
Segment-Based Recovery: Write-ahead logging revisited

Russell Sears
UC Berkeley

sears@cs.berkeley.edu

Eric Brewer
UC Berkeley

brewer@cs.berkeley.edu

Although existing write-ahead logging algorithms scale to
conventional database workloads, their communication and
synchronization overheads limit their usefulness for modern
applications and distributed systems. We revisit write-ahead
logging with an eye toward finer-grained concurrency and an
increased range of workloads, then remove two core assump-
tions: that pages are the unit of recovery and that times-
tamps (LSNs) should be stored on each page.

Recovering individual application-level objects (rather than
pages) simplifies the handing of systems with object sizes that
differ from the page size.

We show how to remove the need for LSNs on the page,
which in turn enables DMA or zero-copy I/O for large ob-
jects, increases concurrency, and reduces communication be-
tween the application, buffer manager and log manager. Our
experiments show that the looser coupling significantly re-
duces the impact of latency among the components. This
makes the approach particularly applicable to large scale dis-
tributed systems, and enables a “cross pollination” of ideas
from distributed systems and transactional storage.

However, these advantages come at a cost; segments are
incompatible with physiological redo, preventing a number
of important optimizations. We show how allocation en-
ables (or prevents) mixing of ARIES pages (and physiologi-
cal redo) with segments. We present an allocation policy that
avoids undesirable interactions that complicate other combi-
nations of ARIES and LSN-free pages, and then present a
proof that both approaches and our combination are correct.

Many optimizations presented here were proposed in the
past. However, we believe this is the first unified approach.

1. INTRODUCTION
Transactional recovery is at the core of most durable stor-

age systems, such as databases, journaling filesystems, and a
wide range of web services and other scalable storage archi-
tectures. Write-ahead logging algorithms from the database
literature were traditionally optimized for small, concurrent,
update-in-place transactions, and later extended for larger

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

objects such as images and other file types.
Although many systems, such as filesystems and web ser-

vices, require weaker semantics than relational databases,
they still rely upon durability and atomicity for some infor-
mation. For example, filesystems must ensure that meta-
data (e.g. inodes) are kept consistent, while web services
must not corrupt account or billing information.

In practice, this forces them to provide recovery for some
subset of the information they handle. Many such systems
opt to use special purpose ad hoc approaches to logging and
recovery. We argue that database-style recovery provides
a conceptually cleaner approach than such approaches and
that, with a few extensions, can more efficiently address a
wide range of workloads and trade off between full ACID
and weaker semantics.

Given these broader goals, and roughly twenty years of
innovation, we revisit the core of write-ahead logging. We
present segment-based recovery, a new approach that pro-
vides more flexibility and higher concurrency, enables dis-
tributed solutions, and that is simple to implement and rea-
son about.

In particular, we revisit and reject two traditional assump-
tions about write-ahead logging:

• The disk page is the basic unit of recovery.

• Each page contains a log-sequence number (LSN).

This pair of assumptions permeates write-ahead logging
from at least 1984 onward [7], and is codified in ARIES [26]
and in early books on recovery [2]. ARIES is essentially a
mechanism for transactional pages: updates are tracked per
page in the log, a timestamp (the LSN) is stored per page,
and pages can be recovered independently.

However, applications work with variable-sized records or
objects, and thus there may be multiple objects per page or
multiple pages per object. Both kinds of mismatch intro-
duce problems, which we cover in Section 3. Our original
motivation was that having an LSN on each page prevents
use of contiguous disk layouts for multi-page objects. This
is incompatible with DMA (zero-copy I/O), and worsens as
object sizes increase over time.

Presumably, writing a page to disk was once an atomic
operation, but that time has long passed. Nonetheless, tra-
ditional recovery stores the LSN in the page so it can be
atomically written with the data [2, 5]. Several mechanisms
have been created to make this assumption true with mod-
ern disks [8, 31, 34] (Section 2.1), but disk block atomicity is
now enforced rather than inherent and thus is not a reason
per se to use pages as the unit of recovery.



We present an approach that is similar to ARIES, but
that works at the granularity of application data. We re-
fer to this unit of recovery as a segment: a set of bytes that
may span page boundaries. We also present a generalization
of segment-based recovery and ARIES that allows the two
to coexist. Aligning segment boundaries with higher-level
primitives simplifies concurrency and enables new optimiza-
tions, such as zero-copy I/O for large objects.

Our distinction between segments and pages is similar to
that of computer architecture. Our segments differ from
those in architecture in that we are using them as a mecha-
nism for recovery rather than for protection. Pages remain
useful both for space management and as the unit of transfer
to and from disk. Pages and segments work well together (as
in architecture), and in our case preserve compatibility with
conventional page-oriented data structures such as B-trees.

Our second contribution is to show how to use segment-
based recovery to eliminate the need for LSNs on pages.
LSN-free pages facilitate multi-page objects and, by making
page timestamps implicit, allow us to reorder updates to the
same page and leverage higher-level concurrency.

However, segment-based redo is restricted to blind writes:
operations that do not examine the pages they modify. Typ-
ically, blind writes either zero out a range or write an array
of bytes at an offset. In contrast, ARIES redo examines the
contents of on-disk pages and supports physiological redo.
Physiological redo assumes that each page is internally con-
sistent, and stores headers on each page. This allows the
system to reorganize the page then write back the update
without generating a log entry. This is especially important
for B-trees, which frequently consolidate space within pages.
Also, with carefully ordered page write back, physiological
operations make it possible to rebalance B-tree nodes with-
out logging updates.

Third, we present a simple proof that segment-oriented
recovery and ARIES are correct. We document the trade
offs between page- and segment-oriented recovery in greater
detail and show how to build hybrid systems that migrate
pages between the two techniques. The main challenge in
the hybrid case is page reallocation. Surprisingly, allocators
have long-plagued implementers of transactional storage.

Finally, segment-oriented recovery enables a number of
novel distributed recovery architectures that are hindered by
the tight coupling of components required by page-oriented
recovery. The distributed variations are quite flexible and
enable recovery to be a large-scale distributed service.

2. WRITE-AHEAD LOGGING
Recovery algorithms are often categorized as either update-

in-place or based on shadow copies. Shadow copy mecha-
nisms work by writing data to a new location, syncing it to
disk and then atomically updating a pointer to point to the
new location. This works reasonably well for large objects,
but incurs a number of overheads due to fragmentation and
disk seeks. Write-ahead logging provides update-in-place
changes: a redo and/or undo log entry is written to the log
before the update-in-place so that it can be redone or un-
done in case of a crash. Write-ahead logging is generally
considered superior to shadow pages [4].

ARIES and other modern transactional storage algorithms
provide steal/no-force recovery [15]. No-force means that the
page need not be written back on commit, because a redo
log entry can recreate the page during recovery should it

get lost. This avoids random writes during commit. Steal
means that the buffer manager can write out dirty pages, as
long as there is a durable undo log entry that can recreate
the overwritten data after an abort/crash. This allows the
buffer manager to reclaim buffer space even from in-progress
transactions. Together, they allow the buffer manager to
write back pages before (steal) or after (no-force) commit as
convenient. This approach has stood the test of time and
underlies a wide range of commercial databases.

The primary disadvantage of steal/no-force is that it must
log undo and redo information for each object that is up-
dated. In ARIES’ original context (relational databases)
this was unimportant, but as disk sizes increased, large ob-
jects became increasingly common and most systems in-
troduced support for steal/force updates for large objects.
Steal/force avoids redo logging. If the write goes to newly
allocated (empty) space, it also avoids undo logging. In some
respect, such updates are simply shadow pages in disguise.

2.1 Atomic Page Writes?
Hard disks corrupt data in a number of different ways,

each of which must be dealt with by storage algorithms.
Although segment-based recovery is not a panacea, it has
some advantages over page-based techniques. Errors such
as catastrophic failures and reported read and write errors
are detectable. Others are more subtle, but nonetheless
need to be handled by storage algorithms. Silent data cor-
ruption occurs when a drive read does not match a drive
write. In principle, checksumming in modern hardware pre-
vents this from happening. In practice, marginal drive con-
trollers and motherboards may flip bits before the check-
sum is computed, and drives occasionally write valid check-
summed data to the wrong location. Checksummed page
offsets often allow such errors to be detected [8]. However,
since the drive exhibits arbitrary behavior in these circum-
stances, the only reliable repair technique, media recovery,
is quite expensive, and starts with a backup checkpoint of
the page. It then applies every relevant log entry that was
generated after the checkpoint was created.

A second, more easily handled, set of problems occurs not
because of what data the drive stores, but when that data
reaches disk. If write caching is enabled, some operating sys-
tems (such as Linux) return from synchronous writes before
data reaches the platter, violating the write-ahead invari-
ant [28]. This can be addressed by disabling write caching,
adding an uninterruptable power supply, or by using an op-
erating system that provides synchronous writes.

However, even synchronous writes do not atomically up-
date pages. Two solutions to this problem are torn page
detection [31], which writes the LSN of the page on each
sector and doublewrite buffering [34], which, in addition to
the recovery log, maintains a second write-ahead log of all
requests issued to the hard disk. Torn page detection has
minimal log overhead, but relies on media recovery to re-
pair the page, while doublewrite buffering avoids media re-
covery, but greatly increases the number of bytes logged.
Doublewrite buffering also avoids issuing synchronous seek
requests, giving the operating system and hard drive more
freedom to schedule disk head movement.

Assuming sector writes are atomic, segment-based recov-
ery’s blind writes repair torn pages without resorting to me-
dia recovery or introducing additional logging overhead (be-
yond preventing the use of physiological logging).



47 A1 47 A2 47 A3 47 A4 47 A5 47 A6

LSNs

Application object A

A’s data spread across consecutive pages

Figure 1: Per page LSNs break up large objects.

pin page
get latch
newLSN =

log.write(redo)
update pages
page LSN = newLSN
release latch

unpin page

LSN 262 A B

marshal

Object A Object B

marshal

time

263: Update A
 1

265: Update A
 2

267: Update A
 3

264: Update B
 1

266: Update B
 2

268: Update B
 3

(a) (b)

Figure 2: (a) Record update in ARIES. Pinning the page pre-
vents the buffer manager from stealing it during the update,
while the latch prevents races on the page LSN among inde-
pendent updates. (b) A sequence of updates to two objects
stored on the same page. With ARIES, A1 is marshaled, then
B1, A2 and so on. Segments avoid the page latch, and need
only update the page once for each record.

3. PAGE-ORIENTED RECOVERY
In the next four subsections, we examine the fundamental

constraints imposed by making pages the unit of recovery.
A core invariant of page-oriented recovery is that each page
is self-consistent and marked with an LSN. Recovery uses
the LSN to ensure that each redo entry is applied exactly
once.

3.1 Multi-page Objects
The most obvious limitation of page-oriented recovery is

that it is awkward when the real record or object is larger
than a page. Figure 1 shows a large object A broken up into
six consecutive pages. Even though the pages are consecu-
tive, the LSNs break up the continuity and require complex
and expensive copying to reassemble the object on every
read and spread it out on every write (analogous to segmen-
tation and reassembly into packets in networking).

Segment-oriented recovery eschews per page LSNs, allow-
ing it to store the object as a contiguous segment. This
enables the use of DMA and zero-copy I/O, which have had
significant impact in filesystems [9, 32].

3.2 Application/Buffer Interaction
Figure 2(a) shows the typical sequence for updating a sin-

gle record on a page, which keeps the on-page version in
sync with the log by updating them together atomically. In
a traditional database, in which the page contains a record,
this is not a problem; the in-memory version of the page is
the natural place to keep the current version.

However, this creates problems when the in-memory page
is not the natural place to keep the current version, such
as when an application maintains its own working copies,
and stores them in the database via either marshaling or an
object-relational mapping [14, 16]. Other examples include

BerkeleyDB [30], systems that treat relational databases
as “key-value” storage [34], and systems that provide such
primitives across many machines [6, 22].

Figure 2(b) shows two independent objects, A and B, that
happen to share the same page. For each update, we would
like to generate a log entry and update the object without
having to serialize each update back onto the page. In the-
ory, the log entries should be sufficient to roll forward the
object from the page as is. However, with page-oriented re-
covery this will not work. Assume A has written the log
entry for A1 but has not yet updated the page. If B, which
is completely independent, decides to then write the log en-
try for B1 and update the page, the LSN will be that of B’s
entry. Since B1 came after A1, the LSN implies that the
changes from A1 are reflected in the page even though they
are not, and recovery may fail.

In essence, the page LSN is imposing artificial ordering
constraints between independent objects: updates from one
object set the timestamp of the other. This is essentially
write through caching: every update must be written all the
way through to the page.

What we want is write back caching: updates affect only
the cache copy and we need only write the page when we
evict the object from the cache. One solution is to store a
separate LSN with every object. However, when combined
with dynamic allocation, this prevents recovery from deter-
mining whether or not a set of bytes contains an LSN (since
the usage varies over time). This leads to a second write-
ahead log, incurring significant overhead [3, 21].

Segment-oriented recovery avoids this and supports write
back caching (Section 7.2). In the case above, the page has
different LSNs for A and B, but neither LSN is explicitly
stored. Instead, recovery estimates the LSNs and recovers
A and B independently; each object is its own segment.

3.3 Log Reordering
Having an LSN on each page also makes it difficult to

reorder log entries, even between independent transactions.
This interferes with mechanisms that prioritize important
requests, and as with the buffer manager, tightly couples
the log to the application, increasing synchronization and
communication overheads.

In theory, all independent log entries could be reordered,
as long as the order within objects and within transactions
(e.g. the commit record) is maintained. However, in gen-
eral even updates in two independent transactions cannot
be reordered because they might share pages. Once an LSN
is assigned to log entries on a shared page, the order of the
independent updates is fixed.

With segment-oriented recovery we do not need to even
know the LSN at the time of a page update, and can as-
sign LSNs later if we choose. In some cases we assign LSNs
at the time of writing the log to disk, which allows us to
place high-priority entries at the front of the log buffer. Sec-
tion 7.3 presents the positive impact this has on high-priority
transactions. Before journaling was common, local filesys-
tems supported such reordering. The Echo [23] distributed
filesystem preserved these optimizations by layering a cache
on top of a no-steal, non-transactional journaled filesystem.

Note that for dependent transactions, higher-level locks
(isolation) constrain the order, and the update will block
before it creates a log entry. Thus we are reordering trans-
actions only in ways that preserve serializability.



3.4 Distributed recovery
Page-oriented recovery leads to a tight coupling between

the application, the buffer manager and the log manager.
Looking again at Figure 2, we note that the buffer manager
must hold the latch across the call to the log manager so that
it can atomically update the page with the correct LSN.

The tight coupling might be fine on a traditional single
core machine, but it leads to performance issues when dis-
tributing the components to different machines and to a
lesser extent, to different cores. Segment-oriented recovery
enables simpler and looser coupling among components.

• Write back caching reduces communication between
the buffer manager and application, since the commu-
nication occurs only on cache eviction.

• There is no need to latch the page during an update,
since there is no shared state. (Races within one object
are handled by higher-level locking.) Thus calls to the
buffer manager and log manager can be asynchronous,
hiding network latency.

• The use of natural layouts for large objects allows
DMA and zero-copy I/O in the local case. In the dis-
tributed case, this allows application data to be writ-
ten without copying the data and the LSNs to the same
machine.

In turn, the ability to distribute these components means
that they can be independently sized, partitioned and repli-
cated. It is up to the system designer to choose partitioning
and replication schemes, which components will coexist on
the same machines, and to what extent calls to the under-
lying network primitives may be amortized and reordered.

This allows for very flexible large-scale write-ahead log-
ging as a service for cloud computing, much the same way
that two-phase commit or Paxos [18] are useful services.

3.5 Benefits from Pages
Pages provide benefits that complement segment-based

approaches. They provide a natural unit for partitioning
storage for use by different components; in particular, they
enable the use of page headers that describe the layout of
information on disk. Also, data structures such as B-trees
are organized along page boundaries. This guarantees good
locality for data that is likely to be accessed as a unit.

Furthermore, some database operations are significantly
less expensive with page-oriented recovery. The most im-
portant is page compaction. Systems with atomic pages can
make use of physiological updates that examine metadata,
such as on-page tables of slot offsets. To compact such a
page, page-based systems simply pin the page, defragment
the page’s free space, then unpin the page. In contrast,
segment-based systems cannot rely on page metadata at
redo and record such modifications in the log.

It may also make sense to build a B-tree using pages for
internal nodes, and segments for the leaves. This would al-
low index nodes to benefit from physiological logging, but
would provide high concurrency updates, reduced fragmen-
tation and the other benefits of segments for the operations
that read and write the data (as opposed to the keys) stored
in the tree.

Page-oriented recovery simplifies the buffer manager be-
cause all pages are the same size, and objects do not span

pages. Thus, the buffer manager may place a page at any
point in its address space, then pass that pointer to the code
interested in the page. In contrast, segment boundaries are
less predictable and may change over time. This makes it
difficult for the buffer manager to ensure that segments are
contiguous in memory, although this problem is less seri-
ous with modern systems and large address spaces. Because
pages and segments have different advantages, we are careful
to allow them to safely coexist.

4. SEGMENT-BASED RECOVERY
This section provides an overview of ARIES and segments,

and sketches a possible implementation of segment-based
storage. This implementation is only one variant of our ap-
proach, and is designed to highlight the changes made by our
proposal, not explain how to best use segments. Section 5
presents segments in terms of invariants that encompass a
wide range of implementations.

Write-ahead logging systems consist of four components:

• The log file contains an in-order record of each oper-
ation. It consists of entries that contain an LSN (the
offset into the log), the id of the transaction that gen-
erated the entry, which segment (or object) the entry
changed, a boolean to show if the segment contains
an LSN, and enough information to allow the modi-
fication to be repeated (we treat this as an operation
implemented by the entry, e.g., entry->redo()). Re-
cent entries may still reside in RAM, but older entries
are stored on disk. Log truncation limits the log’s size
by erasing the earliest entries once they are no longer
needed.

• The application cache is not part of the storage imple-
mentation. Instead, it is whatever in-memory repre-
sentation the application uses to represent the data.
It is often overlooked in descriptions of recovery algo-
rithms; in fact, database implementations often avoid
such caches entirely.

• The buffer manager keeps copies of disk pages in main
memory. It provides an API that tracks LSNs and ap-
plies segment changes from the application cache to
the buffers. In traditional ARIES, it presents a coher-
ent view of the data. Coherent1 means that changes
are reflected in log order, which means that reads from
the buffer manager immediately reflect updates per-
formed by the application. Segment-based recovery
allows applications to log updates (and perhaps up-
date their own state), then defer and reorder the writes
to the buffer manager. This leads to incoherent buffer
managers that may return stale, contradictory data to
the application. It is up to the application to decide
when it is safe to read recently updated segments.

• The page file backs the buffer manager on disk and is
incoherent. ARIES (and our example implementation)
manipulates entire pages at a time; though segment-
based systems could manipulate segments instead.

In page-based systems, each page is exactly one segment.
Segment-based systems relax this and define segments to

1Coherent refers to a set of invariants analogous to those
ensured by cache coherency protocols.



if(s->lsn volatile <= log stable) {
write(s);
s->lsn stable = infinity;
s->lsn volatile = 0;

}

s->lsn stable =
min(s->lsn stable, entry->lsn);

s->lsn volatile =
max(s->lsn volatile, entry->lsn);

entry->redo(s);

op lsn = min<lsn of current operations>;
t lsn = min<start lsn of current xacts>;
s lsn = min<segments->lsn stable>;

log->truncate(min(op lsn,t lsn,s lsn));

(a) Flush segment s to disk (b) Apply log entry to segment s (c) Truncate log

Figure 3: Runtime operations for a segmented buffer manager. Page based buffer managers are identical, except their operations
work against pages, causing (b) to split updates into multiple operations.

be arbitrary sets of individually updatable bytes; flushing
a segment to disk cannot inadvertently change bytes out-
side the segment, even during a crash. There may be many
higher-level objects per segment (records in a B-tree node)
or many segments per object (arbitrary-length records). In
both cases, storage deals with updates to one segment at a
time.

Crucially, segments decouple application primitives (redo
entries) from buffer management (disk operations). Regard-
less of whether the buffer manager provides a page or seg-
ment API, the data it contains is organized in terms of seg-
ments that represent higher level objects and are backed by
disk sectors.

With a page API, updates to segments that span pages pin
each page, manipulate a piece of the segment, then release
the page. This works because blind writes will repair any
torn (partially updated) segments, and because we assume
that higher level code will latch segments as they are being
written.

The key idea is to use segments to decouple updates from
pages, allowing the application to choose the update gran-
ularity. This allows the requests to be reordered without
regard to page boundaries.

The primary changes to forward operation relate to LSN
tracking. Figure 3 describes a buffer manager that works
with segments; paged buffer managers are identical, except
that LSN tracking and other operations are per page, rather
than per segment. s->lsn stable is the first LSN that
changed the in-memory copy of a page; s->lsn volatile

is the latest such value. If a page contains an LSN, then
flushing it to disk sets the on-disk LSN to s->lsn volatile.

If updates are applied in order, s->lsn stable will only
be changed when the page first becomes dirty. However,
with reordering every update must check the LSN.

Write-ahead is enforced at page flush, which compares
s->lsn volatile to log stable, the LSN of the most recent
log entry to reach disk.

Truncation uses s->lsn stable to avoid deleting log en-
tries that recovery would need in order to bring the on-disk
version of the page up-to-date. Because of reordering, trun-
cation must also consider updates that have not reached the
buffer manager. It also must avoid deleting undo entries
that were produced by incomplete transactions.

4.1 Recovery
Like ARIES, segment-based recovery has three phases:

1. Analysis examines the log and constructs an estimate
of the buffer manager’s contents at crash. This allows
later phases to ignore portions of the log.

2. Redo brings the system back into a state that existed
before crash, including any incomplete transactions.
This process is called repeating history.

3. Undo rolls back incomplete transactions and logs com-
pensation records to avoid redundant work due to mul-
tiple crashes.

Also like ARIES, our approach supports steal/no-force. The
actions performed by log entries are constrained to physical
redo, which can be applied even if the system is inconsistent,
and logical undo, which is necessary for concurrent transac-
tions. Logical undo allows transactions to safely roll back
after the underlying data has changed, such as when another
transaction’s B-tree insertion has rebalanced a node.

Hybrid redo

foreach(redo entry) {
if(entry->clears_contents())

segment->corrupt = false;
if(entry->is_lsn_free()) {

entry->redo(segment);
} else if(segment->LSN < entry->LSN) {

segment->LSN = entry->LSN
error = entry->redo(segment);
if(error) segment->corrupt = true;

}
}

Unlike ARIES, which uses segment->LSN to ensure that
each redo is applied exactly once, recovery always applies
LSN-free redos, guaranteeing they reach the segment at-
least-once. Hybrid systems, which allow ARIES and seg-
ments to coexist, introduce an additional change; they allow
redo to temporarily corrupt pages.

This happens because segments store application data
where ARIES would store an LSN and page header, leaving
redo with no way to tell whether or not to apply ARIES-
style entries. To solve this problem, hybrid systems zero out
pages that switch between the two methods:

Switch page between ARIES and segment-based recovery

log(transaction id, segment id, new page type);
clear_contents(segment);
initialize_page_header(segment, new page type);

This ensures that recovery repairs any corruption caused
by earlier redos.

4.2 Examples
We now present pseudocode for segment-based indexes

and large objects.

Insert value into B-Tree node

make in-memory preimage of page
insert value into M’th of N slots
log (transaction id, page id, binary diff of page)

Segment-based indexes must perform blind writes during
redo. Depending on the page format and fragmentation,



Page 1Tree node

Slot 1 Off 4 Slot 2 Off 8

Slot 3 Off 13

01234567890123456789
....foo2bar4.baz3...

Page 1Tree node

Slot 1 Off 4 Slot 2 Off 8

Slot 3 Off

01234567890123456789
    foo2bar4.baz3...

0 Slot 4 Off 13

bat5

Figure 4: An internal tree node, before and after the pair
(key=“bat”, page=5) is inserted.

Rec 1 (cont'd)

Page 6

Rec 0
(7, 0, 100)
(7, 100, 4096)
(8, 100, 200)

Page 7 Page 8

Rec 1 Rec 2(page, offset, size)

Figure 5: Records stored as segments. Colors correspond to
(non-contiguous) bytes written by a single redo entry.

these entries could be relatively compact, as in Figure 4, or
they could contain a preimage and postimage of the entire
page, as would be the case if we inserted a longer key in
Figure 4. In contrast, a conventional approach would simply
log the slot number and the new value.

B-Tree concurrency is well-studied [20, 24], and largely
unaffected by our approach. However, blind writes can in-
cur significantly higher log overhead than physiological op-
erations, especially for index operations. Fortunately, the
two approaches coexist.

Update N segments

min_log = log->head

Spawn N parallel tasks; for each update:
log (transaction id, offset, preimage, postimage)

Spawn N parallel tasks; for each update:
pin and latch segment, s
update s
unlatch s
s->lsn_stable = min(s->lsn_stable, min_log);

Wait for the 2N parallel tasks to complete
max_log = log->head

Spawn parallel tasks; for each segment, s:
s->lsn_volatile = max(s->lsn_volatile, max_log);
unpin s;

The latch is optional, and prevents concurrent access to
the segment.2 The pin prevents page flushes from violating
the write-ahead invariant before lsn volatile is updated.
A system using the layout in Figure 5 and a page-based
buffer manager would pin pages rather than segments and
rely on higher level code to latch the segment.

Since the segments may happen to be stored on the same
page, conventional approaches apply the writes in order, al-
ternating between producing log entries and updating pages.
Section 7 shows that this can incur significant overhead.

5. RECOVERY INVARIANTS
This section presents segment-based storage and ARIES

in terms of first-order predicate logic. This allows us to

2We assume s->lsn stable and s->lsn volatile are up-
dated atomically.

prove the correctness of concurrent transactions and alloca-
tion. Unlike Kuo’s proof [17] for ARIES, we do not present
or prove correct a set of mechanisms that maintain our in-
variants, nor do we make use of I/O automata. Also unlike
that work, we cover full, concurrent transactions and latch-
ing; two often misunderstood aspects of ARIES that are
important to system designers.

5.1 Segments and objects
This paper uses the term object to refer to a piece of data

that is written without regard to the contents of the rest
of the database. Each object is physically backed by a set
of segments: atomically logged, arbitrary length regions of
disk. Segments are stored using machine primitives3; we as-
sume the hardware is capable of updating segments indepen-
dently, perhaps with the use of additional mechanisms. Like
ARIES, segment-based storage is based on multi-level recov-
ery [33], which imposes a nested structure upon objects; the
nesting can be exploded to find all of the segments.

Let s denote an address, or set of addresses, i.e., a seg-
ment, and l denote the LSN of a log entry (an integer).
Then, define sl to be the value of that segment after apply-
ing a prefix of the log to the initial value of s:

sl = logl(logl−1(...(log1(s0))))

Let smem
t be the value stored in the buffer manager at time t

or ⊥ if the segment is not in the buffer manager. Let sstable
t

be the value on disk. If smem
t = sstable

t or smem
t = ⊥, then

we say s is clean. Otherwise, s is dirty.
Finally, scurrent

t is the value stored in s:

scurrent
t =


smem

t if smem
t 6= ⊥

sstable
t otherwise

Systems with coherent buffer managers maintain the in-
variant that scurrent

t = sl(t), where l(t) is the LSN of the
most recent log entry at time t. Incoherent systems allow
scurrent

t to be stale, and maintain the weaker invariant that
∃ l′ ≤ l(t) : scurrent

t = sl′ .
A page is a range of contiguous bytes with pre-determined

boundaries. Although pages contain multiple application-
level objects, if they are updated atomically then recovery
treats them as a single segment/object. Otherwise, for the
purposes of this section, we treat them as an array of single-
byte segments. A record is an object that represents a simple
piece of data, such as a tuple. Other examples of objects are
indexes, schemas, or anything else stored by the system.

5.2 Coherency vs. Consistency
We define the set:

LSN(O) = {l : Ol = O} (1)

to be the set of all LSNs l where Ol was equal to some
version, O, of the object. With page-oriented storage, each
page s contains an LSN, s.lsn. These systems ensure that
s.lsn ∈ LSN(s), usually by setting it to the LSN of the log
entry that most recently modified the page. If s is not a
page, or does not contain an explicit LSN, then s.lsn = ⊥.

Object O is corrupt (O = >) if it is a segment that never
existed during forward operation, or if it contains a corrupt
object:

∃ segment s ∈ O : ∀ LSN l, s 6= sl (2)
3We take the term machine from the virtualization litera-
ture.



Pages

Segments

Objects

A1 B2 C0 D4 E5

TornCoherent ?

Coherent

CoherentCoherent

Redo Log 1: Wr(A) 2: Wr(B) 3: Wr(C) 4: Wr(D) 5: Wr(E)

Figure 6: State of the system before redo; the data is inco-
herent (torn). Subscripts denote the most recent log entry to
touch an object; Segment C is missing update 3. For the top
level object LSN(O) = {5}. Segment B, the nested object
and the coherent page have LSN(O) = {2, 3, 4, 5}. For the
torn page, LSN(O) = ∅.

For the systems we consider, corruption only occurs due to
faulty hardware or software, not system crashes. Repairing
corrupted data is expensive, and requires access to a backed-
up checkpoint of the database and all log entries generated
since the checkpoint was taken. The process is analogous to
recovery’s redo phase; we omit the details.

Instead, the recovery algorithms we present here deal with
two other classes of problems: torn (incoherent) data, and
inconsistent data. An object O is torn if it is not corrupt and
LSN(O) = ∅. In other words, the object was partially writ-
ten to disk. Figure 6 shows some examples of torn objects
as they might exist at the beginning of recovery.

An object O is coherent when it is in a state that arose
during forward operation (perhaps mid-transaction):

∃ LSN l : ∀ object o ∈ O, l ∈ LSN(o) (3)

Lemma 1. O is coherent if and only if it is not torn.

Proof. To show

(∃ l : ∀ s ∈ O, l ∈ LSN(s)) ⇐⇒ (∃ l′ ∈ LSN(O))

choose l′ = l. For the⇒ case, each s is equal to sl so O must
be equal to Ol. By definition, l ∈ LSN(Ol). The remaining
case is analogous.

Even though “torn” and “incoherent” are synonyms, we fol-
low convention and reserve “torn” for discussions of partially
written disk pages (or segments). We use “incoherent” when
talking about multi-segment objects and the buffer manager.

An object is consistent if it is coherent at an LSN that was
generated when there were no in-progress modifications to
the object. Like objects, modifications are nested; a modi-
fication is in-progress if some of its sub-operations have not
yet completed. As a special case; a transaction is an op-
eration over the database; an ACID database is consistent
when there are no in-progress transactions.

Physical operations can be applied when the database is
incoherent, while logical operations rely on object consis-
tency. For example, overwriting a byte at a known offset
is a physical operation and always succeeds; traversing a
multi-page index and inserting a key is a logical operation.
If the index is inconsistent, it may contain partial updates
normally protected by latches, and the traversal may fail.

Next, we explain how redo uses physical operations to
bring the database to a coherent, but inconsistent state.

This is not quite adequate for undo, which makes use of
logical operations that can only be applied to consistent ob-
jects. Section 5.6 describes a runtime latching and logging
protocol that guarantees undo’s logical operations only en-
counter consistent objects.

5.3 The log and page files
Log entries are identified by an LSN, e.lsn, and specify

an operation over a particular object, e.object, or segment,
e.segment. If the entry modifies a segment, it applies a
physical (or, in the case of ARIES, physiological) operation;
if not, it applies a logical operation.

Log entries are associated with a transaction, e.tid, which
is a set of operations that should be applied to the database
in an atomic, durable fashion. The state of the log also in-
cludes three special LSNs: logtrunc

t , the beginning of the se-
quence that is stored on disk; logstable

t , the last entry stored
on disk; and logvolatile

t , the most recent entry in memory.

5.4 Write-ahead and checkpointing
Write-ahead ensures that updates reach the log file before

they reach the page file:

∀ segment s : ∃ l ∈ LSN(sstable
t ) : l ≤ logstable

t (4)

Log truncation and checkpointing ensure that all current
information can be reconstructed from disk:

∀ segment s, ∃ l ∈ LSN(sstable
t ) : l ≥ logtrunc

t (5)

which ensures that the version of each object stored on disk
existed at some point during the range of LSNs covered
by the log.4 Our proposed recovery scheme weakens this
slightly; ∀s that violate Equation 4 or 5:
∃ redo e : e.lsn ∈ {l : logtrunc

t ≤ l ≤ logstable
t } :

e.lsn ∈ LSN(e(>)) (6)

Where e(>) is the result of applying e to a corrupt segment.
This will be needed for hybrid recovery (Section 6.2).

5.5 Three-pass recovery
Recall that recovery performs three passes; the first, anal-

ysis, is an optimization that determines portions of the log
may be safely ignored.

The second pass, redo, is modified by segment based re-
covery. In both systems, the contents of the buffer manager
are lost at crash, so at the beginning of redo, t0:

∀ segment s : scurrent
t0 = sstable

t0

It then applies redo entries in log order, repeating history,
and bringing the system into a coherent but perhaps incon-
sistent state. This maintains the following invariant:

∀ segment s, ∃ l ∈ LSN(scurrent
t ) : l ≥ log cursort(s) (7)

where log cursort(s) is an LSN associated with the segment
in question. During redo, log cursort(s) monotonically in-
creases from logtrunc

t to logstable
t . Redo is parallelizable; each

segment can be recovered independently. This allows online
media recovery, which rebuilds corrupted pages by applying
the redo log to a backed up copy of the database.

Redo assumes that the log is complete; ∀ segment s, lsn l,

sl−1 = sl ∨ (∃ e : e.lsn = l ∧ e.segment = s) (8)

4For rollback to succeed, truncation must also avoid deleting
entries from in-process transactions.



Either a segment is unchanged at a particular timestep, or
there is a redo entry for that object at that timestep.

We now show that ARIES and segment-based recovery
maintain the redo invariant (Equation 7). The hybrid ap-
proach is more complex and relies on allocation policies (Sec-
tion 6.2).

5.5.1 ARIES redo strategy
ARIES applies a redo entry e with l.lsn = log cursor(s)

to a segment s = e.segment if:

e.lsn > s.lsn

ARIES is able to apply this strategy because it stores an
LSN from LSN(s) with each segment (which is also a fixed-
length page); therefore, s.lsn is defined. Assuming the redo
log is complete, this policy maintains the redo invariant.

This redo strategy maintains the further invariant that,
before it applies e, e.lsn−1 ∈ LSN(s); log entries are always
applied to the same version of a segment.

5.5.2 Segment-based redo strategy
Our proposed algorithm always applies e. Since redo en-

tries are blind writes, this yields an s such that e.lsn ∈
LSN(s), regardless of the original value of the segment.
Combined with completeness, this maintains the redo in-
variant.

5.5.3 Proof of redo’s correctness

Theorem 1. At the end of redo, the database is coherent.

Proof. From the definition of coherency (Equation 3),
we need to show:

∃ LSN l : ∀ object O, l ∈ LSN(O)

By the definition of LSN(O) and an object, this is equivalent
to:

∃ LSN l : ∀ segment s ∈ O, l ∈ LSN(s)

Equations 4 and 7 ensure that:

∀s,∃ l ∈ LSN(s) : logtrunc
t ≤ log cursort(s) ≤ l ≤ logstable

t

At the end of redo, ∀s, log cursort(s) = l = logstable
t , al-

lowing us to reorder the universal and existential quanti-
fiers.

The third phase of recovery, undo assumes that redo leaves
the system in a coherent state. Since the database is co-
herent at the beginning of undo, we can treat transaction
rollbacks during recovery in the same manner as rollbacks
during forward operation. Next we prove rollback’s correct-
ness, concluding our treatment of recovery.

5.6 Transaction rollback
Multi-level recovery is compatible with concurrent trans-

actions and allocation, even in the face of rollback. This sec-
tion presents a special case of multi-level recovery: a simple,
correct logging and latching scheme (Figure 7).

Like any other concurrent primitive, actions that manip-
ulate transactional data temporarily break then restore var-
ious invariants as they execute. While such invariants are
broken, other transactions must not observe the intermedi-
ate, inconsistent state.

Segments

Objects

A1 B2 C3 D4 E0

Consistent

CoherentInconsistent

Redo Log 1: Wr(A) 2: Wr(B) 3: Wr(C) 4: Wr(D) 5: Wr(E)

Crash

Undo Log 1: Wr(A) 2: Wr(B) 2.5: Revert Object 5: Wr(E)

= object / latch / undo boundary
1: Wr(A) = disabled log entry

Figure 7: State of the system before undo; the data is co-
herent, but inconsistent. At runtime, updates hold each latch
while manipulating the corresponding object, and release the
latch when they log the undo. This ensures that undo entries
never encounter inconsistent objects.

Recall that the definition of coherent (Equation 3) is based
on nestings of recoverable objects. One approach to con-
current transactions obtains a latch on each object before
modifying sub-objects, and then releases the latch before
returning control to higher level operations. Establishing a
partial ordering over the objects defines an ordering over the
latches, guaranteeing that the system will not deadlock due
to latch requests [13].

By construction, this scheme guarantees that all unlatched
objects have no outstanding operations, and are therefore
consistent. Atomically releasing latches and logging undo
operations ties the undo to a point in time when the object
was consistent; rollback ensures that undo operations will
only be applied at such times. This latching scheme is more
restrictive than necessary, but simplifies the implementation
of logical operations [29]. More permissive approaches [20,
24] expose object state mid-operation.

The correctness of this scheme relies on the semantics of
the undo operations. In particular, some are commutative
(inserting x and y into a hashtable), while others are not
(z := 1, z := 2). All operations from outstanding transac-
tions must be commutative:
∀ undo entry e, f : e.tid 6= f.tid,

o = e.object = f.object⇒ e(f(o)) = f(e(o)) (9)

To support rollback, we log a logical undo for each higher
level object update and a physical undo for each segment
update. Each registration of a higher level undo invalidates
lower level logical and physical undos, as does transaction
commit. Invalidated undos are treated as though they no
longer exist.5 In addition to the truncation invariant for redo
entries Equation 5, truncation waits for undo entries to be
invalidated before deleting them. This is easily implemented
by keeping track of the earliest LSN produced by ongoing
transactions.

This, combined with our latching scheme guarantees that
any violations of Equation 9 are due to two transactions
directly invoking two non-commutative operations. This is
a special case of write-write conflicts from the concurrency

5ARIES and segment-based recovery make use of logging
mechanisms such as nested top actions and compensation
log records to invalidate undo entries; we omit the details.



Log preimage Safety Reuse before commit
Free Alloc LSN Segment Other xact Same

1 Y Y Y Y Y
2 Y Y Y Y
3 XOR Y Y
4 Never Y Y

Figure 8: Allocation strategies.

control literature; in the absence of such conflicts, Equa-
tion 9 holds and the results of undo are unambiguous.

If we further assume that a concurrency control mech-
anism ensures the transactions are serializable, and if the
undos are indeed the logical inverse of the corresponding
forward operations, then rolling back a transaction places
the system in a state logically equivalent to the one that
would exist if the transaction were never initiated. This
comes from the commutativity property in Equation 9.

Although concurrent data structure implementations are
beyond the scope of this paper, there are two common ap-
proaches for dealing with lower-level conflicts. The first
raises the level of abstraction before undoing an operation.
For example, two transactions may update the same record
while inserting different values into a B-tree. As each oper-
ation releases its latch, it logs an undo that will invoke the
B-tree’s “remove()” method instead of directly restoring the
record. The second approach avoids lower-level conflicts.
For example, some allocators guarantee space will not be
reused until the transaction that freed the space commits.

6. ALLOCATION
The prior section treated allocation implicitly. A single

object named the “database” spanned the entire page file,
and allocation and deallocation were simply special opera-
tions over that object. In practice, recovery, allocation and
concurrency control are tightly coupled. This section de-
scribes some possible approaches and identifies an efficient
set that works with page- and segment-based recovery.

Transactional allocation algorithms must avoid unrecov-
erable states. In particular, reusing space or addresses that
were freed by ongoing transactions leads to deadlock when
those transactions rollback, as they attempt to reclaim the
resources that they released. Unlike a deadlock in forward
operation, deadlocks during rollback either halt the system
or lead to cascading aborts.

Allocation consists of two sets of mechanisms. The first
avoids unsafe conflicts by placing data appropriately and
avoiding reuse of recently released resources. Data place-
ment is a widely studied problem, though most discussions
focus on performance. The second determines when data is
written to log, ensuring that a copy of data freed by ongo-
ing transactions exists somewhere in the system. Figure 8
summarizes four approaches.

The first two strategies log preimages, incurring the cost
of extra logging; the fourth waits to reuse space until the
transaction that freed the space commits. This makes it
inappropriate for indexes and transactions that free space
for immediate reuse.

The third option (labeled “XOR”) refers to any differ-
ential logging [19] strategy that stores the new value as a
function of the old value. Although differential updates and
segment storage can coexist, differential page allocation is
incompatible with our approach.

Differential logging was proposed as a way of increasing
concurrency for main memory databases, and must apply
log entries exactly once, but in any order. In contrast, our
approach avoids the exactly once requirement, and is still
able to parallelize redo (though to a lesser extent).

Logging preimages allows other transactions to overwrite
the space that was taken up by the old object. This could
happen due to page compaction, which consolidates free
space on the page into a single region. Therefore, for pages
that support reorganization, logging preimages at dealloca-
tion is the simplest approach.

For entire pages, or segments with unchanging boundaries,
issues such as page compaction do not arise, so there is little
reason to log at deallocation; instead a transaction can log
preimages before reusing space it freed, or can avoid logging
preimages altogether.

6.1 Existing hybrid allocation schemes
Recall that, without the benefit of per page version num-

bers, there is no way for redo to ensure that it is updating
the correct version of a page. We could simply apply each
redo entry in order, but there is no obvious way to decide
whether or not a page contains an LSN. Inadvertently ap-
plying a redo to the wrong type of page corrupts the page.

Lotus Notes and Domino address the problem by record-
ing synchronous page flushes and allocation events in the
log, and adding extra passes to recovery [25]. The recovery
passes ensure that page allocation information is coherent
and matches the types of the pages that had made it to disk
at crash. They extended this to multiple legacy allocation
schemes and data types at the cost of great complexity [25].

Starburst records a table of current on-disk page maps in
battery-backed RAM, skipping the extra recovery passes by
keeping the appropriate state across crashes [4].

6.2 Correctness of hybrid redo
Here we prove Theorem 1 (redo’s correctness) for hybrid

ARIES and segment-based recovery. The hybrid alloca-
tor zeros out pages as they switch between LSN-free and
segment-based formats. Also, page-oriented redo entries
are only generated when the page contains an LSN, and
segment-oriented redos are only generated when the page is
LSN-free:

e.lsn free ⇐⇒ lsn free(e.segmente.lsn) (10)

Theorem 2. Hybrid redo leaves the database in a coher-
ent state

Proof. Equations 4 and 5 tell us each segment is coher-
ent at the beginning of recovery. Although lsn free(s) or
¬lsn free(s) must be true, redo cannot distinguish between
these two cases, and simply assumes the page starts in the
format it was in when the beginning of the redo log was writ-
ten.

In the first case, this assumption is correct and redo will
continue as normal for the pure LSN or LSN-free recovery
algorithm. It will eventually complete or reach an entry that
changes the page format, causing it to switch to the other
redo algorithm. By the correctness of pure LSN and LSN-
free redo (Section 5.5) this will maintain the invariant in
Equation 7 until it completes.

In the second case, the assumption is incorrect. By Equa-
tion 10, the stable version of the page must have a different



Figure 9: Time taken to transactionally update 10,000,000
int values. Write back reduces CPU overhead.

type than it did when the redo entry was generated. Never-
theless, redo applies all log entries to the page, temporarily
corrupting it. The write-ahead and truncation invariants,
and log completeness (Equations 4, 5, and 8) guarantee that
the log entry that changed the page’s format is in the redo
log. Once this entry, e, is encountered, it zeros out the page,
repairing the corruption and ensuring that e.lsn ∈ LSN(s),
(Equation 6). At this point, the page format matches the
current log entry, reducing this to the first case.

7. DISCUSSION AND EVALUATION
Our experiments were run on an AMD Athlon 64 Pro-

cessor 3000+ with a 1TB Samsung HD103UJ with write
caching disabled, running Linux 2.6.27, and Stasis r1156.

7.1 Zero-copy I/O
Most large object schemes avoid writing data to log, and

instead force-write data to pages at commit. Since the pages
contain the only copy of the data in the system, applying
blind writes to them would corrupt application data. In-
stead, we augment recovery’s analysis pass, which already
infers that certain pages are up-to-date. When a segment
is allocated for force-writes, analysis adds it to a known-
updated list, and removes it when the segment is freed.

This means that analysis’ list of known-updated pages is
now required for correctness, and must be guaranteed to fit
in memory. Fortunately, redo can be performed on a per
segment basis; if the list becomes too large, we partition the
database, then perform an independent analysis and redo
pass for each partition.

Zero-copy I/O complicates buffer management. If it is
desirable to bypass the buffer manager’s cache, then zero-
copy writes must invalidate cached pages. If not, then the
zero-copy primitives must be compatible with the buffer
managers’ memory layout. Once the necessary changes to
recovery and buffer management are made, we expect the
performance of large zero-copy writes to match that of ex-
isting file servers; increased file sizes decrease the relative
cost of maintaining metadata.

7.2 Write caching
Read caching is a fairly common approach, both in lo-

cal and distributed [10] architectures. However, distributed,
durable write caching is more difficult and we are not aware
of any commonly used systems.

Instead, each time an object is updated, it is marshaled
then atomically (and synchronously) sent to the storage
layer and copied to log and the buffer pool. This approach
wastes both memory and time [29]. Even with minimal mar-
shaling overheads, locating then pinning a page from the

Figure 10: CDF of transaction completion times with and
without log reordering.

buffer manager decreases memory locality and incurs extra
synchronization costs across CPUs.

To measure these costs, we extended Stasis with support
for segments within pages, and removed LSNs from the
header of such pages. We then built a simple application
cache. To perform an LSN-free write, we append redo/undo
entries to log, then update the application cache, causing
the buffer manager to become incoherent. Before shutdown,
we write back the contents of cache to the buffer manager.

To perform conventional write through, we do not set up
the cache and instead call Stasis’ existing record set method.

Because the buffer manager is incoherent, our optimiza-
tion provides no-force between the application cache and
buffer manager. In contrast, applications built on ARIES
force data to the buffer pool at each update instead of once
at shutdown. This increases CPU costs substantially.

The effects of extra buffer management overhead are no-
ticeable even in the single-threaded case; Figure 9 compares
the cost of durably updating 10,000,000 integers using trans-
actions of varying size.

For small transactions, (less than about 10,000 updates)
the cost of force writing the log at commit dominates perfor-
mance. For larger transactions, most of the time is spent on
asynchronous log writes and on buffer manager operations.
We expect the gap between write back and write through to
be higher in systems that marshal objects (instead of raw
integers), and in systems with greater log bandwidth.

7.3 Quality of service
We again extend Stasis, this time allowing each transac-

tion to optionally register a low-priority queue for its seg-
ment updates. To perform a write, transactions pin and
update the page, then submit the log entry to the queue.
As the queue writes back log entries, it unpins pages. We
use these primitives to implement a simple quality of ser-
vice mechanism. The disk supports a fixed number of syn-
chronous writes per second, and Stasis maintains a log buffer
in memory. Low priority transactions ensure that a frac-
tion of Stasis’ write queue is unused, reserving space for
high-priority transactions. A subtle, but important detail
of this scheme is that, because transactions unlatch pages
before appending data to log, backpressure from the logger
decreases page latch contention; page-based systems hold
latches across log operations, leading to increased contention
and lower read throughput.

For our experiment, we run “low priority” bulk transac-
tions that continuously update records with no delay, and
“high priority” transactions that only update a single record,



Storage algorithm Small workload Large workload
Local Network Local Network

Pages 0.866s 61s 10.86s 6254s
Segments 0.820s 26s 5.893s 105s

Segs. (bulk messages) ” 8s ” 13s

Figure 11: Comparison of segment and page based recovery
with simulated network latency. The small workload runs ten
transactions of 1000 updates each; the large workload runs ten
of 100,000 each.

but run once a second. This simulates a high-throughput
bulk load running in parallel with low-latency application
requests.

Figure 10 plots the cumulative distribution function of the
transactions’ response times. With log reordering (QOS) in
place, worst case response time for high priority transac-
tions is approximately 140ms; “idle” reports high priority
transaction performance without background tasks.

7.4 Recovery for distributed systems
Data center and cloud computing architectures are often

provisioned in terms of applications, cache, storage and re-
liable queues. Though their implementations are complex,
highly available approaches with linear scalability are avail-
able for each service.

However, scaling these primitives is expensive, and oper-
ations against these systems are often heavy-weight, leading
to poor response times and poor utilization of hardware.
Write reordering and write caching help address these bot-
tlenecks. For our evaluation, we focused on reordering re-
quests to write to the log and writing-back updates to the
buffer manager.

We modified Stasis with the intention of simulating a net-
work environment. We add 2ms delays to each request to
append data to Stasis’ log buffer, or to read or write records
in the buffer manager. We did not simulate the overhead
of communicating LSN estimates between the log and page
storage nodes. We ran our experiment with both write back
and write reordering enabled (Figure 11), running one trans-
action at a time. For the “bulk messages” experiments, we
batch requests rather than send one per network round trip.

For small transactions, the networked version is roughly
ten times slower than the local versions, but approximately
20 times faster than a distributed, page-oriented approach.
As transaction sizes increase, segment-based recovery is bet-
ter able to amortize network round trips due to log and
buffer manager requests, and network throughput improves
to more than 400 times that of the page-based approach. As
above, the local versions of these benchmarks are competi-
tive with local page-oriented approaches, especially for long
transactions.

A true distributed implementation would introduce addi-
tional overheads and opportunities for improved scalability.
In particular, replication will allow the components to cope
with partial failure and partitioning should provide linear
scalability within each component. How such an approach
interacts with real-world workloads is an open question.

As with any other distributed system, there will be trade-
offs between consistency and performance; we suspect that
durability based upon distributed write-ahead logging will
provide significantly greater performance and flexibility than
systems based on synchronous updates of replicas.

8. RELATED WORK
Here, we focus on other approaches to the problems we

address. First we discuss systems with support for log re-
ordering, then we discuss distributed write-ahead logging.

Write reordering mechanisms provide the most benefit
in systems with long running, non-durably committed re-
quests. Therefore, most related work in this area comes
from the filesystem community. Among filesystems, our de-
sign is perhaps most similar to Echo [23]. Its write-behind
queues provide rich write reordering semantics and are a
non-durable version of our reorderable write-ahead logs.

FeatherStitch [12] introduces filesystem patches; sets of
atomic block writes (blind writes) with ordering constraints,
and allows the block scheduler and applications to reorder
patches. Rather than provide concurrent transactions, it
provides filesystem semantics and a pg sync mechanism that
explicitly force-writes a patch and its dependencies to disk.

Although our distributed performance results are promis-
ing, designing a complete, scalable and fault tolerant stor-
age system from our algorithm is non-trivial. Fortunately,
the implementation of each component in our design is well
understood. Read only caching technologies such as mem-
cached [10] would provide a good starting point for lin-
early scalable write back application caches. Main-memory
database techniques are increasingly sophisticated, and sup-
port compression, superscalar optimizations, and isolation.

Scalable data storage is also widely studied. Cluster hash
tables [11], which partition data across independent index
nodes, and Boxwood [22], which distributes indexes across
clusters, are two extreme points in the scope of possible
designs. A third approach, Sinfonia [1], has nodes expose
a linear address space, then performs minitransactions; es-
sentially atomic bundles of test and set operations against
these nodes. In contrast, page writeback allows us to ap-
ply many transactions to the storage nodes with a single
network round trip, but relies on a logging service.

A number of reliable log services are already available,
including ones that scale up to data center and Internet
scale workloads. In the context of cloud computing, indexes
such as B-Trees have been implemented on top of Amazon
SQS (a scalable, reliable log) and S3 (a scalable record store)
using purely logical redo and undo; those approaches require
write-ahead logging or other recovery mechanisms at each
storage node [3]. Application specific systems also exist,
and handle atomicity in the face of unreliable clients [27].

A second cloud computing approach is extremely similar
to our distributed proposal, but handles concurrency and
reordering with explicit per object LSNs and exactly-once
redo [21]. Replicas store objects in durable key-value stores
that are backed by a second, local, recovery mechanism. An
additional set of mechanisms ensures that recovery’s redo
phase is idempotent. In contrast, implementing idempotent
redo is straightforward in segment-based systems.

9. CONCLUSION
Segment-based recovery operates at the granularity of ap-

plication requests, removing LSNs from pages. It brings re-
quest reordering and reduced communication costs to con-
current, steal/no-force database recovery algorithms. We
presented ARIES-style and segment-based recovery in terms
of the invariants they maintain, leading to a simple proof of
their correctness.



The results of our experiments suggest segment-based re-
covery significantly improves performance, particularly for
transactions run alongside application caches, run with dif-
ferent priorities, or run across large-scale distributed sys-
tems. We have not yet built practical segment-based stor-
age. However, we are currently building a number of systems
based on the ideas presented here.

10. ACKNOWLEDGMENTS
Special thanks to our shepherd, Alan Fekete for his help

correcting and greatly improving the presentation of this
work.

We would also like to thank Peter Alvaro, Brian Frank
Cooper, Tyson Condie, Joe Hellerstein, Akshay Krishna-
murthy, Blaine Nelson, Rick Spillane and the anonymous
reviewers for suggestions regarding earlier drafts this paper.

Our discussions with Phil Bohannon, Catharine van In-
gen, Jim Gray, C. Mohan, P.P.S. Narayan, Mehul Shah and
David Wu clarified these ideas, and brought existing ap-
proaches and open challenges to our attention.

11. REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. In SOSP, 2007.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. 1987.

[3] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. In SIGMOD,
2008.

[4] L. Cabrera, J. McPherson, P. Schwarz, and J. Wyllie.
Implementing atomicity in two systems: Techniques,
tradeoffs, and experience. TOSE, 19(10), 1993.

[5] D. Chamberlin et al. A history and evaluation of
system R. CACM, 24(10), 1981.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[7] R. A. Crus. Data recovery in IBM Database 2. IBM
Systems Journal, 23(2), 1984.

[8] P. A. Dearnley. An investigation into database
resilience. Oxford Computer Journal, July 1975.

[9] P. Druschel and L. L. Peterson. Fbufs: A
high-bandwidth cross-domain transfer facility. In
SOSP, 1993.

[10] B. Fitzpatrick. Distributed caching with memcached.
Linux Journal, August 2004.

[11] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. In SOSP, 1997.

[12] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and Lei. Generalized file
system dependencies. In SOSP, 2007.

[13] J. Gray, R. Lorie, G. Putzolu, and I. Traiger.
Modelling in Data Base Management Systems, pages
365–r394. North-Holland, Amsterdam, 1976.

[14] T. Greanier. Serialization API. In JavaWorld, 2000.

[15] T. Haerder and A. Reuter. Principles of transaction
oriented database recovery—a taxonomy. ACM

Computing Surveys, 1983.

[16] Hibernate. http://www.hibernate.org/.

[17] D. Kuo. Model and verification of a data manager
based on ARIES. TODS, 21(4), 1996.

[18] L. Lamport. Paxos made simple. SIGACT News, 2001.

[19] J. Lee, K. Kim, and S. Cha. Differential logging: A
commutative and associative logging scheme for highly
parallel main memory databases. In ICDE, 2001.

[20] P. L. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees. TODS, 1981.

[21] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling.
Unbundling transaction services in the cloud. In
CIDR, 2009.

[22] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstractions as the
foundation for storage infrastructure. In OSDI, 2004.

[23] T. Mann, A. Birrell, A. Hisgen, C. Jerian, and
G. Swart. A coherent distributed file cache with
directory write-behind. TOCS, May 1994.

[24] C. Mohan. ARIES/KVL: A key-value locking method
for concurrency control multiaction transactions
operating on B-tree indexes. In VLDB, 1990.

[25] C. Mohan. A database perspective on Lotus
Domino/Notes. In SIGMOD Tutorial, 1999.

[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. M. Schwarz. ARIES: A transaction recovery
method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. TODS,
17(1):94–162, 1992.

[27] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer.
Making a cloud provenance-aware. In TAPP, 2009.

[28] E. Nightingale, K. Veeraraghavan, P. Chen, and
J. Flinn. Rethink the sync. In OSDI, 2006.

[29] R. Sears and E. Brewer. Stasis: Flexible transactional
storage. In OSDI, 2006.

[30] M. Seltzer and M. Olsen. LIBTP: Portable, modular
transactions for UNIX. In Usenix, January 1992.

[31] SQL Server 2008 Documetation, chapter Buffer
Management. Microsoft, 2009.

[32] M. N. Thadani and Y. A. Khalidi. An efficient
zero-copy I/O framework for Unix. Technical Report
SMLI TR-95-39, Sun Microsystems, 1995.

[33] G. Weikum, C. Hasse, P. Broessler, and P. Muth.
Multi-level recovery. In PODS, 1990.

[34] M. Widenius and D. Axmark. MySQL Manual.


