
Pangea: An Eager Database Replication Middleware
guaranteeing Snapshot Isolation

without Modification of Database Servers

Takeshi Mishima
The University of Tokyo

mishima@hal.rcast.u-tokyo.ac.jp

Hiroshi Nakamura
The University of Tokyo

nakamura@hal.rcast.u-tokyo.ac.jp

ABSTRACT
Recently, several middleware-based approaches have been
proposed. If we implement all functionalities of database
replication only in a middleware layer, we can avoid the
high cost of modifying existing database servers or scratch-
building. However, it is a big challenge to propose middle-
ware which can enhance performance and scalability with-
out modification of database servers because the restriction
may cause extra overhead. Unfortunately, many existing
middleware-based approaches suffer from several shortcom-
ings, i.e., some cause a hidden deadlock, some provide only
table-level locking, some rely on total order communication
tools, and others need to modify existing database servers.

In this paper, we propose Pangea, a new eager database
replication middleware guaranteeing snapshot isolation that
solves the drawbacks of existing middleware by exploiting
the property of the first updater wins rule. We have im-
plemented the prototype of Pangea on top of PostgreSQL
servers without modification. An advantage of Pangea is
that it uses less than 2000 lines of C code. Our experimental
results with the TPC-W benchmark reveal that, compared
to an existing middleware guaranteeing snapshot isolation
without modification of database servers, Pangea provides
better performance in terms of throughput and scalability.

1. INTRODUCTION
Many database researchers may think of database repli-

cation as a solved problem; however, there are few practical
solutions which meet customers’ expectations [8]. Tradition-
ally, most database replication approaches need modifying
existing database servers or scratch-building. The strong
point of the approaches is that they may introduce only a
minimal overhead. However, the modification or scratch-
building is too expensive, since the code of database servers
is large and complex. This is one of the reasons that most
of the approaches were not implemented as a practical pro-
totype and were evaluated only as simulation based studies.

Recently, several middleware-based approaches have been

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

proposed [20, 17, 16, 3, 18, 19, 10, 14, 15, 4, 9, 12]. If we
implement all functionalities of database replication only in
a middleware layer, we can avoid the high cost of the modifi-
cation or scratch-building. Moreover, the middleware offers
flexibility, which does not depend on a particular vendor,
permits heterogeneous settings and can be maintained in-
dependently of database servers. These benefits have moti-
vated several researchers to study various replication mid-
dlewares. However, it is a big challenge to propose a middle-
ware that can enhance performance and scalability without
modification of database servers because the restriction may
cause extra overhead.

Database replication approaches can be categorized into
eager and lazy replication schemes [13]. Eager replication
keeps all database servers (replicas) exactly synchronized by
updating all the replicas as part of one atomic transaction.
Lazy replication asynchronously propagates replica updates
to other replicas after the updating transaction commits.

Most existing middleware-based approaches [20, 17, 16, 3,
18, 19, 10] belong to lazy replication. This is due to the fact
that eager replication generally offers less performance and
scalability than lazy replication [13]. However, under the
condition that we use off-the-shelf database servers without
modification, the fact does not necessarily hold, i.e., main-
taining consistency of lazy replication may produce non-
trivial overhead.

We focus on eager replication because we think the sim-
plicity of eager replication is suitable for the aim that repli-
cation functionalities produce little overhead even if all of
them are implemented only in a middleware layer. Fur-
thermore, we adopt snapshot isolation (SI) [5] as a correct-
ness criterion because SI is not only provided by practi-
cal database servers such as Oracle, SQL Server and Post-
greSQL but also widely used, increasing performance by ex-
ecuting transactions concurrently.

Existing eager replication middlewares have some prob-
lems. First, if the execution order of conflicting write oper-
ations on one replica differs from that on another replica, a
“hidden” deadlock can occur, which lies across replicas and
prevents the middleware from receiving responses from all
replicas due to blocking the latter operation1. To avoid this
“hidden” deadlock, the middleware must make all replicas
execute the conflicting write operations in the same order.
Some existing eager middlewares [9, 12] do not have this
mechanism. Some middlewares [14, 15] can avoid this “hid-
den” deadlock by using group communication. However,

1In eager replication, a middleware makes progress after re-
ceiving all responses as stated in Sec. 3.1.

the middlewares not only suffer from inevitable overhead by
the group communication but also need to modify database
servers. Other middleware [4] assigns a unique version num-
ber to each request and sends the requests to all replicas
in the same order of the version number sequentially. Al-
though the middleware avoids the deadlock, the sequential
execution by managing version numbers leads to table-level
locking. This coarse grain control causes degradation of
throughput.

Second, most existing eager middlewares [4, 9, 15, 12] do
not guarantee SI. SI-Rep [14] guarantees SI but checks write-
write conflict at commit time. This is not compatible with
the first updater wins rule [11] used by practical database
servers such as Oracle and PostgreSQL.

In this paper, we tackle the problems and propose Pangea,
a novel eager database replication middleware guaranteeing
SI without modification of database servers. Our main con-
tributions are as follows:

• We propose a new correctness criterion for eager repli-
cated database systems called global snapshot isolation
(GSI). GSI not only guarantees SI to clients but also
maintains consistency between database servers.

• We propose a novel concurrency control which creates
snapshots in a synchronized fashion across replicas,
and regulates the order of conflicting write operations
by delegating a designated “leader” replica to detect
conflicting write operations with the property of the
first-updater-wins rule. The regulation allows us to
avoid the hidden deadlock. To the best of our knowl-
edge, this paper is the first to show the effective ex-
ploitation of the first updater wins rule.

• We propose Pangea, a novel eager database replica-
tion middleware guaranteeing GSI with the key con-
trol. Compared with existing eager replication mid-
dlewares, Pangea provides the highest concurrency be-
cause the tuple-level locking allows Pangea to execute
non-conflicting write operations concurrently. Further-
more, compared with existing lazy replication middle-
wares, Pangea prevents a particular replica from over-
loading because read operations can go to any replica,
even if executed by an update transaction.

• Pangea has been easily implemented using PostgreSQL
servers without modification due to the simplicity of
our control. An advantage of Pangea is that it uses
less than 2000 lines of C code.

• The experiments using the TPC-W benchmark show
that, compared to an existing middleware guarantee-
ing SI without modification of database servers, Pangea
provides better performance in terms of throughput
and scalability.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the transaction model and the important
feature of SI. In Section 3, we develop a formal characteri-
zation of SI in eager replicated systems and define GSI. In
Section 4, we propose Pangea, a new eager database repli-
cation middleware guaranteeing SI without modification of
database servers. Section 5 presents experimental results.
Section 6 talks about related work. Section 7 concludes the
paper.

2. DATABASE MODEL
In this section, we introduce the formal apparatus that is

necessary to reason about SI.

2.1 Transaction
A transaction Ti is a sequence, i.e., total order <, of read

and write operations on data items and starts with a begin
operation bi. The subscript i identifies a particular trans-
action and distinguishes it from other transactions. ri(x)
represents a read operation by Ti on data item x and wi(x)
means a write operation of x. We use ci and ai to denote
Ti’s commit and abort operation, respectively. We assume
a new snapshot is created for Ti when si called a snapshot
operation is executed. In the practical database servers such
as Oracle, SQL Server and PostgreSQL, a new snapshot is
created for Ti just before the first ri(x) or wi(x) is executed.
It is convenient for reasoning about SI to use si and this does
not interfere the result.

2.2 Versioned Data Item
To reason about the execution of operations under SI, we

need to represent a versioned data item because SI is one of
multi-version concurrency control. For each data item x, we
denote the versions of x by xi, xj , ..., where the subscript is
the index of the transaction that wrote the version. Thus,
each write operation is always of the form wi(xi), where
the version subscript equals the transaction subscript. The
notation ri(xj) represents a read operation by transaction Ti

that returns the version of the data item xj written earlier
by transaction Tj . We assume that all data items start with
zero versions, x0, y0, z0, ... (we imagine that x, y, z, ... have
all been installed by a progenitor transaction T0).

2.3 Schedule and History
When a set of transactions are executed concurrently,

their operations may be interleaved. We define a schedule as
the order in which a scheduler of a database server intends to
execute operations of the transactions. A history indicates
the order in which the operations of the transactions on the
schedule were actually executed. Note that a schedule is a
plan for the future and therefore not all operations can be
actually executed. Consider, for instance, two transactions
Ti and Tj :

Ti : bi si wi(xi) ci

Tj : bj sj wj(xj) cj

and suppose a scheduler makes a schedule S as follows:

S = bi bj si sj wi(xi) wj(xj) ci cj

In addition, suppose wj(xj) has not been executed success-
fully for some reason. Then Tj cannot be committed but
aborted. So the order that all operations were actually exe-
cuted, namely a history H, is as follows:

H = bi bj si sj wi(xi) wj(xj) ci aj

In Tj , aj were executed in the place of cj .

2.4 Snapshot Isolation
We designate the time when a transaction Ti starts as

start(Ti) which is equal to the time when a snapshot op-
eration si has been executed. Also, we address the time
when Ti ends as end(Ti) which is equal to the time when

a commit operation ci has been executed. A transaction
Ti executing under SI reads data from the committed state
of the database as of start(Ti), namely the snapshot, and
writes its own snapshot, so it can read the data from the
snapshot that it has previously written.

The interval in time from start(Ti) to end(Ti), represented
as [start(Ti), end(Ti)], is called transactional lifetime. We
say that two transactions Ti and Tj are concurrent if their
transactional lifetime overlap, i.e.:

[start (Ti), end (Ti)] ∩ [start (Tj), end (Tj)] 6= ∅

Reading from a snapshot means that a transaction never
sees the partial results of other transactions: Ti sees all the
changes made by transactions that commit before start(Ti),
and it sees no changes made by transactions that commit
after start(Ti).

In SI, a read operation never blocks write operations, and
vice versa. This feature increases concurrent execution and
thereby brings higher throughput. A write operation in-
cludes a SELECT FOR UPDATE query in addition to UP-
DATE, DELELE and INSERT queries because the SELECT
FOR UPDATE query needs a tuple-level lock as well.

2.5 First Updater Wins Rule
Originally, two concurrent transactions Ti and Tj causing

write-write conflict obey the first committer wins rule under
SI [5]. However, practical database servers such as Oracle
and PostgreSQL adopt the first updater wins rule [11] as
follows.

If Ti updates the data item x, then it will take a write
lock on x; if Tj subsequently attempts to update x while Ti

is still active, Tj will be prevented by the lock on x from
making further progress. If Ti then commits, Tj will abort;
Tj will be able to continue only if Ti drops its lock on x

by aborting. If, on the other hand, Ti updates x but then
commits before Tj attempts to update x, there will be no
delay due to locking, but Tj will abort immediately when
it attempts to update x (the abort does not wait until Tj

attempts to commit). In short, a transaction will success-
fully commit only if no other concurrent transaction causing
conflict has already been committed.

Although the ultimate effect of both rules is the same,
the first committer wins rule causes unnecessary execution
of operations which will be aborted and thereby wastes time
and resources in vain before aborting. We assume that each
replica guarantees SI with the first updater wins rule.

This apparatus motivates the following definition of SI-
schedule.

Definition 1. (SI-schedule) Let T be a set of transactions,
where each transaction Ti has operations oi ∈ {bi, si, ri, wi,

ci, ai}. An SI-schedule S over T has the following properties.

(i) ri(x) is mapped to wj(x) such that wj(x) < cj <

si < ri(x) and there are no other operations wk(x)
and ck(k 6= j) with wk(x) < si and cj < ck < si

(ii) If wi(x) and wj(x) causes write-write conflict and
wi(x) < wj(x), then (ci < aj) or (ai < cj).

(i) means that the version function maps each read oper-
ation ri(x) to the most recent committed write operation
wj(x) as of the time of execution of si. (ii) means the
first updater wins rule, i.e., the transaction which includes
the first updater operation can commit successfully and the
other transaction has to abort.

middleware

database servers (replicas)

clients

local transaction

global transaction

Figure 1: Model of An Eager Replication System

3. SNAPSHOT ISOLATION
IN REPLICATED SYSTEMS

In this section, we develop a formal characterization of
SI in eager replicated systems with a middleware and then
propose a new correctness criterion called global snapshot
isolation.

3.1 Model of An Eager Replication System
Figure 1 shows the model of an eager replication system.

If the system has n replicas, Rm represents the m-th replica
(1 ≤ m ≤ n), where the superscript is the index of the
replica. A middleware lies between replicas and clients.
Transactions are never sent by clients in a single block, i.e.,
they are processed by the middleware statement by state-
ment.

Basically, in eager replication, when a request is received
from a client, the middleware sends this request to replicas.
Then, receiving responses from all the replicas, the middle-
ware sends back one response to the client. If we optimize
the protocol, the final effect must be the same as that of the
basic protocol. Note that clients must not access replicas
directly.

3.2 Mapping Function
We assume that clients do not use stored procedures, i.e.,

business logic is usually implemented in application servers.
We also assume that we can distinguish a read-only or an
update transaction at the beginning of each transaction2.

The middleware receives a request including one opera-
tion from a client as an operation oi ∈ {bi, si, ri, wi, ci, ai}
of a global transaction Ti, projects oi onto replica Rm as an
operation om

i ∈ {bm
i , sm

i , rm
i , wm

i , cm
i , am

i } of a local transac-
tion T m

i , and then sends the request to Rm. Rm receives
the request and executes om

i with SI-schedule. We define

2In Java clients, for example, this can be done by executing
Connection.setReadOnly() method.

the mapping function that takes a set of global transactions
T and a set of replicas R as input and transforms T into a
set of local transactions T m {T m

i |Rm ∈ R}.

Definition 2. (mapping function) Let R be a set of repli-
cas in a replicated database system. Let T be a set of global
transactions, where each global transaction Ti has opera-
tions oi ∈ {bi, si, ri, wi, ci, ai}. Each replica Rm executes
a set of local transactions T m, where each local transac-
tion T m

i has operations om
i ∈ {bm

i , sm
i , rm

i , wm
i , cm

i , am
i }. The

mapping function is as follows:

(i) If a global transaction Ti is a read-only transaction,
the mapping function picks up one replica Rp and all
operations oi of Ti are mapped to o

p
i of T

p
i . That is,

T
p
i = Ti and the other local transactions T m

i (1 ≤ m ≤
n, m 6= p) = ∅.

(ii) If a global transaction Ti is an update transaction, the
mapping function picks up one replica Rq and ri of
Ti are mapped to r

q
i of T

q
i , and bi, si, wi, ci, ai of Ti

are mapped to bm
i , sm

i , wm
i , cm

i , am
i of T m

i (1 ≤ m ≤ n),
respectively. That is, T

q
i = Ti and the other local

transactions T m
i (1 ≤ m ≤ n, m 6= q) excludes read

operations from Ti.

Consider, for example, a read-only global transaction Ti:

Ti : bi si ri(xj) ri(yk) ri(zl) ci

The mapping function transforms Ti into a set of local trans-
actions T m

i :

T
p
i : b

p
i s

p
i r

p
i (xj) r

p
i (yk) r

p
i (zl) c

p
i

T
m
i : ∅(1 ≤ m ≤ n, m 6= q)

Consider, for example, an update global transaction Tj :

Tj : bj sj rj(xk) wj(yj) cj

The mapping function transforms Tj into a set of local trans-
actions T m

j :

T
q
j : b

q
j s

q
j r

q
j (xk) w

q
j (yj) c

q
j

T
m
j : bm

j sm
j wm

j (yj) cm
j (1 ≤ m ≤ n, m 6= q)

In summary, it is necessary that read operations are ex-
ecuted on only one replica for high performance and scala-
bility.

3.3 SI-Equivalence
When we reason about consistency between replicas, the

equivalence of two schedules is an inevitable concept like
classical serializable theory [6]. Although a similar definition
has been made by Lin et al. [14], they assume SI with the
first committer wins rule, i.e., the replica checks write-write
conflicts only at commit time. Unlike [14], we assume the
first updater wins rule. We say two SI-schedule Sm and Sn

are SI-equivalent as follows:

Definition 3. (SI-equivalence) Let T be a set of transac-
tions, where each transaction Ti has operations oi ∈ {bi, si, ri,

wi, ci, ai}. Let R be a set of replicas in a replicated database
system, where each replica Rm has a SI-schedule Sm. Let
Sm and Sn be two SI-schedules over the same set of trans-
actions T and have the same operations. Sm and Sn are
SI-equivalent if for any Ti, Tj ∈ T the following holds.

Ti
Tj

Ti
Tj

concurrent case sequential case

Figure 2: The relative relation between Ti and Tj

(i) (sj < ci) ∈ Sm ⇔ (sj < ci) ∈ Sn; or
(ci < sj) ∈ Sm ⇔ (ci < sj) ∈ Sn.

(ii) wi and wj cause conflict, (wi < wj) ∈ Sm

⇔ wi and wj cause conflict, (wi < wj) ∈ Sn.

Whether the snapshot of Tj includes the change of Ti or
not depends on the relative relation between Ti and Tj as
shown in Fig. 2. In the concurrent case, namely sj < ci,
the snapshot of Tj does not include the change of Ti. In the
sequential case, namely ci < sj , the snapshot of Tj includes
the change of Ti. Thus, (i) means that the relative order of
snapshot and commit operations in Sm must be the same
as that in Sn.

(ii) utilizes the fact that the outcome of a concurrent ex-
ecution of transactions depends on the relative ordering of
conflicting write operations. Therefore, the relative order of
conflicting write operations in Sm must be the same as that
in Sn.

3.4 Global Snapshot Isolation
We propose a new correctness criterion called global snap-

shot isolation (GSI). GSI is not only to provide SI to clients
but also to maintain consistency between replicas. To guar-
antee GSI with a minimal overhead, SI-equivalence is too
strong, i.e., it is not necessary that SI-equivalence holds over
the same set of transactions which have the same set of op-
erations. It is necessary that SI-equivalence holds over the
set of local transactions mapped from global transactions.
We define global snapshot isolation as follows:

Definition 4. (global snapshot isolation) Let R be a set
of replicas in a replicated database system. Let T be a
set of global transactions, where each global transaction Ti

has operations oi ∈ {bi, si, ri, wi, ci, ai}. Let Sm be the SI-
schedule over the set of local transactions T m at replica
Rm ∈ R. We say that R guarantees GSI if the following
properties hold.

(i) There is a mapping function such that ∪mT m = f(T ,R)

(ii) There is an SI-schedule S over T such that for each Sm

and T m
i , T m

j ∈ T m being transformations of Ti and Tj :

(a) If Ti is a read-only transaction,
there exists m ∈ T m

i = Ti

(b) If Ti is an update transaction,
(sj < ci) ∈ S ⇒ (sm

j < cm
i) ∈ Sm; or

(ci < sj) ∈ S ⇒ (cm
i < sm

j) ∈ Sm.

(c) If Ti is an update transaction,
wi and wj cause conflict and (wi < wj) ∈ S ⇒
wm

i and wm
j cause conflict and (wm

i < wm
j) ∈ Sm.

S C

time

Ti

(1) (2)

RmRm

RnRn

S CTj

CS Ti

CS Tj time

RmRm

RnRn

S Ti C

S Tj C

S Ti C

S Tj C

Figure 3: Snapshot Acquisition

4. PANGEA MIDDLEWARE
In this section, we propose Pangea, an eager database

replication middleware guaranteeing SI without modifica-
tion of database servers.

4.1 Concept
Pangea has the following two functionalities to guarantee

SI.

(1) snapshot acquisition control: Pangea makes all repli-
cas create the same snapshots on different replicas.

(2) write operation control: Pangea makes every replica
execute write-write conflicting operations in the same
order.

Furthermore, Pangea has the following functionality to
enhance throughput by load balancing.

(3) Pangea makes one replica create the snapshot of a
transaction and execute read operations of the trans-
action.

4.2 Snapshot Acquisition Control
To achieve the first functionality, we propose a snapshot

acquisition control which makes a pair of transactions on
different replicas acquire the same snapshot.

Schenkel et al. [22] proposed a method to make all database
servers get the same snapshots in a federated database sys-
tem with the atomic commit protocol. Although we can
apply it to a replicated database system, it is too strong to
construct a practical replicated database system, i.e., not
only a local transaction T m

i at Rm and a local transaction
T n

i at Rn are forced to start at the same time but also com-
mit operations are executed at the same time exactly as
shown in Fig. 3.(1).

Rather than their approach, our proposal is to make the
relative order of snapshot and commit operations at Rm

and those at Rn be the same as shown in Fig. 3.(2). It
can realize the snapshot acquisition control with a minimal
overhead since our proposal is weaker.

Pangea has several threads and assigns one thread to each
client. In order to regulate the relative order of snapshot and
commit operations, Pangea uses mutual exclusion. When a
thread receives a snapshot operation from a client, it tries to
enter the critical region. When it enters the critical region,
there are no replicas executing a commit operation. So, by
sending the snapshot operation to all replicas, all snapshots
must be the same. The reverse is also true. When the
thread receiving a commit operation enters the critical re-
gion, there are no replicas executing a snapshot operation.

In this way, Pangea preserves the relative order of snapshot
and commit operations. Rather than the method of [22],
multiple snapshot operations can be executed concurrently.
Also, commit operations can be executed concurrently. This
property leads to better performance.

4.3 Write Operation Control
To achieve the second functionality, we propose the write

operation control which makes write-write conflicting opera-
tions be executed in the same order. Unlike the conventional
table level locking approaches [4], our approach brings tu-
ple level concurrency control. Also, rather than [9, 12] that
causes a hidden deadlock due to the fact that the order
of write-write conflicting operations changes, our approach
prevents the order from changing.

The key point is how to distinguish operations which will
conflict on a particular data item. So far, it has been con-
sidered very difficult to do this by middleware based ap-
proaches, since a middleware cannot know whether opera-
tions will conflict or not by parsing SQL statements. This is
one of the reasons why middleware based approaches achieve
only the table level concurrency control, and therefore can-
not enhance performance and scalability.

4.3.1 Leader and Follower Replicas
The key idea of our control is to delegate one replica called

leader to detect conflicts on tuple level and to decide the
execution order of write operations, namely the first updater
wins rule, and to make the others called followers execute
the write operations in the same order as the leader has
decided. It does not matter which replica Pangea selects as
a leader but once Pangea completes the selection, the roles
are not changed until the leader fails.

Our proposed write operation control is the next simple
protocol that Pangea manages sending write operations and
receiving responses as follows:

(1) send all write operations only to the leader,

(2) receive responses from the leader,

(3) send the write operations corresponding to the responses
to all the followers,

(4) receive responses from all the followers, and

(5) send back a response to each client.

Consider, for instance, that Pangea sends the three write
operations Wa, Wb and Wc shown in Fig.4. We assume that
Wa and Wb will conflict. After receiving write operations
Wa, Wb and Wc from clients, Pangea sends all the write op-
erations only to the leader (step (1)). Then Pangea receives
responses Ra and Rc corresponding to Wa and Wc, respec-
tively (step (2)). In this case, Pangea cannot receive the
response Rb corresponding to Wb since Wa and Wb conflict
and Ra is returned to Pangea (this means Wa is the first
updater). Recall the first updater wins rule: only the trans-
action that can get a write lock can progress but the others
have to wait for the lock. Thus, by checking which of the
responses Pangea has received, Pangea can know which of
the write operations will not conflict in the followers. Next,
Pangea sends only Wa and Wc to all the followers, which are
guaranteed not to cause conflict (step (3)). Then Pangea re-
ceives responses from all the followers (step (4)) and sends
back a response to each client(step (5)).

leaderfollowerfollower

Wa
Wb

Wc

Ra
Rc

Wa
Wc

Wa
Wc

(1)(2)
Ra
RcRa

Rc

(3)(3) (4)(4)

middleware

Figure 4: Write Operations Control

Surprisingly, our idea is very simple but very effective,
i.e., it can not only avoid the hidden deadlock but can also
achieve the tuple level locking. This fine-grained locking
leads to higher throughput.

4.3.2 Correctness
Let wi,m be a m-th write operation of a transaction Ti.

L(wi,m) and F (wj,n) show the execution of wi,m by the
leader and the execution of wj,n by the follower, respec-
tively. ei means end operation of Ti, commit or abort op-
eration. L(wi,m) < F (wj,n) denotes that the execution of
wi,m by the leader occurs before the execution of wj,n by
the follower.

Theorem 1. (write operation control) For any transac-
tions Ti and Tj and corresponding write operations wi,m and
wj,n, respectively, if wi,m and wj,n try to modify the same
data item and L(wi,m) < L(wj,n) then F (wi,m) < F (wj,n)

Proof.

case i 6= j

i 6= j means Ti and Tj are different transactions and wi,m

and wj,n cause write-write conflict. As described in Sect.2.4,
the first updater wins rule gives a write lock to the first write
operation, i.e., from L(wi,m) < L(wj,n), wi,m is executed
immediately but wj,n is forced to wait until Ti executes an
end operation ei and releases the write lock. Therefore, for
any transactions Ti and Tj ,

L(wi,m) < ei < L(wj,n) (1)

In the write operation control, Pangea sends the write op-
eration to the leader prior to the follower and Pangea does
not send it to the follower until it has received the response
from the leader. So, for any transactions Ti,

L(wi,m) < F (wi,m) < ei (2)

Like Ti, for any transactions Tj ,

L(wj,n) < F (wj,n) < ej (3)

Thus, from the equation (1), (2) and (3), for any transac-
tions Ti, Tj , F (wi,m) < F (wj,n).

case i = j

If i = j, wi,m and wj,n are included in the same transac-
tion Ti. In this case, wi,m and wj,n does not cause write-
write conflict. Since one write operation overwrites the re-
sult of another, of course, wi,m and wj,n must be executed
in the same order on the different replicas. In the write
operation control, Pangea sends back the response to the
client after it has received the responses from the leader and
the follower. This means Pangea does not send back the
response to the client until all wi,m have been executed. In
addition, the client does not send a new operation until it
has received the response corresponding to the former oper-
ation. Thus, the latter operation can not get ahead of the
former operation. So, for any transactions Ti,

L(wi,m) < L(wi,m+1) (4)

F (wi,m) < F (wi,m+1) (5)

From L(wi,m) < L(wj,n), i = j and the equation(4), n =
m+1. Thus, the equation (5), i = j and n = m+1, for any
transactions Ti, Tj , F (wi,m) < F (wj,n).

4.4 Read Operation Control
To achieve the third functionality, we propose the read

operation control. It is not necessary that read operations
are executed on all replicas because read operations do not
change the state of a database. However, to send back a
response to a client, one read operation must be executed
on one replica. Note that a read operation must be executed
on the replica that holds the snapshot of the transaction to
which the read operation belongs.

4.5 Algorithm
In this section, we present the algorithm to attain the

three functionalities described above. Our algorithm con-
sists of initialization and two states, the NO SNAPSHOT
state and the SNAPSHOT PREPARED state. Pangea as-
signs one thread for each client and makes the thread execute
the following Algorithm I, II and III.

Algorithm I. Initialization

1 state = NO SNAPSHOT
2 commit counter = 0
3 snapshot counter = 0
4 select one replica Rm(1 ≤ m ≤ n, m 6= leader)

An initial state is set to the NO SNAPSHOT state (I.1).
Two counters, one that counts the number of threads execut-
ing commit operations and the other that counts the number
of threads executing snapshot operations, are initialized to
zero (I.2-3). One replica Rm(1 ≤ m ≤ n, m 6= leader) is
selected for load balancing in advance (I.4). To avoid the
leader becoming a bottleneck, Rm should be selected among
followers.

Algorithm II. read-only transaction

1. send the request to Rm

2. recv a response from Rm

3. send the response to the client

The behavior of a thread with a read-only transaction
is very simple. The thread sends a request to Rm which

has been selected in the initialization, receives a response
from Rm and then sends the response to the client (II.1-3).
The thread must not send the request to the other replicas
because only Rm holds the snapshot of the transaction.

Algorithm III. update transaction

1. if (state == NO SNAPSHOT)
2. enter critical region
3. while (commit counter > 0)
4. sleep and wait for signal
5. snapshot counter ++
6. leave critical region
7. send the request to all replicas
8. recv responses from all replicas
9. send a response to client

10. enter critical region
11. snapshot counter −−
12. if (snapshot counter == 0)
13. signal to wake up
14. leave critical region
15. state = SNAPSHOT PREPARED
16. else /* SNAPSHOT PREPARED */
17. if (request == write operation)
18. send the request to the leader replica
19. recv a response from the leader replica
20. send the request to all follower replicas
21. recv responses from all follower replicas
22. send a response to client
23. else if (request == read operation)
24. send the request to Rm

25. recv a response from Rm

26. send the response to the client
27. else if (request == abort operation)
28. send the request to all replicas
29. recv responses from all replicas
30. send a response to the client
31. else /* commit operation */
32. enter critical region
33. while (snapshot counter > 0)
34. sleep and wait for signal
35. commit counter ++
36. leave critical region
37. send the request to all replicas
38. recv responses from all replicas
39. send a response to client
40. enter critical region
41. commit counter −−
42. if (commit counter == 0)
43. signal to wake up
44. leave critical region
45. state = NO SNAPSHOT

The behavior of a thread with an update transaction de-
pends on the state. In NO SNAPSHOT state, a snapshot
for the transaction must be created by executing a snap-
shot operation. The thread enters the critical region and
increases the snapshot counter only if any commit opera-
tions are not executed (III.1-5). The counter informs the
other threads that there is a thread creating snapshot and
is used to guarantee that both snapshot and commit opera-
tions are not executed simultaneously. Leaving the critical
region, the thread makes all replicas execute the request
which contains a snapshot operation and acquire the same

snapshots (III.6-7). If the thread receives responses from
all replicas (III.8), the thread sends back a response to the
client (III.9). Again, the thread enters the critical region
and decrements the snapshot counter (III.10-11). If the
counter equals zero, there are not any threads executing
snapshot operations (III.12). Therefore, the thread wakes
up all the threads which are about to execute commit opera-
tions (III.13). After the thread leaves the critical region, the
state of the thread is changed to SNAPSHOT PREPARED
(III.14-15).

In the SNAPSHOT PREPARED state, the type of a re-
quest is examined. Receiving a write operation, the thread
controls the operation transmission with our tuple level con-
currency control as described in Sect.4.3 (III.17-22). That
is, the thread sends the request only to the leader, receives a
response and then sends the request to all the followers. Re-
ceiving a read operation, the thread sends it to Rm, receives
a response from the replica and sends back the response
to the client (III.23-26). Receiving an abort operation, the
thread sends it to all replicas, receives responses from them
and sends back one to the client (III.27-30). If the thread re-
ceives a commit operation, it enters the critical region and
increases the commit counter only if any snapshot opera-
tions are not executed (III.31-35). The counter informs the
other threads that there is a thread executing a commit op-
eration and is used to guarantee that both snapshot and
commit operations are not executed simultaneously. Leav-
ing the critical region, the thread makes all replicas exe-
cute the request (III.36-37). If the thread receives responses
from all replicas (III.38), the thread sends back a response
to the client (III.39). Again, the thread enters the criti-
cal region and decrements the commit counter (III.40-41).
If the counter equals zero, there are not any threads exe-
cuting commit operations (III.42). Therefore, the thread
wakes up all the threads which do not execute snapshot
operations (III.43). After the thread leaves the critical re-
gion, the state of the thread is changed to NO SNAPSHOT
again (III.44-45).

Unlike lazy replication [20, 17, 16, 3, 18, 19, 10], not
only read operations of read-only transactions but also those
of update transactions can be executed on any replica be-
cause Pangea can make any replica create the latest snap-
shot whereas only the master holds the snapshot in lazy
replication. This prevents the leader from becoming a bot-
tleneck.

There is a useful algorithm that we do not write in Algo-
rithm III to make it easier to understand. If Pangea receives
a nack from the leader (III.19), Pangea immediately sends
back a nack to the client without sending the request (III.20)
because the follower would send a nack. This enables Pangea
not only to eliminate unnecessary execution but also to use
database servers such as SQL Server which guarantees SI
without the first updater wins rule, i.e., which returns a
nack immediately without blocking if a write operation en-
counters the write-write conflict.

4.6 Correctness

Theorem 2. (guaranteeing GSI) Pangea algorithm guar-
antees GSI.

Proof. Read-only transactions are executed on one fol-
lower replica Rm (Algorithm II). Write operations of update
transactions are executed on all replicas (III.17-21). Fur-
thermore, snapshot operations of the update transactions

are executed on all replicas (III.7). Moreover, commit oper-
ations of the update transactions are executed on all replicas
(III.37). Read operations of the update transactions are ex-
ecuted on one follower replica Rm (III.24). Therefore, Rm

executes T m
i = Ti and the other replicas execute a trans-

action which excludes read operations from Ti. This means
Pangea has the mapping function.

If snapshot operations are executed, a commit operation
can not be submitted (III.33-34) until the snapshot opera-
tions have been executed (III.12-13). This means (sj < ci) ∈
S ⇒ (sm

j < cm
i) ∈ Sm. Else if commit operations are exe-

cuted, a snapshot operation can not be submitted (III.3-4)
until the commit operations have been executed (III.42-43).
This means (ci < sj) ∈ S ⇒ (cm

i < sm
j) ∈ Sm.

Let Rl, Rf , {l, f} ∈ m be the leader and the follower,
respectively. Pangea delegates Rl to decide the execution
order of wi and wj . That is, if Pangea sends wl

i and wl
j

to Rl (III.18) and receives a response corresponding to wl
i

(III.19), Pangea knows that Rl has decided that the order
of them is wl

i < wl
j . Therefore, Pangea adopts the order

as a global schedule, wi < wj . Next, Pangea sends only

w
f
i to Rf (III.20) and then receives a response from Rf

(III.21). After that, Pangea sends cl
i and c

f
i to Rl and Rf

(III.37), respectively. When Rl has executed cl
i, Rl exe-

cutes wl
j and Pangea receives a response corresponding to wl

j

(III.19). Then Pangea sends w
f
j to Rf (III.20) and receives

a response from Rf (III.21). Therefore, w
f
i < c

f
i < w

f
j .

wi < wj ⇒ wm
i < wm

j .

4.7 Hidden Deadlock Avoidance
Because we assume the first updater wins rule, if the ex-

ecution order of conflicting write operations on one replica
differs from that on another replica, hidden deadlock occurs,
which lies across replicas. To avoid the deadlock, the exe-
cution orders on different replicas must be the same. As
the write operation control, as described in Sect. 4.3, makes
all replicas execute conflicting write operations in the same
order, Pangea does not suffer from the deadlock.

However, Pangea probably has another hidden deadlock.
If a snapshot operation is a write operation, Pangea may
cause another hidden deadlock. Consider a write operation
wi is a snapshot operation of a transaction Ti and waits for
a lock which has been given by wj of a transaction Tj . With
the first updater wins rule, wi can not get the lock until Tj

commits or aborts. However, Tj can not commit until the
snapshot operation wi has ended.

In practice, this may not be a serious problem because
write operations are usually preceded by read operations.
To avoid the problem, if Pangea receives a write operation
as a snapshot operation, after submitting a dummy read
operation as a snapshot operation to create a snapshot to all
replicas and receiving responses, Pangea submits the write
operation.

4.8 High Availability
We assume that the fault model is fail-stop and multi-

ple failures do not occur. If the leader falls into malfunc-
tion, Pangea re-selects a new leader from followers and then
clients must re-submit the transactions that have not been
finished successfully. If a follower stops due to a fault,
Pangea only detaches the follower from the system, i.e.,
Pangea does not send any requests to the follower and makes

progress with the remaining followers. To circumvent Pangea
becoming a single point of failure, we must prepare a stand-
by Pangea node in addition to an active Pangea node.

If you assume that the fault model is not fail-stop, e.g.,
Byzantine fault, or need higher availability, you have to com-
bine Pangea with a reliable protocol, e.g., 2PC. However,
note that CAP theorem [7] states it is impossible to achieve
all performance, consistency and availability at the same
time. Although you can combine them easily, you have to
compromise performance or consistency.

4.9 Elimination of Non-Determinism
In eager replication, we must prevent any replica from

executing non-deterministic operations. Pangea parses an
SQL statement and finds out non-deterministic functions
such as random and current timestamp, executes them and
re-writes them to static values.

If a client submits the insertion of autogeneration value
which does not cause the write-write conflict, Pangea must
cause the conflict with a SELECT FOR UPDATE query
because the order of the autogeneration without the write-
write conflict is non-deterministic and therefore it may pro-
duce a different value on different replicas. Consider, for ex-
ample in PostgreSQL, a table “tab(id SERIAL, name TEXT)”
and an “INSERT(nextval(’tab id seq’), ’TOM’)” query. Re-
ceiving the request including the insertion, Pangea sends a
“SELECT nextval(’tab id seq’) FROM tab id seq FOR UP-
DATE” query only to the leader without sending the original
request. Then Pangea receives the response of the selection
request from the leader and picks up the value of tab id seq.
For example, tab id seq equals 10. Pangea re-writes the
original request to an “INSERT(10, ’TOM’)” query and
sends it to all replicas.

It is easy to implement the mechanism for Pangea because
Pangea parses an SQL statement to distinguish a read-only
operation from an update operation. Due to the same rea-
son, this mechanism produces small overhead.

4.10 Implementation
In the current implementation, we adopt libpq and the

type 4 JDBC protocols of PostgreSQL. Surprisingly, Pangea
uses less than 2000 lines of C code. This is because the idea
of Pangea is very simple.

5. PERFORMANCE EVALUATION
In order to clarify the effectiveness of Pangea, we imple-

mented a prototype and conducted a performance evaluation
with the TPC-W benchmark by comparing throughput, re-
sponse time and CPU utilities of Pangea with those of one
of lazy replication middlewares.

5.1 Reference Middleware
So far, several middlewares have been proposed but most

of them were not compared with the others. However, in
order to verify the validity of Pangea, it is inevitable to com-
pare the performance of Pangea with that of existing mid-
dlewares. There is not any existing eager replication mid-
dlewares guaranteeing SI without modification of database
servers. In lazy replication middlewares, there are two ap-
proaches in terms of creating writesets: one called the trigger
approach uses triggers [17, 10, 19] and the other called the
statement-copy approach copies SQL statements in a mid-
dleware layer [19].

Salas et al. [21] came to the conclusion that the trigger-
based replication caused an unacceptable overhead. Fur-
thermore, Plattner et al. [19] implemented both approaches
and observed that triggers produced non-trivial overhead
and the statement-copy approach, which they called the
generic approach, outperformed the trigger approach. There-
fore, we implemented a prototype called LRM (Lazy Repli-
cation Middleware) with the statement-copy approach (the
generic approach). Consequently, it is sufficient that we
compare the performance of Pangea with that of LRM.

LRM selects one replica as a master and the others as
slaves in advance. Rather than Pangea which can send a
read operation to followers (slaves), receiving a request of
an update transaction from a client, LRM must send it to
the master whether it is a read operation or not because only
the master holds snapshots. At the same time, LRM holds
a copy of the request except a read operation as a writeset.
To keep consistency between the master and the slaves, the
order of executing commit operations on the master must
be the same as that of applying writesets to the slaves. Be-
cause typical database servers offer no mechanism to specify
a commit order externally, LRM must submit each commit
operation serially, waiting for each commit to complete. Af-
ter the update transaction commits on the master, LRM
sends the writeset of the transaction to all the slaves.

Receiving a request of a read-only transaction from a
client, LRM sends it to one of the slaves. The slaves must ex-
ecute not only read-only transactions but also writeset trans-
actions3 with guaranteeing SI. Unfortunately, there are also
no mechanisms to execute them concurrently with chang-
ing databases of the slaves to the same state of the master’s
database. Therefore, the slaves must execute writeset trans-
actions in the commit order serially.

Moreover, in the worst case, read-only transactions may
be delayed until suitable writesets have been applied on the
slaves not to read stale data.

5.2 Analysis of Overhead
Before we show the measured results, we analyze which

action of each middleware possibly causes overhead.
In Pangea, the first overhead may be caused due to the

fact that both commit and snapshot operations of update
transactions can not be executed simultaneously. Because
read-only transactions do not produce this overhead at all,
the higher the ratio of update transactions become, the big-
ger overhead Pangea suffers from. Even if there is only one
replica, i.e., the leader also does the follower’s work, Pangea
yields this overhead. The second overhead is the round
trip time of write operations, which may be bigger because
Pangea delegates the leader to resolve the write-write con-
flict. The higher the ratio of update operations become, the
bigger overhead Pangea suffers from. However, if there is
only one replica, Pangea does not suffer from the overhead
because Pangea does not have to send write operations to
any followers.

In LRM, the first overhead may be caused by the fact
that all commit operations of update transactions must be
executed serially. Because read-only transactions do not
produce this overhead at all, the higher the ratio of up-
date transactions become, the bigger overhead LRM suffers

3A writeset transaction is the transaction that excludes read
operations from an update transaction executed by the mas-
ter.

from. Even if there is only one replica, i.e., the master also
does slave’s work, LRM yields this overhead. The second
overhead may be caused due to the fact that writeset trans-
actions must be executed in the serial fashion and no other
transaction, even if it is a read-only transaction, can be ex-
ecuted during this time on the slaves. Because read-only
transactions do not produce this overhead at all, the higher
the ratio of update transactions become, the bigger overhead
LRM suffers from. However, if there is only one replica,
LRM does not suffer from the overhead because LRM does
not have to apply writeset transactions to the slaves. The
third overhead may be caused due to the fact that read-only
transactions may wait to be executed until needed writesets
have been applied on the slaves. Because read-only trans-
actions do not produce this overhead at all, the higher the
ratio of update transactions become, the bigger overhead
LRM suffers from. Like the second overhead, if there is only
one replica, LRM does not suffer from the overhead due to
the same reason.

5.3 TPC-W Benchmark
The TPC-W benchmark [2] models customers that access

an online book store. The database manages eight tables:
item, country, author, customer, orders, order line, cc xacts
and address. There are 14 interactions, six are read-only and
eight have update transactions. The benchmark specifies
three different workloads: browsing, shopping and ordering
mixes. A workload simply specifies the relative frequency
of the different interactions. As table 1 shows, all three
workloads consist of the same basic read-only or update in-
teractions.

Table 1: three workloads in TPC-W benchmark
read-only update

browsing mix 95% 5%
shopping mix 80% 20%
ordering mix 50% 50%

From a database point of view, the browsing workload
is read-dominated while the ordering workload is update-
intensive. The shopping workload is between the two. The
throughput metric used is web interactions per second (WIPS).

5.4 Experimental Setup
We use up to 7 replicas, one is the leader (master) and

the others are followers (slaves) for database node. In addi-
tion, there are single middleware node, and two application
server and client simulator nodes. All nodes have the same
specification (two 2.4 GHz Xeon, 2 GBytes RAM and one
70 GB SCSI HDD) and connected by 1Gb/s Ethernet. We
used PostgreSQL, version 8.3.7, as database replicas pro-
viding SI. We set the default transaction isolation to
SERIALIZABLE4, and did not change the other parame-
ters. We used Apache Tomcat, version 6.0.18, as web and
application servers. All nodes run the 2.6.18 Linux kernel.
To measure the performance of the prototype, we used a
TPC-W benchmark implementation [1] that had to be mod-
ified to support a PostgreSQL database. The TPC-W scal-
ing parameters chosen were 1 million items and 2.88 million
customers. This results in a database of around 6 GBytes.

4SI is called SERIALIZABLE in PostgreSQL.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

W
IP

S

number of follower(slave) replicas

Pangea (shopping)
 LRM (shopping)

Figure 5: shopping mix

5.5 Results and Discussion

5.5.1 Overhead
In the first experiment, we wanted to analyze the over-

heads of Pangea and LRM with actual measurements.
We measured maximum throughputs of a single Post-

greSQL instance with no middleware called PGSQL, Pangea
with one replica and LRM with one replica. Table 2 shows
measured maximum throughputs.

Table 2: maximum throughput with one replica
PGSQL Pangea LRM

browsing (WIPS) 2.65 2.63 2.46
shopping (WIPS) 3.58 3.58 3.32
ordering (WIPS) 8.43 8.39 7.55

With only one replica, the middleware simply forwards
requests to the single replica, Pangea may suffer from only
the first overhead of Pangea, and LRM may also suffer from
only the first overhead of LRM as described in Sect. 5.2.
The ratios of throughput reduction in browsing, shopping,
ordering mixes are 0.75%, 0% and 0.47% in Pangea, respec-
tively, and 7.20%,7.26% and 10.4% in LRM, respectively.
The overheads of LRM are bigger than those of Pangea.
This is because commit operations of update transactions
can be executed concurrently in Pangea whereas those must
be executed serially in LRM. Unlike LRM, Pangea has the
disadvantage that both commit and snapshot transactions
of update transactions can not be executed concurrently.
However, this experiment shows that the overhead is smaller
than that of the serial execution of LRM. Surprisingly, even
if the workload is read-intensive, namely the browsing mix,
the overhead of LRM is not negligible.

5.5.2 Scalability
The second part of the evaluation analyzes scalability. We

measured the throughputs of Pangea and LRM in different
configurations, from 1 up to 6 followers (slaves). Unlike in
the first experiment, the measured throughputs include the
influence of all the overheads.

Figure 5 shows the maximum throughputs for the shop-
ping mix, which is the most representative workload for the
TPC-W benchmark. The throughput of LRM increases with

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6

W
IP

S

number of follower(slave) replicas

Pangea(browsing)
 LRM (browsing)

Figure 6: browsing mix

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6
W

IP
S

number of follower(slave) replicas

Pangea (ordering)
 LRM (ordering)

Figure 7: ordering mix

the number of replicas moderately and reaches a peak of
5.72 WIPS at 3 replicas and then flattens. On the other
hand, the throughput of Pangea increases linearly and reaches
17.8 WIPS at 6 replicas, which means Pangea outperformed
LRM by approximately 210% in throughput. We can ex-
pect that by adding more follower replicas we can increase
the achievable throughput since even read operations of up-
date transactions can be executed on any follower.

Figure 6 shows the maximum throughputs for the brows-
ing mix. The curves are lower than those in Fig. 5, since
this workload contains more read operations, which are gen-
erally more complex than update operations. The fact helps
LRM distribute the read load and thereby the throughput
of LRM increases at 4 replicas. Although the difference
between throughput of Pangea and that of LRM becomes
smaller, the maximum throughputs of Pangea and LRM
are 13.6 WIPS and 6.48 WIPS, respectively, which means
Pangea outperformed LRM by approximately 110% with re-
gard to throughput.

Figure 7 shows the maximum throughputs for the ordering
mix. Because simple update transactions account for 50%
of the load, Pangea and LRM achieve higher throughputs.
However, the throughput of LRM increases slightly even if
LRM has 6 replicas. This is because there are few opportu-
nities to distribute read operations and the overhead of the
serial commit execution and the serial writeset application
is very big. Similarly, Pangea saturates at 4 replicas. How-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18

W
IR

T

WIPS

Pangea (WIRT)
 LRM (WIRT)

Figure 8: WIRT (Web Interaction Response Time)

ever, the throughput of Pangea is much higher than that of
LRM, i.e., the maximum throughputs of Pangea and LRM
are 29.4 WIPS and 11.1 WIPS, respectively. This means
Pangea outperformed LRM by approximately 165% in terms
of throughput.

5.5.3 Response Time
The second overhead of Pangea increases the round trip

time of write operations and thereby the response time of
Pangea is possibly bigger than that of LRM. To answer this
question, we measured WIRTs (Web Interaction Response
Time) of Pangea and LRM.

Figure 8 shows WIRTs for the shopping mix. Because
the tendencies of the browsing and the ordering mixes are
the same as the shopping mix with 6 follower replicas, we
show only the graph of the shopping mix. WIRT of LRM is
bigger than that of Pangea. This means that the overhead
of sequential transmission of write operations is smaller than
the overhead of LRM.

5.5.4 Bottleneck Avoidance
Pangea does not allow more than one leader replica. So,

the leader is possibly a bottleneck. To answer the question,
we examined usage of CPU time of the experiments with
the vmstat utility. Table 3 shows usage of CPU time for
the ordering workload with 6 follower replicas and 240 EBs
(Emulated Browsers), which is a heavy workload in our en-
vironment.

Table 3: usage of CPU time
leader follower Pangea tomcat

utilities 0% 50 ∼ 70% 0% 3%

In this setting, the usages of CPU time of the leader and
Pangea are less than 1%. This means that neither the leader
node nor the Pangea node is a bottleneck. Even if we added
follower replicas to the setting, neither the leader node nor
the Pangea node would be a bottleneck because the usages
of CPU time of the leader and Pangea are much smaller than
those of followers.

In Pangea, the possibility that the leader becomes a bot-
tleneck is smaller than existing middlewares. Because every
replica has the same snapshot, even read operations of up-

date transactions can be executed on any follower. Also,
the possibility that Pangea becomes a bottleneck is smaller
because the algorithm is very simple and therefore the code
size is very small.

6. RELATED WORK

6.1 Lazy Replication Middleware
Replication middlewares guaranteeing SI without modifi-

cation of database servers can be categorized into two ap-
proaches, namely the trigger approach [17, 10, 19] and the
statement-copy approach [19] as noted in Sect. 5.1. In ad-
dition to the two approaches, there is another approach, the
log-shipping approach [16]. However, no existing middle-
ware with the approach guarantees SI.

Plattner et al. [17, 19] introduce Ganymed, the original
middleware of LRM against which we compared Pangea in
Sect. 5. In order to keep consistency without modification of
database servers, this approach must submit commit opera-
tions serially on the master. Furthermore, writeset transac-
tions must be executed in a serial fashion. Moreover, read-
only transactions may be delayed not to read stale data until
needed writesets have been applied on slaves. We showed
these overheads decreased throughput and disabled scale-
out. Although they also implemented prototypes with the
trigger approach and evaluated it, they presented that the
overhead of the trigger approach was bigger than that of the
statement-copy approach.

Elnikety et al. [10] introduce Tashkent-MW, a middleware
which collects writesets by triggers. Their strong point is to
reduce the overhead of write action by integrating several
write accesses into a single disk write. However, there still
exists the problems of the statement-copy approach. More-
over, if write operations are not executed frequently, there
are few chances of the integration. Generally read oper-
ations are often executed and some of them are complex.
Few applications may benefit from Tashkent-MW.

6.2 Eager Replication Middlewares
Unfortunately, no existing eager replication middleware

guarantees SI without modification of database servers.
All middlewares by Cecchet et al. [9], Fujiyama et al. [12]

and Amza et al. [4] guarantee one-copy-serializability5 [6].
Unfortunately, the middlewares by Cecchet et al. [9] and
Fujiyama et al. [12] suffer from hidden deadlock. The mid-
dleware by Amza et al. [4] avoids the deadlock. However,
unlike Pangea, the middleware can not achieve the tuple
level concurrency control but the table level.

6.3 Guaranteeing SI in Federated Database
Systems

Schenkel et al. [22] propose two approaches, a pessimistic
approach and an optimistic approach, which guarantee SI in
a federated database system. These approaches can also be
used in replicated database systems.

In the pessimistic approach, all replicas are forced to start
a transaction at the same time with the assumption of using
an atomic commit protocol. The assumption implies that
the end of the transaction of all replicas is also the same.
Unlike Pangea, they assume the first committer wins rule.

5The resulting schedules are equivalent to a serial schedule
on a single database.

The synchronized start of a transaction guarantees that all
replicas get the same snapshot. However, the synchroniza-
tion is too strong. In fact, it is sufficient that the relative
order of snapshot and commit operations in all replicas are
the same. Pangea adopts the weaker synchronization and
therefore the overhead is smaller. Unlike Pangea, the pes-
simistic approach can not control the execution of conflicting
write operations. Ensuring consistency between replicas re-
lies on the atomic commit protocol. When the execution
order in one replica differs from that in another, which pro-
duces inconsistency between replicas, one executes write op-
erations successfully and another fails or vice versa. Hence,
all replicas abort the transaction because all replicas can not
commit successfully. Unfortunately, the unnecessary abort
causes deterioration of throughput.

The optimistic approach checks whether Ti and Tj are ex-
ecuted serially in one replica and Ti and Tj are executed con-
currently in another replica. If this situation is found before
Ti is committed, Ti is aborted. Unfortunately, this approach
also causes unnecessary aborts. Consequently, Pangea is
superior to both approaches because Pangea can avoid re-
execution of unnecessary aborted transactions.

6.4 Guaranteeing SI in Replicated Database
Systems

Lin et al. [14] propose 1-Copy-SI, a new criterion for repli-
cated database systems guaranteeing SI. Unlike Pangea, 1-
Copy-SI is based on the first committer wins rule, which is
not used by practical database servers such as Oracle, SQL
Server and PostgreSQL.

They also propose SI-Rep, a middleware which guaran-
tees 1-Copy-SI. However, SI-Rep needs group communica-
tion and writeset handling, which needs modification of ex-
isting database servers.

7. CONCLUSION
In this paper, we defined a new correctness criterion for

eager replicated database systems called global snapshot iso-
lation (GSI). We proposed a new concurrency control which
exploits the first updater wins rule effectively and avoids a
hidden deadlock. To the best of our knowledge, this paper is
the first to show the effective exploitation of the first updater
wins rule. We proposed Pangea, a novel eager database
replication middleware guaranteeing GSI using the control.

The experimental results with the TPC-W benchmark
showed that the overhead of Pangea was very small. More-
over, Pangea outperformed one of existing middlewares for
all workloads because Pangea offers not only higher con-
currency but also smaller overhead. Furthermore, Pangea
achieved linear scale-out for read-intensive workload.

Note that Pangea requires no changes to database servers
but is implemented only in a middleware layer. Further-
more, the code size of Pangea is very small. Consequently,
it is concluded that Pangea is very practical and effective.

8. REFERENCES
[1] Java TPC-W implementation distribution,

http://www.ece.wisc.edu/ pharm/tpcw.shtml.

[2] Transaction processing performance council, tpc-w.

[3] F. Akal, C. Türker, H.-J. Schek, Y. Breitbart,
T. Grabs, and L. Veen. Fine-grained replication and
scheduling with freshness and correctness guarantees.
In VLDB, pages 565–576, 2005.

[4] C. Amza, A. L.Cox, and W. Zwaenepoel. Distributed
versioning: Consistent replication for scaling back-end
databases of dynamic content web sites. In
Middleware, pages 282–304, 2003.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In ACM SIGMOD, pages 1–10, 1995.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley Publishing Company,
Massachusetts, 1987.

[7] E. Brewer. Towards robust distributed systems
(invited talk). In PODC, 2000.

[8] E. Cecchet, G. Candea, and A. Ailamaki.
Middleware-based database replication: The gaps
between theory and practice. In ACM SIGMOD, 2008.

[9] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
C-jdbc: Flexible database clustering middleware. In
USENIX, 2004.

[10] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent:
Uniting durability with transaction ordering for
high-performance scalable database replication. In
EuroSys, 2006.

[11] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems,
30(2):492–528, June 2005.

[12] K. Fujiyama, N. Nakamura, and R. Hiraike. Database
transaction management for high-availability cluster
system. In PRDC, 2006.

[13] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In ACM
SIGMOD, pages 173–182, 1996.

[14] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In ACM SIGMOD, 2005.

[15] M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme,
and G. Alonso. Middle-r: Consistent database
replication at the middleware level. ACM Transactions
on Computer Systems, 23(4):375–423, November 2005.

[16] J. G. Per-Ake Laarson and J. Zhou. Mtcache:
Transparent mid-tier database caching in sql server. In
ICDE, 2004.

[17] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
Middleware, 2004.

[18] C. Plattner, G. Alonso, and Özsu. Dbfarm: A scalable
cluster for multiple databases. In Middleware, 2006.

[19] C. Plattner, G. Alonso, and Özsu. Extending dbmss
with satellite databases. VLDB Journal, 2006.

[20] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. Fas
– a freshness-sensitive coordination middleware for a
cluster of olap components. In VLDB, 2002.

[21] J. Salas, R. Jiménez-Peris, M. Patiño-Mart́ınez, and
B.Kemme. Lightweight reflection for middleware-based
database replication. In SRDS, 2006.

[22] R. Schenkel, G. Weikum, N. Weibenberg, and X. Wu.
Federeated transaction management with snapshot
isolation. Lecture Notes in Computer Science, January
2000.

