
Scalable Verification for Outsourced Dynamic Databases

HweeHwa Pang Jilian Zhang Kyriakos Mouratidis
School of Information Systems

Singapore Management University

{hhpang, jilian.z.2007, kyriakos}@smu.edu.sg

ABSTRACT
Query answers from servers operated by third parties need to be
verified, as the third parties may not be trusted or their servers may
be compromised. Most of the existing authentication methods con-
struct validity proofs based on the Merkle hash tree (MHT). The
MHT, however, imposes severe concurrency constraints that slow
down data updates. We introduce a protocol, built upon signature
aggregation, for checking the authenticity, completeness and fresh-
ness of query answers. The protocol offers the important property
of allowing new data to be disseminated immediately, while en-
suring that outdated values beyond a pre-set age can be detected.
We also propose an efficient verification technique for ad-hoc equi-
joins, for which no practical solution existed. In addition, for servers
that need to process heavy query workloads, we introduce a mecha-
nism that significantly reduces the proof construction time by caching
just a small number of strategically chosen aggregate signatures.
The efficiency and efficacy of our proposed mechanisms are con-
firmed through extensive experiments.

1. INTRODUCTION
Consider an online trading platform, fashioned after the out-

sourced database model, that involves three types of entities. The
data aggregator (DA) disseminates live feeds from various stock,
forex, commodity and mercantile exchanges through query servers
(QS), possibly dispersed geographically, to a large population of
users. The users trust the DA, who is responsible for the accu-
rate and timely dissemination of information. However, the QSs
that process user queries may be operated by an untrusted party, or
could be infiltrated over time.

In the above scenario, there are three aspects to the correct-
ness of a query answer: (a) Authenticity: Every value in the an-
swer must originate from the DA. (b) Completeness: Every record
that satisfies the query condition must be in the answer. (c) Fresh-
ness: The record values in the answer must be up-to-date. There
is often a trade-off between correctness versus resource consump-
tion. In some applications, it may be acceptable to compromise on
the freshness requirement for the sake of computational resource
preservation. Our focus is on applications that need strict correct-
ness guarantees – in our online trading example, users who can

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

receive updated price quotes early could act ahead of their com-
petitors, so the advantage of data freshness would justify investing
in the computing infrastructure.

To enable the user to verify his query answer, the DA constructs
an authentication structure, and uploads it along with the data to
the QS. Given a query, the QS returns to the user (in addition to
the answer) a proof constructed from the authentication structure.
Assuming that the cryptographic techniques employed in the au-
thentication structure are secure, the degree to which the correct-
ness requirements are satisfied hinges on the time needed for the
DA to update the data and the authentication structure, for the QS
to construct the proof, as well as for the user to verify the answer
against the proof.

The prevalent method for authenticating query answers is to em-
bed a Merkle hash tree (MHT) [21] into a data index. This data
index is typically a B+-tree for one-dimensional data (e.g. [18],
[28]); for multi-dimensional data, the R-tree and the KD-tree have
both been considered (e.g. in [9]). In this paper, we show that MHT
has limitations in coping with updates. First, the digest of a parent
node is a function of its child digests, so every data modification
must propagate from the leaf to the root of the index; this generates
multiple I/Os if the index resides on disk. Second, to ensure consis-
tency, each update transaction must lock the root node in exclusive
mode, thus allowing no concurrent transactions to execute. These
two limitations reduce the freshness of query answers.

Besides MHT, signature aggregation is another cryptographic
technique for query answer authentication. Here, the DA produces
one signature for every tuple in the database. Posed a query, the
proof comprises the signatures of all the tuples in the answer, con-
densed into a single aggregate signature. The problem with this
technique is that signature generation, proof construction and user
verification are all much more computationally expensive than with
MHT [18]. Nevertheless, signature aggregation offers an important
advantage; since a record update affects only its own signature (and
that of its immediate left/right neighbors in some schemes), multi-
ple updates can be executed simultaneously as long as they do not
affect the same signatures. This potentially permits the DA to push
out fresh data and authentication structures more quickly.

The objective of our work is to devise a scalable query answer
authentication mechanism for dynamic databases. To avoid the
locking bottleneck of MHT, we decide to build on signature ag-
gregation. This requires us to overcome two primary challenges.
First, we need to ensure the freshness of the query answers. MHT
schemes involve a single signature (for the MHT root) which can
be easily revoked upon updates or periodically refreshed. Both op-
tions are not viable with signature aggregation where there are as
many signatures as records. The second challenge is to mitigate the
higher computation costs involved in signature aggregation, rela-

tive to MHT. Our contributions include (among others) solutions to
these challenges:
• We propose a correctness verification protocol that allows new

records to be disseminated immediately, while ensuring that out-
dated values beyond a pre-set age can be detected. This feature
relies on periodic update summaries (published by the DA asyn-
chronously to queries and updates) that allow users to verify the
freshness of records that bear old signatures. Our scheme is scal-
able to large databases, as the size of the summaries is propor-
tional to the number of updates in each period (and insensitive to
the number of records in the database). This is the first signature
aggregation protocol that provides freshness guarantees.
• We construct authentication mechanisms for the basic relational

operators of selection, projection and equi-join. Our equi-join
verification is the first practical scheme. Existing methods ei-
ther require a pair of boundary values to prove every unmatched
record (e.g. [24]), which leads to huge correctness proofs, or
they materialize the join result (e.g. [12]) and are unsuitable for
dynamic databases. Our scheme provides compact correctness
proofs using certified Bloom filters [5] to verify records that have
no matching counterparts in the other operand relation.
• In order to reduce the proof construction cost at the query server,

we introduce a signature caching scheme, called SigCache, that
selectively retains some aggregate signatures in memory. Exper-
iments with various query distributions reveal that SigCache
is able to reduce the proof computation time significantly by
caching only a small number of aggregate signatures.
The rest of this paper is organized as follows. The next section

covers background on cryptographic primitives and related work.
Section 3 presents our authentication mechanisms for standard re-
lational operators. Our signature caching scheme is introduced in
Section 4. Experiment results are reported in Section 5. Finally,
Section 6 concludes the paper.

2. BACKGROUND
2.1 Cryptographic Primitives

Our authentication schemes as well as existing methods (covered
in Section 2.2) build on the following cryptographic primitives.
One-Way Hash: A one-way hash function, denoted as h(.), works
in one direction; it is easy to compute the value h(m) for a message
m, but computationally infeasible to find a message m that hashes
to a given h(.) value. We refer to h(m) as the hash or digest of m.
A common hash function is SHA [31] with 160-bit digests. Over
time, longer digests are expected to be used to compensate for the
increasing computational power of the adversaries.
Cryptographic Signature: A cryptographic signature protocol is
a tool for verifying the origin, authenticity and integrity of signed
messages. The protocol involves a pair of public and private keys.
Only the holder of the private key can use it to generate crypto-
graphic signatures on messages. The corresponding public key is
distributed openly, for anyone to verify a message against its signa-
ture. RSA [29] and ECC [6] are two standard signature algorithms.
We refer to a cryptographic signature simply as signature.
Merkle Hash Tree (MHT): The Merkle hash tree is a method for
collectively authenticating a set of messages [21]. Consider the ex-
ample in Figure 1, where the owner of messages m1,m2,m3,m4

wishes to authenticate them. The MHT is built bottom-up, by first
computing the leaf nodes Ni as the digests h(mi) of the messages,
where h(.) is a one-way hash function. The value of each internal
node is derived from its two child nodes, e.g. N1,2 = h(N1|N2),
where | denotes concatenation. Finally, the digest N1,2,3,4 of the

N1,2,3,4

N1,2 N3,4

N1 N2 N3 N4

h(m1) h(m2) h(m3) h(m4)

h(N1|N2) h(N3|N4)

h(N1,2|N3,4)

Figure 1: Example of a Merkle Hash Tree

root node is signed. The tree can be used to authenticate any subset
of the data values, in conjunction with a verification object (VO).
For example, to authenticate m1, the VO contains N2, N3,4 and
the signed root N1,2,3,4. Upon receipt of m1, any addressee may
verify its authenticity by first computing h(m1) and then checking
whether h(h(h(m1)|N2)|N3,4) matches the signed root N1,2,3,4.
If so, m1 is accepted; otherwise, m1, N2, N3,4 and/or the signed
root have been tampered with. The MHT is a binary tree, though it
can be extended to multiway trees and directed acyclic graphs [20].
Bloom Filter: A Bloom filter [5] supports membership checks on a
set of b key valuesR = {r1, r2, . . ., rb}. To construct a Bloom filter
with m bits, we choose k independent hash functions h1, h2, . . .,
hk, each with a range of [1,m]. For every ri ∈ R, the filter bits at
positions h1(ri), h2(ri), . . ., hk(ri) are set to 1. To check whether
a given r is in R, we examine the bits at h1(r), h2(r), . . . , hk(r).
If any of the bits is 0, r cannot be in R; otherwise, there is a high
probability that r is in R. In other words, false positives are possi-
ble, but not false negatives. The false positive rate is

FP =

1−

„
1− 1

m

«kb!k
≈
“
1− e−kb/m

”k
(1)

Mathematically, FP is minimized at k = (m× ln2)/b, so FP =
0.6185k. Given the value of b and the target FP rate, we can set k
and m accordingly.
Elliptic Curve Cryptography (ECC): The mathematical opera-
tions of ECC are defined over the elliptic curve y2 = x3 + ax+β,
where 4a3 + 2β2 6= 0. Each combination of a and β produces
a different elliptic curve. All points (x, y) that satisfy the above
equation lie on the elliptic curve.

The elliptic curve over a finite operator group Gp [3] is specified
by the tuple 〈p, a, β, g, n〉, where
• p is the order of (i.e., the number of elements in) Gp. SEC [8]

specifies p to be a prime with 112 to 521 bits.
• a and β define the elliptic curve y2 mod p = x3 + ax + β

mod p.
• g = (gx, gy) is a point on the chosen elliptic curve and a gener-

ator for Gp.
• n is the order of (i.e., the number of points on) the elliptic curve.
The above specification is known to all parties who participate in
the ECC protocol. [16] provides some examples of suitable elliptic
curves. Multiple ECC signatures can be aggregated using the Bilin-
ear Aggregate Signature (BAS) scheme [7, 6]. BAS enables any set
of message-signature pairs to be combined in arbitrary order into a
single signature, and then to be collectively verified.

According to [17], an ECC signature that is 160 bits long pro-
vides comparable security to a 1024-bit RSA [29] signature. Using
shorter signatures enables ECC to achieve lower storage overhead.
ECC has been adopted as a replacement for RSA public key cryp-
tography by various government agencies in the US, UK, Canada
and other NATO countries [32],[13]. In the industry, an ECC In-

teroperability Forum has been created to ensure that ECC products
from participating vendors (including Certicom, IBM, Microsoft,
RSA, Sun, Verisign, etc.) will integrate seamlessly. As part of
the effort to promote widespread use of ECC, Sun Microsystems
has donated ECC code to OpenSSL and the Network Security Ser-
vices (NSS) library; this brings ECC to the Apache web server and
Mozilla browsers, and potentially many other products.

2.2 Related Work
Most of the existing methods for query result verification fall un-

der two categories – MHT-based and signature aggregation ones.
The MHT-based approaches incorporate an MHT into the data in-
dex to facilitate verification (e.g. [12, 27, 4]). In [25], Nuckolls
proposed a variation of the MHT that maintains a certified one-way
accumulator over the digests of selected nodes; this allows a con-
solidated evidence to replace the neighboring digests along the path
from those nodes to the root, thus reducing the size of the verifica-
tion object (VO). That variation was extended to multiple hash tree
levels in [15], where the authors also showed that replay attacks
could be eliminated by periodically re-signing the timestamped ac-
cumulator. [22] proposed to split the authentication structure from
the data index to provide architectural flexibility and better perfor-
mance; this proposal is orthogonal to the issues studied here, and
applies equally to MHT and signature aggregation schemes.

The most representative MHT scheme for disk-resident data is
the Embedded Merkle B-tree (EMB− tree) in [18]. The idea is to
index the data with a B+-tree [11], and to embed into it an MHT
with the same fanout. Similar to the original MHT, the root digest
is signed by the owner. Posed a range query, the server returns, in
addition to the qualifying tuples, two boundary ones, p− and p+,
falling immediately to the left and to the right of the range. The
VO contains all the left (right) sibling hashes to the path of p−

(p+). Upon receipt of the result, the user calculates the hashes of
the returned tuples, and combines them with the VO to reproduce
the MHT root digest. If the latter matches the owner’s signature,
the result is deemed legitimate.

Signature aggregation schemes [26, 24] require a signature per
tuple. With the database ordered on attribute A, the owner hashes
and signs every triple of consecutive data tuples. Posed a range
selection query on A, the server returns the qualifying data, along
with hashes of the first tuple to the left and the first tuple to the right
of the range. The signatures of all the result tuples are aggregated
and placed into the VO. Finally, the user verifies that the “chained”
result tuples and boundary hashes match the aggregate signature.
This scheme, initially designed for one-dimensional data, was ex-
tended to multi-dimensional index structures in [9, 10].

A systematic comparison of MHT versus signature aggregation
(using condensed RSA) was reported in [18]. The findings there
overwhelmingly favored the MHT approach: (a) An RSA signa-
ture is typically 1024 bits in length, so signing all the data tuples
requires substantially larger space than the MHT, in which each di-
gest occupies just 160 bits. (b) A hashing operation in the MHT can
be performed in roughly 3 µs. In contrast, signature aggregation in-
volves modular multiplication, signing and verification operations
that were 100, 10,000 and 1,000 times slower than hashing. The
only advantage of signature aggregation is its smaller proof and,
thus, its lower transmission overhead.

Nevertheless, in this paper we decide to revisit the signature ag-
gregation approach, motivated by several factors:
• Newer signature schemes using Elliptic Curve Cryptography (ECC)

allow much shorter signatures to be used without sacrificing se-
curity strength. As explained earlier, a 160-bit ECC signature
provides comparable security to a 1024-bit RSA signature. Thus,

an ECC signature has the same length as a hash digest.
• CPU speeds have improved tremendously. For example, the

ECC performance timings in [6] and [24] were obtained on a
1GHz Intel Pentium 3 CPU. At present, a server can be equipped
with a quad-core Xeon 3.4GHz processor at a reasonable price.
As we show in Section 5, such processing power brings the tim-
ings of the ECC operations down to acceptable levels, even though
they still lag significantly behind the hashing operations in MHT.
In contrast, I/O and communication speeds (especially for wire-
less networks) have not improved by the same magnitude.
• More importantly, the single certified root digest (or accumu-

lator) of the MHT reduces data freshness. If the MHT is re-
certified periodically, new data must be held back until the next
MHT certification. On the other hand, if the MHT is eagerly
renewed for individual updates, each update must contend for a
lock on the root digest, thus incurring a locking delay. There
is also a delay of O(logN) I/Os for updating the path from the
affected leaf up to the root, where N is the number of database
records. In addition, revoked signatures must be published by
some trusted third party. This necessitates the revocation of an
old signature to be synchronized with the availability of the re-
placement signature across all the query servers. It also requires
users to check whether a received signature has been revoked.
In contrast, signature aggregation is amenable to concurrent up-
dates, which is critical for releasing fresh data to the users quickly.

3. AUTHENTICATION FOR RELATIONAL
OPERATIONS

In this section, we begin with our protocol for checking data
freshness. Next, we show how our authentication protocol supports
the standard index structures and relational operators. We propose
a novel scheme for equi-join verification that uses Bloom filters [5]
to keep the proof size small. For completeness, we also briefly de-
scribe the verification of selection and projection operations.

3.1 Freshness Verification Protocol
Every ρ seconds, the data aggregator (DA) publishes a certi-

fied bitmap summary of the records that were updated (inserted,
deleted, or modified) in the last period. In the signature of a record
r, we include the timestamp ts that r was last certified at. Upon re-
ceipt of r at the user side, if its signature (i.e., ts) is older than the
latest summary, its freshness can be confirmed by checking that r
is excluded from all the summaries published since ts. If the signa-
ture is newer than the latest summary, r must be fresh. Therefore,
whenever a record is updated, the DA can simply sign its content
along with the update timestamp, and push the fresh record and
signature out to the query server (QS) immediately.

We make an important decision here to decouple the dissemina-
tion of new records from the periodic release of bitmap summaries.
Our rationale is that the QS is expected to operate reliably most
of the time, so we ought to optimize information dissemination for
normal operation, as long as any occasional lapses by the QS can be
caught quickly. This decoupling allows data updates and summary
generation to execute in parallel on separate processors, if avail-
able. It is also instrumental in avoiding the shortcomings of MHT
described at the end of Section 2.2, and in providing tighter fresh-
ness guarantees. The details of our authentication protocol follow.
Data Aggregator: Consider a relation R with schema 〈rid, A1,
. . ., AM , ts〉, where rid is the unique record identifier, Ai (for 1 ≤
i ≤M) are the attributes, and ts is the last record certification time.
The signature of a record r ∈ R is r.sn = sign(h(r.rid | . . . | r.ts)),
where sign is a signature generation function and h is a one-way

hash function. Whenever a record is updated, the new content and
signature are transmitted immediately to the QS.

Every ρ seconds, the DA issues a certified bitmap summary of
the records that have been updated. Each bit in the bitmap corre-
sponds to a record in R, and is turned on if and only if the record
has been modified in the current ρ-period. For inserted records, ‘1’-
bits are appended to the bitmap. The bit corresponding to a deleted
record is set to ‘1’ in the current bitmap, and then to ‘0’ in subse-
quent bitmaps. We expect the periods to be short, say one second
in duration, so the bitmap is likely to be sparse and amenable to
compression. The compressed bitmap is certified, along with the
signing time, and released to the QS.

With compression techniques such as those in [14] and [30], the
length of the compressed summary is only 2 to 3 times the number
of ‘1’-bits in the original bitmap. Consequently, the size of the
certified bitmaps in our scheme is proportional to the number of
updates in a ρ-period, and insensitive to the database size.

Query Server: Along with each query answer, the server returns the
aggregate signature over the result records, as well as the certified
summaries published after the oldest result record.

User: The user verifies the authenticity of the result records by
matching them with the aggregate signature. For checking whether
each result record r is fresh, we consider the following cases:
• If r is newer than the latest bitmap b, i.e., r.ts > b.ts, r is either

fresh or, at the very worst, out-of-date by ct− r.ts < ρ seconds
(where ct is the current time).
• Else, if r.ts ≤ b.ts and r is not marked in any of the bitmaps

released since r.ts, then r is fresh or, at the very worst, out-of-
date by ct− b.ts < ρ seconds.

Multiple Updates to a Record within the Same ρ-Period: The
above protocol is secure as long as any record is updated at most
once within a ρ-period. If several versions of a record are released
in some period ti, however, the summary does not provide enough
granularity to pinpoint the latest version among them. This short-
coming can be overcome by re-certifying the record in the subse-
quent period ti+1, so that all the former versions are invalidated by
the summary for ti+1. With that, a record that is certified between
the latest and the penultimate bitmaps could be up to 2ρ seconds
out-of-date; the freshness in all other cases remains bounded by ρ.

Active Signature Renewal: Some records that change very infre-
quently may have old signatures that require many bitmaps to ver-
ify their freshness. To limit the verification overhead, the DA needs
to refresh old signatures even if the associated records remain un-
changed. When a record signature is refreshed, its associated bit is
turned on in the bitmap summary for that period. Specifically:
• When a record r requires updating, the disk block containing r

is fetched into the memory. The DA takes the opportunity to
examine the other records in the disk block. Among them, those
with a signature that is older than ρ′ seconds are re-certified, and
the new signatures are sent to the QS.
• In addition, a low-priority process utilizes idle resources at the

DA to cycle through the records in R and refresh old signatures.

3.2 Indexing Structure
In the following we assume that the relational operations are fa-

cilitated by a disk-based B+-tree. However, our techniques are ap-
plicable to other indexes and file organizations, including memory-
based storage schemes. We first describe how to incorporate the
signature aggregation technique into the B+-tree, then compare the
resulting index with the EMB− tree (presented in Section 2.2).

We exemplify our indexing approach in Figure 2. A B+-tree

leaf:

records:

〈k1, sn1, rid1〉, …, 〈kc, snc, ridc〉

….

Figure 2: B+-Tree with Authentication Information
N (×1000) 10 100 1000 10000 100000
ASign 1 2 2 2 3
EMB− tree 2 2 3 3 4

Table 1: Height of Index Tree versus N

is built on the physical records, which are stored in an external
file. The leaf nodes of the B+-tree hold data entries of the form
〈key, sn, rid〉, representing the search key value, digital signature
and identifier of the underlying record, respectively. We defer the
discussion on what exactly sn is computed on, because it depends
on the operations (queries) that we want to support. The internal
nodes of the index have the same form (and functionality) as in a
standard, non-authenticated B+-tree.

To provide an intuition on the performance of our indexing ap-
proach, we compare it quantitatively with the EMB− tree. Assum-
ing that the sizes of a key value, an ECC signature and a record
identifier are 4 bytes, 20 bytes and 4 bytes, respectively, each data
entry (i.e., each entry in the leaf level) in our method occupies 28
bytes. A 4-Kbyte page can therefore hold 146 data entries. This
capacity is around 5 times larger than in the implementation of sig-
nature aggregation in [18], where equally secure but more volumi-
nous (128-byte) RSA signatures were used.

Letting the size of a pointer be 4 bytes, the maximum fanout of
each internal node is 512. Assuming an average utilization of 2/3,
the effective fanout of each internal node is 341, and the height of
the B+-tree on a relation R of N records is dlog341

3
2
· d N

146
ee.

Consider now the EMB− tree. Its leaf nodes store data entries
of the form 〈key, digest, rid〉. Since each digest occupies 160
bits (i.e., an equivalent amount of space to an ECC signature), the
EMB− tree has as many leaf nodes as our scheme. However, the
internal nodes of the EMB− tree additionally store one digest per
child entry. Thus, their effective fanout is only 97 (assuming again a
2/3 utilization), yielding an EMB− tree height of dlog97

3
2
·d N

146
ee.

While both the EMB− tree and our scheme require changes to
the B+ tree code, the latter offers some performance advantages.
Table 1 shows the tree height for different numbers of records N
in our scheme (denoted by “ASign”) and in the EMB− tree. The
observed height difference translates to superior I/O performance
for our technique, as we will see in Section 5. Another consid-
eration is that the EMB− tree propagates every data update up to
the root digest, so an update transaction must lock the entire in-
dex in exclusive mode and block all other updates and queries. In
contrast, our scheme locks only the individual records (and their
signatures) that are being updated; this allows transactions that op-
erate on other records to proceed concurrently. Consequently, our
scheme is expected to be much less susceptible to lock contention.

3.3 Selection
For a relation of records R = {〈rid,A1, . . . , AM , ts〉}, a range

selection operation produces σC(R) = {r|r ∈ R and C(r) is true},
where C is a constraint on the indexed attribute Aind of R.

To verify selection query answers, we simply apply the signature

chaining technique of [26, 24]. The main idea is for each signature
to “chain” the corresponding record to its immediate left and right
neighbors in R in Aind order. Specifically, the signature sn of a
record r ∈ R is computed as sign(h(r.rid | r.A1 | . . . | r.AM |
r.ts | rleft.Aind | rright.Aind)), where rleft and rright are r’s
previous and next records in Aind order, respectively. Posed a se-
lection query, the server returns as VO the signatures of all result
tuples, along with the index attribute value of the left and right
boundary records. The user can confirm that the selection answer
is authentic, because for each reported r, the corresponding signa-
ture sn is computed over r itself (among others). Completeness can
be guaranteed if the boundary records enclose the selection range,
and the records in the answer are contiguous as certified by the
DA (meaning that no qualifying records between the boundaries
are omitted). The VO size and therefore the communication cost
are reduced by combining all the answer’s signatures into a single
aggregate signature, using the BAS scheme. Hence, the VO size
pertaining to authenticity and completeness is independent of the
query selectivity and minimal (since all existing schemes need to
transmit at least one signature and two boundary values as proof).

3.4 Projection
Given a relation of records R = {〈rid,A1, . . . , AM , ts〉}, a

projection operation produces πAi,...,Aj (R) = {〈rid,Ai, . . . , Aj ,
ts〉}, where each of Ai, . . . , Aj is an attribute of R.

To authenticate the output of a projection operation, one tech-
nique is to supply as part of the proof some compact proxy of the
attribute values that are dropped from each record, such that the
proxy combined with the returned attribute values will match the
record signature. For example, [19] proposes to structure the at-
tributes within each record in an MHT, whereas [24] concatenates
the digest of the attribute values in each record to produce its signa-
ture. These techniques are computationally efficient, but are likely
to require many digests in the VO, especially when the projected at-
tributes are not contiguous in the schema. In particular, the VO size
is in the order of O(logM) if record MHTs are used, and O(M) if
the attribute values within each record are concatenated.

We adopt the alternative of signing individual attribute values
within each record, and setting the record signature to be the aggre-
gation of its attribute signatures (this approach was also discussed
in [24]). As signature aggregation is associative and commutative,
we need to guard against any attempt by the server to swap attribute
values between records. This can be achieved easily by making the
signature of an attribute value dependent on its record identifier rid
and attribute identifier. Thus, the signature of attribute value Ai in
record r is computed as sign(h(r.rid | i | r.Ai | r.ts)). With this
technique, the user can verify that all the attribute values in the
query answer are authentic, and in the correct record and attribute
positions. There are no additional computation or space overheads
imposed by the attributes that are dropped by the projection. In
other words, the VO contains just one aggregate signature, while
the computation cost to produce and verify it is proportional to the
number of projected attributes but independent of M .

3.5 Equi-Join
Here we focus on equi-join, the most common join operation.

Let R ./R.A=S.B S denote an equi-join between two relations R
and S with join condition R.A = S.B on their respective attributes
A andB. Without loss of generality, we assume that the cardinality
of R is smaller than or equal to that of S, i.e., |R| ≤ |S|.

To prove to the user that the join result is correct, our approach
is to (a) apply any selection predicate on R and project out irrele-
vant attributes to produce a truncated version R′, with a correctness

A ind … A

7 … 235
8 … 131
9 … 336

Relation R

Relation S

Aggregate
signature
for σAind<10(R)

B …

131 …
131 …

230 …
260 …

335 …
417 …

Partition 1

Partition 2

Partition 3

Bloom
Filters

match

negative

false
positive

Aggregate signature for S:
• Shaded values
• Partition boundaries
• Partition’s Bloom filters

Figure 3: Authenticated Equi-Join with Bloom Filters

proof; (b) for each record r ∈ R′ that has matches in S, return r
and the matching records in S along with their correctness proofs;
(c) for each record r ∈ R that has no matches in S, return the rid,
A, and ts in r, and a proof that the value of r.A does not exist in
S.B. Suppose that a fraction α of the records in R have matching
records in S, and that the remaining 1 − α of them do not. The
former class of records is handled like a selection σB=r.A(S) (see
Section 3.3). For the latter, we examine two authentication mecha-
nisms. To simplify the presentation below, we assume R = R′.

Authenticating with Boundary Values
For each record r ∈ R that has no matching S record, the exist-

ing method from [24] returns the boundary S.B values before and
after r.A. We denote this method as BV . In the worst case, BV
requires two boundary values per r. Where the records in R share
the same boundaries, we can eliminate duplicate S.B values to re-
duce the transmission overhead. For example, for two consecutive
records r1, r2 ∈ R, r1.A’s upper boundary in S may be r2.A’s
lower boundary. After duplicate elimination, the expected size of
all the boundary values from S that are needed for the proof is

|V O|BV = (1− α)IA ·min(2,
IB
IA

) · |S.B| (2)

where IA and IB are the number of distinct values in R.A and
S.B respectively, and |S.B| is the size (in bytes) of the S.B at-
tribute. Note that this formula refers only to the part of the proof
for records in R which have no matching counterparts in S. Due to
these records, the VO size is expected to be huge. This motivates
our advanced method below.

Authenticating with Bloom Filters
Our second authentication mechanism, denoted by BF , returns

a certified Bloom filter [5] on S.B, for the user to test those un-
matched R records in the query answer.

Suppose we construct an m-bit Bloom filter for the IB distinct
values in S.B. The expected false positive rate isFP = 0.6185m/IB

(see Section 2.1). Where the Bloom filter gives a negative, the

corresponding R record is certain not to have a match in S, and
no additional proof is needed. Where a false positive occurs for
some r.A, the server needs to return the two corresponding bound-
ary values from S.B. Since the Bloom filter is unlikely to pro-
duce false positives for consecutive R records, there can be no
significant improvement from duplicate elimination. Hence the ex-
pected size of the proof for the (1−α) unmatched fraction of R is
m
8

+(1−α)IA ·FP ·2|S.B| – the first term is the Bloom filter size,
while the second term accounts for the boundary values for proving
the unmatched R records that get a false positive on the filter.

Figure 3 illustrates how an equi-join σAind<10(R) ./A=B S is
authenticated with a Bloom filter. First, the range of R records that
satisfy R.Aind < 10 are gathered as part of the query answer. To
allow the user to verify this part of the answer, those R records’ sig-
natures are combined into an aggregate signature ASignR. Some
of those R records, e.g. 〈8, . . . , 131〉, have matching records in S;
the matching S records are added to the query answer. To prove
that the rest of the R records do not have matching S records, the
certified Bloom filter (constructed by DA beforehand) is supplied
to the user. R records like 〈7, . . . , 235〉 test negative on the Bloom
filter, which suffices to convince the user that there is no S record
with S.B = 235. The remaining R records (such as 〈9, . . . , 336〉)
give a false positive on the Bloom filter, and need to be proven
by inspecting the adjoining boundary S records (with S.B = 335
and S.B = 417). The signatures for the matching S records, the
boundary S records, and the Bloom filter are combined into an ag-
gregate signature ASignS . Finally, ASignR and ASignS are ag-
gregated to produce the signature for the query answer.

Although the above mechanism is adequate for proving unmatched
R records, there is a shortcoming. This is because new data can be
added easily to a Bloom filter, but it is not possible to remove the
effect of a record from the filter. Consequently, following every
record deletion, the Bloom filter has to be reconstructed from the
remaining records, which is very expensive for large datasets.

To limit the update overhead, we split S and create a Bloom filter
per partition, rather than just a single filter for the entire S. Continu-
ing our illustration in Figure 3, S is sorted on S.B, and partitioned
horizontally into the ranges [0, 120), [120, 420) and [420, 1000).
The finer the partitions, the lower the update cost. However, there
is an upper bound to the number of partitions beyond which the
Bloom filter mechanism becomes more expensive than simply re-
turning all the boundary values in S.B.

Suppose we divide S.B into p partitions. For a given query,
we return those partition filters that are probed by unmatched R
records, along with the corresponding partition boundaries. Where
adjoining partitions are returned, we can again avoid duplicating
their common boundaries in the VO. This brings the proof size to

|V O|BF = (1− α)
m

8
+ min(1, 2(1− α)) · p |S.B| (3)

+ (1− α)IA · FP · 2 |S.B|

where m is the total size (in bits) of the partition filters. The first
term above corresponds to the total size of the partition filters that
are probed by unmatched R records. The second term accounts for
the partition boundaries. If only a few partitions are probed, we
send their lower and upper boundaries (thus 2(1 − α) · p |S.B|);
whereas if most of them are probed, it is cheaper to return all the
boundaries (thus p |S.B|). The third term is due to those un-
matched R records that get a false positive, and hence need to
be authenticated via boundary S records. We want |V O|BF to be
lower than |V O|BV , thus:

m

8|S.B| <IA
»
min(2,

IB
IA

)− 2 FP

–
− min(1, 2(1− α)) p

1− α (4)

5
10

246810

0

0.5

1

1.5

2

2.5

 I
B
 / pI

A
 / I

B

z

I
B
 / p ≥ 2.83

I
B
 / p ≥ 6.29

z = 0.75

Figure 4: Configuration for Join Processing with Bloom Filters

To analyze the implications of the above condition, we first con-
sider the case of a primary key R.A to foreign key S.B join be-
tween R and S. The primary key-foreign key relationship requires
every S.B value to exist in R.A, so IA ≥ IB . Assuming that
|S.B| occupies 4 bytes, and setting m = 8IB (meaning the parti-
tion filters are configured with 8 bits per distinct S.B value) so that
FP = 0.0216, Formula 4 becomes:

0.75 IB − 0.0432 IA −
min(1, 2(1− α)) · p

1− α > 0 (5)

A sufficient condition that satisfies the above inequality is 0.75 IB
> 0.0432 IA + 2p, or equivalently z = 0.0432 IA

IB
+ 2 p

IB
< 0.75.

Figure 4 depicts the condition, with the blue surface under the
white plane at z = 0.75 demarcating the viable IA

IB
and IB

p
set-

tings. According to the figure, we need IB
p
≥ 2.83 if IA

IB
= 1, and

IB
p
≥ 6.29 at IA

IB
= 10. This means that a higher IA

IB
ratio requires

each partition to contain proportionally more distinct S.B values.
This requirement should not pose a difficulty in practice though.
Given that a B+-tree typically has a fanout of a few hundred, each
leaf node can be a partition with its own Bloom filter, and the in-
equality in Formula 5 will still be satisfied for a wide spectrum of
join queries. Such a granularity is also I/O-efficient, because the
Bloom filter for an updated leaf node is written back to the disk
along with the leaf node in a single I/O operation. For memory-
resident indexes that typically have small fanout factors, a partition
may span multiple leaf nodes in order to satisfy the constraint on p.

Now consider the case where R.A and S.B are not a primary
key-foreign key pair; instead, R ./R.A=S.B S is merely an arbi-
trary equi-join operation. If IA ≥ IB , the earlier analysis is still
applicable, so we shall focus on the situation where IA < IB . If
IB
IA

> 2, Formula 4 becomes 1.9568 IA
IB
− min(1,2(1−α))

1−α · p
IB

>

0.25, again assuming that |S.B| = 4, m = 8IB and FP =

0.0216. A sufficient condition for the inequality is 0.9784 IA
IB
−

p
IB

> 0.125. Since p
IB

> 0, the constraint indicates that the BF
method is not beneficial to any equi-join where IB ≥ 7.8272 IA.
This is intuitive since the Bloom filters must then be configured
with a large m in order to achieve the desired m

IB
ratio and hence

false positive rate, making the filters too bulky and costly to trans-
mit to the user.

4. CACHING AGGREGATE SIGNATURES
While signature aggregation is fast enough to be practical on

newer CPUs, it remains slower than hashing. This is a concern es-
pecially as we intend to push fresh data to the users quickly. In this
section, we introduce the SigCache mechanism that significantly
reduces the query server’s proof construction cost, by caching only
a small number of strategically chosen aggregate signatures.

T00 T01 T02 T03 T04 T05 T06 T07 T08 T09 T0A T0B T0C T0D T0E T0F

T10 T11 T12 T13 T14 T15 T16 T17

T20 T21 T22 T23

T30 T31

T40

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

Figure 5: Example Aggregate Signature Tree

4.1 Selecting Aggregate Signatures for Caching
Consider a relation with N data items, R = {r1, r2, . . ., rN}.

For simplicity, assume that N is a power of 2. We compose a bi-
nary tree T of aggregate signatures over R. Each leaf node in T
corresponds to the signature of one record in R, and each internal
node aggregates the signatures in its two child nodes. We represent
a node in T as Ti,j where: (a) i is the tree level, with i = 0 for
the leaf nodes, and i = logN for the root node; (b) j is the node’s
position in level i; j = 0, 1, . . . , N

2i − 1 from left to right.
This signature tree is conceptual, as only the nodes that are cho-

sen for caching need to be materialized. Our decision on which
nodes Ti,j should be cached is based on an analysis of their cor-
responding benefits offered (i.e., computation savings achieved if
each of them is cached). We will use Figure 5 as a running exam-
ple to present our analysis and illustrate our caching mechanism.

A selection query q with cardinality q (i.e., whose result com-
prises q records) has a choice of N − q + 1 different ranges of
data in R. The aggregate signature for the answer A of q can be
derived from the roots of the subtrees in T that together cover A.
Let ξ(Ti,j | q) denote the number of queries with cardinality q that
derive their aggregate signatures from Ti,j .
• If 2i > q, ξ(Ti,j | q) = 0.

For example, nodes T30 and T31 are irrelevant to any query with
a smaller cardinality than 23 = 8.
• If 2i ≤ q < 2i+1,

ξ(Ti,j | q) =

q − 2i + 1 if 0 < j < N

2i − 1
1 otherwise

In our running example, only one query with cardinality q = 7
(involving r0 to r6) can make use of T20. Likewise, T23 benefits
only one query with cardinality q = 7 (involving r9 to r15). In
contrast, T21 can be exploited by 7−22+1 = 4 different queries
with cardinality q = 7 (involving r1 to r7, r2 to r8, r3 to r9 and
r4 to r10 respectively). The same holds for T22.
• If 2i+1 ≤ q,

(a) If j is odd,

ξ(Ti,j | q) =

8<: 2i if N
2i − j ≥ d q2i e

2i − q + b q
2i c · 2i if b q

2i c = N
2i − j < d q2i e

0 otherwise

Consider again queries with cardinality q = 7. T11 and T13

satisfy the first condition, and are relevant to 21 queries each;
e.g., queries for r5 to r11 and r6 to r12 can use T13. T15 satisfies
the second condition, and is relevant to only 21−7+b 7

21 c·21 = 1

of the queries (the one for r9 to r15). The third condition applies
to T0B , T0D , T0F and T17, none of which are relevant to queries
with q = 7.
(b) If j is even,

ξ(Ti,j | q) =

8<: 2i if j + 1 ≥ d q
2i e

2i − q + b q
2i c · 2i if b q

2i c = j + 1 < d q
2i e

0 otherwise

For queries with q = 7, the first condition applies to T14, T16,
T08, T0A, T0C and T0E ; T12 and T06 satisfy the second condi-
tion; whereas T00, T02, T04 and T10 make up the third category.
The probability that a node Ti,j is used to produce the aggregate

signature for a query with cardinality q is P (Ti,j | q) =
ξ(Ti,j | q)
N−q+1

.
Furthermore, the overall probability of using Ti,j for any query is
P (Ti,j) =

PN
q=1 P (Ti,j | q) ·P (q), where P (q) is the probability

that a query has cardinality q.
Let si,j denote the savings in computation from the cached sig-

nature Ti,j , compared to deriving it on demand from any cached
signatures and/or the data signatures underneath Ti,j . If none of
the aggregate signatures under Ti,j are cached, the savings over
aggregating the data signatures is si,j = (2i − 1) · c, where c is
the cost of an ECC addition operation. We can drop factor c since
it is constant across all the nodes. The utility in caching Ti,j is thus
ui,j = P (Ti,j) · si,j = P (Ti,j) · (2i − 1).

The nodes that are nearer to the leaf level are likely to have higher
P (Ti,j) values because they are relevant whether the query has
small or large cardinality. On the other hand, their corresponding
aggregate signatures produce smaller savings si,j each time. Con-
versely, nodes that are nearer to the root benefit only queries with
large cardinalities, but lead to considerable reductions in computa-
tion whenever they are utilized.

Algorithm 1 SigCache Algorithm
1: // Initialize the signature tree
2: for all Ti,j ∈ T do
3: compute P (Ti,j);
4: set si,j = 2i − 1;
5: set ui,j = P (Ti,j) · si,j ;
6: totalCost =

PN
q=1(q − 1) · P (q);

7: // Evaluate the savings from caching each Ti,j
8: order the Ti,j’s in decreasing utility values;
9: prevCost = totalCost;

10: for the Ti,j with the next highest utility do
11: reduce the savings of Ti,j’s ancestors by si,j ;
12: add Ti,j to the cache;
13: currCost = totalCost - utility of all cached signatures;
14: if currCost > prevCost then
15: add back si,j to the savings of Ti,j’s ancestors;
16: remove Ti,j from the cache;
17: else
18: prevCost = currCost;

Algorithm 1 presents the procedure for identifying the aggregate
signatures to hold in the cache. The algorithm initializes the aggre-
gate signature tree, with the probability, savings and utility of each
node Ti,j set as specified above. The average cost of computing
the aggregate signature for each query is derived as the sum of the
query cardinalities, weighted by their corresponding query proba-
bilities. Next, we take a greedy approach in finding the next node
that leads to the highest reduction in the average query cost. We re-
peatedly evaluate the node Ti,j with the next highest utility. If Ti,j

0 4 8 12 16 20
0

2

4

6

8

10

of Cached Signature Pairs

C
om

pu
ta

tio
n

(m
se

c)

SigCache

(a) P (q) =
1
qPN

i=1
1
i

0 4 8 12 16 20
0

1

2

3

4

5

of Cached Signature Pairs

C
om

pu
ta

tio
n

(s
ec

)

SigCache

(b) P (q) = 1
N

Figure 6: Reduction in VO Construction Cost

is added to the cache, its ancestors naturally should be derived from
Ti,j rather than the underlying data signatures themselves. There-
fore, the ancestors’ savings are reduced, which could result in a net
increase in query cost if some of the ancestors are already cached.
For example, initially s3,0 = 23 − 1 = 7, because it removes the
need to aggregate nodes from T0,0 to T0,7. Once T2,1 is cached,
however, T3,0 could be derived from T0,0 to T0,3 and T2,1. Thus,
caching T3,0 saves only s3,0 = 23− 1− s2,1 = 4 signature aggre-
gation operations now. If adding Ti,j raises the query cost, then it
is discarded; otherwise, Ti,j is pinned in the cache.

We expect the average query cost to be reduced substantially
through the aggregate signatures that are chosen early on for caching;
as more signatures are cached, the incremental saving will diminish
gradually. This provides an opportunity to terminate the SigCache
algorithm early, so that it does not have to evaluate all the nodes of
the signature tree. Another optimization stems from the observa-
tion that nodes Ti,j and Ti,N/2i−j−1 mirror each other in probabil-
ity, savings and utility. Thus, SigCache can evaluate only the left
half of the signature tree; whenever a node is chosen for caching,
its mirror node is also cached automatically.

We conducted several experiments with different N values and
P (q) distributions to see whether there are consistent findings on
which tree nodes have the highest utilities and should be cached.
One of the distributions is:

P (q) =

1
qPN
i=1

1
i

for 1 ≤ q ≤ N , which favors short queries (this is a truncated har-
monic series). Another distribution is P (q) = 1

N
, where all query

cardinalities are equally likely. The experiments consistently show
that the most valuable aggregate signatures to cache are the second
node from the left and right edges of the signature tree, starting
from the third highest tree level and progressing down towards the
leaves. Intuitively, this is because the second node from the edge is
applicable to the widest range of query cardinalities, among all the
nodes in the same tree level. It is also useful to cache the root node
as well as its two immediate children. In our running example in
Figure 5, the most beneficial aggregate signatures to cache are T21

and T22, followed by T11 and T16, then T01 and T0E . The top three
signatures, T40, T30 and T31, are also cached.

Figure 6 shows the saving that signature caching achieves, when
applied on a dataset of one million randomly generated records.
Without caching, the average computation cost per query is 9.85
milliseconds and 5.08 seconds for the skewed and uniform query
length distributions, respectively. By caching just the top eight
pairs of the aggregate signatures identified by SigCache, we are
able to reduce the computation cost of proof construction by 57%
and 75% for the two query distributions. The eight chosen pairs of
signatures, in decreasing utility value, are:
• For the skewed query distribution, {T18,1, T18,2, T17,1, T17,6,
T16,1, T16,14, T15,1, T15,30, T15,5, T15,26, T14,1, T14,62, T14,5,

T14,58, T13,1, T13,126};
• For the uniform query distribution, {T18,1, T18,2, T17,1, T17,6,
T16,1, T16,14, T15,1, T15,30, T15,5, T15,26, T14,1, T14,62, T14,5,
T14,58, T14,9, T14,54}.

In general, we find that the number of signatures to be cached is
proportional to N/q, though it is possible to pick only some of the
high-utility ones among them if the cache size is limited.

4.2 Adaptive Signature Caching
Clearly, the choice of aggregate signatures to cache hinges on the

queries that the server receives. For example, Algorithm 1 will not
pick Ti,j in the signature tree if none of the queries has cardinality
q ≥ 2i. In practice, the query cardinalities (i.e., answer sizes) may
not span the entire range from one to N , and the query distribution
may be skewed or even drift over time. To deploy SigCache for
general workloads, the query server first populates the cache by
running Algorithm 1 with the P (Ti,j) values estimated from past
queries as explained above. This initialization procedure needs to
examine the utility of every node in the signature tree and is costly
for large datasets, but it can be performed offline.

At runtime, each of the cached signatures Ti,j can benefit any
query with a scope that envelops {rj·2i , . . . , r(j+1)·2i−1}. In the
course of processing user queries, additional aggregate signatures
that are generated to prove the query answers are added to the
cache, and an access count is kept on each cached signature. The
server then periodically revises the list of cached signatures, by ap-
plying Algorithm 1 with minor changes: T now contains just the
cached signatures, and theP (Ti,j)’s are calculated from the respec-
tive access counts. Since only the cached signatures are involved
here, the revision can be performed efficiently.

4.3 Updating the Cached Signatures
Having determined which signatures to cache, the query server

needs to keep them updated with respect to the underlying records.
This could be achieved through eager or lazy updates. Suppose that
a record rk (and, thus, its corresponding signature T0,k) is updated.
Any cached signature Ti,j such that b k

2i c = j is an ancestor of T0,k

in the signature tree and needs to be refreshed. The eager method
would recalculate Ti,j immediately, by adding to Ti,j the inverse of
the old T0,k, followed by the new T0,k. In contrast, the lazy method
would simply invalidate Ti,j , and update it only when it is required
for some subsequent query. We expect the eager strategy to shorten
the query turnaround time as the aggregate signatures are updated
beforehand, whereas the lazy method utilizes computing resources
more efficiently in avoiding updates that do not benefit subsequent
queries. We will systematically evaluate the eager and the lazy
update approaches in Section 5.

5. EMPIRICAL EVALUATION
In this section, we empirically evaluate the performance of our

authentication schemes. The key questions to be investigated in-
clude:
• Relative to Merkle hash tree methods, how fast is our scheme in

making fresh data available to the users? How responsive is it in
providing an authenticated query answer? How high a transac-
tion throughput can it sustain?
• Is our equi-join authentication mechanism effective in reducing

the VO size as the analysis in Section 3.5 indicates? Is the Bloom
filter authentication technique robust enough to handle a wide
range of workloads?
• What are the space-time trade-offs of signature caching?

Parameter Description Default
N Number of records 1 million
RecLen Record length 512 bytes
sf Selectivity factor 0.1%
|sign| Size of a signature 160 bits
|digest| Size of a hash digest 160 bits
BWAN Bandwidth of wide area net-

work connecting the data aggre-
gator and the server

622 Mbps

BLAN Bandwidth of local network
connecting the server and users

14.4 Mbps

ArrRate Transaction arrival rate –
Upd% Ratio of update transactions;

the rest are queries
10%

ρ Interval for update summaries 1 sec
ρ′ Signature renewal age 900 sec

Table 2: Experiment Parameters

5.1 Experiment Set-Up
Before investigating the above questions, we describe our exper-

iment set-up. The experiment parameters and their default values
are summarized in Table 2.

System model: The data aggregator (DA) and query server (QS)
maintain identical copies of the database and authentication struc-
ture. When there is a data update, the DA forwards it to the QS,
then refreshes its own authentication structure and sends the new
record signature or MHT root signature to the QS. The QS updates
its authentication structure accordingly1. Essentially, the DA and
QS perform the same update operations, except for producing the
new signature which is carried out by the DA. As the QS has to
service both user queries and data updates, it is the primary perfor-
mance determinant.

Workload: As in [18], we create a relation R containing N ran-
domly/uniformly generated records. Each record containsRecLen
bytes, including a 4-byte integer key. Transaction arrivals at the
QS follow a Poisson process at a rate of ArrRate. Among them,
Upd% are data updates forwarded from the DA, while user queries
make up the rest of the workload. Selection queries are distributed
uniformly within R, with selectivity factor between 1

2
sf and 3

2
sf .

By default, both queries and updates are processed in real time,
rather than in batches, to maximize data freshness. All the trans-
actions at the QS follow the two-phase locking protocol to ensure
that the database and authentication information are consistent.

Algorithms: We shall benchmark our proposed scheme against the
EMB− tree, the most representative MHT design for disk-resident
data. The EMB− implementation used in our experiments is the
original code from [18]. We label our scheme as BAS, as it builds
on the Bilinear Aggregate Signature technique. In order to provide
a consistent comparison with past studies, our implementations are
compiled with the same cryptographic libraries. Specifically, we
use the MIRACL library [1] for BAS, and the OpenSSL library [2]
for the condensed RSA protocol.

System configuration: The DA and QS machines are identical;

1In MHT schemes an alternative update approach is possible,
where the DA applies the updates locally and sends (the updated
parts of) the MHT to the QS in order to avoid repeating the in-
volved digest computations at the QS. This approach worsens per-
formance, as the CPU time savings on digest computations are off-
set (by several orders) by the extra communication overhead in-
curred. This technique also does not circumvent the lock contention
issues of the MHT, since again the MHT root must be exclusively
locked (among others) by each and every update.

each runs Windows Server 2003 and is equipped with Intel Core 2
Quad 3GHz CPU, 3GB memory and two Hitachi HTS541616J9SA00
160GB hard disks. The disks are formatted with 4-Kbyte blocks,
the default in NTFS. The user machine has an Intel Core Duo 2GHz
CPU and 1GB memory2. To study the authentication mechanisms
under different system configurations, we model the wide area net-
work connection between the DA and each server as a queue with
a capacity of BWAN = 622 Mbps, the bandwidth of OC12. The lo-
cal network between the users and QS is modeled as a queue with
default bandwidth of BLAN = 14.4 Mbps, corresponding to the
highest HSDPA (also known as 3.5G) data rate. The networks are
the only simulated components in our system; the server processing
and user verification components are actual implementations.

Performance factors: Unless otherwise specified, our evaluation
centers around the update time, query time, VO size, and user veri-
fication time. The first measures how soon fresh data can be made
available at the QS, while the next three factors determine the over-
all time required for a user to receive an answer and confirm that it
is correct. As the server and the network are shared resources, the
system’s scalability (with respect to the number of users and trans-
actions supported) depends on the first three performance factors,
which receive most of our attention.

5.2 Choice of Cryptographic Primitives
In Table 3 we compare the costs of the basic cryptographic op-

erations in 160-bit BAS which were obtained in Year 2006 on a
Pentium 3 800 MHz CPU with 1 GB memory as reported in [23],
versus the current timings on our test machine. The measurements
were made with the default settings of Table 2. We observe an im-
pressive speed-up of BAS, with one order of magnitude faster ECC
signing and almost 40 times faster BAS verification.

Table 3 also presents measurements for an RSA-based imple-
mentation of signature aggregation; the results correspond to 1024-
bit signatures, offering an equivalent level of security to the 160-bit
ECC/BAS scheme. Additionally, Table 3 includes hash compu-
tation costs for different message sizes (using SHA); this opera-
tion is important to all schemes, but especially so for MHT-based
ones. The results show that signature aggregation through con-
densed RSA or BAS is now viable in terms of computation time.
Between the two, RSA is faster while BAS has the advantage of
shorter signature length, which translates to lower space require-
ments. We adopt BAS in our study because its signature length is
the same as that of a digest in the MHT (both at 160 bits), leading
to comparable storage overheads3 and allowing us to focus on the
runtime trade-offs between MHT and BAS.

5.3 Comparison with MHT Approach
In Table 4, we setN to 1 million, and execute point queries/updates

(i.e., selectivity sf = 10−6 = 1 record) and range queries/updates
with selectivity sf = 10−3 (1,000 records), one transaction at a
time. The results show that BAS outperforms EMB− in query pro-
cessing, update time, and VO size for both point and range queries.

Figure 7(a) presents the overall response time for point queries
(the solid blue lines with ‘Q’ in the labels) at various arrival rates.
Here we measure the elapsed time between the arrival of a query at
the QS and the verification of its answer by the user. EMB− is only

2The user machine could have been a lower-end one, or even a
mobile device. However, since we are targeting high-value appli-
cations like online trading for which data freshness is important,
the user terminals are more likely to be adequately equipped.
3Actually, as explained in Section 3.2, BAS takes up slightly
smaller space, because MHT approaches store additional digests
in the internal nodes of their indexes.

Operation Year 2006 Current
Bilinear Aggregate Signature
(a) Individual signature
• Signing 12.0 ms 1.5 ms
• Verification 77.4 ms 40.22 ms

(b) 1000-signature aggregate
• Aggregation N.A. 9.06 ms
• Verification 12085.4 ms 331.349 ms

Condensed RSA
(a) Individual signature
• Signing 6.82 ms 6.06 ms
• Verification 0.16 ms 0.087 ms

(b) 1000-signature aggregate
• Aggregation N.A. 0.078 ms
• Verification 44.12 ms 0.094 ms

Secure Hashing Algorithm (SHA)
• 256-byte message – 1.35 µs
• 512-byte message – 2.28 µs
• 1024-byte message – 4.2 µs

Table 3: Costs of Cryptographic Primitives

Selectivity Operation EMB− BAS
sf = 10−6 Query (msec) 35.316 31.433
(1 record) Update (msec) 60.206 40.246

VO Size (bytes) 440 20
Verification (msec) 139 42.92

sf = 10−3 Query (msec) 129.782 61.502
(1000 records) Update (msec) 248.89 237.4

VO Size (bytes) 720 20
Verification (msec) 171 375

Table 4: Performance of Standalone Queries & Updates

able to handle up to 50 jobs/second before lock contention becomes
a bottleneck, whereas BAS scales all the way to 120 jobs/second.
Figure 7(b) shows the breakdown of the response time, which high-
lights the concurrency deficiencies of EMB−.

Figure 8 shows statistics on the update summaries. As the sig-
nature renewal age ρ′ is relaxed, the number of forced record re-
certifications in each period declines, leading to shorter compressed
bitmaps; at the same time, the average age of the record signa-
tures increases. The total summary information needed to perform
a freshness check is a function of the per-bitmap size and the signa-
ture age. As shown in Figure 8(b), the total summary size bottoms
out at 171 KB for ρ = 1 second and ρ′ = 900 seconds. On a
14.4 Mbps link, the summaries require around 95 msec to trans-
mit. In our design, the server sends the summaries to the user upon
log-in, from the current one back to the one for the average signa-
ture age; this takes place in conjunction with other start-up tasks
like verifying the public key certificate of the DA. Thereafter, the
size of each periodic update summary is only 375 bytes on the av-
erage, and compressing/decompressing it takes 6 to 7 msec. An
alternative design is to start pushing the summaries (from the latest
backwards) to the user immediately upon receipt of a query, and
continue transmission while the query is being executed. We note
(figure omitted) that the average bitmap size and signature age are
not sensitive to the update rate. The reason is that when updates are
few, more idle resources are channeled to the background signature
renewal process and vice versa, so that their combined activities
remain stable.

In Figure 9 we perform the same test as Figure 7(a) for range
queries. At very light loads, EMB− is faster than BAS, because the
latter incurs longer user verification time (see Figure 9(b)). How-
ever, EMB− degrades quickly as the increasing workload raises

0 40 80 120
0

250

500

750

1000

Arrival Rate (jobs/sec)

R
es

p.
 T

im
e

(m
se

c)

EMB− (Q)

EMB− (U)
BAS (Q)
BAS (U)

(a) Response Time

0

50

100

150

200

250

Arrival Rate (jobs/sec)

Q
ue

ry
 R

es
p.

 (
m

se
c) EMB−

EMB−

(trunc)

BAS

BAS

50 120

Verification

Locking

Query
Processing

(b) Breakdown
Figure 7: EMB− versus BAS (sf = 10−6)

256 512 768 1024
0

1

2

ρ′ (× ρ)

B
itm

ap
 S

iz
e

(K
B

)

0

300

600

900

S
ig

na
tu

re
 A

ge
 (

se
c)

0

300

600

900

S
ig

na
tu

re
 A

ge
 (

se
c)ρ=0.5 (bitmap)

ρ=0.5 (age)
ρ=1 (bitmap)
ρ=1 (age)

(a) Bitmap Size vs. Sign. Age

0 256 512 768 1024
0

64

128

192

256

ρ′ (× ρ)

T
ot

al
 S

um
m

ar
y

(K
B

)

ρ=0.5
ρ=1

(b) Total Summary Size
Figure 8: Compressed Update Summaries

0 20 40 60
0

250

500

750

1000

Arrival Rate (jobs/sec)

R
es

p.
 T

im
e

(m
se

c)

EMB− (Q)

EMB− (U)
BAS (Q)
BAS (U)

(a) Response Time

0

200

400

600

Arrival Rate (jobs/sec)

Q
ue

ry
 R

es
p.

 (
m

se
c)

EMB−

EMB−

(trunc)
BAS

BAS

10 45

Verification

Query
Processing

Locking

(b) Breakdown
Figure 9: EMB− versus BAS (sf = 10−3)

0 10 20 30 40
0

250

500

750

1000

Cache Size (Kbytes)

R
es

p.
 T

im
e

(m
se

c)

Eager:Update
Lazy:Update
Eager:Query
Lazy:Query

(a) Upd% = 10%

0 10 20 30 40
0

250

500

750

1000

Cache Size (Kbytes)

R
es

p.
 T

im
e

(m
se

c)

Eager:Update
Lazy:Update
Eager:Query
Lazy:Query

(b) Upd% = 40%

Figure 10: SigCache effectiveness (N = 1M records)

lock contention at the QS; the results show that EMB− reaches sat-
uration at just 10 jobs/second. In contrast, we are able to push BAS
beyond 45 jobs/second on the same workload composition.

We now turn to the update times in Figures 7(a) and 9(a), in
dotted red lines with ‘U’ in the labels. The update time includes
the cost of modifying the EMB− tree/B+-tree at the QS, plus the
time for the DA to generate and send over the new signature. BAS
is consistently faster than EMB− in making fresh data available to
the users. BAS also scales to much higher update rates.

5.4 Signature Caching
In the previous experiments we used no signature caching for

BAS. In this section, we investigate the impact of the SigCache
mechanism on the performance of BAS for varying cache sizes.
Figure 10(a) focuses on range queries and updates over a disk-
resident database with 1 million records, with the transaction arrival
rate set to 50 jobs/second (where the system is heavily loaded for
BAS). The results show that SigCache enhances considerably the
performance of BAS with just a modest amount of cache. For ex-
ample, with just a 40-Kbyte cache, SigCache manages to reduce

the overall response time by 30% for both updates and queries.
Having demonstrated the effectiveness of SigCache, we now

focus on the alternative Lazy and Eager strategies for updating the
cached signatures. In Figure 10(a) we plot the running time of
both Eager and Lazy SigCache implementations for the default
Upd% = 10%. Their timings are similar, with Lazy being slightly
faster. This is because a cached signature is usually needed by one
or more queries in between updates. The amount of computations
required to refresh a cached signature that has been invalidated by
a data update is the same, whether it is carried out as part of the
update transaction or by the first query that requests for the in-
validated signature. By shifting the cache refresh from the update
transactions (which lock their data in exclusive mode) to the queries
(which hold only shared locks), the Lazy strategy achieves higher
concurrency and hence a slight advantage over the Eager method.
For these reasons, Eager does not outperform Lazy even for smaller
Upd% (charts are omitted due to lack of space).

For larger Upd%, Lazy has a more significant advantage over
Eager. In Figure 10(b) we set Upd% to 40%. With the higher up-
date ratio, there is an increased likelihood that a cached signature
is invalidated multiple times before it is required for a query. Un-
der these circumstances, refreshing the cached signatures eagerly
wastes computations, especially with a large cache. In contrast, the
Lazy strategy remains effective, and improves with the cache size.

5.5 Equi-Join Operation
Next, we investigate the performance of the two equi-join verifi-

cation mechanisms described in Section 3.5. The existing method
[24] that always returns boundary values to prove unmatched records
is denoted byBV , whereas our proposed scheme that utilizes Bloom
filters is denoted by BF . We focus on the most common join op-
eration – the primary key-foreign key equi-join of the form σ(R)
./R.A=S.B S. The two relations R and S for this experiment are
extracted from the TPC-E benchmark. R corresponds to the ‘Se-
curity’ table, and containsNR = 6,850 records with an equal num-
ber of distinct R.A values (i.e., IA = 6,850). Each R record is
18 bytes in size. S is a subset of the ‘Holding’ table, comprising
NS = 894,000 records with IB = 3,425 distinct S.B values, and
an average record size of 62.95 bytes. Our evaluation centers on the
VO size, the most critical factor in join verification; the remaining
costs are similar for both techniques.

First, in Figure 11(a), we compare the VO sizes of BV and BF
for different α values. (α is the ratio of R records that have match-
ing records in S.) To be able to control α, we set the selectivity
on R to 20% and use records that yield the desired α value. The
default setting for the number of Bloom filter bits per distinct IB
value, m/IB , is 8. The partition size IB/p, in terms of the number
of distinct S.B values in each partition, is set to 4.

We observe that for small α values, BV generates very large
VOs (of size close to the entire S), because numerous boundary
values are needed in order to prove the unmatched R records. As
α grows, the unmatched records become fewer and the VO size
decreases. As for BF , its VO is dominated by the boundary values
for proving the records that get a false positive from the Bloom
filters. The number of false positives is proportional to the number
of unmatched R records that are tested against the Bloom filters.
This explains the concise VOs in BF when α is small. BF is
beneficial for the entire range of α values, consistently generating
VOs that are around 60% smaller than BV .

For Figure 11(b), we set α to 0.5 and vary m/IB , i.e., the num-
ber of Bloom filter bits per distinct S.B value. BF outperforms
BV in all tested settings. With more Bloom filter bits, the VO size
of BF drops initially because the lower false positive rate reduces

the number of boundary values in the VO. This improvement how-
ever diminishes gradually, and eventually reverses as gains from
the lower false positive rates are offset by the larger Bloom filter
sizes. The results suggest that a range between 8 and 12 for m/IB
is adequate, with BF achieving more than 60% reduction in VO
size compared to BV .

Figure 11(c) investigates the effect of the partition size. We now
vary IB/p from 2 to 2048, while keeping the other parameters
at their default values. Interestingly, as IB/p increases, the VO
size in BF initially grows (for IB/p ≤ 4) before dropping (for
IB/p > 4). Behind this behavior lie two factors. On one hand,
with very small partitions, a large proportion of them do not cover
any unmatched R records and can, thus, be excluded from the VO.
On the other hand, coarser partitions translate to fewer partition
boundaries included in the VO. Overall, BF should be configured
with the largest possible IB/p that keeps the partitions within one
disk block each for disk-resident data, so that the partition filters
can be updated without necessitating extra I/Os. If S is memory-
resident, the results suggest that one Bloom filter over the entire
table is best as far as VO size is concerned. However, that worsens
update performance because (i) the entire filter must be locked for
each update (which lowers concurrency), and (ii) the CPU cost to
recompute the filter is higher, as indicated by the dashed line in the
figure giving the computation time to update a partition filter. As a
guide, a partition granularity similar to that for a disk-based setting
achieves a good trade-off.

Figure 11(d) plots the VO size as we vary the selectivity on R.
The figure shows that as the selectivity increases, there are more un-
matched R records that need to be proven. This pushes up the VO
size of both BV and BF , though the increase for BV is steeper.
As a result, the VO size in BF is 45% to 75% smaller (for selec-
tivities of 0.5% and 95%, respectively).

5.6 Discussion on Experiment Results
In summary, our experiments confirm the following:
• Between the two signature aggregation protocols, condensed RSA

is faster than BAS in proof construction and user verification.
However, BAS has benefited enough from recent advances in
CPU speed to be practical for query answer authentication.
• On the server, the MHT imposes severe concurrency constraints

for dynamic datasets, whereas BAS is able to take advantage of
concurrent transaction execution. In our experiments, BAS con-
sistently outperforms MHT, both in its promptness in making
available fresh data to the users, and in its responsiveness to user
queries. Moreover, BAS scales to much heavier workloads.
• For equi-join queries, our authentication mechanism based on

Bloom filters is superior to the straightforward alternative of re-
turning boundary values to prove all unmatched records. Partic-
ularly, the Bloom filters help to surmount the main problem in
join verification, namely, the huge VO size.
• Our signature aggregation method is very effective in exploiting

a modest cache to significantly reduce proof construction time.
As for the choice of cache maintenance strategy, Lazy has an
edge over Eager regardless of the query-update composition of
the workload.

6. CONCLUSION
In this paper, we study the problem of verifying the authenticity,

completeness and freshness of query answers from frequently up-
dated databases that are hosted on untrusted servers. We introduce
a protocol, built upon signature aggregation, for checking the cor-
rectness of query answers. Our approach has the important property

0 0.2 0.4 0.6 0.8 1
0

25

50

75

100

α

V
O

 S
iz

e
(K

by
te

s)

BV
BF

(a) Match Ratio

4 8 12 16
0

20

40

60

80

m / I
B
 (bits)

V
O

 S
iz

e
(K

by
te

s)

BV
BF

(b) Filter Size

2 8 32 128 512 2048
0

20

40

60

80

I
B
 / p

V
O

 S
iz

e
(K

by
te

s)

0

25

50

75

100

U
pd

at
e

T
im

e
(m

se
c)

BV VOSize
BF VOSize
BF Time

(c) Partition Size

0 25 50 75 100
0

50

100

150

Selectivity (%)

V
O

 S
iz

e
(k

by
te

s)

BV
BF

(d) Selectivity
Figure 11: Primary Key-Foreign Key Equi-Join

of allowing new data to be disseminated immediately, while ensur-
ing that outdated values beyond a pre-set age can be detected. We
also construct authentication mechanisms for the B+-tree and stan-
dard relational operators that are suitable for dynamic databases.
Additionally, we propose an efficient verification technique for ad-
hoc equi-joins, for which no practical solution existed. Finally, for
servers that need to process heavy query workloads, we introduce
a mechanism that significantly reduces the proof construction time
by caching just a small number of strategically chosen aggregate
signatures. Extensive experiments confirm that our solution per-
forms significantly better on the freshness requirement than exist-
ing MHT schemes, while achieving considerably higher transaction
throughput.

7. REFERENCES
[1] MIRACL: Multiprecision Integer and Rational Arithmetic

C/C++ Library. http://www.shamus.ie.
[2] OpenSSL Project. http://www.openssl.org.
[3] M. Aschbacher. Finite Group Theory, Second Edition.

Cambridge University Press, 2000.
[4] E. Bertino, B. Carminati, E. Ferrari, B. M. Thuraisingham,

and A. Gupta. Selective and Authentic Third-Party
Distribution of XML Documents. IEEE Transactions on
Knowledge and Data Engineering, 16(10):1263–1278, 2004.

[5] B. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Communications of the ACM,
13(7):422–426, July 1970.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A Survey of
Two Signature Aggregation Techniques. CryptoBytes, 6(2),
2003.

[7] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from
the Weil Pairing. In AsiaCrypt, pages 514–532, 2001.

[8] Certicom. SEC2: Recommended Elliptic Curve Domain
Parameters, Version 1.0. Standards for Efficient
Cryptography, September 2000.
http://www.secg.org/download/aid-386/sec2 final.pdf.

[9] W. Cheng, H. Pang, and K.-L. Tan. Authenticating
Multi-Dimensional Query Results in Data Publishing. In
DBSec, pages 60–73, July 2006.

[10] W. Cheng and K.-L. Tan. Query Assurance Verification for
Outsourced Multi-dimensional Databases. Journal of
Computer Security, 2008.

[11] D. Comer. Ubiquitous B-Tree. ACM Computing Surveys,
11(2):121–137, 1979.

[12] P. T. Devanbu, M. Gertz, C. U. Martel, and S. G.
Stubblebine. Authentic Data Publication over the Internet.
Journal of Computer Security, 11(3):291–314, 2003.

[13] Fact Sheet NSA Suite B Cryptography. National Security
Agency. http://www.nsa.gov/ia/industry/crypto suite b.cfm.

[14] A. S. Frenkel and S. T. Klein. Novel Compression of Sparse
Bit-Strings – Preliminary Report. Combinatorial Algorithms

on Words, NATO ASI Series F, 12:169–183, 1985.
[15] M. T. Goodrich, R. Tamassia, and N. Triandopoulos.

Super-Efficient Verification of Dynamic Outsourced
Databases. In CT-RSA, pages 407–424, 2008.

[16] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman
from Computational Diffie-Hellman in Cryptographic
Groups. Journal of Cryptology, 16(4):239–247, 2003.

[17] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic
Key Sizes. Journal of Cryptology, 14:255–293, 2001.

[18] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic Authenticated Index Structures for Outsourced
Databases. In SIGMOD, pages 121–132, 2006.

[19] D. Ma, R. H. Deng, H. Pang, and J. Zhou. Authenticating
Query Results in Data Publishing. In ICICS, pages 376–388,
2005.

[20] C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A General Model for
Authenticated Data Structures. Algorithmica, 39(1):21–41,
2004.

[21] R. C. Merkle. A Certified Digital Signature. In Crypto, pages
218–238, 1989.

[22] K. Mouratidis, D. Sacharidis, and H. Pang. Partially
Materialized Digest Scheme: An Efficient Verification
Method for Outsourced Databases. International Journal on
Very Large Data Bases, 18(1):363–381, 2009.

[23] M. Narasimha, E. Mykletun, and G. Tsudik. Authentication
and Integrity in Outsourced Databases. ACM Transactions on
Storage, 2(2):107–138, May 2006.

[24] M. Narasimha and G. Tsudik. Authentication of Outsourced
Databases using Signature Aggregation and Chaining. In
DASFAA, pages 420–436, 2006.

[25] G. Nuckolls. Verified Query Results from Hybrid
Authentication Trees. In DBSec, pages 84–98, 2005.

[26] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
Completeness of Relational Query Results in Data
Publishing. In ACM SIGMOD, pages 407–418, 2005.

[27] H. Pang and K.-L. Tan. Authenticating Query Results in
Edge Computing. In IEEE ICDE, pages 560–571, 2004.

[28] S. Papadopoulos, Y. Yang, and D. Papadias. CADS:
Continuous Authentication on Data Streams. In VLDB, pages
135–146, 2007.

[29] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[30] D. Salomon. Prefix Compression of Sparse Binary Strings.
Crossroads, 6(3):22–25, 2000.

[31] SHA. Secure Hashing Algorithm. NIST. FIPS 180-2, 2001.
[32] The Case for Elliptic Curve Cryptography. National Security

Agency. http://www.nsa.gov/ia/industry/
crypto elliptic curve.cfm.

