
WOLVES: Achieving Correct Provenance Analysis by
Detecting and Resolving Unsound Workflow Views

Peng Sun1, Ziyang Liu1, Sivaramakrishnan Natarajan1

Susan B. Davidson2, Yi Chen1

Arizona State University1, University of Pennsylvania2

{peng.sun, ziyang.liu, snatara5}@asu.edu1, susan@cis.upenn.edu2, yi@asu.edu1

ABSTRACT
Workflow views abstract groups of tasks in a workflow into com-
posite tasks, and are used for simplifying provenance analysis, work-
flow sharing and reuse. An unsound view does not preserve the
dataflow between tasks in the workflow, and can therefore cause
incorrect provenance analysis. In this demo we present WOLVES,
a system that efficiently identifies and corrects unsound workflow
views with minimal changes (view correction). Since the view cor-
rection problem is NP-hard, WOLVES allows the user to choose
between two forms of local optimality, strong and weak. Efficient
time algorithms achieving these optimalities are implemented in
WOLVES.

1. INTRODUCTION
Technological advances have enabled the capture of massive amounts

of data in many different domains, taking us a step closer to solv-
ing complex problems such as global climate change and uncover-
ing the secrets hidden in genes. Workflow management systems
are therefore increasingly used for managing and analyzing this
data, allowing users to specify complex, multi-step, “in-silico” ex-
periments or analyses. To ensure reproducibility and verifiability
of results, many workflow systems are now providing support for
provenance [3].

The provenance of a data item is the sequence of steps used to
produce the data, together with the intermediate data and parame-
ters used as input to those steps. In general, it can be thought of
as a graph which captures the causal dependencies between entities
such as data and processes (a provenance graph [6]), and queries of
provenance as calculating transitive closures of dependencies. As
workflows and the associated data obtained from execution become
large and complex, the size of the provenance graph as well as the
cost of answering transitive closure queries become problematic.

For efficient provenance computation and feasible provenance
analysis by users, we explore the use of workflow views. By ab-
stracting groups of tasks in a workflow into high level composite
tasks, a view can hide irrelevant details and be much smaller than
the original workflow. Thus analyzing provenance queries that in-
volve transitive closures at the view level can be more efficient than

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

�
�

������
���	�
�����

������������
��
����������

����
������
�������

��	����
������
�������

��	����
����������������

���� �!�"���
#	

��$$��

� ������������
%�&���$'��

��� !�"���
������(�	�&��)���
��&��������

���� �!�"���
#	

��$*��

�+� ��(�	�&��)�,�
)��&�����

-+������$���
������������

-+�����-��
	�
�������������*��

.�����"���������
�$��

�$/��

���������	�
��
�$/��

0
������������
�$��

!	��
���
������������� �
�
1�
��
��$2��

-+������
�����������/���

-+�����
�
1�
��
�2��

��$*��

�������������� �������$���

�������������� �������$���

������$2��

-+������$���
�
1�
��
�

�������������� ���������$���

�������������� ���������$���

��	����
�������������$���

��	����
������
����$���

Figure 1: Sample Workflow Specification and View: Phyloge-
nomic Inference of Protein Biological Functions

that at the workflow level.
As an example, consider the workflow in Figure 1 (a) which de-

scribes a common analysis in molecular biology: Phylogenomic in-
ference of protein biological function. Tasks are modeled as nodes
in a directed graph, where edges represent data dependencies be-
tween the tasks. First, users select a set of entries from a database,
such as GenBank (1), and split the entries (2) to extract a set of se-
quences (6), and annotations (3). The retrieved annotations are then
curated (4) and formatted (5) to build a Phylogenomic tree (11). For
the extracted sequences, an alignment is created (7) and formatted
(8). Other annotations may also be considered (9) and processed
(10). A Phylogenomic tree will then be built (11) and displayed
(12). Note that the graph itself is the provenance graph for the final
output – the Phylogenomic tree – and that the data items flowing
between tasks have been omitted for simplicity.

A view is constructed by abstracting the tasks in each dotted box
into a composite task and preserving all the inter-composite task
edges, as shown in Figure 1(b). For instance, the composite task
Build Phylo Tree (19) consists of four atomic tasks, and simplifies
the provenance graph for users who are not interested in details of
checking additional annotations.

However, unless a view is carefully designed, it may not preserve
the dataflow between tasks in the workflow, and thus can be mis-
leading and convey incorrect provenance analysis. For example,
suppose the user found that the formatted sequence output by task
(18) in a workflow execution is not good, and would like to check

Workflow View
Validator Module

Workflow View
Corrector Module

Workflow View
Displayer Module

user-
specified
workflow

view

workflow
specification

and view
criteria

Workflow View
Feedback
Module

Import and
Understand

Workflow
and View

User Interface

Figure 2: Architecture of WOLVES

its provenance with respect to the view in Figure 1 (b). Based on the
view, all the outputs of tasks (13), (14), (15) and (16) will be con-
sidered as the provenance of the output of task (18), since there are
paths from each of them to task (18). Nevertheless, this is wrong!
There is no path between node (3) (contained in (14)) and (8) (con-
tained in (18)) in the workflow in Figure 1(a), i.e. the output of
task (14) is not part of the provenance of the output of task (18)
according to the original workflow. Provenance analysis based on
this view would therefore be incorrect.

Ideally, a view should preserve all the data dependencies be-
tween tasks in the workflow, without adding or removing paths.
We call such a view sound with respect to provenance.

Although it would seem natural to design views that are sound,
our survey of workflow designs in a well-curated workflow repos-
itory [1] revealed unsound views. Furthermore, existing tools to
construct views (e.g. [2]) do not guarantee this soundness property.

To address this challenge, in this demo we present a system
WOLVES (WOrkfLow ViEwS), which detects and resolves un-
sound workflow views. Soundness diagnosis and correction can
be done either by making suggestions while users are creating a
view, or by correcting unsound views after the view is created. The
technical contributions of our work include: (1) We introduce the
concept of soundness of workflow views, which is crucial for the
correctness of view based provenance analysis. We identify a new
research problem: diagnosis and resolution of unsound views. (2)
WOLVES efficiently validates workflow views. (3) We prove that
the problem of refining an unsound view to a sound one with min-
imal changes is NP-hard. (4) WOLVES tackles this problem ef-
ficiently by providing polynomial time algorithms to achieve two
forms of local optimality.

2. SYSTEM OVERVIEW
In this section we present an overview of the WOLVES system.

Two main functions of WOLVES are 1) detecting unsound views
and 2) resolving unsound views.

The architecture of WOLVES is shown in Figure 2. A user can
Import a workflow specification and a view into WOLVES or she
can construct a workflow view using WOLVES directly. The work-
flow specification and view can then be visualized as graphs with
the help of GUI interface so that the user can Understand them in an
intuitive way. After that, both the workflow specification and view
are sent to Workflow View Validator, which checks the soundness
of the view. A view that is unsound will be corrected with minimal
change to the view by Workflow View Corrector, in which one of
the three correctors can be selected by the user, each of which im-
plements one different optimality criteria. An unsound view will
be resolved with minimal cost using the specified corrector and
shown to the user, who then decides whether the view is accept-

able, or whether further changes should be made using Workflow
View Feedback. The user-specified new workflow view will then
be sent back to Workflow View Validator to start another iteration
until the user is satisfied with the new workflow view. Finally, the
view is shown to the user by Workflow View Displayer.

In the next subsections we discuss two important modules of
WOLVES: workflow view validator, and unsound view corrector.

2.1 Workflow View Validator
We start by defining a sound view 1.

Definition 2.1: [Sound View] A workflow view is sound if it pre-
serves the data dependencies in the workflow specification. Specif-
ically, there is a directed path between two composite tasks T1 and
T2 in the view if and only if ∃t1 ∈ T1, ∃t2 ∈ T2, such that there is
a directed path between t1 and t2 in the workflow specification.

For example, the view in Figure 1(b) is unsound. As we can
see, there is a path (data dependency) between composite tasks (14)
and (18) in the view; however, there is no such path between the
corresponding tasks (3) and (8) in the workflow specification in
Figure 1(a).

Although soundness is a desirable property for a view, checking
whether a view is sound can take exponential time, if Definition 2.1
is directly applied by checking all possible paths in a graph.

Interestingly, it is sufficient to check the paths between the input
and output of each composite task to determine the soundness of the
view, and this can be done in polynomial time. Thus we introduce
the concept of a sound composite task.

Definition 2.2: Given a composite task T , let T.in denote the set of
atomic tasks in T that receive input from some atomic task t /∈ T ,
and T.out denotes the set of atomic tasks in T that send output to
some atomic task t /∈ T .

Definition 2.3: [Sound Composite Task] A composite task T in a
workflow view is sound if and only if ∀ti ∈ T.in and ∀to ∈ T.out,
there is a directed path from ti to to in the workflow specification.

As an example, the composite task (16) in Figure 1(b) is un-
sound, since there is no path from atomic task (4) ∈ (16).in to
(7) ∈ (16).out in Figure 1(a).

Proposition 2.1: A view V of a workflow specification W is sound
if and only if all composite tasks in V are sound.

According to Proposition 2.1, the Workflow View Validator in
WOLVES can efficiently check whether a view is sound without
enumerating all possible paths in the workflow.

In the remaining part of this section, we focus on an even more
challenging work: resolving unsound workflow views.

2.2 Unsound View Corrector
According to Proposition 2.1, a view is sound if and only if ev-

ery composite task is sound. Thus, to resolve an unsound work-
flow view, we focus on the problem of resolving unsound composite
tasks.

Two alternatives can be pursued for correcting an unsound task:
Splitting an unsound composite task into multiple smaller com-
posite tasks (i.e. the union of the set of atomic tasks correspond-
ing to each resulting composite task is equal to the set of atomic
tasks corresponding to the original composite task), or merging it
with other composite tasks. Note that splitting composite tasks re-
1Due to space limit, some formal definitions, proofs of theorems
and algorithms are omitted. For details, please refer to the full pa-
per of this work [7].

�

(b) Weakly Local Optimal Correction

a c

e f

h i

d

g

b

j

k m

(a) Unsound Composite Task

a c

e f

h i

d

g

b

j

k m

(c) Strongly Local Optimal Correction

a c

e f

h i

d

g

b

j

k m

Figure 3: Local Optimal Corrections of an Unsound Composite Task

fines the initial view and provides more provenance information. In
contrast, merging tasks loses information.Therefore, WOLVES re-
solves an unsound view by splitting unsound composite tasks rather
than merging them. However, this problem is shown to be NP-hard.

Theorem 2.2: The problem of resolving an unsound composite
task by splitting it to the minimum number of sound composite
tasks is NP-hard. Its decision version is NP-complete.

To efficiently tackle this problem, we propose two optimality cri-
teria: weak local optimality and strong local optimality. A weak
local optimal solution is one in which no two tasks in the resulting
view can be merged into a sound task (Definition 2.5), and strongly
local optimal solution is one in which no subset of tasks in the view
can be merged (Definition 2.6).

Definition 2.4:[Combinable Tasks] If two tasks T1 and T2 can be
merged so that the resulting composite task is sound, then T1 and
T2 are combinable, denoted as T1 ³ T2. If a set of tasks T can be
merged so that the resulting composite task is sound, then ³ (T).

Definition 2.5:[Weak Local Optimality] A split S = S1, S2, ..., Sn

of an unsound task T is weak local optimal if and only if there does
not exist Si, Sj ∈ S , Si ³ Sj . A weakly local optimal algorithm
can guarantee for any unsound task T to produce a split which is
weak local optimal.

For example, the weakly local optimal corrector will resolve the
unsound task in Figure 3(a) to the result shown in Figure 3(b). Note
that no two composite tasks in Figure 3(b) can be merged to form
a sound task. For example, if we tentatively merge f and g to form
a new composite task T , then T is unsound, since there is no path
from g ∈ T.in to f ∈ T.out.

However, from this example, we can also see that if we merge
tasks c, d, f and g in Figure 3(b) to a single task, the resulting
task is sound. This is not surprising, as weak local optimality is not
optimal. The question is: is it possible to design a polynomial algo-
rithm that can split an unsound composite task to fewer composite
tasks than that produced by a weakly local optimal algorithm?

Toward this goal, we define another criteria: strong local opti-
mality. Recall that weak local optimality states that no two output
tasks can be merged. In contrast, strong local optimality makes a
stronger requirement that no subset of resulting tasks are combin-
able.

Definition 2.6: A split S = S1, S2, ..., Sn of an unsound task T
is strong local optimal if and only if there does not exist S ′ ⊂ S ,
³ (S ′). A strong local optimal algorithm can guarantee for any
unsound task T to produce a split which is strong local optimal.

According to Definition 2.6, Figure 3(c) is a strongly local op-

timal split. Now comparing Figure 3(b) and (c), (b) is a split of
the unsound tasks in (a) to 8 atomic tasks, while (c) is a split to 5
atomic tasks. Thus (c) is a strictly better correction.

However, achieving strong local optimality is much more chal-
lenging than achieving weak local optimality. A straightforward
way of realizing strong local optimality is to check whether any
subset of atomic tasks are combinable, which takes exponential
time. We have designed a more sophisticated polynomial time al-
gorithm to achieve strong local optimality which is incorporated in
WOLVES, with time complexity O(n3), where n is the number of
atomic tasks in the composite task.

3. IMPLEMENTATION AND DEMONSTRA-
TION

3.1 Implementation and Evaluation
We have implemented WOLVES in C#. The input of WOLVES

is a workflow specification and a workflow view, which can be
an existing view or a view which is being constructed. We have
tested the performance of the strongly local optimal, weakly local
optimal and optimal (but exponential) algorithms implemented in
WOLVES. Both the views manually defined by expert users, such
as the ones in real workflow repositories, i.e., Kepler [1] and My-
experiment.org [5], and the views automatically constructed by [2]
are tested. Experiments show that the strongly local optimal correc-
tor in WOLVES is often able to produce views with similar quality
to the one produced by the optimal corrector, but is several orders
of magnitude faster. Furthermore, the efficiency of the strongly lo-
cal optimal corrector is comparable with that of the weakly local
optimal corrector.

3.2 Demonstration Outline
What will be shown in this demonstration? Figure 4 shows the

GUI of WOLVES. As we can see, the panel is divided into three re-
gions. The top panel, specification panel, shows the original work-
flow specification; the bottom left panel, view panel, shows the cor-
responding workflow view, which could be sound or unsound, and
the bottom right panel, result panel, displays the correction results.
Our demonstration will highlight the following features:

Importing and Understanding Workflow and View. A user may
load into the system a workflow specification and a pre-defined
workflow view defined in Modeling Markup Language (MOML) [4].
Alternatively, the user can construct a workflow specification and
corresponding workflow view using our GUI by selecting Workflow
Builder in the menu, and the view will be shown in the view panel.

Workflow View Validator Module. The validator automatically
checks the soundness of the view wrt the workflow specification,
and shows unsound tasks in red.

Figure 4: Detecting and Resolving Unsound Workflow View

Workflow View Corrector Module. This module allows users to
specify the criterion used to correct the whole view or a selected
unsound composite task only. After right clicking on any place of
the view panel, the user can select Correct View and check one of
the correction criteria in the popup window: weak local optimality,
strong local optimality or optimality. Besides, users can also right
click on an unsound composite task and choose one of the correc-
tors under the popup menu item Split Task to resolve the specific
task only. The corrected result will be displayed in the result panel,
with the resulting sound tasks shown in green.

To assist users in choosing an appropriate correction approach,
we provide the estimated time and quality for each approach. The
quality of an algorithm is measured as the ratio of the number of
resulting tasks generated by the optimal algorithm over that gener-
ated by the chosen algorithm. Thus, the higher the quality value
the better, with the optimal algorithm having quality 1. To make
an estimation of the execution time of correcting the current work-
flow, we group the workflows which have been corrected in the
past according to their sizes and substructures, and report the av-
erage running time and quality of each approach for the group that
the current workflow belongs to.

Workflow View Feedback Module. After the correction is fin-
ished, if the user is not satisfied with the refined view, she can mod-
ify the view output by WOLVES in the result panel. The user can
select multiple tasks, right click on the result panel to show the
popup menu, and choose Create Composite Task to merge the se-
lected tasks. The result will be shown in the view panel, which
will be sent back to Workflow View Validator Module for valida-
tion. This process continues until users obtain a satisfying work-
flow view.

Workflow View Displayer Module. All the workflows and views
in any panel of the GUI are highly interactive. When the user dou-
ble clicks on any composite task (or right clicks on it and then
chooses Show Task), it turns grey and all the atomic tasks corre-
sponding to this composite task will also be changed to grey icons
as shown in specification panel (see Figure 4). Clicking Show De-
pendency returns to users the dependency relationship between the
other tasks and the selected one. Furthermore, the user can adjust
the position of tasks in each panel by dragging and dropping them.

What is the significance of WOLVES in the database com-
munity?

The proposed demonstration spans several important subareas in
databases, such as provenance, workflows, user interface, as well
as graph data management.

Provenance and Workflows. The importance of provenance anal-

ysis has been recognized in the database community. While tradi-
tional studies on provenance focused on analyzing provenance of
SQL query results, there is a growing interest for provenance anal-
ysis for general complex data processing, such as business and sci-
entific workflows. However, due to the complexity of workflows
and the large data volume, providing correct and efficient prove-
nance analysis is in great demand and yet very challenging. Over
the past three years, research findings about workflow provenance
have been presented as research papers, demonstrations as well as
tutorials in major database conferences like SIGMOD, VLDB and
ICDE.

This proposed demonstration introduces a new perspective on
the area: view soundness problem for correct and efficient prove-
nance analysis. There are many technical challenges. For instance,
the problem of finding the minimal view refinement by task split-
ting is NP-hard. Allowing view abstraction by task merging, and
the interaction between splitting and merging, are open problems.

Views as User Interface. As with database views, workflow
views can be thought as an interface for users to issue queries and
analyze results for large workflows and associated datasets that are
stored in databases. However, unlike database views that are speci-
fied in SQL and have been formally analyzed, workflow views can
be defined by arbitrary partitions of nodes in a workflow and have
not been extensively studied. The proposed demonstration is a step
in this direction.

Graph Management. Graph management has been an impor-
tant topic in the database community, due to its wide application in
social networks, computer networks, electronic circuits, metabolic
pathways, and chemical structural graphs, to name a few. While
we motivate the sound view problem in the application of workflow
provenance, this problem and our proposed solution are general for
diverse types of network data. An unsound view loses the path in-
formation of a graph, and thus the analysis of node connectivity
based on unsound views are incorrect. To the best of our knowl-
edge, our work is the first that identifies the potential problem of
view-based graph analysis, and presents some initial solutions.

Since it touches on many subareas of databases and has general
applicability to graph data management, WOLVES presents new
theoretical challenges as well as practical solutions for database
research.

4. ACKNOWLEDGEMENT
This work was supported by NSF grant number IIS-0513778,

SEII-0612177, IIS-0803524, IIS-0740129, and NSF CAREER award
IIS-0845647.

5. REFERENCES
[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and

S. Mock. Kepler: An extensible system for design and execution of
scientific workflows. In SSDBM, pages 423–424, 2004.

[2] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara. Querying
and managing provenance through user views in scientific workflows.
In ICDE, pages 1072–1081, 2008.

[3] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD Conference, pages
1345–1350, 2008.

[4] E. Lee and S. Neuendorffer. Moml - a modeling markup language in
xml version.

[5] myexperiment website. http://www.myexperiment.org/workflows.
[6] Open provenance model, 2008.
[7] P. Sun, Z. Liu, S. Davidson, and Y. Chen. Detecting and resolving

unsound workflow views for efficient provenance analysis. In
SIGMOD, 2009.

