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ABSTRACT
Self-tuning histograms have been proposed in the past as an attempt
to leverage feedback from query execution. However, the focus
thus far has been on histograms that only store cardinalities. In
this paper, we study consistent histogram construction from query
feedback that also takes distinct value counts into account.

We first show how the entropy maximization (EM) principle can
be leveraged to identify a distribution that approximates the data
given the execution feedback making the least additional assump-
tions. This EM model that takes both distinct value counts and car-
dinalities into account. However, we find that it is computationally
prohibitively expensive.

We thus consider an alternative formulation for consistency –
for a given query workload, the goal is to minimize the L2 dis-
tance between the true and estimated cardinalities. This approach
also handles both cardinalities and distinct values counts. We pro-
pose an efficient one-pass algorithm with several theoretical prop-
erties modeling this formulation. Our experiments show that this
approach produces similar improvements in accuracy as the EM
based approach while being computationally significantly more ef-
ficient.

1. INTRODUCTION
Histograms are the primary data structures used in commercial

query optimizers. They are meant to approximate the data distribu-
tion in the best manner possible within a bounded amount of space.
Accordingly, several algorithms have been proposed for building
histograms from the data [19].

It is often desirable to focus histograms toward a given workload
of queries. For instance, if there are more sales queries about the
New York region, we would desire better cardinality estimation for
queries over this region. Since we are working within a sharply
bounded space, histograms that seek to model the entire data distri-
bution may have reduced accuracy for a specific region of the data.
With this motivation, recent work [1, 23, 6, 30] has focused on the
problem of self-tuning histograms where the idea is to bias the his-
togram toward a workload of queries. In this approach, statistics
are gathered at a low overhead during query execution [31, 9] and
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folded into the histogram either online [1, 6, 23] or offline [30].
This way, we obtain higher accuracy precisely in those regions that
are frequently queried by the given workload. Of course self-tuning
histograms are inaccurate for parts of the data that are never queried
but this problem can be mitigated by for example starting with a
histogram that at least coarsely approximates the data. This ap-
proach is targeted toward data warehouse environments where the
data can be assumed to be largely static.

Histograms are used not only for cardinality estimation but also
for estimation of other statistics such as the number of distinct val-
ues and the number of distinct pages. Thus, histograms constructed
from the data store not only cardinalities but also such additional
statistics. On the other hand, all of the prior work on self-tuning
histograms focuses exclusively on cardinalities. Therefore, his-
tograms built over the data have the advantage of being able to
model additional statistics. In this paper, we attempt to bridge this
gap by designing a self-tuning histogram that models not only car-
dinalities but also distinct value counts.

The question arises whether it is even possible to monitor dis-
tinct value counts during query execution. There are many known
single-pass techniques that approximate the number of distinct val-
ues in a data set [3]. These techniques make it feasible to obtain
distinct value counts at a low overhead during query execution. In-
deed, in this spirit recent work [9] has addressed the problem of
obtaining distinct page counts at a low overhead as a part of execu-
tion feedback.

In designing such a self-tuning histogram, we seek a princi-
pled notion of consistency that formalizes how well the histogram
models the information obtained from execution feedback. Recent
work [30] has identified the Entropy Maximization principle for
this purpose.

Accordingly, we start by applying the Entropy Maximiza-
tion (EM) principle to the case when we have both cardinalities
and distinct values. Capturing both cardinalities and distinct values
introduces a new challenge since we need a different probability
space than that considered in [30]. This leads to a more difficult
EM problem. We show how the EM solution can be obtained
by solving a non-linear system of equations with a number of
variables proportional to the size of the workload. However, this
system of equations is considerably more complex and therefore
more difficult to solve than the corresponding one for cardinalities
alone [30]. Indeed, we show empirically that the state of the art
method for solving this system of equations is prohibitively expen-
sive. For example, even for equations consisting of five variables,
the running time is in the order of a few hours. Thus even though
Entropy Maximization provides a principled method of construct-
ing a self-tuning histogram, it does not yield an efficient self-tuning
histogram in the presence of multiple statistics.



We therefore consider a different principle: to minimize the
squared (L2) distance between the histogram’s estimates and the
query feedback viewed as vectors. This measure of error has been
successfully used in prior work on histogram construction [20, 29,
21, 16]. We call this self-tuning histogram L2-Optimal. This ap-
proach models consistency even in the presence of multiple statis-
tics (such as cardinalities and distinct value counts). The main
challenge we address is to efficiently compute this histogram. We
develop in this paper several advanced linear algebra techniques
that allow us to compute the L2-optimal histogram efficiently. In
fact, we describe a single-pass algorithm for computingL2-optimal
histogram, which processes one query at a time and computes the
histogram incrementally (Sections 4.1.2 and 4.2). This, of course,
allows the L2-optimal histogram to scale to larger workloads.

In summary, we make the following contributions in this paper.

• We present and solve the Entropy Maximization model for
histograms with both cardinalities and distinct values (Sec-
tion 3)

• We empirically show that the EM approach is prohibitively
expensive (Section 3.3).

• We formulate a new notion of consistency based on the L2

distance (Section 4.1).

• We describe a one-pass algorithm for computing the L2-
optimal histogram (Sections 4.1.2 and 4.2).

• We conduct an empirical study that shows that the L2-
optimal histogram yields significant benefits in query result
size estimation just as the EM based histogram while being
computationally much more efficient (Section 5).

2. PRELIMINARIES
We first describe our setting for self-tuning histograms and then

introduce the basic definitions we use in the rest of the paper.

2.1 Setting
Prior work has considered two kinds of self-tuning histograms.

On the one hand, we have online self-tuning histograms [1, 6, 23]
that modify the histogram as queries execute in the database sys-
tem. Given that this could impose significant overhead at the time
of query execution, offline self-tuning histograms [30] have also
been investigated where as queries execute, there is a very light-
weight collection of execution feedback that is logged. This logged
information is then used offline to build and modify a self-tuning
histogram. In this paper, we focus on the offline setting.

To the best of our knowledge, there has been little prior work on
storing distinct value estimates in multi-dimensional histograms. In
fact, the number of column combinations for which distinct value
estimates can be stored is exponential in the number of dimensions.
We therefore focus on single-dimensional histograms in this paper.

Finally, for ease of exposition, we assume in this paper that the
database is static. We do note that our techniques can be extended
to handle database updates in ways similar to prior work [30].

2.2 Problem Statement
We assume that the database is a bag I of values from a finite,

ordered domain D (the notations used in this paper are shown in
Fig. 1). For any bag I , we denote |I| its set size, and ||I|| its bag
size; e.g. for I = {a, a, b, c, c, c}, |I| = 3, ||I|| = 6. A cell,
or bucket, C is a set consisting of an interval [a, b] ⊆ D, and we
denote its volume as volume(C); if the domain D is of integers,
then volume(C) = b− a+ 1.

I , D instance (a bag) and domain: I ⊆ D
m,n number of queries, number of buckets
i, j indices: i = 1,m, j = 1, n
B,C bucket, cell; B,C ⊆ D
S statistics type: S ∈ {set,bag}
Xj bucket value (set-size of bag-size)
ri record value (set-size of bag-size)
ρi query statistic: ρi = (Ci, ri, Si)
fi weight of query ρi
W workload of query statistics
µ probability distribution
ω, α, β parameters of the EM probability
R,X column matrices (Xj), (ri)
Q,F query matrix (m× n), diagonal weight matrix (m×m)
M influence matrix (n× n)
p statistics column matrix (n× 1)

Figure 1: Notations used in the paper

In this paper we consider range queries with or without distinct
values. More precisely, to each cell C we associate two queries:
one that counts the number of elements in the instance I that are
in C, called the bag-size, and the other that counts the number of
distinct values in I that are in C, called the set size. We denote the
answers to these two queries as:

answerbagI (C) = ||I ∩ C||
answersetI (C) = |I ∩ C|

Here the intersection of a bag I and a set C is a bag that preserves
the multiplicities in I , e.g. {a, a, a, b, b, c} ∩ {a, c} = {a, a, a, c}.

A histogram, H , consists of a partition of the spaceD into buck-
ets B1, B2, . . . , Bn, and two statistics per bucket Bi: a set-size
Xset
i and a bag-size Xbag

i . The histogram is used to estimate the
set-size or the bag-size of a query associated to a cellC, as follows:

EstS(C,H) =
∑
j

volume(C ∩Bj)
volume(Bj)

XS
j (1)

for S ∈ {set,bag}. In particular, for every bucket Bj :

EstS(Bj , H) = XS
j

A query statistic (QS) is ρ = (C, r, S) where C is a cell, r =
answerSI (C) is called the record value, and S ∈ {set,bag} is
the type of statistic. With some abuse of notation we write ρ as
(CS , rS), to indicate that the cell and record value refer to the type
S of statistic. When both set and bag statistics are obtained from
the same query execution, we assume that two separate statistics
are issued, one for the set size and one for the bag size. A workload
W is a set {ρ1, . . . , ρm}, where each ρi is a query statistic.

We study in this paper the following problem: given a query
workload W , find a histogram H that is consistent with the work-
load. Ideally, we would like H to satisfy the following for every
query statistic (CS , rS) ∈W :

EstS(C,H) = rS (2)

On the other hand, histograms are constrained to be small usually
through an explicit space budget. Thus, perfect consistency of the
form captured by the above equation may not be attainable. In
this paper we discuss different ways of realistically modeling this
consistency condition (2).

3. EM-MODEL FOR SET/BAG STATISTICS



A consistent histogram for bag-counts only is described in [30]
based on the Entropy Maximization (EM) principle. This is a very
general principle, and it raises the question whether the same prin-
ciple can be applied to obtain consistent histograms for both bag-
count and set-count statistics. We show that this is possible, by
developing a more elaborate probability space.

To best understand our model it helps to briefly review the prob-
abilistic model in [30]. There, the database instance I is fixed, and
a single element is selected at random from the bag I . This defines
a probability space whose outcomes are the elements from the do-
main D: one outcome is one element. The bag-size of a bucket
B is simply the probability that the output element belongs to B,
times the cardinality of I , which is fixed and known. This model
captures only one statistic: either the cardinality, or distinct values,
but not both. To capture both, we need a probability space whose
outcomes are instances I: then we can measure both the bag-size
and set-size.

Let I be the set of all finite bags over the finite domain D. This
set is infinite (for example, it contains {a}, {a, a}, {a, a, a}, . . .),
and is countable. A discrete probability space over I is a function
µ : I → [0, 1] such that ∑

I∈I

µ(I) = 1 (3)

The expected set-size, bag-size, and the entropy are defined as:

Eµ[|I|] =
∑
I∈I

|I|µ(I)

Eµ[||I||] =
∑
I∈I

||I||µ(I)

H(µ) = −
∑
I∈I

µ(I) log µ(I)

Note that, in general, these sums may diverge: throughout the paper
we consider only probability spaces where all three sums converge.
We define the answer to the set-size and bag-size query associated
to a cell C to be:

answerbagµ (C) = E[||I ∩ C||]
answersetµ (C) = E[|I ∩ C|] (4)

In this approach, we model the consistency condition (2) as fol-
lows:

DEFINITION 3.1. Let W be a workload. A probability space
µ is consistent with the workload W if for every query statistic
(CS , rS) ∈W , answerSµ(CS) = rS .

Note that once we have a consistent probability space µ then
we can compute a consistent histogram H over a given set of
buckets B1, . . . , Bn as follows: associate to each Bi the statis-
tic XS

i = answerSµ(Bi), for S ∈ {set,bag}. Assume that
the buckets are chosen such that they partition every cell CS of
the query workload, i.e.

⋃
Bi⊆CS Bi = CS : then consistency

condition Eq (2) holds in expectation. Indeed, in this case for
every query statistic (CS , rS) ∈ W we have EstS(CS , H) =∑
Bi⊆CS answer

S
µ(Bi) = answerSµ(C).

Thus, in this section we study the following problem: given a
workload W , find a consistent probability space µ. Note that, in
general, there may be no solution at all. Worse, when a solution
exists, in general there are many (infinitely) solutions for µ, and we
need to choose one without making ad-hoc assumptions about the
data.

The entropy-maximization principle states that this is achieved
by the probability distribution that has the maximum entropy.

DEFINITION 3.2. A probability space µ is an EM-model, or
an EM-solution for a workload W , if (1) it is consistent with the
workload, and (2) if µ′ is any probability space that is consistent
with the workload, then H(µ) ≥ H(µ′).

We show in this section how to obtain the EM-model for a
workload W . We start by reviewing a classic result for the EM
model [22]. Here, and in the sequel, we denote mset the number
of set statistics in W , and mbag the number of bag statistics.

THEOREM 3.3. If µ is an EM-model for a workload W , then
the following property holds:

(∗) There exists 1 + mset + mbag positive constants ω, αi, βj ,
where i = 1,mset and j = 1,mbag, such that ∀I ∈ I:

µ(I) = ω
∏

i=1,mset

α
|I∩Cset

i |
i

∏
j=1,mbag

β
||I∩Cbag

j ||
j (5)

Conversely, if a probability space µ has property (∗) and is consis-
tent with the workload W , then it is an EM model for W .

We refer to [22] for the proof. The result does not give us a
solution to the EM model, and does not tell us when such a solution
exists, but it restricts our search for an EM solution to probability
functions that have a particular, simple expression. We illustrate
with an example.

Example 3.4 Consider the domain D = [1, 100], and as-
sume a workload with three statistics: ([1, 100], r1,bag),
([1, 75], r2,set), ([26, 100], r3,set). Thus, the expected num-
ber of values in the bag is r1, the expected number of distinct
values in [1, 75] is r2 and in [26, 100] is r3. Then, the EM model,
if it exists, must have the following form:

µ(I) = ωα
|I∩[1,75]|
2 α

|I∩[26,100]|
3 β

||I||
1

for some positive constants ω, α2, α3, β1.

We show next how to compute the parameters of the EM model, in
two steps.

3.1 Partitioned Workloads
A partitioned workload is a workload whose cells B1, . . . , Bm

form a partition of the domain, and there is exactly one set-size and
one a bag-size statistic for each bucket, rseti and rbagi , for i = 1,m.

We first solve the EM-model for the case m = 1, called the
single bucket workload. Thus W = {(D, rset), (D, rbag)} and we
need to find µ that satisfies:

Eµ[|I|] = rset Eµ[||I||] = rbag (6)

and has the maximum entropy. By Theorem 3.3 the function µ
is given by µ(I) = ωα|I|β||I||, where ω, α, β are three positive
unknowns: we need to find these unknowns such that Equations (6)
hold. Denote:

N = |D| p = rset

N
f = rbag

rset

N is the size of the domain, and we call f the fanout. The value p
has an interesting interpretation: it is the probability that some fixed
value v in the domain belongs to the random instance I , in notation
µ(v ∈ I). To see this, notice that we can express the expected
size of I as E[|I|] =

∑
v∈∆ µ(v ∈ I) = Nµ(v ∈ I), since the

probability µ(v ∈ I) is the same for all constants v ∈ D. Since the
expected set-size of I is rset, we obtain µ(v ∈ I) = rset/N = p.



THEOREM 3.5. If p < 1 < f then the EM-model for the single
bucket workload has a unique solution given by:

ω = (1− p)N α = p
(f−1)(1−p) β = 1− 1

f

Otherwise, the EM-model has no solution.

Next we turn to partitioned workloads with m ≥ 1. In this case
it can be shown that the EM-model consists of m independent EM
models, one for each bucket. More precisely, denoting:

Ni = |Bi| pi =
rseti
Ni

fi =
rbagi
rseti

(7)

for each bucket i = 1,m, we have:

THEOREM 3.6. If for all i = 1,m, pi < 1 < fi, then the EM-
model for the partitioned workload is given by 1 + 2m parameters
ω, αi, βi, where ω =

∏
i=1m ωi and for every i = 1,m:

ωi = (1− pi)Ni αi = pi
(fi−1)(1−pi)

βi = 1− 1
fi

(8)

Otherwise, the EM model has no solution.

3.2 EM-Model for General Workload
Now we consider a general workload W̄ over arbitrary cells with

set-size statistics (Cset
i , r̄seti ), i = 1,mset, and bag-size statis-

tics (Cbag
j , r̄bagj ), j = 1,mbag; we overline this workload, W̄ , to

distinguish it from a partitioned workload W , which we construct
shortly, and assume D =

⋃
Cset
i =

⋃
Cbag
i . The difficulty here

is that the cells may be overlapping, and the EM model no longer
consists of independent models. We show that here the solution to
the EM model is given by the solution of a certain partitioned work-
load W , which satisfies some additional constraints. We describe
the partitioned workload next.

Let B1, . . . , Bl (l ≥ m) be the coarsest partition of the domain
that is a refinement of all the cells in the workload W̄ ; more pre-
cisely, for every cell Cj in W̄ and every bucket Bi in W , either
Bi ⊆ Cj or Bi ∩ Cj = ∅. Next, for each bucket Bi we introduce
two variables, rseti and rbagi , representing the (unknown) set-size
and bag-size statistics for Bi, subject to the constraints:∑

i:Bi⊆Cset
j

rseti = r̄setj

∑
i:Bi⊆C

bag
j

rbagi = r̄bagj (9)

Define the partitioned workload W = {(Bi, rseti ) | i = 1, l} ∪
{(Bi, rbagi ) | i = 1, l}. Consider the associated EM-model, and
denote ω, αi, βi, i = 1, l its parameters, which are related to the
unknowns rseti , rbagi , through Eq.(8).

THEOREM 3.7. The EM-model for a general workload W̄ has
the parameters ω, ᾱj , β̄j obtained by solving simultaneously the
following system of non-linear equations: Equations (8), (9), and
the equations below:

αi =
∏

j:Bi⊆Cset
j

ᾱj βi =
∏

j:Bi⊆Cset
j

β̄j (10)

We can use this theorem to solve the EM model as follows.
Equation (8) yields 2l + 1 equations since the equations for ωi
can be folded into a single equation for ω. We can see that Equa-
tion (9) yields 2m equations. Finally, Equation (10) also yields 2l
equations. Thus, we have 2m + 4l + 1 equations. The number of
unknowns adds up as follows — there are 2l unknowns correspond-
ing to αi, βi (parameters associated withBi), 2m unknowns corre-
sponding to ᾱj , β̄j (parameters associated with cell Cj), 2l param-
eters rseti , rbagi , and finally ω. Observe that we are not counting pi

and fi since they can be directly expressed in terms of rseti , rbagi .
We thus have 2m + 4l + 1 unknowns. This system of non-linear
equations needs to be solved to obtain the EM model.

Example 3.8 Consider the domainD = [1, 100] and the two over-
lapping cells C1 = [1, 75], C2 = [26, 100]. We illustrate with an
example with a workload W̄ consisting of four statistics:

(C1,set, r̄
set
1 ) (C2,set, r̄

set
2 ) (C1,bag, r̄

bag
1 ) (C2,bag, r̄

bag
2 )

We need to find five unknowns ω, α1, α2, β1, β2. For that we as-
sociate the partitioned workload W defined for the following three
buckets: B1 = [1, 25], B3 = [26, 75], B2 = [76, 100]. We intro-
duce twelve variables αj , βj , rsetj , rbagj , j = 1, 2, 3, and solve the
following seventeen equations, where N1 = 25, N2 = 50, N3 =
25 are the sizes of the three buckets, and

ω =
∏
j=1,3(1− pj)Nj

α1 = pi
(f1−1)(1−p1)

β1 = 1− 1
f1

α2 = pi
(f2−1)(1−p2)

β2 = 1− 1
f2

α3 = pi
(f3−1)(1−p3)

β3 = 1− 1
f3

α1 = ᾱ1 β1 = β̄1

α2 = ᾱ2 β2 = β̄2

α3 = ᾱ1ᾱ2 β3 = β̄1β̄2

r̄set1 = rset1 + rset3 r̄bag1 = rbag1 + rbag3

r̄set2 = rset2 + rset3 r̄bag2 = rbag2 + rbag3

pj , fj are expressions in the unknowns rsetj , rbagj (Eq.(7)).

3.3 Capturing the Space Budget
The histograms we seek typically have space budgets which are

explicitly provided. Note that the EM model as described so far
yields a histogram that is a refinement of all the workload cells.
We thus need techniques to compress the histogram. Here we fol-
low a method similar to [30] where we use the solutions to the
unknowns ᾱj , β̄j associated with cell Cj to derive a measure of the
importance of this statistic. We then drop statistics that are of lower
importance until the space budget can be met.

3.4 Solving the Non-Linear System
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Figure 2: EM Running Time

The system of equations implied by Theorem 3.7 illustrated for
Example 3.8 above is quite unlike the system obtained for the EM
model in the presence of cardinality constraints alone [30]. It is not
clear if methods such as iterative scaling can be used with any guar-
antee of convergence for the non-linear system we obtain. We did
implement an adaptation of iterative scaling [27] but found it to not
converge to any meaningful result. The state of the art method that
solves non-linear equations of the form we obtain with good con-
vergence properties is homotopy continuation [18]. Unfortunately,



we find that this approach scales very poorly with the number of
variables. We illustrate here the running time of this method with
increasing number of query statistics fed (which corresponds to in-
creasing number of variables) — the data and the rest of the experi-
mental setup is explained in Section 5. The X-axis plots the number
of query statistics input and the Y-axis, the running time to solve the
non-linear system using homotopy continuation [18]. We can see
that the running times increase sharply with the number of queries
reaching the order of hours even for 5 queries, whereas we are in-
terested in processing workloads of hundreds or even thousands of
queries. This makes this approach prohibitively expensive.

Solving non-linear systems of equations is an active area of re-
search and it is possible that practical methods to solve systems of
the form we generate will be discovered in the future. However,
given the state of the art, it is not clear how the EM model can be
applied for consistent histogram construction in the presence of dis-
tinct value counts. For these reasons we describe next a completely
different approach for constructing histograms for a workload W .

4. CONSISTENCY USING L2 DISTANCE
In this section we describe an alternative construction of an adap-

tive histogram. Instead on insisting that the histogram H be con-
sistent for a workload W (Equation (2)), we aim at reducing the
squared, or L2, error between the statistics in the workload and
those estimated by the histogram, viewed as vectors. This mea-
sure of error has been successfully used in prior work on histogram
construction [20, 29, 21, 16].

More precisely, given a histogram H and query statistic ρ =
(CS , rS), define the error of query ρ:

Errρ(H) = (EstS(CS , H)− rS)2

Consider a workload of query statistics W = {ρ1, . . . , ρm},
and assume we have an optional sequence of positive weights
f1, f2, . . . , fm (by default f1 = f2 = . . . = fm = 1). Given
a histogram H , the error for the entire workload W is

ErrW (H) =
∑
i=1,m

fi · Errρi(H) (11)

DEFINITION 4.1. Let W be a workload, and n be a number.
The L2-optimal histogram for the workload W and the budget n is
a histogramH s.t. (a)H has at most n buckets, and (b) ErrW (H)
is minimal among all histograms with at most n buckets.
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Figure 3: Illustration of the L2-optimality problem.

Figure 3 illustrates the setting of theL2-optimal histogram: there
are five queries in the workload W (suppose all five queries are
bag-statistics), and we have a budget of four buckets. The goal
is to determine the bucket boundaries, and the bucket values of a
histogram H s.t. ErrW (H) is minimal. Note that the problem is
over specified: there are more queries than buckets. As we will

see, the L2-optimal histogram is well defined only if the problem
is usually over-specified; by contrast, the EM-histogram is defined
only if the problem is under-specified. In practice the problem is
over-specified, because there are far more queries than buckets in a
histogram.

4.1 Fixed Size Buckets
We start our investigation by assuming that the buckets are fixed:

we denote n0 the number of buckets, and B1, . . . , Bn0 the actual
buckets. After processing the workload W , we need to compute
the bucket contents XS

j , one for each bucket Bj and each statistic
S: we do not change the bucket cell Bj , or the number of buckets.
This is a least-square problem with n = 2n0 unknowns, Xset

j and
Xbag
j , j = 1, n0. To formulate the least square problem using

standard linear algebra terminology, we consider a single column
matrix X = (Xj)j=1,n, of size n×1, whereXj = Xset

j ,Xj+n =

Xbag
j for j ≤ n0. With this translation in mind, we denote:

Bset
j =

{
Bj if j ≤ n0

∅ if n0 < j ≤ n

Bbag
j =

{
∅ if j ≤ n0

Bj−n if n0 < j ≤ n

Given a workload W = {(C1, r1, S1), . . . , (Cm, rm, Sm)} and
weights f1, . . . , fm, we define:

Q = (qij)i=1,m;j=1,2n the m× 2n query matrix

where qij =
volume(Ci ∩BSi

j )

volume(BSi
j )

F = diag(f1, . . . , fm) the diagonal weight matrix
r = (ri)i=1,m the column vector of record values

Combining Equations (11) and (1) we obtain the following ex-
pression for the error:

ErrW (X) = (QX− r)TF(QX− r) (12)

The problem becomes: given the workload (Q,F, r) compute
X that minimizes the error expression (12). This is a Least Square
problem, and has an explicit solution, which we give after introduc-
ing the following notation:

M = QTFQ the influence matrix, n× n
p = QTFr the statistics vector, n× 1

4.1.1 Offline Algorithm
The offline algorithm follows from a standard result in linear al-

gebra:

THEOREM 4.2. Then the L2-optimal histogram is given by any
vector X that satisfies:

MX = p (13)

In particular, if M is non-singular, then the W-histogram is:

X = M−1p (14)

2

The theorem gives a naive approach to compute the L2-optimal
histogram: if M is non-singular, then solve Eq. (14), which gives
the unique solutions; otherwise, if the matrix is singular, then pick
any solution to (13) (which can be shown to always have a solution)
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Figure 4: The need to remember the history. After processing
the first query, the histogram is (50, 50). The second query
tells us that there are 25 tuples in B1. Because of the influence
reflected in QS1, in addition to updating the first bucket to 25
we also need to update the second bucket to 75.

because it is guaranteed to be an L2-optimal histogram. We discuss
how we maintain the non-singularity of M in Section 4.1.3.

In the rest of this section we discuss how to improve this naive
algorithm, but first we discuss the intuition behind the influence
matrix M and statistics vector r.

The influence matrix stores an “influence” value between each
pair of buckets in the histogram; the statistics vector adds for each
bucket all query results that affect that bucket:

Mjk =
∑
i=1,m

fiqijqik

pj =
∑
i=1,m

fiqijri

The simplest case is when f1 = . . . = fm = 1 and every query
either completely covers a bucket or is disjoint form that bucket
(qij = 1 or qij = 0). In that case Mjk represents the number
of queries in the workload that are common to both buckets j and
k. Thus, Mjk stands for the number of common queries between
buckets j and k, hence “influence”.

4.1.2 Online Algorithm
Next, we describe an online algorithm for computing the L2-

optimal histogram: given the L2-optimal histogram X for a work-
load W and a new query statistic ρ = (C, r, S), we will com-
pute the new L2-optimal histogram X′ for the extended workload
W ∪ {ρ}. The challenge is to compute X′ by inspecting only X
and ρ, and not the prior workloadW . In general this is not possible,
as shown in the following example.

Example 4.3 Consider the histogram in Fig. 4. The domain D =
[a, b] is partitioned in two equal buckets, B1 = [a, a+b

2
], B2 =

[a+b
2
, b], thus volume(B1) = volume(B2). There are two query

statistics, saying:

QS1: “There are r1 = 100 tuples in B1 ∪B2”.

QS2: “There are r2 = 25 tuples in B1”.

The L2-optimal histogram minimizes (X1 +X2 − r1)2 + (X1 −
r2)2. From Theorem 4.2 we obtain:

Q =

(
1 1
1 0

)
M =

(
2 1
1 1

)
p =

(
125
100

)
Then Eq. (13) is 2X1 + X2 = 125 and X1 + X2 = 100, which
solves to X1 = 25, X2 = 75.

But now let’s examine what happens if we attempt to compute
the histogram incrementally. If we start from QS1, then we first

obtain a singular matrix M =

(
1 1
1 1

)
, while the statistics vec-

tor is p =

(
100
100

)
. The system MX = p is under-specified;

assume we decide to spread the 100 tuples evenly across B1 and
B2, hence X1 = X2 = 50. Next we have to process QS2, which
says “there are 25 tuples in B1”. If we ignore the history (which
is here QS1) then we cannot achieve the same correct answer as in
the offline approach: depending on whether we ignore the current
bucket content X1 or include in the Least Square calculation, we
arrive at either X1 = 25, X2 = 50 or at X1 = 37.5, X2 = 50.
In either cases we fail to update X2. In order to compute the cor-
rect L2-optimal histogram we need to remember that there is an
“influence” induced by the QS1 between B1 and B2, which should
lead us to increase X2 whenever we decrease X1. It is important
to store this influence in order to compute the histogram online. 2

Thus, we cannot ignore the entire history W . However, instead
of storing W , we store only M and p: the space requirement is
O(n2) (which is fixed for the histogram), and is typically is much
smaller than the space O(m) needed for W . We will show next
how to maintain M and p incrementally.

We need some notation. Let M, p, and X correspond to the
past workload W , with m queries. Let ∆W be the incremental
workload, consisting of ∆m queries. Denote M′, p′, and X′ the
values corresponding to the combined workload W ′ = W ∪∆W .

PROPOSITION 4.4. Consider the matrix representation of
∆W :

∆W = (∆Q,∆F,∆r)

Then:

M′ = M + (∆Q)T∆F∆Q (15)

p′ = p + (∆Q)T∆F∆r (16)

Thus, M′ and p′ can be computed incrementally, in time O(n2 +
n(∆m)2), and the new L2-optimal histogram is obtained by solv-
ing:

M′X′ = p′

The proof is omitted for lack of space.

Example 4.5 Continuing the Example 4.3, we show how to pro-
cess the two QSs online. The first QS has q11 = q12 = 1,
r1 = 100, and the influence matrix and statistics vector are:

M =

(
1
1

)(
1
) (

1 1
)

=

(
1 1
1 1

)
p =

(
1
1

)(
1
)

(100) =

(
100
100

)
Note that M is singular. The equation MX = p becomes

X1 +X2 = 100, which is non-determined. We discuss below how
to address this in general; here we simply choose X1 = X2 = 50,
thus deciding to split the 100 tuples evenly between the two buck-
ets. Next, we process the second QS, where q21 = 1, q22 = 0,
r2 = 25. We compute the new influence matrix and statistics vec-
tor incrementally:

M′ = M +

(
1
0

)(
1
) (

1 0
)

=

(
2 1
1 1

)
p′ =

(
1 1
1 1

)(
50
50

)
+

(
1
0

)(
25
)

=

(
125
100

)



Algorithm 4.1 Online L2-OptimalAlgorithm for Fixed Buckets
Input: M,p,X, (M)−1 for some workload W

A new query statistic ρ = (q, f, r)
Output: M′,p′,X′, (M′)−1 for the workload W ′ = W ∪ {ρ}
1: for j = 1, n; k = 1, n do
2: M ′jk = Mjk + qjfqk
3: end for
4: for j = 1, n do
5: p′j = pj + frqj
6: end for
7: for j = 1, n do
8: aj =

∑
k=1,n qk(M

−1)kj
9: end for

10: g = f
∑
i q

2
i

11: for j = 1, n; k = 1, n do
12: ((M ′)−1)jk = (M−1)jk − ajak/g
13: end for
14: for j = 1, n do
15: X′j =

∑
k((M

′)−1)jkp
′
k

16: end for

The new state of the histogram is given by the solution to the
equations 2X1 + X2 = 125 and X1 + X2 = 100, which is
X1 = 25, X2 = 75. This is the same as the offline histogram
in Example 4.3. 2

Once we determine M′ and p′ we still need to solve the system
M′X′ = p′. First we will assume that M is non-singular, and
show how to compute its inverse incrementally; then we discuss
how to ensure that it is indeed non-singular.

THEOREM 4.6. Assume M is non-singular and denote:

A = ∆Q(M)−1 : ∆m× n
G = (∆F)−1 + ∆QM−1(∆Q)T : ∆m×∆m

Then (1) G is nonsingular. (2) The influence matrix M′ is non-
singular, and its inverse is given by:

(M′)−1 = M−1 −ATG−1A (17)

In particular, (M′)−1 can be computed in timeO(n2 +n(∆m)2 +
(∆m)3).

PROOF. (Sketch) For (1) we note that the quadratic form as-
sociated to the symmetric matrix G is positively defined, be-
cause it is the sum of (∆F)−1, which is positively defined1, and
∆QM−1(∆Q)T , which is semi-positively defined. (2) is Wood-
bury’s matrix identity.

4.1.3 Non-Singularity of M

Now we explain how we ensure that M is non-singular. First, we
initialize the self-tuning histogram such that the first value of M is
non-singular. We do this by starting with a workload of exactly
n queries, one per bucket, which amounts to computing the entire
histogram offline. After this initialization phase, M = Im (the
identity matrix), hence it is non-singular. Next, we process work-
loads incrementally, either one query at a time or in small batches
∆W . Theorem 4.6 guarantees that M continues to be non-singular.

Our discussion leads Algorithm 4.1, where we process one new
query at a time, i.e. ∆m = 1.

THEOREM 4.7. Algorithm 4.1 maintains the L2-optimal his-
togram among the class of histograms with a fixed set of n buckets
online using O(n2) space and O(n2) time per QS. 2

1∆F is diagonal, and all its diagonal elements are > 0.

4.2 Adjusting Bucket Boundaries
So far we have assumed that the bucket boundaries are fixed.

In practice we need to adjust them, in response to the queries
in the workload. Given bucket base B̄ = {B1, . . . , Bn} and a
query statistic ρ = (C, r, S), we allow the histogram to change
its bucket base to B̄′ = {B′1, . . . , B′n}, as follows. Define candi-
date bucket to be a bucket obtained from B̄ ∪ {C} using set inter-
sections, unions, and differences. For example, given ten buckets
B̄ = {[1, 10], [11, 20], . . . , [91, 100]} and the cell [26, 45], there
are 66 candidate buckets, namely all intervals of the form [x+1, y],
where x, y ∈ {0, 10, 20, 25, 30, 40, 45, 50, . . . , 100}. We restrict
the search space to histograms H ′ whose bucket base consists only
of candidate buckets. We denote B the set of bucket bases that
form our search space: the problem is to find a histogram H ′ s.t.
buckets(H ′) ∈ B and ErrW (H ′) is minimal. Our search algo-
rithm restricts the search space B by using a greedy algorithm: start
with the histogram containing all minimal candidate buckets, then
search histograms with a smaller number of buckets, by merging
adjacent buckets: B denotes the set of histograms considered by
the algorithm. We give the details in the remainder of this section.

We assume the following two operations on the cells:

• splitC(B) = {B0, . . . , Bk} partitions the cell B by the
cell C. The result is a set of k + 1 disjoint cells B0, . . . , Bk
s.t. B = B0 ∪ . . . ∪ Bk and forall i, either Bi ⊆ C or
Bi ∩ C = ∅.

• merge(B0, . . . , Bk) returns either B0 ∪ . . . ∪Bk, if this is
a valid cell, or is undefined otherwise.

Since our domain is one dimensional, splitC(B) returns 1, 2, or
3 intervals. For example:

split[5,6]([1, 4]) = {[1, 4]}
split[3,5]([1, 4]) = {[1, 3], [3, 4]}

split[2,3]([1, 4]) = {[1, 2], [2, 3], [3, 4]}

The online algorithm is shown in Algorithm 4.2. First it splits
all histogram buckets that intersect with the query, thus creating
a larger histogram H ′′, which may exceed the number of buckets
allowed by our budget: Sec 4.2.2 describes how to compute H ′′.
Next, it adds the query statistic QS to H ′′, without further chang-
ing the bucket boundaries of H ′′: for this it uses Algorithm 4.1.
Finally, it greedily merges buckets in H ′′ to decrease them to ≤ n:
Sec. 4.2.3 describes the matrix manipulation for the merge phase.
The result consists of the new histogramH ′, and its associated data:
M′, (M′)−1,p′,X′. We prove the following nontrivial fact in the
remainder of this section:

THEOREM 4.8. Algorithm 4.2 runs in time O(n2 + n|B|).

The importance of this result is that we need to spent only O(n)
per candidate solution inspected, plus an extra global time O(n2).
The crux of the theorem consists of several matrix manipulation
techniques that avoid completely the need to compute an inverse
matrix, and further reduce the matrix manipulation complexity. We
describe these next.

4.2.1 Bucket Transformations

DEFINITION 4.9. A bucket transformation is a pair of bucket
basis: B̄ = {B1, . . . , Bn} and B̄′ = {B′1, . . . , B′p}. The bucket
transformation matrix, S, is:

Sjk = volume(B′k ∩Bj)/volume(B′k)



Algorithm 4.2 Online Algorithm for Variable Buckets
Input: A histogram H , and it’s matrices M,M−1,p,X;

A new query statistic: (C, r).
Output: A new histogram H′, and M′, (M′)−1,p′,X′

1: Split Phase (Sec. 4.2.2)
Compute H′′ = splitC(H)
Compute M′′, (M′′)−1, p′′, X′′.

2: Merge Phase (Sec. 4.2.3). Find H′ s.t.:
(a) buckets(H′) ∈ B,
(b) |buckets(H′)| ≤ n,
(c) ErrW (H′) is minimal Compute M′, (M′)−1,p′,X′ for H′.

Both split and merge define bucket transformations: split
replaces one bucket in the first base with k + 1 buckets, while
merge replaces k+1 buckets with one bucket. The transformation
matrices for merge and split are shown in Fig. 5.

Consider a workload W = (Q,F, r) defined in terms of the
bucket base B̄. Our goal is to represent the same workload in terms
of the new bucket base B̄′. Define:

Q′ = QS (18)

and, as a consequence:

M′ = STMS (19)
p′ = STp (20)

For a merge transformation, formula (18) gives the correct
query matrix for the new basis. In the case of a split transfor-
mation, formula (18) is only an approximation, which holds “on
average”, in the following sense. Call two cells B,C independent
if volume(C ∩ B)/volume(B) = volume(C)/volume(D).
Suppose we split according to some cell C that is not in the work-
load, and suppose all buckets returned by the split are indepen-
dent of all the cells in the workload: then formula (18) gives the
correct query matrix. Hence, the equation holds “on average”, as-
suming that the buckets obtained by splitting according to a random
cell C are independent of the workload.

The following is a simple application of linear algebra:

PROPOSITION 4.10. Let S be the transformation matrix for
(B̄, B̄′) and S′ the transformation matrix for (B̄′, B̄′′). Then the
transformation matrix for (B̄, B̄′′) is their product, S′ · S.

4.2.2 The split Phase
The transformation matrix for split is given in Fig. 5. We

show here how to compute (M′)−1 efficiently, where M′ is the
influence matrix given by Eq.(19).

However, M′ is always singular, because the newly introduced
buckets are indistinguishable from the point of view of the work-
load. For example, if bucket Bj splits into B′j and B′j+1, then M′

is obtained from M by copying row j and copying column j, hence
it is singular.

We address this as follows. Suppose split(B) returns k + 1
buckets. Designated one distinguished child and the other k as
undistinguished children. Create k new query statistics (B′i, p

e
i )

that estimate the sizes of the undistinguished buckets. To estimate
pei we use the histogram, pei = Xivolume(B′i)/volume(B).
Thus, we have created k new queries in order to help the system
distinguish between the newly created buckets. Denote Qe the
k × n query matrix for these k estimate queries: thus (Qe)TQe

is a n×n matrix with exactly k 1’s on the diagonal, corresponding
to the k non-distinguished buckets.

Define the matrices T,K of types n×(n+k), (n+k)×(n+k):

Tjk =

 1 if Bj = B′k, or if B′k is a distinguished
child of Bj

0 otherwise

Kj1j2 =


−1 if j1 is distinguished and j1 = j2
1 if j1 is distinguished and j2 is a sibling
−1 if j1 is undistinguished and j1 = j2
1 if j2 is distinguished and j1 is a sibling
0 in all other cases

THEOREM 4.11. Let M′ = STMS + (Qe)TQe. Then
(M′)−1 = TTM−1T−K.

The proof uses techniques from linear algebra and is omitted for
lack of space.

Example 4.12 Consider three buckets B1, B2, B3, where B2 is
split into two buckets. The new base is B′1, B′2, B′3, B′4, where
B1 = B′1, B2 = B′2 ∪ B′3, B3 = B′4. We designated B′2 the dis-
tinguished child, thus B′3 is undistinguished. Then we add a single
estimate query, for bucket B′3 thus:

S =

 1 0 0 0
0 1 1 0
0 0 0 1


qe =

(
0 0 1 0

)
(qe)Tqe =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


T =

 1 0 0 0
0 1 0 0
0 0 0 1

 K =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


If we have the matrix M−1 for the bucket base B1, B2, B3, then
the theorem gives us an expression for (M′)−1 for the new bucket
base B′1, B′2, B′3, B′4. 2

Note that the matrices T and K are sparse: we use this to opti-
mize matrix operations: for split, (M′)−1 can be computed in
time O(n2).

To summarize, in order to perform a split operation on bucket
Bj we need to (1) compute M′ = STMS + (Qe)TQe where Qe

are the k estimate queries, (2) compute p′ = STp + (Qe)T re, (3)
compute (M′)−1 using Theorem 4.11.

4.2.3 The merge Phase
The transformation matrix for merge is also shown in Fig. 5.

We start by proving that the inverse (M′)−1 can also be computed
incrementally, in time O(n2). However, here we can push the op-
timization further: we can avoid computing the inverse altogether
during the main loop of Algorithm 4.2 (lines 4(a), (b), and (c)), and
compute (M′)−1 only at the end. We give the details next.

THEOREM 4.13. Let M be an n× n non-singular matrix with
inverse M−1, let S be a n×pmatrix, and let T, K be two matrices
with the following properties (we denote k = n− p):

T : p× n is a left inverse of S: TS = Ip
K : n× k is a kernel of ST : STK = 0

Denote:

G = KTM−1K : k × k
L1 = KTM−1 : k × n
L2 = KT (MT )−1 : k × n



Smerge =



1 0 0
...

...
0 . . . f0 . . . 0
0 . . . f1 . . . 0

...
...

0 . . . fk . . . 0
...

...
0 0 1


Ssplit =



1 0 . . . 0 0
...

...
0 . . . 1 . . . 1 . . . 0

...
...

0 0 . . . 0 1



Figure 5: Tranformation matrices for merge and split. Here f0, f1, . . . represent the ratio of the buckets being merged and the
new bucket.

(When M is symmetric then L1 = LT2 , denote it L). Then the
matrix M′ = STMS is invertible, and its inverse is:

(M′)−1 = T(M−1 − LT2 G−1L1)TT

We omit the proof, but only mention that it is even more involved
than Theorem 4.11. The theorem allows us to compute the inverse
(M′)−1 for a merge operation, because it is easy to construct both
a left inverse and a kernel, as we illustrate in the next example:

Example 4.14 Suppose we have n = 4 buckets B1, B2, B3, B4

and we merge them into p = 3 buckets B1, B2 ∪B3, B4. Denote:

f0 = volume(B2)/volume(B2 +B3)

f1 = volume(B3)/volume(B2 +B3)

Then:

S =

 1 0 0
0 f0 0
0 f1 0
0 0 1

 T =

 1 0 0 0
0 1 1 0
0 0 0 1

 K =

 0
f1
−f0
0


One can check that T is indeed a left inverse for S and K a kernel
for ST . Denote M−1 = (m̄ij)i,j=1,4. Then:

1. G is a single number, denoted G:

G = f2
1 M̄22 − f1f0m̄23 − f1f0m̄32 + f2

0 m̄33

2. L1 is a 1×4 row matrix, obtained as a linear combination of
rows 2 and 3 in M−1:

L1 =
(
f1m̄21 − f0m̄31 . . . f1m̄24 − f0m̄34

)
3. Similarly, L2 is a row matrix obtained as a linear combina-

tion of the columns 2 and 3 in M−1:

L2 =
(
f1m̄12 − f0m̄13 . . . f1m̄42 − f0m̄43

)
When M is an influence matrix then it is symmetric, hence
L1 = L2, because m̄ij = m̄ji.

4. We compute the rank-1 matrix LT2 G−1L1 directly, then sub-
tract it from M−1.

5. Finally, the result T(M−1 − LT2 G−1L1)TT is obtained by
adding rows 2 and 3 and adding columns 2 and 3 in the matrix
M−1 − LT2 G

−1L1 (thus, transforming it from a 4 × 4 to a
3× 3 matrix). 2

We generalize the example to a general merge operation: T has
a row containing k 1’s, and K is:

K =



0 0 . . . 0
. . .

f0 f1 . . . fk
−f0 0 . . . 0
0 −f0 . . . 0

. . .
0 0 . . . −f0


COROLLARY 4.15. The inverse (M′)−1 of the influence matrix

resulting after a merge can be computed in time O(n2).

The proof is by generalization of Example 4.14: step 1 takes
O(k2) time, steps 2 and 3 take O(kn) time, and steps 4 and 5 take
O(n2) time.

Finally, we show how to avoid computing (M′)−1 during the
main loop of the algorithm. During this loop we examine several
alternative histograms H ′ ∈ B (obtained by merging buckets), and
choose the one with the minimal cost. We show that we can com-
pute their cost without computing (M′)−1: this allows us to find
the optimal histogram H ′ in time O(n|B|). Once we identified the
optimal H ′ ∈ B, we still need to compute the inverse, which do
incrementally, using Theorem 4.13, but we only need to do this for
the histogram with optimal cost.

THEOREM 4.16. Let H be a histogram with n buckets for a
workload W = (Q,F, r) where the matrix storing the statistic
is X. We assume to have precomputed the quantities M, M−1,
p(= QTFr). Let H ′ be histogram with n − k buckets, obtained
from H through some transformation matrix S. Let T,L,G be the
matrices defined in Theorem 4.13. Denote U = ST− In (the non-
zero entries in U form a (k + 1) × (k + 1) block, and its rank is
≤ k + 1). Denote v = Lp− LUTp: v is a k × 1 column vector.
Denote:

err1 = pTUX

err2 = pTUM−1UTp

err3 = vTG−1v

Then:

ErrW (H ′) = ErrW (H) + 2err1 − err2 + err3

In particular, if H ′ is obtained as the result of a merge oper-
ation, then v can be computed in time O(n), and the difference
ErrW (H ′)− ErrW (H) can be computed in time O(n+ k3).

This allows us to find the candidate histogram H ′ with the mini-
mal error: simply inspect all candidate histogramsH ′, compute the
quantity 2err1 − err2 + err3 for each of them, and select the
one with minimal error.



Example 4.17 We illustrate the theorem on Example 4.14. First,
we show ST and U = I4 − ST:

ST =

 1 0 0 0
0 f0 f0 0
0 f1 f1 0
0 0 0 1

 U =

 0 0 0 0
0 1− f0 −f0 0
0 −f1 1− f1 0
0 0 0 0


For err1 = pTUp we note that:

pTU =
(

0 p2(1− f0)− p3f1 −p2f0 + p3(1− f1) 0
)

It has only k + 1 = 2 non-zero entries, hence err1 requires two
multiplications. Similarly, err2 = pTUM−1UTp requires four
multiplications (using the same vector pTU). Finally, for err3 we
need to compute v = Lp−LUTp (which is a number) then obtain
err3 = vTG−1v (where, as shown earlier, G is also a number).2

5. EXPERIMENTS
We now describe the results of our preliminary empirical evalu-

ation. The goals of our study are (1) to compare the EM and L2-
distance based approaches for query size estimation, (2) since none
of the previously proposed self-tuning histograms addresses dis-
tinct values, we primarily compare the accuracy of our approaches
to the query optimizer, and (3) to measure the execution efficiency
of building our self-tuning histograms.

5.1 Setup
All our experiments are conducted using the TPCH bench-

mark [12]. The data size is 1 GB. The benchmark data itself is
uniformly generated which is the case where the query optimizer is
known to have high accuracy. Thus in order to evaluate our tech-
niques, we generate TPCH data that is skewed [8]. This data has a
zipfian distribution where the zipfian parameter is set to z = 1.

One of the applications of self-tuning histograms is in comput-
ing statistics over views [4]. Creating these statistics is known to be
challenging and prior approaches [5] focus on heuristically com-
puting samples over joins. Sampling is known to result in poor
accuracy for distinct value estimation. This problem is only exac-
erbated by the difficulty of sampling over joins [7]. Thus, building
statistics over views by using execution feedback is attractive. Of
course, there are significant challenges to be addressed in using ex-
ecution feedback for building statistics over views. However, the
first question that arises is whether such an approach is even feasi-
ble and whether we obtain the improvement in accuracy we seek.
Our study addresses this question of feasibility.

As such we conduct our empirical study in the setting of
building a statistic over views. We focus on the view ob-
tained by joining LINEITEM with ORDERS. Our column
of interest is O TOTALPRICE. We generate a workload of
queries following a uniform distribution, involving both count
and count distinct queries with different selections on
O TOTALPRICE generated uniformly. The cardinality and dis-
tinct values computed using execution feedback are fed into the
self-tuning histogram. (In our experiments, we compute the ex-
act cardinalities and distinct values by running the query against
SQL Server.)

5.2 EM Vs L2
As noted in Section 3, the execution efficiency of computing the

EM model given cardinality and distinct value counts is very poor.
In fact, even for histograms with at most 20 buckets, we found that
computing the histogram took longer than 7 hours. Note that in
the case of the EM approach, this means that we cannot process a
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Figure 6: Comparing EM With L2.

large number of query feedback records since it proceeds by first
constructing a refined histogram and then merges buckets.

However the question arises whether for a small number of query
feedback records and a correspondingly small number of histogram
buckets, how the EM approach compares with the L2-based ap-
proach. We investigate this question here. We fix a workload of 10
queries which are used to construct the self-tuning histograms. We
then test the accuracy of the histogram using a different workload
(again of 10 queries) which are generated using the same distri-
bution. We plot the average relative error of the estimation as a
function of the number of buckets allocated. Figure 6 shows the re-
sults. We can see that (1) the accuracy of both EM andL2 improves
sharply as we increase the number of buckets allocated, and (2) the
accuracy of L2 is comparable to that of EM. On the other hand, the
L2-based approach has significant computational advantage over
EM.

For the rest of this section, we only consider the L2-distance
based histogram.

5.3 Comparison With Query Optimizer
As noted above, since none of the previously proposed self-

tuning histograms addresses distinct values, we primarily compare
the accuracy of our approaches to the query optimizer.

For the query optimizer, we use two estimates. The first that we
call Optimizer Computed is one where we only have relevant
statistics on the base tables and the optimizer uses its error propa-
gation algorithms to estimate the result size.

We also consider the algorithm proposed in [5] to create statistics
over views. There, the approach is to approximate a sample over the
view and then use the sample to compute the histogram. In order to
compare against this method, we materialize the view as a base ta-
ble and use sampling to compute statistics over the O TOTALPRICE
column since this is what the algorithm in [5] is trying to efficiently
approximate. We call this approach Optimizer base.

The self-tuning histogram is constructed using a workload of
queries generated as described above (involving both count and
count distinct queries). In order to measure the accuracy,
we use a workload of 100 test queries that uses the same distribu-
tion as the “training” workload above

Figure 7 shows the results of our comparison. In Figure 7(a),
we vary the number of buckets allocated to our histogram keeping
the number of “training” queries fixed at 1000. In Figure 7(b), we
fix the number of buckets at 100 and vary the number of “training
queries”. The number of buckets and queries are plotted on the
X-axis. The Y-axis reports the relative error measured as the ratio
between the absolute error and the true value. We use L2-Hist to
refer to the L2-distance based histogram.
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Figure 7: Comparison With Query Optimizer

Since the data is skewed and since the optimizer uses indepen-
dence and containment assumptions that are well-known to be un-
reliable, we find that the Optimizer Computed error is signif-
icantly higher than that returned by L2-Hist. Interestingly, even
the Optimizer Base error is higher than that ofL2-Hist. This
happens since our test workload also involves distinct value esti-
mation where sampling is well-known to be error-prone. Indeed,
if we restrict ourselves to cardinality queries alone, the error re-
turned by Optimizer base drops to a point where it is lower
than L2-Hist.

In addition, as expected, the error of L2-Hist reduces as more
space is provided for the histogram and as the number of training
queries increases.

5.4 Execution Time
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Figure 8: Execution time.

Finally, we plot the execution time of L2-Hist as a function of
the number of buckets allotted. The query workload size is fixed
at 1000 and is generated in the same manner as in the previous sub-
section. The X-axis plots the number of buckets and the Y-axis,
the execution time per query statistic in milli-seconds. Owing to
the quadratic nature of our algorithm, we find that the running time
grow super-linearly with space. In contrast, previously proposed
approaches such as STGrid and STHoles take an order of mag-
nitude smaller time and are not plotted on the graph since their time
is close to 0. However, we still find our execution time — 60ms
per query feedback for a histogram with 100 buckets — acceptable
given the benefits of our approach, primarily the fact that it permits
the maintenance of multiple statistics.

6. RELATED WORK

Various synopsis structures have been proposed for cardinality
estimation in a relational query optimizer such as histograms [19],
wavelets [13], samples [17] and sketches [2]. This paper focuses
on histograms. This is the main data structure used by commercial
database systems for cardinality estimation.

Histograms are typically constructed offline to be then used by
the query optimizer at optimization. There is a vast body of prior
work on constructing both one-dimensional and multi-dimensional
histograms from data [19] that can be disk-resident [21, 16] or
streaming [28, 32, 14, 15].

Despite this large body of prior work, significant estimation er-
rors are commonplace in commercial query optimizers. More re-
cently, there have been several proposals for leveraging query ex-
ecution feedback in order to address this problem. This body of
work focuses on two aspects of the problem — one is to incor-
porate mechanisms in the query execution engine to monitor and
record cardinalities at a low overhead [31, 9], and the other is to
use this recorded feedback to improve the estimation framework of
the optimizer. The broad area of self-tuning synopsis structures [10,
1, 6, 26, 30, 23, 25] addresses the latter problem.

The most relevant prior work to this paper is the work on self-
tuning histograms [1, 6, 26, 30]. STGrid [1] and SASH [26] try to
explicitly approximate the data distribution by exploiting execution
feedback. STHoles [6] requires extremely detailed feedback from
the query execution — it needs the intersection of the query with
each bucket of the histogram. This requires a modification to the
query engine over and above what has been considered in [31, 9]
where only the overall result size is monitored. This modification
is likely to incur significant runtime overhead. The state-of-the-art
self-tuning histogram is ISOMER [30] which has been shown to be
empirically more accurate than STGrid. It uses the entropy max-
imization principle to first construct a histogram that is consistent
with the execution feedback while making the fewest additional as-
sumptions. None of the above histograms addresses distinct value
counts which is the focus of this paper.

The principle of minimizing the L2 distance is commonly used
in traditional histograms. For example V-Optimal histograms use
the same principle to minimize the L2 distance [20, 29, 21, 16, 28,
23]. The principle has been applied to not only point queries [20,
29, 21] but also to range queries [16, 24], and more recently ex-
tended to build histograms over probabilistic databases [11]. Here
specific classes of queries such as the class of all point queries
or the class of all point and all range queries, or more restricted
classes such as hierarchical range queries are considered. The pri-
mary differences in our scenario are: (1) the query workload is an



explicit input and can consist of arbitrary point and range queries,
and (2) they can contain feedback about not only cardinalities but
also distinct values.

7. CONCLUSIONS
Self-tuning histograms are computed and maintained from

query execution feedback, obtained almost for free during nor-
mal database operation. In this paper, we considered the problem
of building self-tuning histograms that are cognizant of distinct
value counts. We studied two methods of consistency. One is to
use the Entropy Maximization (EM) principle. We showed how
this principle could be applied to take distinct value counts into
account. We saw that this requires a different probability space
than that proposed in prior work for cardinalities alone.

Since the equations generated by the EM principle are pro-
hibitively hard to solve efficiently, we proposed an L2-distance
based approach to capture consistency in the presence of both car-
dinalities and distinct values. We showed how these L2-distance
based histograms can be computed from the query feedback records
in a single pass, at a cost of O(n2) per query plus O(n) per can-
didate histogram inspected, which translates into about 60ms for a
histogram with 100 buckets. Our empirical study indicated that the
L2-distance based histogram produces comparable accuracy to EM
while at the same time being computationally much more efficient.
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