxy in Equation (6) we
can obtain the Equation (7).

5.2.2 Algorithm
Figure 3 describes the algorithm for uniform frequent sub-

graph mining. It accepts the graph database (D), minimum

2Considering the POG graph as layered graph, ergodicity
proof of Lemma 5.1 requires the Eq. (7) to be changed as
below:

P (u, v) =

8

<

:

1
2∗max(du,dv)

if u 6= v and v ∈ adj(u)
3
2
−

P

x∈adj(u) P (u, x) if u = v

0 otherwise

However, we skip this addition in the Eq. (7) for the benefit
of simplicity. Further, the addition of a self-loop does not
have any effect on the uniform generation claim.

Uniform Sampling (D, πmin, miniter):
1. p = generate any frequent pattern(D, πmin)
2. dp = compute degree(p)
3. While (true)
4. Choose a neighbor, q, uniformly from, all possible

frequent super and sub patterns
5. dq = compute degree(q)

6. accept prob = min(
dp

dq
, 1)

7. if uniform(0, 1) ≤ accept prob
8. p = q
9. iter = iter + 1
10. if iter ≥ miniter
11. return p

Figure 3: Uniform Sampling Algorithm

support value (minsup), and the minimum number of steps
(miniter) required for the random walk to mix to its sta-
tionary distribution. The higher the miniter parameter, the
better is the uniform sampling since the random walk has
better probability to converge to the uniform distribution.
However, user can just set it by her timing constraint or by
empirical estimation from our discussion in Section 5.1.

At line 1, we start with an arbitrary frequent subgraph, p.
A single edge frequent subgraph suffices. Then we compute
all frequent super-patterns and sub-patterns of p (line 2).
The degree of the node that corresponds to the pattern p is
just the size of the union of super-patterns and sub-patterns
set. Then we choose a pattern from p’s neighbors (line 4)
with iid distribution and compute the acceptance probabil-
ity in line 6. If the move is accepted, we increment the
current iteration count, otherwise we choose another neigh-
bor identically and repeat the whole process. The process
terminates when the iteration count exceeds miniter and it
returns the currently visiting pattern.

Example: In Figure 2, the subgraph A−D−B (rightmost
pattern in the third row from the bottom) has 2 neighbors (0
super-neighbors and 2 sub-neighbors), if the algorithm while
visiting the corresponding node chooses the pattern A − D
(in line 4 of Figure 3), the acceptance probability (in line 5)
is equal to 2

4
, since A − D has 4 neighbors in total. In this

way, the rejection step compensates for the non-uniformity
in degree by rejecting moves to higher degree nodes more
often and vice-versa.

5.3 Support proportional Sampling
Though the MH algorithm is generic enough to sample any

distribution (at least in theory), the main challenge in using
this algorithm is to adapt the proposal distribution. If the
proposal distribution is very different from the desired dis-
tribution, the acceptance rates are very low and algorithm’s
efficiency deteriorates severely. Furthermore, the quality of
the sample is also not that good as it becomes difficult to
counter-balance the proposal bias by rejection. In this sec-
tion, we will show how we can use MH to sample a pattern
in proportion to its support value by choosing a suitable
proposal distribution.

If sg is the support of any subgraph pattern g, we want
to sample a pattern g with a probability,

sg

C
, where C =

P

z∈F sz. For this task, we adapt the MH algorithm by
choosing a proposal distribution that is conducive to obtain
the target sampling by the random walk. The sample space
is the same POG that we used for uniform sampling of fre-



quent subgraphs.
Generally smaller subgraphs have high support, since as

we walk up towards the border of the partial order, sub-
graphs become increasingly infrequent. So, we need to choose
a proposal distribution that is biased to walk downward
along the partial order more frequently than walking up.
If u and v are two nodes in the POG, Nup(x) and Ndown(x)
are the up-neighbors (patterns with one extra edge) and
down-neighbors (patterns with one edge less) of any pattern
x, our proposal distribution is as follows:

P (u, v) =

(

α × 1
|Nup(u)|

, if v ∈ Nup(u)

(1 − α) × 1
|Ndown(u)|

, if v ∈ Ndown(u)
(8)

for some α ≤ 1. If a pattern has no up-neighbors (or
down-neighbors), the entire probability is distributed uni-
formly between its neighbors. After the selection based on
the proposal distribution is performed, the acceptance prob-
ability is computed by Equation 5. We do not show any
pseudo-code here as it is identical to Figure 3 except the
above changes which are incorporated in Line 4-6 of the al-
gorithm.

The main challenge in the above algorithm is to choose
the right value for α. Apparently, a value of α higher than
0.5 is not desirable as it would assign larger portion of the
probability mass to the up-neighbors which is not ideal to
achieve a support proportional sampling. But, choosing a
value which is further away from 0.5 towards 0 may also
severely penalize the upward walk in the proposal sampling.
The best way to find the right value of α is to choose it
dynamically by analyzing the acceptance rate (as computed
by Equation 5) in some trial simulations. The value of α
which offers the highest acceptance rate should be selected
because for this case the proposal distribution is the closest
to the target distribution and better sampling quality and
performance can be achieved. In the experiment Section, we
show results that show the relation between α, acceptance
rate, and the sampling quality. We conclude this section
with an example.

Example: Let us consider the same example as in Sec-
tion 5.2. Also assume that we set α = 1

3
. If the correspond-

ing POG nodes of the patterns A−D −B and A−D are p
and q respectively, we have P (p, q) = 1

2
and P (q, p) = 1

3×3
,

in the proposal distribution. The support values of these
patters are 2 and 3 respectively. So, the acceptance prob-
ability of the node q while moving from node p (after the

proposal based selection is done) is min{
3× 1

9

2× 1

2

, 1} = 1
3

5.4 Discriminatory Subgraph Sampling
The objective of discriminatory subgraph sampling is to

find subgraphs that can be used as features for graph classifi-
cation. They can further be used to construct graph kernels
for kernel based classification methods [30]. To sample dis-
criminatory subgraphs, we use delta score (defined below)
as our function, which maps each feasible subgraph in the
search space to a real number. It has also been used by
Yan et. al. in [34] to find significant subgraphs. For a two
class dataset (each graph in D is either of class 1 or of class
0), delta score is defined as follows: If g is a feasible sub-
graph, we can partition its gidset, t(g) into two sets based
on the class labels. If G0 and G1 are these two sets, the delta
score of g is abs(|G0| − |G1|), i.e., it is the difference between

the number of database graphs of class 1 and 0 that con-
tain g. The higher the delta score the more the pattern g
is discriminatory. While mining discriminatory subgraphs,
minsup criteria is not required, but a small minsup value
can still be used to keep the feasible set relatively small by
removing patterns that have very small support across the
entire database.

The important consideration of sampling discriminatory
subgraphs is the choice of proposal distribution. Unlike sup-
port, we have no reason to believe that the size of a pattern
has anything to do with its delta score, which is neither
monotonic nor anti-monotonic. But, we can intuitively as-
sume that very large (very small) patterns are not discrimi-
natory as they might occur in too few (too many) database
graphs respectively. So, ideally we like to be in the mid-
dle of the partial order. Hence, our chosen proposal dis-
tribution for this case uniformly selects one pattern from
the neighbors, which is exactly the same as in algorithm in
Figure 3. This strategy samples a pattern in proportion to
the degree distribution of the patterns in the POG graph
(without rejection step) and we assume that the patterns in
the middle of the partial order have more neighbors (sum of
both up-neighbors and down-neighbors) than the patterns
around the edge. Then, we compute the accept probability
as the ratio of corresponding delta-scores. In other words,
if the random walk at node i chooses a neighbor j by using
the proposal distribution, then it accepts j with probabil-

ity min{delta-score(j)
delta-score(i)

, 1}. Note that in the above case, we

did not use the exact Equation (Equation 2) of the MH al-
gorithm for the acceptance probability, which ensures the
satisfiability of detailed balance condition. It does not have
the qij and qji terms of Equation 4 where qi = 1

di
(and simi-

larly qj = 1
dj

) for this particular proposal distribution. Our

experiments on some real-life graph datasets show that the
above acceptance probability finds few good discriminatory
patterns faster (because, a move towards a pattern with a
higher delta score is always accepted), though lack of con-
sideration of the balance equation hurts the mixing rate and
the long-term stationary distribution probability.

6. IMPLEMENTATION DETAILS
The objective of output sampling is to quickly obtain a

small set of patterns that have the desired characteristics.
For that, it is essential that the sampling algorithm enu-
merates as fewer patterns as possible. In our sampling algo-
rithm, we enumerate all the neighbors of the current pattern.
We do so to find the next pattern with respect to the pro-
posal distribution and to subsequently decide whether the
proposed move is accepted or not. In this section, we provide
the implementation details of the neighborhood enumeration
process.

6.1 Computing neighbors of a pattern
A neighbor of a frequent graph pattern g has two com-

ponents, super-neighbors and sub-neighbors. Graph g1 is
a super-neighbor of g, if g1 ⊃ g and g1 = g ⋄ e, where
e is a frequent edge and ⋄ denotes the extension opera-
tion. So, a super-neighbor is obtained by adding an edge
to g. If the new edge e connects two existing vertices, we
call it a back edge. Otherwise, it is called a forward edge.
Adding a forward edge always adds a new vertex. To effec-
tively compute the super-neighbors, we pre-compute a data
structure called edge map, that stores the frequent edges



in a map Φ : LV → ℘(LV × LE) which essentially maps
a vertex label vl to all possible tuples of (vertex, edge) la-
bel pairs. For example, in edge map, if a vertex-label A
is mapped to {(A, a), (B, a), (B, b)}, then from any vertex
that is labeled with A, three different edge extensions, like
(A, A, a), (A, B, a), (A, B, b) are possible. The new edge can
be either a forward edge or a back edge.

A graph g2 is a sub-neighbor of g, if g2 ⊂ g and g = g2 ⋄e,
for some frequent edge e. To obtain g’s sub-neighbors, an
edge is removed from g. Back edge removal removes an
edge, but keeps the resulting graph connected and forward
edge removal removes an edge and isolates exactly one ver-
tex which is also removed from the resulting graph. For
example, there are 6 sub-neighbors of graph G1 in Fig. 1(a),
that can be obtained by removing the edges A − A, A − B,
A − D, B − D (D in middle column in 3rd row), A − C,
and B −D (rightmost D in the third row) respectively; the
first four are back edge removals whereas the last two are
forward edge removals.

The above super-neighbor and sub-neighbor computation
ensures that the random walk that the sampling algorithm
adopts is reversible, i.e., for any pair of pattern p and q that
assume a role of (pattern, super-neighbor) in a forward walk
can also assume a (pattern, sub-neighbor) role in a walk in
the reverse direction and vice versa.

6.2 Support Counting

Only the frequent patterns are part of the POG. So, while
the algorithm finds a neighbor (say, q) of a pattern p, it also
computes the support of q (|t(q)|) to ensure that the pattern
q is frequent, i.e., |t(q)| ≥ πmin. Any infrequent neighbors
are discarded. For support computation, we use Ullmann’s
subgraph isomorphism algorithm [29] with various optimiza-
tions. Associated with any frequent graph, we also store its
gidset, so that the number of calls to Ullmann’s algorithm
is as small as possible. Below, we discuss how the gidset of
a neighbor of a pattern p is computed from p’s gidset.

If a pattern q is created from a pattern p by extending an
edge e (for the case of super-neighbor), we have t(q) ⊆ t(p),
and it can be obtained as follows: (1) Intersect t(p) and
t(e); (2) Perform a subgraph isomorphism test of pattern q
against each graph in the result of (1). The identifiers of the
database graphs that succeed the test comprise t(q).

If the pattern q is obtained from p by removing an edge e
(for the case of sub-neighbor), t(q) ⊇ t(p). To compute the
gidset of q, we first find

T

e∈q
t(e), the intersection of gidset

of all edges of the pattern q. It is easy to see that
T

e∈q
t(e) ⊇

t(q) ⊇ t(p). Then, we perform a subgraph isomorphism test
of pattern q against each graph g ∈

T

e∈q
t(e)\t(p). The

identifiers of the graphs that succeed the test together with
t(p) comprise t(q).

Many graph mining algorithms, such as gaston [24], DMTL [8]
perform support counting by explicitly storing the embed-
dings of the frequent subgraphs in database graphs. This
approach works because the pattern enumeration in these
algorithms always constructs the child patterns by extend-
ing a parent pattern and the child’s embedding list is al-
ways a subset of the embeddings of the parent pattern. On
the other hand, our implementation performs a direct sub-
graph isomorphism checking. The reason behind it is that if
the random walk visits a sub-pattern from its super-pattern,
the embedding list of the sub-pattern cannot be constructed

from the embedding list of the super-pattern; the earlier is
a superset of the latter.

7. EMPIRICAL RESULTS
In this section, we evaluate the quality of our sampling

algorithm for different sampling objectives. First, we want
to experimentally evaluate how the sampling distribution
matches with the desired distribution. For these experi-
ments, we run our algorithm on smaller datasets with rel-
atively high supports values; so, the size of |F| is not that
large. Then, we take sufficiently large number of samples
(say, c× |F|), so that the sampling distribution can be con-
structed. Note that, for such smaller datasets, running a
complete subgraph mining algorithm is the best option as it
would retrieve all the patterns in a shorter time, but we use
them just to assess the sampling quality that we can achieve
using our algorithm. Later, we show results on large datasets
for which traditional graph mining algorithms fail to run.

7.1 Uniform Sampling of Frequent Subgraphs
We first show the experimental results for uniform sam-

pling of the frequent patterns. For this experiment, we use
the DTP (CM) AIDS antiviral screening dataset 3, which
contains 1084 graphs (confirmed moderately active chemi-
cal compounds), with an average graph size of 45 edges and
43 vertices. Note that, the majority of the chemical graphs
are trees, so more than 90% of the frequent subgraphs are
either trees or sequences.

Fig. 4 shows the results with minimum support=300; the
exact number of frequent patterns is 227 (125 paths, 94 trees,
8 cyclic graphs). We run our uniform sampler for a total of
45,400 iterations starting from the empty pattern, so that
in the case of ideal uniform generation, each frequent pat-
tern would be generated (visited in partial order graph) 200
times. Note that, in this simulation, the patterns that we
sample are dependent samples which are different from the
samples one would obtain by independent runs of algorithm
in Figure 3. However, since we are running very large num-
ber of simulation steps, we expect the dependency bias to
diminish by the law of large numbers.

The visit count for each pattern is shown as a vertical bar
in the bar chart in Figure 4(a). The chart shows that the
visit is fairly uniform. Detailed statistics of visit counts is
shown in Fig. 4(d). The minimum, median and the maxi-
mum of visit counts are 32, 209 and 338 respectively (mean
is trivially 200). We also show the frequency histogram of
visit counts in Fig. 4(b), where the x-axis shows the num-
ber of times a pattern is visited, and the y-axis shows how
many patterns fall in that bin. The histogram is not much
different from a normal curve, which one expects for an ideal
iid distribution (more discussion on this follows). For this
experiment, We also compute the variation distance 4. In
Figure 4(c) we show how it changes as the iteration pro-
gresses. After 20,000 iterations the distance value converges
to 0.1 which does not reduce much in subsequent iterations.
The spectral gap for this random walk is equal to 0.03 only,
which suggests that the mixing rate is generally slow.

3http://dtp.nci.nih.gov/docs/aids/aids data.html
4In the def. of variation distance, the term P t(x, y) denotes
the xth entry of state probability vector after time t which
we compute empirically; also note, in our experiments y is
always an empty pattern.
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Figure 4: Experimental Results of Uniform Generation of Frequent Graph

We also contrast the obtained distribution with a perfect
uniform sampler. If the dataset has m frequent patterns
and we perform the uniform generation for r · m iterations,
the number of times (k) an specific pattern will be picked
is described by the binomial distribution, B(k, n, p), where
n = r · m and p = 1

m
. The expected number of times a

frequent pattern is obtained is np = r · m · 1
m

= r, and

the standard deviation is
p

np(1 − p) =
q

r(m−1)
m

. If we in-

crease n (by increasing r) sufficiently, the distribution would
resemble a normal distribution, for which mean and median
values are the same. Thus, in the ideal case, with r = 200,
and m = 227 as in our running example, we expect that
the median visitation count is r = 200, with a standard

deviation of
q

400( 227−1
227

) = 14.11 (as noted in the table

in Fig. 4(d)). For our uniform sampler these values are 209
and 59.02 respectively. Note that the results in this table are
computed from the averages of 3 different runs to diminish
any artifacts of randomness.

One interesting behavior in Figure 4(b) is that the dis-
tribution is skewed towards the right with a small peak on
the left suggesting a bimodal distribution. We further ana-
lyze the result-set to explain the above behavior. Note that
the proposal distribution of our uniform sampling algorithm
chooses each neighbor of the pattern (a node in the POG)
uniformly (line 4 in Figure 3), which favors patterns that
have more neighbors in the POG. Although, Metropolis-
Hastings algorithm counter-balances this bias by rejecting
the proposal distribution at an appropriate rate (line 6-7 in

Figure 3), the bias does not eliminate completely because of
the poor mixing rate of the POG graph. In our dataset, more
than 50% of the patterns are paths. Note that a path graph
generally has very few neighbors in the POG. So, they are
under-sampled unfairly by the proposal distribution. Our
analysis reveals that the visit counts of these patterns are
generally lower than the median and they constitute the
small peak at the left side of the distribution.

To validate the above explanation, we run our algorithm
for itemset patterns. For this case an edge of the itemset
POG connects two frequent itemsets of size z and z − 1,
where both have z − 1 items in common. From a graph
point of view, one can consider the itemset dataset as a
clique dataset where every item in the itemset is just the
vertex label of one of the vertices of the cliques. All the
frequent graphs are clique graphs; hence POG is dense and
every pattern has a good number of neighbors in POG (in
comparison to path graphs in the DTP datasets). We expect
to get better uniformity result for this dataset.

For this experiment, we use the Chess dataset from UCI
Machine Learning Repository, the dataset has 3196 trans-
actions with an average of 10.25 items in each transaction.
With a support value of 2500, it finds 11493 frequent pat-
terns. We run our uniform sampler for 1149300 times. The
visit count statistics are shown in Figure 4(h). The corre-
sponding visit count bar chart, visit count distribution and
the variation distance curve are also shown in Figure 4(e),
(f) and (g), respv. It is very evident that much better uni-
formity is achieved in this experiment, although we sample



each pattern for an average of 100 times. The distribution
curve has perfect normal shape, the median and the mean
value of the distribution are identical and the standard de-
viation of the visit count data is almost equal to the ideal
case. However, the spectral gap of this POG is also poor;
with a value of 0.05 only it is marginally better than the
earlier dataset.

α Accept- Effec-prob Correl- variation-
rate Up Down ation Dist

.66 0.72 0.33 0.15 0.41 0.194

.60 0.76 0.29 0.18 0.61 0.146

.50 0.78 0.21 0.23 0.76 0.144

.40 0.74 0.15 0.29 0.69 0.237

.34 0.69 0.13 0.33 0.60 0.297

(a) Performance Data for different values of α
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Figure 5: Experimental Results of Support Biased
Generation of Frequent Graphs

7.2 Support-biased Sampling
For this experiment we use the DTP dataset with a sup-

port value of 250; the number of frequent subgraphs is 323.
Like before, our strategy to verify the sampling distribution
quality by comparing the visit count value with the support
value of a pattern. We run the sampler for a total of 64,600
iterations. We expect patterns with higher support values
to have higher visit count.

The first step of this experiment is to choose a right value
of α so that the proposal distribution is close to the target
distribution as much as possible. For this we execute five
independent trial runs with different values of α and com-
pute the acceptance rates (as in Eq. 5). The result is shown
is the table in Fig. 5(a). We also compute the effective up
and down probabilities (per pattern) in the proposal distri-
bution by using the Eq. 8 for each iteration. The average
of these values over all the iterations is shown in Column
3 and 4 of the same table. Finally, we compute the corre-
lation between visit count and support which is shown in
the Column 5. The variation distance between the desired
distribution (computed by normalizing the support values)
and the achieved distribution (computed by normalizing the
visit count) is shown in Column 6.

Interestingly, for α = 0.5, the algorithm has the best ac-
ceptance rate (0.78), which yields the best sampling perfor-
mance with the highest correlation and the least variation
distance. As we deviate away from 0.5, the acceptance rate
drops and that adversely affects the sampling performance.
The average effective up and down probability per pattern

for the case of α = 0.5 is 0.21 and 0.23 respectively, which
suggests that for this dataset the required bias to downward
move is very small that can be achieved by choosing α = 0.5.
Note that, α and 1−α is just the aggregated probability for
the up and down neighbors; hence, the actual probability to
move to an up neighbor or to a down neighbor also depends
on the number of up and the number of down neighbors.
For α = 0.4, the effective up and down neighbor probability
is 0.15 and 0.29 respectively, which biases downward walk
much more severely than the required causing a decreased
acceptance rate. In practice for large dataset, such exhaus-
tive search for the best value of α is impractical, hence it
should by updated dynamically during the simulation by
monitoring the acceptance rates.

In Figure 5(b), we show the scatter plot of visit counts
with respect to the support values. From the plot, a linear
relation between the visit count and the support value of
a pattern is evident. For example, the third highest ranked
pattern in terms of support value (1016) is sampled the most
(1046). The correlation value among these two variables
is very good, which is 0.76; the corresponding p-value is 0
which means that the alternate hypothesis that there is no
correlation between visit count and the support value can
be rejected with a significance value of 100%.

7.3 Discriminatory Subgraph Sampling
For this experiment, we use the Mutagenicity I dataset

that is used in [4]. It has 4337 chemical graphs of two dif-
ferent classes with 2401 and 1936 members in each class.
The average vertices and edges in these graphs are 17 and
18 respectively. This dataset is also small and can be mined
within a few minutes, but we are using it to show the sam-
pling effectiveness; in particular, we want to see whether our
method can obtain high quality discriminatory patterns.

We mined the dataset with a minimum support of 300,
for which there are 1034 frequent subgraphs. We also com-
pute the delta-score of these subgraphs. The distribution of
the delta-scores for these patterns are shown in Fig. 6(b).
The mean and the median delta-score are 284.4 and 295, re-
spectively, with a skewed distribution. The majority of the
patterns are not discriminatory or have average discrimina-
tory value. There are only 128 patterns that have delta-score
more than 400, which is 13% of the total frequent subgraphs.
Since minimum support is 300, there is no infrequent pat-
tern that can have delta score higher than 400. The highest
delta-score of a pattern is 748.

Like before, we run the algorithm for 204800 samples (200
× 1034) and compute the visit count of each pattern. We
show the distribution of the visit count values against the
delta-scores of the patterns in Fig. 6(c). The relation is
not linear as we wanted it to be, but it is very different
from the frequency distribution in Fig. 6(b) as desired. That
is, we would like 6(c) to be biased towards patterns with
high delta score. Clearly, we sample many patterns that
have a delta-score in the range of 450-520 much more than
200 times (the mean value). 43% of the time our sampling
algorithm spends on patterns that have delta score more
than 350 though they constitute only 29% of the frequent
patterns. On the contrary, more than 54% subgraphs have
delta-scores less than 300, where our random walk spends
less than 30% of the time. Finally, there are some very
discriminatory patterns that the algorithm samples less than
200 (the mean value) times. The correlation value is still



Sample Delta Rank % of POG-
No Score Rank Explored

1 404 132 5.7
2 644 21 11.0
3 707 10 10.8
4 282 593 2.4
5 646 17 5.5
6 280 595 2.8
7 627 27 3.3
8 709 9 7.7
9 721 5 9.1
10 725 4 8.9
11 280 595 4.1
12 343 320 5.3

(a) Delta Score, Rank and % of POG
Explored

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

Delta Score

F
re

q
u

e
n

c
y

(b) Scatter Plot

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

Delta Score

V
is

it
 C

o
u

n
t

(c) Delta Score Distribution

Figure 6: Experimental Results of Significance Biased Generation of Frequent Graphs

very high which is 0.48 with a p-value of 0.
The objective of discriminative pattern mining is to use

them for classification, so one is more interested to find only
the top-k discriminatory patterns. To find the relative rank-
ing of the best discriminatory pattern that the sampling
process visits, we modified the sampling algorithm so that
it saves the best discriminatory pattern that it has visited
up to that point. We started 12 independent random walks,
allowing each to take 40 successful steps (if a proposed walk
is rejected, we do not count it as a valid step) and report the
best discriminatory pattern visited. We also report the per-
centage of POG it completely enumerated in that process,
i.e., these are the patterns for which the gidset is computed.
The ranking result is shown in Figure 6(a). In top-10, the
random walk visited 4 patterns that have delta score rank
of 4, 5, 9 and 10, with delta values of 725, 721, 709, and
707 respectively. The best delta value in this dataset is
748. The percentage of lattice visited for these 4 runs is on
average less than 10%. The timings for these 40 runs are
slightly (5-10%) higher than the proportional (in terms of
percentage of POG explored) time for the complete mining
algorithm 5. Note that, we also sample some patterns with
poor delta scores. Interestingly, in those cases the process
do not explore more than 5% of the POG, i.e. the random
walk just got stuck in a local region for these cases.

Dataset #Graph #Avg-Vertex #Avg-Edge

Protein Interaction 3 2154 81607
Cell-Graphs 30 2184 36945

Figure 7: Statistics of Large Graph Datasets

7.4 Sampling Results on Large Graphs
Output space sampling is mostly useful for mining large

graphs, for which traditional mining algorithms do not fin-
ish in a reasonable amount of time. In the next experi-
ment, we show the effectiveness of the sampling approach
over traditional graph mining algorithms. We use two large
graph datasets: (1) protein-interaction (PI) graphs taken

5For fairness, we compare with the complete mining algo-
rithm that uses similar data structures and algorithms. For
instance the complete mining algorithm also uses Ullmann’s
algorithm for subgraph isomorphism test and it does not
save the embeddings in memory, however it uses the right-
most extension with min-dfs-coding [35].

from [7] and (2) cell-graphs [1]. The cell-graphs have class
labels based on whether the corresponding graph belongs to
a benign (0) or invasive (1) tissue samples; in this dataset
there are an equal number of graphs of either class. The
statistics of the datasets are shown in Figure 7. All these
experiments were run in a 2.2GHz machine with 2GB RAM
running Linux OS.

No complete mining algorithm could mine these graphs for
2 full days of running with 100% support (we tried gSpan [35]
and gaston [24]). So, we allow our sampling algorithm and a
complete mining algorithm (an adaptation of DMTL [8] that
does not save embeddings, since the one that saves embed-
dings crashes within a few minutes by exhausting the virtual
memory) to run for 3 hours. DMTL, which is a depth-first
mining algorithm, found 2187 patterns, the largest one with
size 34 where the patterns are about 91% similar based on
edge-multiset distance [7] (i.e. the proportion of the number
of common edges when the graphs are treated as multi-edge
sets). Whereas our sampling algorithm traversed 130 pat-
terns (it enumerated 1839 patterns) by uniform sampling,
where the maximum sized pattern is 47 and the average
similarity between the visited patterns was only 17%.

For the cell-graph dataset, our objective is to find sub-
graph patterns with high delta score. We run the discrimi-
natory pattern sampling algorithm with a minimum support
value of 6 (20%). The leap search [34], and CORK [23] al-
gorithms did not run on this dataset. Both failed with a
segmentation fault. But, we could obtain around 26 pat-
terns with delta score more than or equal to 9 in 2 hours
of running. Maximum size of the pattern we find is about
21 edges. For the same period of time, the patterns that
the DMTL algorithm enumerated had only 3 patterns that
had a delta score of 9 or more, though the maximum sized
pattern it enumerated had 28 edges.

8. DISCUSSION AND CONCLUSION
Our sampling based approach is good for mining databases

of large graphs for which the combinatorial space is pro-
hibitively large. By adopting a random walk approach it
samples very dissimilar patterns and reaches different parts
of the POG very effectively. The experiments shown above
clearly demonstrate this claim.

However our approach also has some limitations. For al-
gorithmic efficiency, the entire graph database should be in
memory so that the up and down neighbors of a pattern



can be obtained quickly. If the database does not fit in the
memory, a random walk on the POG becomes highly ineffi-
cient. Another important consideration for MH sampling is
to choose the proposal distribution appropriately. We have
seen in the experiments in Section 7.2 that it has strong
consequence on the quality of the sampling. One should
try to employ all the prior knowledge in the proposal dis-
tribution. The only consideration is that it should be much
cheaper to compute with respect to complete enumeration
of the neighbors of a pattern.

This work opens up several directions for future research.
First, there is scope for improving the mixing rate by adding
random edges on the POG after making few simulation walks
similar to Origami [7]. This would embed a random graph
on top of POG; since a random graph has very high mixing
rate, it would definitely improve the efficiency of the output
space sampling. Also, in the discriminatory pattern sam-
pling, it would be good to integrate the sampled pattern
within a graph classification framework, and compute the
classification accuracy, etc.
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