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ABSTRACT
The conventional Internet is acquiring a geo-spatial dimension. Web
documents are being geo-tagged, and geo-referenced objects such
as points of interest are being associated with descriptive text docu-
ments. The resulting fusion of geo-location and documents enables
a new kind of top-k query that takes into account both location
proximity and text relevancy. To our knowledge, only naive tech-
niques exist that are capable of computing a general web informa-
tion retrieval query while also taking location into account.

This paper proposes a new indexing framework for location-
aware top-k text retrieval. The framework leverages the inverted
file for text retrieval and the R-tree for spatial proximity query-
ing. Several indexing approaches are explored within the frame-
work. The framework encompasses algorithms that utilize the pro-
posed indexes for computing the top-k query, thus taking into ac-
count both text relevancy and location proximity to prune the search
space. Results of empirical studies with an implementation of the
framework demonstrate that the paper’s proposal offers scalability
and is capable of excellent performance.

1. INTRODUCTION
Driven in part by the emergence of the mobile Internet, the con-

ventional Internet is acquiring a geo-spatial dimension. On the
one hand, many (geo-referenced) points of interest—e.g., stores,
tourist attractions, hotels, entertainment services, public transport,
and public services—are being associated with descriptive text doc-
uments. On the other hand, web documents are increasingly being
geo-tagged.

This fusion of geo-location and documents enables queries that
take into account both location proximity and text relevancy. One
study has found that about one fifth of web search queries are ge-
ographical and have local intent, as determined by the presence
of geographical terms such as place names and postal codes [25].
Indeed commercial search engines have started to provide location-
based services, such as map services, local search, and local adver-
tisements. For example, Google Maps supports location-aware text
retrieval queries. Additional examples of location-based services
include online yellow pages.
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This paper considers a new kind of top-k query that takes into
account both location proximity and text relevancy for points of in-
terest with associated text. An example query may request a “good
micro-brewery that serves pizza” and that is close to the user’s ho-
tel. We call this type of query a location-aware top-k text retrieval
(LkT) query. The answer to such a top-k query is a list of k ob-
jects ranked according to a ranking function that combines their
distances to the query location and the relevance of their textual de-
scriptions to the query phrase. The LkT query is different from the
query that retrieves relevant documents within a geographic range.

In the paper, we compute the text relevancy of a query result by
means of language models and a probabilistic ranking function that
have sound foundations in statistical theory and have performed
well empirically in many information retrieval tasks [22, 30].

The LkT query poses new challenges for both existing spatial
database and existing information retrieval techniques that have
been developed separately. The research in spatial databases mainly
focuses on highly structured, map-based geometric data and their
attributes. In contrast, information retrieval research often treats
location information as common keywords.

We are not aware of any published techniques that efficiently
support the computation of the location-aware top-k text retrieval
query considered in this paper. Some techniques [18,28,32] use an
ad-hoc combination of nearest neighbor (NN) and keyword search
techniques for location-aware query processing. For example, an
R-tree is used to find the nearest neighbors and then for each neigh-
bor, an inverted file is used to rank the objects according to text rele-
vancy. This ad-hoc combination cannot easily be applied to process
the LkT query since it is difficult to determine in advance the num-
ber of nearest neighbors needed to obtain the top-k results ranked
by a combination of distance proximity and text relevancy. A recent
proposal [7] integrates the R-tree with signature files. However,
this proposal is not applicable to the LkT query (which is a ranking
query, not a Boolean query) mainly due to the use of signature files,
which cannot sensibly handle ranked text retrieval [33].

In this paper, we propose a new indexing framework for process-
ing the location-aware top-k text retrieval (LkT) query. This frame-
work integrates the inverted file for text retrieval and the R-tree for
spatial proximity querying to obtain an Inverted file R-tree. Within
the framework, an index approach called the IR-tree is proposed
that is essentially an R-tree extended with inverted files. An associ-
ated algorithm is proposed for the processing of the LkT query that
is able to prune the search space by simultaneously making use of
both spatial proximity and text relevancy.

Each node of the IR-tree records a summary of the location in-
formation and the textual content of all the objects in the sub-tree
rooted at the node. The query processing algorithm utilizes the lo-
cation index information to estimate the spatial distance of a query



to the objects in the node’s sub-tree, and it uses the text index to
estimate the text relevancy scores for these objects.

We also explore a variant of the IR-tree that incorporates doc-
ument similarity when computing Minimum Bounding Rectangles
(MBR), yielding a new index, called the DIR-tree. While the IR-
tree considers only location information when generating its MBRs,
the DIR-tree takes into account both location information and doc-
ument similarity. The IR-tree can be seen as a special case of the
DIR-tree. To further improve the performance of the IR-tree and
the DIR-tree, we cluster the documents attached to spatial objects.
In an index node, tighter text relevancy scores can be estimated
for a group of similar documents than for diverse documents that
belong to different categories.

In summary, the paper’s contribution is threefold. First, we in-
troduce a new type of location-aware top-k text retrieval queries,
LkT queries, that returns objects ranked according to a linear inter-
polation function that combines normalized location proximity and
text relevancy.

Second, to efficiently process the query, we propose a new index-
ing framework that integrates location indexing and text indexing,
and we develop an IR-tree and an associated algorithm for pro-
cessing the LkT query. A variant of the IR-tree, the DIR-tree, is
proposed to incorporate document similarity when computing Min-
imum Bounding Rectangles. We also exploit document clustering
to improve the indexing framework.

Third, we conduct extensive experiments to evaluate the paper’s
proposals. Results of empirical studies with implementations of the
proposed techniques demonstrate that the paper’s proposals offer
scalability and are capable of excellent performance.

The rest of this paper is organized as follows. Section 2 for-
mally defines the location-aware top-k text retrieval problem. Sec-
tion 3 presents the indexing framework for processing the LkT
query. Section 4 proposes two methods for enhancing the frame-
work. We report on a performance evaluation in Section 5. Finally,
we cover related work in Section 6 and offer conclusions and re-
search directions in Section 7.

2. PRELIMINARIES
We proceed to describe the problem addressed by the paper and

then present baseline solutions that utilize existing techniques.

2.1 Problem Statement
Let D be a spatial database. Each spatial object O in D is de-

fined as a pair (O.loc, O.doc), where O.loc is a location descriptor
in multidimensional space and O.doc is a document (e.g., a dining
menu) that describes the object (e.g., an Italian restaurant). We as-
sume a two-dimensional geographical space composed of latitude
and longitude, but the paper’s proposals generalize to other mul-
tidimensional spaces of low dimensionality. Document O.doc is
represented by a vector in which each dimension corresponds to a
distinct term in the document. The value of a term in the vector is
computed by a language model [22] as follows:

p̂(t|θO.doc) = (1− λ)
tf (t, O.doc)

|O.doc| + λ
tf (t, Coll)

|Coll| , (1)

where tf (t, O.doc) is the number of occurrences of term t in docu-
ment O.doc and tf (t, Coll) is the count of term t in the document
collection Coll of D; tf (t, O.doc)/|O.doc| is the maximum likeli-
hood estimate of term t in document O.doc and tf (t, Coll)/|Coll|
is the maximum likelihood estimate of term t in collection Coll;
and λ is a smoothing parameter of the Jelinek-Mercer smoothing
method.

Smoothing is a common practice for language models and is
important for retrieval performance. While comparing a language
model with the TF.IDF scheme, smoothing plays an IDF-like role.
For ease of understanding, we use tf (t, O.doc) to represent the
weight of term t in the running example of the paper; however, we
use language models in the experiments.

Intuitively, a location-aware top-k text retrieval (LkT) query
retrieves k objects in database D for a given query Q such that
their locations are the closest to the location specified in Q and
their textual descriptions are the most relevant to the keywords in
Q. Formally, given a query Q = (loc, keywords) where Q.loc
is a location descriptor and Q.keywords is a set of keywords,
the objects returned are ranked according to a ranking function
f(Dε, P (Q.keywords|O.doc)), where Dε is the Euclidian dis-
tance between Q and O and P (Q.keywords|O.doc) is the proba-
bility of generating query Q.keywords from the language models
of the documents, which will be used to rank the objects.

Specifically, given a query Q and a document O.doc, the ranking
function for the query likelihood language model is as follows:

P(Q.keywords|O.doc) =
∏

t∈Q.keywords

p̂(t|θO.doc) (2)

Problem Statement: We tackle the problem of efficiently answer-
ing LkT queries, i.e., given a query Q, we retrieve a ranked list of k
objects according to their ranking scores as computed by the rank-
ing function f(·, ·) introduced above. The paper’s proposals are
applicable to a wide range of ranking functions, namely all func-
tions that are monotone with respect to distance proximity f(Dε)
and text relevancy P (Q.keywords|O.doc).

In this paper, we follow existing work and use linear interpo-
lation [18]. Specifically, we derive a ranking function as a linear
interpolation of normalized factors for ranking an object O with
regard to a query Q:

DST (Q, O) = α
Dε(Q.loc, O.loc)

maxD
+

(1− α)(1− P(Q.keywords|O.doc)

maxP
), (3)

where α ∈ (0, 1) is a parameter used to balance spatial proxim-
ity and text relevancy; the Euclidian distance between Q and O,
Dε(Q. loc, O.loc), is normalized by maxD, which can be, e.g.,
the maximal distance between two objects in D; and maxP is used
to normalize the probability score into the range from 0 to 1 and is
computed by: ∏

t∈Q.keywords

max
O′∈D

p̂(t|O′.doc),

where the idea is to use the maximal language model of each word
to compute an upper bound on the probability value. Note that the
lower the score computed by ranking function, the better.

The parameter α in Equation 3 allows users to set their prefer-
ences between text relevancy and location proximity at query time.
Note that this study focuses on efficient solutions, not on new ef-
fective ranking functions.

Example 2.1: Figure 1 describes eight spatial objects O1 . . . O8,
and Equation 4 shows a term-by-document matrix M of the doc-
uments of the eight objects. In the matrix, rows and columns rep-
resent terms and documents, respectively. For example, the matrix
shows that document O1.doc contains the term Chinese five times
and the term restaurant five times.

M=




O1.doc O2.doc O3.doc O4.doc O5.doc O6.doc O7.doc O8.doc

Chinese 5 0 7 0 4 0 1 0
Spanish 0 5 0 0 0 4 1 3
restaurant 5 5 0 7 4 3 4 3
food 0 0 1 1 0 0 1 0


 (4)
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Figure 1: Eight Objects and Their Bounding Rectangles

Given a query Q with location Q.loc as shown in Figure 1 and
Q.keywords = (Chinese restaurant), object O1 is the result of the
top-1 query according to Equation 4 (α = 0.3). 2

2.2 Baseline Algorithms
Before proceeding to present the proposed solution, we discuss

how to exploit existing techniques for the processing of LkT queries.
No baseline algorithm exists for LkT queries. A straightforward

baseline is to adapt an existing approach [18], thus computing the
text relevancy using an inverted file and computing location prox-
imity using an R-tree separately for all objects and then combining
them to obtain the top-k objects. This is not efficient. The main
difficulty is to benefit from both the inverted file and the R-tree.

The two new baseline algorithms presented next are named based
on their underlying data structures: Inverted File Only (IFO) and
R-tree plus Inverted File (RIF). Both are inspired by the Threshold
algorithm [9].

Baseline 1: IFO. The idea is to utilize the inverted file to com-
pute the text relevancy scores of all objects (corresponding to the
right operand of the operator “+” in Equation 3), thus obtaining a
list IRRanking that ranks them in ascending order of their scores.
The list is then scanned to compute the spatial proximity to the
query until further scanning will not generate top-k results. This
algorithm uses the inverted file only.

The tricky part is when to stop scanning. During a scan, the algo-
rithm keeps track of the combined ranking score (defined in Equa-
tion 3; the lower the score, the better) of the current k’th object,
denoted by threshold . For a new object T , if its IRRanking score
is bigger than threshold , the algorithm stops since all objects after
T in IRRanking will have a score that exceeds threshold ; other-
wise, we retrieve its location, compute its combined ranking score
(Equation 3), and compare with threshold to determine whether
threshold needs to be updated.

Baseline 2: RIF. This algorithm uses an R-tree and an inverted
file in two stages. The inverted file is used for computing the list
IRRanking as for IFO. The algorithm then incrementally finds
nearest neighbors [15] using the R-tree and checks the text rele-
vancy scores of objects in IRRanking .

In the process, the algorithm keeps track of the minimum text
relevancy score in IRRanking , denoted by MinTR, that has not
been “seen” so far, and the combined ranking score (Equation 3) of
the current k’th object, denoted by threshold .

For a newly “seen” object with spatial distance dist , if the com-
bined score computed from dist and the current MinTR exceeds
threshold , the algorithm stops since it is guaranteed that all “un-
seen” objects will not have lower scores than the current k’th object
(and thus cannot be in the result).

3. HYBRID INDEXING FOR LOCATION-
AWARE TEXT RETRIEVAL

We present a framework that integrates the R-tree and the in-
verted file into a new index, the Inverted File R-tree (IR-tree) and

that includes an algorithm for processing LkT queries using the
IR-tree.

3.1 Hybrid Index Framework: The IR-Tree
The R-tree [13] is arguably the dominant index for spatial queries,

and the inverted file is the most efficient index for text information
retrieval [33]. These were developed separately and for different
kinds of queries.

We aim to develop an approach that is able to leverage both tech-
niques for the efficient processing of LkT queries. To achieve this
goal, a simple approach is to use the inverted file (resp. the R-
tree) to generate a number of top candidate objects based on text
relevancy (resp. spatial proximity) and then compute the spatial
distances (resp. text relevancy) of the candidate objects using the
other index. However, this approach is not efficient since there is no
sensible way to determine the number of candidate objects needed
from the first step in order to ensure that k top-k objects are found
in the end. Instead, we propose a hybrid indexing structure, the IR-
tree, that utilizes both indexing structures in a combined fashion.

The IR-tree is essentially an R-tree, each node of which is en-
riched with reference to an inverted file for the objects contained in
the sub-tree rooted at the node.

In the IR-tree, a leaf node N contains a number of entries of the
form (O, rectangle, O.di), where O refers to an object in database
D, rectangle is the bounding rectangle of object O, and O.di is
the identifier of the document of object O. A leaf node also con-
tains a pointer to an inverted file for the text documents of the ob-
jects being indexed. The inverted file is stored separately, for two
reasons: First, it is more efficient to store each inverted file con-
tiguously, rather than as a sequence of blocks or pages that are
scattered across a disk [33]. Second, the inverted file can be dis-
tributed across several machines while this is not easily possible
for the R-tree [26].

An inverted file consists of the following two main components.

• A vocabulary for all distinct terms in a collection of docu-
ments.

• A set of posting lists, each of which relates to a term t. Each
posting list is a sequence of pairs 〈d, wd,t〉, where d refers to
a document containing term t, and wd,t is the weight of term
t in document d.

A non-leaf node R contains a number of entries of the form
(cp, rectangle, cp.di) where cp is the address of a child node of
R, rectangle is the Minimum Bounding Rectangle of all rectan-
gles in entries of the child node, and cp.di is the identifier of a
pseudo document.

The pseudo document is an important concept in the hybrid index
structure. It represents all documents in the entries of the child
node, enabling us to estimate a bound of the text relevancy to a
query of all documents contained in the subtree rooted at cp. The
weight of each term t in the pseudo document referenced by cp.di
is the maximum weight of the term in the documents contained in
the subtree rooted at node cp.

Example 3.1: Figure 2 illustrates the hybrid index for the eight
objects in Figure 1. Table 1 shows the inverted files of the leaf
nodes (InvFile 4, InvFile 5, InvFile 6, and InvFile 7 in Figure 2).
Table 2 shows the content of the inverted files of the non-leaf nodes
(InvFile 1, InvFile 2, and InvFile 3 in Figure 2). As a specific exam-
ple, the weight of the term restaurant in entry R2 of node R5 is 7,
which is the maximal weight of the term in the three documents in
node R2. 2



Vocabulary InvFile 4 Posting lists InvFile 5 Posting lists InvFile 6 Posting lists InvFile 7 Posting lists
Chinese 〈O1.doc, 5〉 〈O3.doc, 7〉 〈O5.doc, 4〉 〈O7.doc, 1〉
Spanish 〈O2.doc, 5〉 〈O8.doc, 3〉 〈O6.doc, 4〉,〈O7.doc, 1〉

restaurant 〈O1.doc, 5〉,〈O2.doc, 5〉 〈O4.doc, 7〉,〈O5.doc, 4〉,〈O8.doc, 3〉 〈O6.doc, 3〉,〈O7.doc, 4〉
food 〈O3.doc, 1〉,〈O4.doc, 1〉 〈O7.doc, 1〉

Table 1: Posting Lists for InvFile 4, 5, 6, and 7

Vocabulary InvFile 2 Posting lists InvFile 3 Posting lists InvFile 1 Posting lists
Chinese 〈R1.doc, 5〉,〈R2.doc, 7〉 〈R3.doc, 4〉,〈R4.doc, 1〉 〈R5.doc, 7〉,〈R6.doc, 4〉
Spanish 〈R1.doc, 5〉,〈R2.doc, 3〉 〈R4.doc, 4〉 〈R5.doc, 5〉,〈R6.doc, 4〉

restaurant 〈R1.doc, 5〉,〈R2.doc, 7〉 〈R3.doc, 4〉,〈R4.doc, 4〉 〈R5.doc, 7〉,〈R6.doc, 4〉
food 〈R2.doc, 1〉 〈R4.doc, 1〉 〈R5.doc, 1〉,〈R6.doc, 1〉

Table 2: Posting Lists for InvFile 1, 2, and 3

We proceed to present an important metric, the minimum spatial-
textual distance MINDST , which will be used in the query pro-
cessing. Given a query Q and a node N in the hybrid index, the
metric MINDST offers a lower bound on the actual spatial-textual
distance between query Q and the objects enclosed in the rectangle
of node N . This bound can be used to order and efficiently prune
the paths of the search space in the hybrid index.

Definition 1. The distance of a query point Q from a node N in
the hybrid index, denoted as MINDST (Q, N), is defined as fol-
lows:

MINDST (Q, N) = α
MINDε(Q.loc, N.rectangle)

maxD
+

(1− α)(1− P(Q.keywords|N.doc)

maxP
), (5)

where α, maxD, and maxP are the same as in Equation 3;
P(Q.keywords|N.doc) is computed by Equation 2 replacing O.doc
by N.doc (the pseudo document of node N ); and MINDε(Q.loc,
N.rectangle) is the minimum Euclidian distance between Q.loc
and N.rectangle. 2

A salient feature of the proposed hybrid indexing structure is that
it inherits the nice properties of the R-tree for query processing.

Theorem 3.1: Given a query point Q and a node N whose rect-
angle encloses a set of objects SO = {Oi, 1 ≤ i ≤ m}, the
following is true:

∀O ∈ SO (MINDST (Q, N) ≤ DST (Q, O))

Proof: Since object O is enclosed in the rectangle of node N , the
minimum Euclidian distance between Q.loc and N.rectangle is
no larger than the Euclidian distance between Q.loc and O.loc:

MINDε(Q.loc, N.rectangle) ≤ Dε(Q.loc, O.loc)

For each term t, wN.doc,t (the weight of the term in N.doc, which
is the pseudo document of node N ) is the maximum value wO.doc,t

of all the documents in node N . Thus:

P (Q.keywords|N.doc) ≥ P (Q.keywords|O.doc)

According to Equations 3 and 5, we have:

MINDST (Q, N) ≤ DST (Q, O),

thus completing the proof. 2

When searching the hybrid index for the k objects nearest to a
query Q, one must decide at each visited node of the hybrid index
which entry to search first. Metric MINDST offers an approxima-
tion of the distance to every entry in the node and, therefore, can
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R4:R3:R2:
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R5  R6
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O5 O6 O7R1: O1 O2

InvFile 1
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InvFile 4 InvFile 5 InvFile 6 InvFile 7

O3 O4     O8

Figure 2: Hybrid Index in the Framework

be used to direct the search. Note that only the posting lists of key-
words in query Q, but not all posting lists, are loaded into memory
at a node to compute MINDST .

We next present an algorithm for building the IR-tree. The IR-
tree is constructed by means of an insert operation that is adapted
from the corresponding R-tree operation [13]. Algorithm 1 shows
the Insert algorithm. It takes in two arguments, the MBR and the
document of an object. It uses a standard implementation of the
R-tree [13] with operations ChooseLeaf and Split.

Algorithm 1 Insert(MBR, document)
1: N ← ChooseLeaf(MBR);
2: Add MBR to node N , add document to the inverted file of N ;
3: if N needs to be split then;
4: {O, P} ← N .Split();
5: if N is root node then
6: Initialize a new node M ;
7: Add O and P to node M and update the inverted file of O, P

and M ;
8: Set M to the root node;
9: else

10: Ascend from N to the root, adjusting covering rectangles, up-
dating the inverted file and propagating node splits as nec-
essary;

11: else if N is not root then
12: Update the covering rectangles and inverted files of the ancestor

nodes of N ;

We may characterize the additional disk storage required by the
IR-tree by comparing with the original R-tree and the inverted file.
The number of nodes in the IR-tree is the same as that of the orig-
inal R-tree, and the size of the inverted files contained in all leaf
nodes of the IR-tree is comparable with the original inverted file.
The IR-tree needs additional space to store the inverted files in its
non-leaf nodes, the sizes of which depend on the number of non-
leaf nodes and the storage utilization of nodes. If the capacity of
each node is 100 entries, the length of the posting list for one word
is at most 100 in a non-leaf node, which is independent of the num-
ber of objects contained in the subtree rooted at the non-lead node.



The size of the inverted file at a non-leaf node is thus much smaller
than that of the original inverted file. The paper’s experimental
study covers storage space.

3.2 Processing of LkT Queries
To process LkT queries with the hybrid index framework, we

exploit the best-first traversal algorithm (e.g., [15]) for retrieving
the top-k objects. With the best-first traversal algorithm, a priority
queue is used to keep track of the nodes and objects that have yet to
be visited. The values of DST and MINDST are used as the keys
of objects and nodes, respectively.

When deciding which node to visit next, the algorithm picks the
node N with the smallest MINDST (Q, N) value in the set of all
nodes that have yet to be visited. The algorithm terminates when k
nearest objects (ranked according to Equation 3) have been found.
Algorithm 2 shows the pseudo-code.

Algorithm 2 LkT(Query , Index , k)

1: Queue ← NewPriorityQueue();
2: Queue.Enqueue(Index .RootNode, 0);
3: while not Queue.IsEmpty() do
4: Element ← Queue.Dequeue();
5: if Element is an object then
6: if not Queue.IsEmpty() and DST (Query,Object) >

Queue.First().Key then
7: Queue.Enqueue(Object , DST (Query,Object));
8: else
9: Report Element as the next nearest object;

10: if k nearest objects have been found then
11: break;
12: else if Element is a leaf node then
13: for each entry(Object) in leaf node Element do
14: Queue.Enqueue(Object , DST (Query,Object));
15: else
16: for each entry(Node) in node Element do
17: Queue.Enqueue(Node,MINDST (Query,Node));

We proceed to explain the algorithm and the use of the priority
queue in the algorithm with an example.

Example 3.2: Consider the query Q (Q.keywords = (Chinese
restaurant) in Figure 1. We want to find the top-1 object. We give
the Euclidean distances and DST (Equation 3) between query Q
and all objects, as well as MINDST (Equation 5) between Q and
all bounding rectangles in Table 3. Note that Algorithm LkT only
computes the distances between Q and the objects or rectangles tra-
versed by the algorithm, not all the distance in Table 3. The algo-
rithm uses a priority queue that contains the objects (resp. bounding
rectangles) listed together with their DST (resp. MINDST ) scores,
in increasing order of the scores, with ties broken by the alpha-
betical ordering. The algorithm starts by enqueueing R7 and then
executes the following steps:

(1) Dequeue R7, enqueue R5 and R6.
Queue:{(R5,0.05119),(R6,0.269)}

(2) Dequeue R5, enqueue R1 and R2.
Queue:{(R2,0.1048),(R1,0.238),(R6,0.269)}

(3) Dequeue R2, enqueue O3, O4 and O8.
Queue:{(R1,0.238),(R6,0.269),(O3,0.481),(O4,0.517),
(O8,0.686)}

(4) Dequeue R1, enqueue O1 and O2.
Queue:{(O1,0.238),(R6,0.269),(O3,0.481),(O2,0.512),
(O4,0.517),(O8,0.686)}

(5) Dequeue O1. Report O1 as the nearest object. Terminate. 2

Objects Dist. DST Rectangles Dist. MINDST

O1 2 0.238 R1 2 0.238
O2 5 0.512 R2 2 0.1048
O3 6 0.481 R3 4 0.368
O4 7 0.517 R4 5 0.42
O5 3 0.53 R5 0.5 0.05119
O6 9 0.58 R6 1 0.269
O7 8 0.55 R7 0 0
O8 8 0.686

Table 3: Distances Between Query Q and Objects and Bound-
ing Rectangles in Figure 1

Observe that in the example, the algorithm does not traverse the
entire tree in Figure 2 since the search space is being pruned. How-
ever, the algorithm still visits some nodes that contain no results.
Recall that before reporting O1, nodes R7, R5, R2, and R1 are vis-
ited. Since O1 is the nearest object, ideally we would visit R7, R5,
and R1, but not R2. The reason why R2 is being visited is that the
value MINDST of R2 is less than that of R1.

In Table 1, we can see that objects O3 and O4 are very differ-
ent. The term Chinese occurs seven times in O3.doc, but does
not appear in O4.doc. On the other hand, the term restaurant oc-
curs seven times in O4.doc, but does not appear in O3.doc. Since
R2 contains the two objects, the term frequencies of Chinese and
restaurant in R2.doc are both seven (see Table 2). The reason
for R2 being highly relevant to the query is that it mixes objects of
different types such that the weights of many terms are high in the
pseudo document for R2.

Based on this observation, we proceed to discuss how to enhance
the query processing performance offered by the framework.

4. ENHANCED HYBRID INDEXING
We extend the hybrid indexing framework by incorporating doc-

ument similarity, yielding an index called the DIR-tree (Document
similarity enhanced Inverted file R-tree). The IR-tree can be viewed
as a special case of the DIR-tree. This section also presents a clus-
tering enhanced method for improving the indexing framework.

4.1 Incorporating Document Similarity
Like the R-tree, the IR-tree is built based on the heuristic of min-

imizing the area of each enclosing rectangle in the inner nodes.
Thus, the tree aims to place nodes that are spatially close in the
same higher-level node. However, the spatial objects considered in
this paper also have associated documents, and the LkT query takes
into account both location proximity and text relevancy.

Unlike the IR-tree, the DIR-tree aims to take both location and
text information into account during tree construction, by optimiz-
ing for a combination of minimizing the areas of the enclosing rect-
angles and maximizing the text similarities between the documents
of the enclosing rectangles.

We present an algorithm for building the DIR-tree in Section 4.1.1,
and we cover query processing in Section 4.1.2.

4.1.1 The DIR-Tree
The leaf nodes of a DIR-tree have the same format as those of

an IR-tree. A non-leaf node R contains a number of entries of the
form (cp, rectangle, cVectorId) where cp is the address of a child
node in the index, rectangle is the MBR of the child node, and
cVectorId is the identifier of the centroid vector of all the vectors
enclosed in the subtree rooted at cp. Let Vc = (w1, . . . , wT ) be
the centroid vector of a set of vectors V1, . . . , Vn. Then Vc.wi =
max(V1.wi, . . . , Vn.wi).

To choose an appropriate insertion path for an object, the DIR-
tree takes into account both the area parameter and the similarity



between the document of the object and the document vector rep-
resenting the centroid of the documents associated with the objects
in a node. We next describe how to incorporate document similar-
ity.

Let E1, . . . , Ep be the entries in the current node, and let O be
the object to be inserted. In the R-tree, the area cost of inserting O
into Ek, 1 ≤ k ≤ p, is defined as follows:

AreaCost(Ek) =

area(E′
k.rectangle)− area(Ek.rectangle), (6)

where E′
k.Rectangle is the (possibly enlarged) version of rectangle

Ek after inclusion of O.

Definition 2. The area cost extended with document similarity
is defined as follows:

SimAreaCost(Ek, O) = (1− β)
AreaCost(Ek)

maxArea

+ β(1− cosine(Ek.cVector , O.vector)) (7)

2

In this definition, document similarity is measured by the cosine
similarity between two document vectors1, maxArea , which is the
area of the minimum bounding rectangle enclosing all objects, is
used for normalization, and β is a parameter. Observe that if we set
β = 0, the DIR-tree reduces to the IR-tree. In the other extreme,
setting β = 1 means that we consider only document similarity
when building a DIR-tree.

The insertion algorithm of the DIR-tree follows that of the IR-
tree, with the exception of the specifics of functions ChooseSubtree
and Split. Function ChooseSubtree is given in Algorithm 3.

Algorithm 3 ChooseSubtree
1: N ← the root;
2: loop
3: if N is a leaf node then
4: Return N ;
5: else
6: Choose the entry in N with the minimum value for

SimAreaCost(Ek, O), resolving ties by choosing the
entry with the minimum value for AreaCost(Ek);

7: N ← the child node pointed by the child pointer of the chosen
entry;

Beginning at the root, the function finds at every level the most
suitable subtree to accommodate the new entry until a leaf node is
reached. Specifically, it chooses subtrees that minimize the value
of SimAreaCost .

If ChooseSubtree reaches a leaf node with the maximum num-
ber of entries M , function Split must distribute the M + 1 rectan-
gles between two nodes. We incorporate document similarity into
the standard Quadratic Split algorithm [13]. Function Split is given
in Algorithm 4.

4.1.2 Query Processing
We use Algorithm 1 for the processing of LkT queries on the

DIR-tree. An example illustrates its benefits.

Example 4.1: We build a DIR-tree on the eight objects in Fig-
ure 1. The result is shown in Figures 3 and 4. Let a query Q =
(loc, keywords), where Q.keywords = Chinese restaurant be given.
1Unlike in query processing, we do not use language models here
since this would introduce asymmetry.

Algorithm 4 Split(N )
1: for each pair of entries Ei and Ej in node N do
2: Rij ← compose a rectangle including Ei and Ej ;
3: dij ← area(Rij)− area(Ei)− area(Ej)
4: cosSimij ← cosine similarity between documents of Ei and Ej

5: ineffi ← (1− β)d + β(1− cosSim);
6: Choose the pair with the largest ineffi value to be the first elements of

the two groups;
7: loop . assign all entries in N to the two groups
8: if all entries in N have been assigned to two groups then
9: break

10: if one group needs to include all remaining entries then
11: Assign all remaining entries to it and break;
12: Choose the next entry and add it to the group with the smaller

SimAreaCost(), resolving ties by adding the entry to the
group with the smaller AreaCost();

If we apply Algorithm 1 to retrieve the top-2 most relevant objects,
the results are O1 and O5, and the nodes R7, R5, and R1 are vis-
ited. If we use instead the corresponding IR-tree in Figure 2, nodes
R7, R5, R6, R1, and R3 are visited. The DIR-tree thus yields bet-
ter performance than the IR-tree for query Q. 2
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Figure 3: Objects and Bounding Rectangles
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Figure 4: Structure of the DIR-Tree

4.2 Cluster Enhanced Method
We propose to enhance the hybrid indexing framework with clus-

tering, which makes it possible to estimate tighter bounds at each
tree node, thus improving query performance.

Spatial web objects often belong to different categories. For ex-
ample, the geo-referenced points of interest may belong to specific
categories, such as retail, accommodations, restaurants, and tourist
attractions. Points of interest from different such categories may
appear in the same node of the hybrid index, and thus two objects
in the same node can be very different in terms of their document
similarities.

The idea is to cluster objects into groups according to their cor-
responding documents. Each index node may then contain objects
from different clusters. Instead of constructing a single pseudo doc-
ument for each node, we construct a pseudo document for each



Vocabulary InvFile 2 Posting lists InvFile 3 Posting lists
Chinese 〈R1.C1.doc, 5〉,〈R2.C3.doc, 7〉 〈R3.C1.doc, 4〉,〈R4.C1.doc, 1〉
Spanish 〈R1.C2.doc, 5〉,〈R2.C2.doc, 3〉 〈R4.C2.doc, 4〉,〈R4.C1.doc, 1〉

restaurant 〈R1.C1.doc, 5〉,〈R1.C2.doc, 5〉,〈R2.C4.doc, 7〉,〈R2.C2.doc, 3〉 〈R3.C1.doc, 4〉,〈R4.C1.doc, 4〉,〈R4.C2.doc, 3〉
food 〈R2.C3.doc, 1〉,〈R2.C4.doc, 1〉 〈R4.C1.doc, 1〉

Table 4: Posting Lists for InvFile 2 and 3 in Figure 5

cluster in each node. Since objects within the same group are more
similar than objects in different groups, the bounds estimated us-
ing clusters in a node will be tighter than those estimated for whole
nodes. Therefore, we may expect the use of clustering to improve
the query performance of both the IR-tree and the DIR-tree. We
name the cluster enhanced IR-tree the CIR-tree and the cluster en-
hanced DIR-tree the CDIR-tree.
The CIR-tree. For convenience of presentation, we describe the
proposed cluster enhanced method in the context of the CIR-tree;
the method is equally applicable to the DIR-tree. Given any cluster-
ing of objects into n groups C1, . . . , Cn, we will form an inverted
file incorporating the cluster information. We next present how to
incorporate the cluster information into the leaf and non-leaf nodes
in the hybrid index.

For a leaf node LN , we add a cluster label to each entry in the
node. Each entry in a leaf node is then of the form (O,O .rectangle,
O .doc,O .C ), where O.C is the cluster label that indicates which
cluster object O belongs to and the other items are as explained
earlier. The inverted files for leaf nodes are organized by clusters,
and we denote the set of documents belonging to cluster Ci in leaf
node LN by LN.Ci.

Next, for a non-leaf node R, we need to construct a pseudo doc-
ument for each cluster; the entries of such a document are quadru-
ples: (cp, rectangle, {cp.Cluster}, {cp.Cluster.doc}), where cp
and rectangle are as in the IR-tree, {cp.Cluster} is the set of clus-
ter identifiers in the child node pointed to by cp, and {cp.Cluster .doc}
is a set of identifiers of pseudo documents of the clusters repre-
sented by {cp.Cluster}. Each node also contains a pointer to an
inverted file that indexes all the pseudo documents referenced by
document identifiers cp.Cluster .doc of all entries of the non-leaf
node.

The pseudo document of a cluster at a node is constructed in a
bottom-up manner similarly to how we generate the pseudo docu-
ments in the IR-tree. Specifically, for each cluster Ci of a leaf node
LN , we first construct a pseudo document denoted by LN.Ci.doc.
For each term t, we choose the maximum value wO.doc,t of all the
documents in each cluster Ci of a leaf node LN as the weight of
the term in LN.Ci.doc, i.e.:

w(LN.Ci.doc, t) = max
O∈LN.Ci

w(O.doc, t).

Having constructed the pseudo documents of the clusters of the
leaf nodes, we can construct pseudo documents of clusters of nodes
at the upper levels from bottom to top. When we use pseudo doc-
uments at a lower level to construct pseudo documents at a higher
level, identical clusters from different child nodes should be com-
bined.

For instance, assume that a non-leaf node Rt contains two en-
tries Ra and Rb (i.e., child nodes), where Ra includes two clusters
{Ra.C1, Ra.C2} and Rb includes two clusters {Rb.C2, Rb.C3}.
The entry for parent node Rt should include three, not four, clus-
ters, namely {Rt.C1, Rt.C2, Rt.C3}. We combine Ra.C2 and
Rb.C2 to obtain Rt.C2. For each term t:

wRt.C2.doc,t = max{wRa.C2.doc,t, wRb.C2.doc,t}.

Example 4.2: Consider again the eight objects in Figure 1. We
cluster these documents into four clusters: C1 = {O1, O5, O7},
C2 = {O2, O6, O8}, C3 = {O3}, C4 = {O4}. Figure 5 shows
the CIR-tree for the eight objects. The contents of InvFile 4,
InvFile 5, InvFile 6, and InvFile 7 are the same as in Table 1. The
contents of InvFile 1, InvFile 2, and InvFile 3 are given in Ta-
bles 4 and 5. 2

Vocabulary InvFile 1 Posting lists
Chinese 〈R5.C3.doc, 7〉,〈R5.C1.doc, 5〉,〈R6.C1.doc, 4〉
Spanish 〈R5.C2.doc, 5〉,〈R6.C2.doc, 4〉,〈R6.C1.doc, 1〉

restaurant 〈R5.C4.doc, 7〉,〈R5.C1.doc, 5〉,〈R5.C2.doc, 5〉,
〈R6.C1.doc, 4〉,〈R6.C2.doc, 3〉

food 〈R5.C3.doc, 1〉,〈R5.C4.doc, 1〉,〈R6.C1.doc, 1〉
Table 5: Posting Lists of InvFile 1 in Figure 5
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Figure 5: Structure of the CIR-Tree

Query processing. The algorithm for processing LkT queries on
the CIR-tree is almost the same as Algorithm 2, the exception being
that line 17 in Algorithm 2 is replaced by the following lines.

Replacement to Line 17 in Algorithm 2:

(20.1) minD = min(1≤i≤m)MINDST (Query,Node.Ci);
(20.2) Queue.Enqueue(Node,minD);

(/*m is the number of clusters in each entry*/)

The key of an entry in the priority queue is the minimum value
of MINDST (Query ,Node.Ci) among all clusters.

Example 4.3: Consider the query in Example 4.2. The algorithm
for processing the query using the CIR-tree starts by enqueueing
R7 and then executes the following steps:

(1) Dequeue R7, enqueue R5 and R6.
Queue:{(R5,0.1845),(R6,0.296)}

(2) Dequeue R5, enqueue R1 and R2.
Queue:{(R1,0.238),(R6,0.296),(R2,0.338)}

(3) Dequeue R1, enqueue O1 and O2.
Queue:{(O1,0.238),(R6,0.269),(R2,0.338),(O2,0.512)}

(4) Dequeue O1. Report O1 as the nearest object. Terminate.

Observe that before reporting O1, nodes R7, R5, and R1 are vis-
ited. Compared with the algorithm using the IR-tree, fewer nodes



are visited (recall that the algorithm using the IR-tree visited R2)
because the CIR-tree provides tight bounds. 2

Clustering objects. Ideally, we would find clusters that are op-
timal for the running time of Algorithm 2. Consider a query Q
for the top-k objects on dataset D and a set of document clusters
C1, . . . , Cn on the documents in D. Let ScanTime(C1, . . . , Cn,
D, k, Q) be the number of objects checked by Algorithm 2 before
returning the top-k objects. Given (D, k, Q), one would like to find
n clusters C1, . . . , Cn such that ScanTime(C1, . . . , Cn, D, k, Q)
is minimized.

It is well-known that finding clusters of points that minimize the
diameter within a metric space is NP-hard. Although minimizing
the diameter of a cluster in our problem usually results in a tight
upper bound of each cluster for a query, this does not immediately
imply that finding a clustering solution that minimizes ScanTime()
is NP-hard, since ScanTime() does not directly correspond to the
diameters of clusters.

Theorem 4.1: The problem of finding a clustering solution that
minimizes ScanTime(C1, . . . , Cn, D, k, Q) is NP-hard.

Proof: The proof is by reduction from the bin packing problem,
which is NP-hard [12]. Consider k = 1 and let objects have
the same location information. If the IRScore computed based on
pseudo documents (i.e., upper bounds) is smaller than the IRScore
of the top-1 document, Algorithm 2 will first scan the clusters con-
taining the top-1 document to find the top-1 document, and it will
then prune the clusters whose upper bound IRScore is lower than
the IRScore of the top-1 document.

Assume that a parameter B is computed as the sum of the loga-
rithmic value of the term language model of the top-1 result. Mini-
mizing the scan time corresponds to the decision problem of assign-
ing all objects to k clusters, such that for each cluster, Score(C) ≤
B. Given an instance of the bin packing problem, each item corre-
sponds to one object whose document contains a distinct term, each
bin corresponds to a cluster, and the size of each item corresponds
to the logarithmic value of the term language model. The query Q
will contain all terms in documents in D. There is then a solution
for the bin packing problem that packs all the items in k bins of
size B if and only if there is a solution for our problem. 2

Given the above result, we must use a heuristic method for the
clustering. One natural and simple approach is to use the k-means
clustering algorithm.
Reducing the size of the cluster based indexes. Although the
cluster enhanced CIR-tree and CDIR-tree are capable of returning
tighter estimation bounds during query processing than their coun-
terparts, the clustering requires additional space. We next introduce
a mechanism for reducing the sizes of the CIR-tree and CDIR-tree.

The basic idea is that if the upper bound weight of a term is sim-
ilar in each cluster, the algorithm will not benefit from the different
weights of each cluster for the term. Instead, we will store the max-
imal weight of the term across all clusters. Put differently, if a term
facilitates distinguishing among clusters, we record weights for all
clusters as in the CIR-tree; otherwise, we record a single weight for
all clusters as in the IR-tree. Specifically, for each term we compute
the variance of the weights of the clusters in a node. If the variance
is smaller than a pre-defined threshold ξ, we store a single weight
for the term; otherwise, we store a weight for each cluster in the
node.

Additional disk storage is needed by the CIR-tree (resp. the
CDIR-tree) when compared with the IR-tree (resp. the DIR-tree).
The size of the inverted files in the leaf nodes is the same; the addi-
tional storage is due to the non-leaf nodes. Let c be the number of

clusters. Each entry in a non-leaf node in the IR-tree corresponds
to a pseudo document, while each entry in a non-leaf node in the
CIR-tree corresponds to at most c (less than c when some clusters
are empty) pseudo documents; a pseudo document in the CIR-tree
may contain less words than the corresponding pseudo document
in the IR-tree due to the clustering. Hence, the size of the inverted
file in a non-leaf CIR-tree node is no more than c times of that of a
non-leaf IR-tree node.

5. EXPERIMENTAL STUDY
We proceed to evaluate the LkT query performance of the four

proposed hybrid indexes, including the IR-tree, the CIR-tree, the
DIR-tree, and the CDIR-tree.

Algorithms. In addition to the proposed algorithms, we imple-
mented the two baseline algorithms presented in Section 2.2. As
Baseline 2 (RIF) outperforms Baseline 1 (IFO) significantly, we
only report results for Baseline 1, making the figures more pre-
sentable. Note that both baseline algorithms need to compute the
text relevancy score for every object. In our implementation, we
use an accumulator for each object document, and all accumula-
tors are memory resident. However, in our hybrid approaches, we
only need accumulators for the objects in a tree node (100 at most
in our experiments, to be explained). This means that the baseline
algorithms will need more memory than the hybrid algorithms.

Data and queries. We use 7 datasets. We use a real spatial dataset
containing 131,461 objects located in LA streets2 and five cate-
gories of a real document dataset of 20 Newsgroups3 to generate a
dataset DATA1 by randomly selecting a document for a spatial ob-
ject. The 20 Newsgroups consists of short user-generated content
that aim to resemble text attached to points of interest in application
like Google Maps (e.g., restaurant reviews).

DATA2 includes a real spatial dataset modeling the roads in Cal-
ifornia and documents from WEBSPAM-UK20074 that consists of
a large number of real web documents. Table 6 lists additional
properties of these two datasets.

Property DATA1 DATA2
Total number of objects 131,461 2,249,727

Average number of unique words per object 112 429
Total number of unique words in dataset 30,616 2,899,175

Total number of words in dataset 14,809,845 965,132,883

Table 6: Dataset Properties

To evaluate scalability, we generate 5 datasets containing from 2
to 10 million data points: the locations are generated randomly in
the space of DATA1, and a document selected at random from 20
Newsgroups is attached to a location.

We generate 4 query sets, in which the number of keywords is 1,
2, 3, and 4, respectively, in the space of DATA1, and we generate 4
similar query sets for the space of DATA2. Each set comprises 200
queries, and each query is randomly generated. We report average
costs of the queries in each query set.

Setup. All index structures (IR-tree, CIR-tree, DIR-tree, CDIR-
tree, baseline) are disk resident, and the page size is 4KB. The
number of children of a node in the R-tree is computed given the
fact that each node occupies a page. This translates to 100 children
per node in our implementation. For the DIR-tree and the CDIR-
tree, the default value for parameter β is set at 0.1. For the CIR-tree

2http://www.rtreeportal.org
3http://people.csail.mit.edu/jrennie/20Newsgroups
4http://barcelona.research.yahoo.net/webspam/datasets/uk2007



and the CDIR-tree, the default number of clusters is set at 5. All
algorithms were implemented in Java, and an Intel(R) Core(TM)2
Duo CPU T7500 @2.20GHz with 2GB RAM was used for the ex-
periments.

Three sets of experiments are carried out. The first evaluates the
performance when varying the number k of requested results. The
second evaluates the effect of the number of query keywords. The
third evaluates the effect of the parameter α in the ranking function.
We also evaluate the effect of the buffer, scalability, number of clus-
ters, and the effects of other parameters. Unless stated otherwise,
DATA1 us used.

Varying k in LkT. In this experiment we fix the number of query
keywords at 2 and α (in Equation 3) at 0.3. Figures 6(a) and 6(b)
show the results. All the four hybrid indexes significantly outper-
form the baseline approach for all values of k in terms of both run-
time and I/O. The DIR-tree performs better than the IR-tree, and
the cluster enhancement (CIR-tree and CDIR-tree) improves the
performance of both the IR-tree and the DIR-tree. This is expected
since the DIR-tree accounts for the similarity among documents of
objects while the IR-tree does not. Because the LkT query ref-
erences both location and keywords, the DIR-tree will prune the
search space more effectively than the IR-tree. As expected, the
runtime is proportional to the number of page accesses.
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Figure 6: Varying k

Varying the number of keywords. Here, we fix k at 10 and α
at 0.3. In Figures 7(a) and 7(b), we can see that the hybrid in-
dexes outperform the baseline approach. We note that the DIR-tree
performs better than the IR-tree when the number of keywords is
one and two, while the DIR-tree performs worse than IR-tree when
the number of keywords is four. This may be because our doc-
ument dataset contains five different topics. Queries may consist
of keywords from different topics. Thus, when a query contains
more keywords, the text relevancy of a query with each node of the
DIR-tree is similar, which makes the text relevancy pruning less
effective. It also can be seen from Figure 7(b) that the I/O cost of
the DIR-tree is high for 4 keywords. The results also demonstrate
that the cluster enhancements can improve the query performance
of both the IR-tree and the DIR-tree for different numbers of key-
words.

Varying α. Parameter α in Equation 3 allows users to set their pref-
erences between text relevancy and spatial proximity. We fix k at
10 and the number of keywords at 2. Figures 8(a) and 8(b) show the
results. A large α means that the spatial distance is more important,
while a small α means that the keywords are more important. As
expected, the IR-tree performs better for large α while the DIR-tree
performs better for small α, since the DIR-tree takes into account
document similarity and the benefit is significant when the text rel-
evancy is given higher weight. As in the previous experiment, the
cluster enhancement is effective.
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Effect of buffering. We use an LRU buffer, and we vary the buffer
size from 0 to 36M, where 36M corresponds to about 20% of the
size of the IR-tree. As shown in Figure 9, extra buffer space im-
proves the I/O performance of all hybrid indexes. As expected, the
improvement decreases as the buffer size increases. The runtime
improvement is similar and so is omitted.
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Figure 9: Varying the Buffer Size

Space requirements. Table 7 shows the total size of each index
structure. The difference between the RIF and the IR-tree (resp.
the DIR-tree) in the table shows the overhead introduced by the
IR-tree (resp. the DIR-tree). As discussed in Section 3.1, the in-
verted file built in RIF is roughly the inverted files in the leaf nodes
of the hybrid indexes. The overhead occurs because in the hybrid
indexes, each non-leaf node also has an inverted file. The differ-
ence between the IR-tree (DIR-tree) and the CIR-tree (CDIR-tree)
shows the storage overhead due to the cluster refined inverted file
in non-leaf nodes in the CIR-tree. Note that the sizes of the inverted
files in their leaf nodes are the same. We also note that the DIR-tree
is smaller than the IR-tree. The possible reasons are twofold: 1) we
find that the number of nodes in DIR-tree is smaller and the utiliza-
tion of its nodes is higher, and 2) a non-leaf node in the DIR-tree is
more likely to contain homogeneous documents and thus the size



of the inverted file attached to the non-leaf node will be relatively
smaller.

RIF IR-tree CIR-tree DIR-tree CDIR-tree
88 157 234 109 162

Table 7: Index Structure Sizes (MB)

Varying threshold ξ. Parameter ξ, the variance threshold intro-
duced in Section 4.2, enables reduction of the storage needed for
the CIR-tree (and the CDIR-tree) at the expense of query efficiency.
The CIR-tree (CDIR-tree) outperforms the IR-tree (DIR-tree) in
terms of runtime, but needs more storage. Figure 10 shows the
relative performance of the CIR-tree to the IR-tree in terms of run-
time, the number of page accesses, and storage when we vary the
variance threshold ξ (the value of the y-axis is the runtime, the
number of page accessed and the storage of the CIR-tree divided
by the runtime, the number of page accessed and the storage of
the IR-tree, respectively). As expected, the bigger the parameter ξ
is, the smaller the required storage and the lower the runtime are.
When we increase ξ, the performance approaches that of the IR-
tree (ξ = ∞); when we decrease ξ, the performance approaches
that of the CIR-tree (ξ = 0). This enables balancing space and
time.
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Scalability. We run experiments on five datasets containing from
2 to 10 million objects. As shown in Figures 11(a) and 11(b), the
runtime and page accesses increase with the size of the dataset, but
the indexes scale (approximately) linearly.
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Figure 11: Varying the Dataset Size

Varying the importance of document similarity when building
DIR-trees. We vary the parameter β to build different DIR-trees.
We set k at 10, α at 0.3, and the number of keywords at 2. Fig-
ures 12(a) and 12(b) show the performance of the different DIR-
trees. In the extreme case of β = 0, the tree is actually an IR-tree.
In the other extreme case of β = 1, only document similarity is

considered when building the DIR-tree. The performance is best at
β = 0.1. For a specific application, we can find a good parameter
value empirically. We have also found that if we set α at smaller
values, i.e., giving text relevancy a higher weight, DIR-trees with
large β perform better. We omit the details due to space limitations.
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Figure 12: Varying β

Varying the number of clusters. We fix the number of query key-
words at 2 and α at 0.3. CIR-trees with 3, 5, 7, 9, 11, 15, 21, and 50
clusters are built. We use the k-means algorithm for clustering. The
sizes of the resulting CIR-trees are shown in Table 8. The storage
increases slightly with the number of clusters.

Figures 13(b) and 13(a) show the results of top-10, top-20, and
top-50 queries. I/O decreases when the number of clusters in-
creases from 3 to 50. Runtime decreases from 3 clusters to 9 clus-
ters, but then increases from 11 clusters to 50 clusters. This be-
havior occurs because the time needed for processing clusters in
non-leaf nodes counteracts the time saved by fewer page accesses
due to more clusters. Page accesses decrease as the number of clus-
ters increases. That is because more clusters offer tighter bounds,
which are more effective for pruning. The results for the CDIR-tree
are similar to those for the CIR-tree and are thus omitted.

 0

 50

 100

 150

 200

 250

 300

3 5 7 9 11 15 21 50

m
ill

is
ec

on
ds

number of clusters

top10
top20
top50

(a) Runtime

 0

 20

 40

 60

 80

 100

 120

 140

3 5 7 9 11 15 21 50

pa
ge

s 
ac

ce
ss

es

number of clusters

top10
top20
top50

(b) I/O

Figure 13: Varying the Number of Clusters

# Clusters 3 5 7 9 11 15 21 50
Size 229 234 231 238 240 244 248 259

Table 8: Sizes of Different CIR-Trees (MB)

Experiments on DATA2. We have conducted the same extensive
experiments on the DATA2 dataset as on DATA1. We observe qual-
itatively similar results on both datasets. Due to space limitations,
we only report a subset of our results for DATA2. Figures 14(a)
and 14(b) show the results of varying k while fixing the number of
query keywords at 2 and α (in Equation 3) at 0.3. Figures 15(a)
and 15(b) show the results of varying the number of keywords
while fixing the number of requested objects k at 10 and α at 0.3.
The results are consistent with those for DATA1.
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To summarize, the experimental study shows that the proposed
hybrid indexes significantly outperform the baseline. It also shows
that the cluster enhancement indeed improves the performance of
the hybrid indexes.

6. RELATED WORK
Nearest Neighbor and Top-k Queries. The processing of k-nearest
neighbor queries (kNNs) in spatial databases is a classical sub-
ject. Most proposals use index structures to assist in the kNN
processing. Perhaps the most influential kNN algorithm is due to
Roussopoulos et al. [24]. In this solution, an R-tree [13] indexes
the points, potential nearest neighbors are maintained in a priority
queue, and the tree is traversed according to a number of heuris-
tics. Other branch-and-bound methods modify the index structures
to better suit the particular problem addressed [16, 29]. Hjaltason
and Samet [15] propose an incremental nearest neighbor algorithm
based on an R*-tree [4].

Our work is also related to top-k query processing [9,17]. Fagin
et al. [9] propose a class of algorithms known as threshold algo-
rithms. These algorithms, like the ones proposed for information
retrieval [2,21], enable efficient computation of aggregate functions
over multiple sorted lists. These algorithms can be easily integrated
into the leaf-nodes in our framework (we need to process all entries
in non-leaf nodes, so the threshold algorithm does not apply there);
however, using them does not improve performance in our frame-
work. The possible reason is that the posting lists in a leaf-node are
short (limited by the capacity of a node).

Text Retrieval Queries. A variety of retrieval models have been
proposed to meet different information retrieval needs, such as prob-
abilistic models, the vector space model, the probabilistic similarity
measure often referred to as the Okapi measure (or BM25) [23],
and language models. The latter represent a relatively new ap-
proach, and they offer the best or competitive performance in many
settings [6, 22].

Many different types of indexes have been proposed. The most
efficient index structure for text retrieval is the inverted file [33],

and many state-of-the-art large-scale IR systems such as web search
engines employ inverted files for ranking-query evaluation. Alter-
native indexing techniques for text documents also exist, including
suffix arrays [3] and signature files [10]. Zobel et al. [34] empiri-
cally show that signature files are not competitive with the inverted
file for information retrieval queries.

To improve efficiency, a host of works develop effective heuris-
tics for reducing query evaluation costs by reordering the inverted
file according to frequency or contribution [2, 21]. There are also
other techniques (e.g., [27]) that aim to increase query efficiency
and compression techniques that aim to reduce storage costs (e.g.,
[11, 20]). These techniques can be applied to our framework; how-
ever, they are beyond the scope of this study.

Location-Aware Text Retrieval Queries. Commercial search en-
gines such as Google and Yahoo! have introduced local search ser-
vices that appear to focus on the retrieval of local content, e.g.,
related to stores and restaurants. However, the algorithms used are
not publicized.

Much attention has been given to the problem of extracting geo-
graphic information from web pages (e.g., [1,8,19]). The extracted
information can be used by search engines. McCurley [19] covers
the notion of geo-coding and describes geographic indicators found
in pages, such as zip codes and location names.

Recent studies that consider location-aware text retrieval consti-
tute the work most closely related to this study. Zhou et al. [32]
tackle the problem of retrieving web documents relevant to a key-
word query within a pre-specified spatial region. They propose
three approaches based on a loose combination of an inverted file
and an R*-tree. The best approach according to their experiments is
to build an R*-tree for each distinct keyword on the web pages con-
taining the keyword. As a result, queries with multiple keywords
need to access multiple R*-trees and to intersect the results. Build-
ing a separate R*-tree for each keyword also requires substantial
storage.

Our hybrid indexing framework differs substantially from this
indexing approach, although inverted files and R-trees are used in
both approaches. Our approach incorporates the inverted file at
each node of an R-tree such that both location and text informa-
tion can be utilized to prune the search space at query time, while
the approaches of Zhou et al. [32] adopt combinations that require
query processing to occur in two stages: One type of indexing is
used to filter web document in the first stage, and then the other
index is employed in the second stage. This is similar in spirit to
the baseline approach used in our experiments.

Next, our approach and their approaches target different kinds
of queries: we focus on top-k queries while Zhou et al. aim to
retrieve relevant documents within a given geographic region. We
know of no way of adapting these approaches to process the top-
k queries considered in this paper (without scanning all objects).
In contrast, our framework can easily be extended to process the
queries considered by Zhou et al.

Another study [5] addresses a problem similar to that of Zhou
et al. [5]. In this study, a separate inverted file and a spatial in-
dexing structure are built and used in two stages. Vaid et al. [28]
also present techniques to combine the output of a text and a spatial
index to answer a spatial keyword query in two stages. The afore-
mentioned two differences between our approach and that of Zhou
et al. also apply here.

Next, Hariharan et al. [14] address the problem of finding objects
containing query keywords within a region. They present a hybrid
indexing structure called the KR∗-tree that consists of an R∗-tree
and an inverted file for the nodes of the R∗-tree. The nodes of



the KR∗-tree are virtually augmented with the sets of keywords
that appear in the subtrees rooted at the nodes. At query time, the
KR∗-tree based algorithm finds the nodes that contain the query
keywords and then uses these as candidates for subsequent search.
This approach suffers from unnecessary overhead when there are
many candidates.

Felipe et al. [7] propose an index structure that integrates signa-
ture files and the R-tree to enable keyword search on spatial data
objects that each have a limited number of keywords. This ap-
proach needs to load the signature files of all words into memory
when a node is visited, which incurs substantial I/O. Signature files
are generally inferior to inverted files for general text retrieval [33].
The fact that there is no practical way of using signature files for
handling ranked queries [33] renders it infeasible for this approach
to support LkT queries that need to compute text relevancy scores
(using language models).

Another hybrid indexing structure [31] combines the R*-tree and
bitmap indexing to process the m-closest keyword query that re-
turns the spatially closest objects matching m keywords. This ap-
proach exhibits the same problems as do signature-file based index-
ing [7].

Finally, Martins et al. [18] compute text relevancy and location
proximity independently and then combine the two ranking scores.
The baseline algorithms we investigate in this paper appear to be
better than this approach.

7. CONCLUSIONS AND FUTURE WORK
This paper proposes a new indexing framework for location-

aware top-k text retrieval. The framework integrates the inverted
file for text retrieval and the R-tree for spatial proximity query-
ing in a novel manner. Several hybrid indexing approaches are
explored within the framework. The framework encompasses al-
gorithms that utilize the proposed indexes for computing the top-k
query, and it is capable of taking into account both text relevancy
and location proximity to prune the search space at query time. Re-
sults of empirical studies with an implementation of the framework
demonstrate that the paper’s proposal offers scalability and is capa-
ble of excellent performance.

This work opens to a number of promising directions for future
work. First, it is worth adapting existing optimization techniques
developed for the inverted file (e.g., compression) and R-trees to
the paper’s setting. Second, it is of interest to develop algorithms
for other type of queries, e.g., range queries, based on the hybrid
index. Third, it would be interesting to understand how the top-k
queries considered can best be processed if the spatial objects are
constrained to a road network.
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