
Anonymization of Set-Valued Data via Top-Down, Local
Generalization

Yeye He
University of Wisconsin-Madison

1210 W. Dayton St.
Madison, WI

heyeye@cs.wisc.edu

Jeffrey F. Naughton
University of Wisconsin-Madison

1210 W. Dayton St.
Madison, WI

naughton@cs.wisc.edu

ABSTRACT
Set-valued data, in which a set of values are associated with
an individual, is common in databases ranging from market
basket data, to medical databases of patients’ symptoms
and behaviors, to query engine search logs. Anonymizing
this data is important if we are to reconcile the conflict-
ing demands arising from the desire to release the data for
study and the desire to protect the privacy of individuals
represented in the data. Unfortunately, the bulk of existing
anonymization techniques, which were developed for scenar-
ios in which each individual is associated with only one sen-
sitive value, are not well-suited for set-valued data. In this
paper we propose a top-down, partition-based approach to
anonymizing set-valued data that scales linearly with the in-
put size and scores well on an information-loss data quality
metric. We further note that our technique can be applied
to anonymize the infamous AOL query logs, and discuss the
merits and challenges in anonymizing query logs using our
approach.

1. INTRODUCTION
In this paper we propose a new algorithm for anonymiz-

ing set-valued data. By “set-valued data” we mean data
in which a logical record has the form (personid, {item1,
item2, ..., itemn}). Note that such a record could be nor-
malized into a person record and a set of related item records
in order to be stored in a relational database — the impor-
tant fact is that each person is associated with a set of items,
not the details of how the data is stored. The canonical ex-
ample of set-valued data is transactional data, where {item1,
item2, ..., itemn} represents the set of items that the per-
son with id personid purchased. Anonymization of this kind
of data differs from the problem studied by most previous
work, in which the implicit assumption is that each indi-
vidual is associated with only a single sensitive value (e.g.,
their medical diagnosis.) Following terminology from prior
work, we will refer to the two types of data as “set-valued
data” and “relational data.” Unfortunately, the techniques

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

explored for anonymizing relational data do not apply to the
set-valued case.

The problem of anonymizing set-valued data can arise in
two different scenarios. In the first, one retains the quasi-
identifier vs. sensitive value distinction of classical database
data anonymization, and develops techniques to make it dif-
ficult for adversaries to exploit these quasi-identifiers to tie
sensitive values to individuals [13, 25, 40, 41]. In the sec-
ond scenario, there are no quasi-identifiers, any item of the
sets could be sensitive, and the items of the sets themselves
are exploited to tie sets of items to individuals. This is the
scenario we consider. To the best of our knowledge, the
only previously published work to address this scenario is
the pioneering work in [32], which presented a bottom-up
global-recoding algorithm exploiting the a priori property
that has been used so effectively in association rule mining.
In this paper we present an alternative algorithm, and com-
pare and contrast our new algorithm with this prior work.

When considering the anonymization of set-valued data,
one question that immediately arises is what anonymiza-
tion criteria should be used. In [32], the authors proposed
a new model called km-anonymity. The basic idea in km-
anonymity is that for any transaction in the data set, for
any subset of m items in that transaction, there are at least
k − 1 other transactions with the same m items. The al-
gorithm presented in [32] uses generalization of the set ele-
ments to achieve this anonymization. The intuition for this
model is that it helps prevent privacy breaches arising from
an adversary discovering m of the items in an individual’s
transaction.

For example, an adversary may observe that Alice has
purchased “milk,” “beer” and “diapers.” The adversary
could do this perhaps by seeing the top of her (physical)
shopping cart, or visiting Alice’s house and noting the pres-
ence of these items. Now, armed with this information, the
adversary can examine the released transactional data, and
find all transactions containing these m items (milk, beer,
and diapers in this example). This way the adversary might
be able to associate a small set of transactions with the in-
dividual. If there is only one such transaction, then the
adversary knows this transaction belongs to the individual,
and furthermore, the adversary now knows the entire trans-
action, which may include sensitive items such as various
prescription drugs. km anonymity provides some protection
against this kind of attack. For example, if the data set
were anonymized using 103 anonymity (k = 10, m = 3),
then there would be at least nine transactions other than
Alices’s containing milk, beer, and diapers.

This definition of anonymity highlights the fact that for
set-valued data, the set of sensitive values themselves can be
used to identify individuals. While km anonymity mitigates
this kind of attack, there are scenarios in which it is not
sufficient. For example, in some cases it may not be possible
to determine in advance a bound on how many items in
a transaction an adversary can “see,” in which case it is
impossible to pick a safe value for m. Another scenario
arises when some of the items in the set can be used to
exclude certain transactions from being associated with an
individual, such that the adversary may be able to tie a
small number of, perhaps even less than k, transactions to
certain individuals.

As an example of this second scenario, an attacker may
know that typically only people over 65 purchase some items,
while only people in certain geographic areas purchase oth-
ers. Returning to our previous example, the adversary, know-
ing Alice has purchased “milk,” “beer,” and “diapers,” may
discover that two transactions contain these three items.
Now suppose that Alice is a college student living in Texas;
then if one of the transactions contains “snow tires” and
“Centrum silver” in addition to “milk,” “beer” and “di-
apers,” it is unlikely to be Alice’s. This “general public
knowledge” attack increases the possibility that transactions
can be linked to their owners and makes the task of pro-
tecting an individual’s privacy harder. In this example, km

privacy with k = 2 and m = 3 will not provide protection
against this attack.

To protect against the general public knowledge attack,
we propose the use of k-anonymity, instead of km-anonymity.
k-anonymity simply means that for any transaction, there
are at least k−1 other identical transactions. As will be illus-
trated in Section 3.1, that if a database is k-anonymous by
our definition, it is km-anonymous for any value of m. How-
ever, setting m to anything less than mmax, where mmax

is the maximum length of any transaction in the data set,
results in a weaker anonymization than k-anonymity.

Because km-anonymity approximates k-anonymity with
increasing m, the algorithm proposed in [32] for km-anonymity
can be used to approach k-anonymity by setting m = mmax

in anonymizing a data set. Unfortunately, while that algo-
rithm performs well when m is small, it does not scale well
as m grows.

In addition to proposing km anonymity, the work in [32]
presented the key insight that to prevent attacks on set-
valued data, one can generalize some or all of the items in the
set using a generalization hierarchy. For example, their algo-
rithm might replace “wine” or “beer” in a transaction with
the generalized value “alcohol.” We also adopt the approach
of generalizing the items in the sets. However, we propose a
new algorithm, which we call “partition,” that anonymizes
by recursively partitioning similar set-valued transactions
into groups in a top-down manner.

There are two primary criteria by which one can evaluate
anonymization algorithms — their efficiency as measured
by their running time, and their precision as measured by
the amount of information loss through the anonymization
process. Our experiments show that our algorithm is more
efficient and achieves a lower degree of information loss than
the algorithm presented in [32] run with m = mmax. Per-
haps surprisingly, it turns out that our top-down local recod-
ing is faster and more precise than the algorithm from [32]
even when that algorithm is allowed to run with m set to

values much smaller than mmax. This means that our algo-
rithm generates better anonymizations and finds them more
quickly even when it is enforcing a stricter privacy guarantee
than the previous approach.

The greater efficiency of our anonymization algorithm en-
ables us to consider anonymizing large real-world data sets,
which makes it possible to consider applying our algorithm
to the problem of anonymizing query search logs. To do
so, we simply view a query as a set of keywords, then treat
each keyword as an item and the union of the keywords in
the collection of queries issued by the user as that user’s
transaction; or, treat the set of keywords in each query as
an item, and the collection of queries by the user as a trans-
action. Although there has been some previous work, most
notably [3], on protecting user’s privacy when releasing their
query logs, this previous work treats anonymization as an
ad-hoc privacy problem, using techniques such as “drop any
rare queries from the log” or “split an individual’s queries
among two virtual individuals.”

Releasing search engine query logs without violating indi-
viduals’ privacy is a practical problem and is of real world
importance. There was a high-profile AOL query log release
incident [1, 2] in 2006, when search histories of AOL users
were naively anonymized and released. Unfortunately, mul-
tiple instances of real world privacy breaches were reported.
Most notably, reporters from the New York Times [7] suc-
cessfully identified one user in the AOL log as a 62 year old
woman living in Georgia. This quickly led to a public out-
cry over privacy concerns, and AOL subsequently called the
release a mistake.

While our algorithm’s efficiency and precision does indeed
enable us to anonymize the search logs with lower informa-
tion loss than the techniques presented in prior work [3], as
detailed in Section 6, our results on that data set are not
as encouraging as our results on the traditional market bas-
ket data sets. We suspect that ultimately anonymizing such
query logs will require additional new techniques beyond
generalization, and regard our contribution in this direction
as highlighting the promise and limitations of applying gen-
eralization to query log anonymization.

The rest of the paper is organized as follows. Section
2 describes related work on anonymization of transactional
database. Section 3 formalizes the privacy model used for
set-valued data. Section 4 introduces our top-down partition
based anonymization. Section 5 presents an experimental
evaluation of our algorithm and compares it with existing
state-of-art. Section 6 extends this technique to query log
anonymization. Section 7 concludes this paper.

2. RELATED WORK
In this section we describe related work that is not covered

elsewhere in the paper.
Preserving privacy in transactional databases has been

acknowledged as an important problem in the privacy lit-
erature. The data mining community has focused on hid-
ing sensitive rules generated from transactional databases.
In [6], the authors address this problem by altering the
database to hide a given set of sensitive rules. This, how-
ever, does not protect individuals’ privacy and requires prior
knowledge of the rules and mining model used. The work
in [33] proposes publishing only rules instead of the under-
lying data. While this approach will be effective in some sit-
uations, in general publishing rules rather than anonymized

data precludes the kind of arbitrary analysis one can do in
a query session over a data set.

Accordingly, recently there has been a change of research
focus from hiding rules to anonymizing and releasing trans-
actional set-valued data, with individuals’ privacy in mind.
The pioneering work in [13] uses a sparse matrix represen-
tation of transactional databases, and applies matrix per-
mutation techniques to capture correlations in the under-
lying data and to facilitate the formation of anonymized
groups. Sensitive items are then randomized within groups
to achieve anonymity. As we hinted in the introduction, this
works when one can a priori partition attributes into quasi-
identifiers (which are never sensitive) and sensitive values
(which are never used to identify individuals.) By contrast,
we are working on a different variant of the problem, where
there are no explicit quasi-identifiers, and any of the ele-
ments appearing in the sets have the potential of being con-
sidered sensitive by some owner.

Along the line of [13], there is a pair of recent papers [40,
41] proposing a more sophisticated privacy criterion (h, k, p)-
coherence to anonymize set-valued data. This novel privacy
criterion ensures that for any p item combination that is
non-sensitive, there are at least k transactions in the data-
base containing these items, and within which at most h
percent of transactions contain some sensitive item. It uses
the parameter p to model the adversary’s prior knowledge,
which offers flexibility in anonymization based on the power
of the adversary. (h, k, p)-coherence also has the advantage
of incorporating a kind of diversity (of the sort originally
introduced in the l-diversity criteria proposed in [23]) in the
resulting anonymization. Our k-anonymity approach does
not address diversity; augmenting our k-anonymity over set-
valued data with no sensitive/quasi-identifiers item distinc-
tion appears to be a somewhat subtle issue and one that
warrants future work. Similar to [13], however, this attrac-
tive new model is also under the assumption that an a priori
classification of sensitive and quasi-identifier items exists. If
applied directly to the problem we are attacking where no
such distinction exists, (h, k, p)-coherence may have nega-
tive implications. In particular, given that any item can
be both sensitive and quasi-identifier without a sensitive vs.
quasi-identifier distinction, (h, k, p)-coherence will prohibit
the discovery of any association rules with high confidence
and fewer than p items on the left side, since such rules with
confidence greater than h violate the condition specified by
h.

The work in [32] is most similar to ours in not assuming
an a priori distinction between quasi-identifier and sensitive
items. As we mentioned in the introduction, they propose
a km-anonymity model, and generalize items in a bottom-
up enumerative manner, using the a priori principle [4], to
achieve anonymity.

3. k -ANONYMITY IN SET-VALUED DATA
We first introduce our privacy model for anonymizing

set-valued data. This is similar to the k-anonymity model
widely used for relational data, but different from the km-
anonymity model used in previous work on set-valued anony-
mization [32].

3.1 The Privacy Model
Let I = {I1, I2, ..., I|I|} be the set of items from which the

elements of the sets are drawn, and let D = {t1, t2, ..., t|D|}

be a transactional database over I, where each transaction
ti ∈ D is a non-empty subset of I.

Definition 1. Equivalence class in transactional database
A transactional database D consists of a multiset of trans-

actions. An equivalence class for D is the set of all transac-
tions with identical sets of items S, S ⊆ I.

Definition 2. k-anonymity in set-valued data
A transactional database D is k-anonymous if every trans-

action in D occurs at least k times, or, equivalently, the size
of each equivalence class in D is at least k.

Intuitively, a transactional database is k-anonymous if
each transaction is identical to at least k − 1 others. As
we mentioned in the introduction, this model is different
from the km-anonymity model previously proposed in [32],
which states that given any m or fewer items chosen from
any transaction, there are at least k − 1 other transactions
containing the same set of m items.

With these definitions, we can return to the question of
relating these two models. We note first that km-anonymity
only protects individuals’ privacy when the adversary knows
m or fewer items, whereas k-anonymity, with the absence
of the parameter m, requires no limit on the number of
items the adversary can know. In general, the smaller the
m in km-anonymity, the weaker privacy km-anonymity pro-
vides. Note, though, that even when m = mmax, where
mmax is the maximum length of transaction, km-anonymity
would only approximate the level of protection offered by k-
anonymity. Second, km-anonymity does not prevent against
other attacks in which an adversary equipped with public
knowledge can associate fewer than k transactions with an
individual. In comparison, the k-anonymity model always
ensures that a transaction is indistinguishable from a set of
k − 1 other transactions.

To summarize, we note in the following proposition that k-
anonymity subsumes the previously proposed km-anonymity.

Proposition 1. Every database D that satisfies k-anonymity
also satisfies km-anonymity for all m. However, there exists
a database D such that for any m, D satisfies km-anonymity
but not k-anonymity.

It is intuitive that a k-anonymous database D is always
km-anonymous. Suppose we know that D is k-anonymous.
Any n-item set, where n ≤ m, is either contained in some
transaction t in D or not contained in any transaction in
D. In the first case, given the k-anonymity property of D,
the equivalence class of t is at least of size k, which ensures
that this n-itemset has a support of at least k. In the latter
case, since no transaction in D contains this n-itemset, the
support is simply 0. In both cases, D is km-anonymous.

It is also easy to come up with a counterexample where a
database D is km-anonymous for any m but not k-anonymous.
We will demonstrate this in Example 1.

Definition 3. k-anonymization of transactional database
A transactional database D′ with some instances of items

generalized from the original database D using an item gen-
eralization hierarchy is a k-anonymization of D if the de-
rived D′ is k-anonymous.

Logically, k-anonymization in our setting is the process
of generalizing some specific items into more generic super-
categories. For market basket data, there is typically a nat-
ural generalization hierarchy over the domain of purchased

Figure 1: Item Generalization Hierarchy Example.

items. “Beer” and “wine,” for instance, can be generalized
to “alcohol.” A sample hierarchy is illustrated in Figure 1.
We assume that there is a root node, “ALL,” that covers
every possible item in the domain. This implies that as long
as there are at least k transactions in the database, there is
always a trivial k-anonymization, which simply generalizes
everything to the root item “ALL.” This anonymization,
however, is trivial in that it only reveals the number of trans-
actions in the database, with virtually no other information
about the transactions in the original database.

Example 1. A 2-Anonymous Transactional Database
Consider a transactional database with the domain gen-

eralization hierarchy from Figure 1. The original database
consists of four transactions, as shown in Table 1a. Note
that the “owner” column is not part of the transactional
database, nor will it be published; it is included only for
ease of illustration in our example.

Owner TID Items Purchased
Alice T1 {Beer, Diapers}
Bob T2 {Wine, Diapers, Pregnancy Test}
Chris T3 {Beer, Wine, Pregnancy Test}
Dan T4 {Beer, Wine, Diapers, Pregnancy Test}

(a) Original Database

Owner TID Items Purchased
Alice T1 {Alcohol, Health Care}
Bob T2 {Alcohol, Health Care}
Chris T3 {Beer, Wine, Health Care}
Dan T4 {Beer, Wine, Health Care}
(b) Generalized 2-anonymous Database

Table 1: Transactional Database Example

The original database, as presented in Table 1a, is not
2-anonymous according to our definition. Table 1b gives a
possible 2-anonymization.

Note that the original dataset in Table 1a actually satisfies
22-anonymity in the km-anonymity model, and no general-
ization is necessary under that privacy model. Specifically,
both k and m are 2, meaning any 1 or 2-itemset should have
a support of either 0 or at least 2. This means that when
the adversary knows that Dan bought “beer” and “diapers”
he or she may be able to link Dan to T1 and T4 in Table 1a,
but will not able to uniquely determine which transaction
belongs to Dan. This provides some protection for Dan’s pri-
vacy given the assumption that the adversary never knows

more than 2 items. Suppose, however, that the adversary
later learns that Dan bought “wine” also; then he or she can
uniquely link T4 to Dan, and thus be able to deduce that
Dan also purchased a “pregnancy test.”

This breach of privacy will not happen in our k-anonymity
model. Even if the adversary knows that Dan bought “beer,”
“wine” and “diapers,” he or she cannot determine which of
T3 and T4 in Table 1b actually belongs to Dan. This in-
tuitively demonstrates the point in Proposition 1 that k-
anonymity subsumes km-anonymity.

To further illustrate the second part of Proposition 1 which
states that there exists a database that satisfies km-anonymity
for any m but not k-anonymity, let us assume there is an
additional transaction T5 in Table 1a which is identical to T4

and consists of {Beer, Wine, Diapers, Pregnancy Test}. It is
easy to see that this new database is 2m-anonymous for any
m given the existence of T4 and T5, but not 2-anonymous
due to T1, T2 and T3.

We now consider some subtle aspects of the guarantees
provided by km-anonymity and k-anonymity. At first sight,
the 22-anonymous database in Table 1a may appear more
diverse than its 2-anonymous counterpart in Table 1b, since
no two transactions in the former are identical. However,
this is misleading; even though the 2-anonymous database in
Table 1b looks more uniform, it actually reveals less informa-
tion about the underlying transactions, because the transac-
tions are identical only because some additional items have
been generalized.

One possible concern of using a stronger privacy model
is the quality of the resulting data and the potential loss
of data utility, as it is reasonable to expect that more gen-
eralization/information loss may be necessary to meet the
requirement of a stronger privacy model. As we saw in the
previous example, when adopting the stronger 2-anonymity
model we had to generalize some instances of items, while
the original data already satisfied 22-anonymity. But as we
will see in Section 5, in experiments over real-world data
sets, our approach, while satisfying a stronger anonymiz-
ation criterion, actually achieves lower information loss in
most cases.

The key reason for this is that our approach performs a
variant of “local recoding” as defined in the anonymization
taxonomy proposed in [19]. In [19], local recoding referred
to the generalization of quasi-identifiers in traditional data
anonymization. Here, we apply the term to generalizing
items in a set-valued data set using a hierarchy; that is,
with local recoding, instances of the same item in different
transactions may be generalized to different levels in the hi-
erarchy. In Table 1b, for instance, “Beer” is generalized to
“Alcohol” in T1 but kept as is in T3 and T4. By contrast,
with global recoding, when an item is generalized to its par-
ent, not only are instances of this item in all transactions
are generalized, so are any other child items under the same
parent. One might think that for global recoding it is suffi-
cient to merely generalize all instances of a data item and to
leave remaining sibling items as is; but a moment’s thought
shows that this is not sufficient. For example, if we gener-
alize “Beer” to “Alcohol” but leave “Wine” as is, then the
generalization of “Beer” to “Alcohol” will serve no purpose
for anonymization since there is a one-to-one correspondence
between the original “Beer” and the new “Alcohol.” This
is why the algorithm in [32] chooses to recode all siblings
whenever one sibling is generalized.

3.2 Quality Metrics
As in anonymizing relational data, set-valued data anony-

mization incurs information loss when a detailed item is
generalized to its more generic super-category. The goal
of anonymization in general is to find a transformation of
the original data that satisfies a privacy model while min-
imizing the information loss and maximizing the utility of
the resulting data. Thus a metric is necessary to measure
the quality of the anonymized data.

Various metrics have been proposed in the literature. Met-
rics that are relevant in our setting include the Discernabil-
ity Metric [8], and the Normalized Certainty Penalty [39].
The Discernability Metric measures the size of equivalence
classes, or partitions, in the anonymization. This is not di-
rectly applicable to the km-anonymity model, to which we
want to compare our approach, as there is no concept of
equivalence class in km-anonymity. Thus we use the Nor-
malized Certainty Penalty (NCP) information loss metric
throughout this work. We note that this metric was also
used in previous work [32] to measure the effectiveness of
the algorithm presented in that paper.

We describe the Normalized Certainty Penalty for items
in a generalization hierarchy, as defined in [32]. Let p be an
item or its generalization. NCP is defined as

NCP(p) =

{
0, |up| = 1;
|up|/|I|, otherwise.

where up is the node in the hierarchy tree corresponding to
p, and |up| is the total number of leaf nodes under that node.
Intuitively, the first equation states that when the item is not
generalized and published as is, there is no information loss.
The second equation states that the information loss for a
generalized item is the number of leaves it covers divided
by total number of leaves in the hierarchy. The maximum
information loss is 1, when an item is generalized to the root
and thus covers the entire domain.

Using T1 of Table 1, for example, when “beer” is gener-
alized to “alcohol,” the information loss is |up|/|I| = 2/4 =
1/2. Similarly, an information loss of 1/2 is incurred when
“diapers” is generalized to “health care.” “Beer” in T3 and
T4 is not generalized, so the information loss there is 0.

Let t be a transaction in the database D, p be an item in
transaction t, and Ct be the count of items in transaction
t. Then the total information loss of a generalized transac-
tional database D is defined as follows:

NCP (D) =

∑
t∈D

∑
p∈t NCP (p)∑
t∈D Ct

Thus the overall information loss of an anonymized data-
base is the weighted average of the information loss of all
instances of items, with a possible range from 0 to 1. Using
our running example, the information loss of the four trans-
actions when anonymized from Table 1a to 1b is: (1/2+1/2)
for T1, (1/2+1/2+1/2) for T2, (1/2) for T3, and (1/2+1/2)
for T4. So the total information loss of the database is
(8/2)/12 = 1/3.

4. PARTITION BASED ANONYMIZATION
Inspired by the divide-and-conquer techniques commonly

used in addressing problems involving data with multiple di-
mensions, such as kd-trees [12], R-tree [14] and Grid File [26],
our basic idea is to partition in a top-down manner, by re-

cursively separating set-valued data into groups where the
data in each partition share a generalized representation. A
similar approach was used in the Mondrian [20] anonymi-
zation algorithm. One key difference in our setting is that
the generalization hierarchy has to be used in deciding which
transactions are similar and should be grouped together. We
propose the following top-down greedy partition algorithm.

4.1 A Greedy Partitioning Algorithm
We begin with a high-level overview of our algorithm. It

starts by generalizing all transactions to the root level in the
hierarchy. This, as a starting point, always produces a triv-
ial anonymization with one partition, as long as there are at
least k transactions in the database, as all transactions share
the same representation (“ALL”) after being generalized to
the root. From this starting point, we pass the initial par-
tition to the following Anonymize routine, which splits the
current partition into sub-partitions, and recursively invokes
Anonymize on all resulting sub-partitions. The partitioning
process terminates when no further split is possible.

Algorithm 1 Recursive partition of set-valued data

Anonymize (partition)
if (no further drill down possible for partition) then

return and put partition in global list of returned
partitions

else
expandNode← pick node (partition)
for each data in partition do

resultPartitions← distribute data(data, expandNode)
end for
balance partitions (resultPartitions)
for each subPartition in resultPartitions do

Anonymize(subPartition)
end for

end if

We now present the algorithm in more detail. At any time
during the algorithm, for each partition, logically there is a
generalized representation, consisting of to which level in
the hierarchy transactions in the partition have been gen-
eralized. This generalized representation for each partition
can be recorded using a set of hierarchy nodes, which cuts
the hierarchy tree into two portions. We call this generalized
representation the “hierarchy cut” (a similar notion was also
described in [32]). The initial partition, which has all trans-
actions in it all generalized to “ALL,” has the root item as
its hierarchy cut. As partitions are split, the nodes in the hi-
erarchy cut associated with each partition will be expanded,
with more child-level nodes replacing the expanding parent
node, resulting in a hierarchy cut with more lower level hi-
erarchy nodes, giving a more detailed representation for all
transactions in this partition.

Every time when a partition is to be split, we only ex-
pand one node in the hierarchy cut at a time, for all the
transactions in the partition. So for each partition, there is
a choice of which node to specialize. A generalized transac-
tion (“food,” “beverage”), for instance, can be expanded by
drilling down on the node “food” to get (“cheese,” “bever-
age”), or drilling down on the node “beverage” to generate
(“food,” “beer”). Each choice will send the transaction to a
different bucket.

This choice of node expansion for each partition is de-

Table 2: Sample database and its anonymization

TID Original Data Local Re-
coding (2-
anonymity)

Global
Recod-
ing (22-
anonymity)

Global
Recod-
ing (2-
anonymity)

T1 {a1} {A} {a1} {A}
T2 {a1, a2} {A} {a1, a2} {A}
T3 {b1, b2} {b1, b2} {B} {B}
T4 {b1, b2} {b1, b2} {B} {B}
T5 {a1, a2, b2} {a1, a2, B} {a1, a2, B} {A, B}
T6 {a1, a2, b2} {a1, a2, B} {a1, a2, B} {A, B}
T7 {a1, a2, b1, b2} {a1, a2, B} {a1, a2, B} {A, B}

termined using a greedy heuristic in the pick node subrou-
tine. Various heuristics are possible in deciding which node
to expand given transactions in one partition. In what
follows we will only present details of the best heuristic,
Max Global Info Gain, out of several we tested in subrou-
tine pick node.

Pick node first iterates through each non-leaf (thus ex-
pandable) node in the hierarchy cut, computing the total
information gain for all the transactions in the partition
should this node be expanded, where the information gain
is defined as the difference between the information loss of
the generalizations before and after parent node expansion.
The node expansion which maximizes information gain for
the whole partition will be picked and used. We will see in
Section 5 that this simple heuristic performs well in practice.

The chosen node is then expanded, distributing every
transaction in the partition into a bucket (sub-partition).
Transactions still sharing the same representation will land
into the same bucket. At the end of data distribution phase,
the balance partitions sub-routine handles buckets with fewer
than k transactions by placing data from those buckets in a
leftover partition. If necessary, transactions producing the
least information gain from buckets with over k transactions
will be re-distributed to the leftover partition as well to make
sure the leftover partition has at least k transactions. The
leftover partition will then be associated with the original
hierarchy cut, as the expansion of the current node was not
successful in producing sub-partitions for this leftover data.

Each sub-partition represents the specialization from the
parent node to a set of different child nodes in the hier-
archy cut. Thus, for each sub-partition, a new hierarchy
cut with the parent node expanded and replaced by its spe-
cialization will be generated and associated with that sub-
partition. This hierarchy cut, along with the transactions
in the sub-partition, will be passed to recursive invocations
of Anonymize, until leaf level is reached or no further drill
down for the partition can be made without violating k-
anonymity.

Example 2. A top down partitioning using Anonymize
We use the example in Table 2 to illustrate step by step

how the Anonymize routine works in partitioning data top-
down into 2-anonymous groups.

We start by generalizing all transactions to the root level
of the hierarchy, generating an initial partition P{ALL} with
all seven transactions T1-T7 represented by the root “ALL.”
The hierarchy cut associated with this partition is simply
the root level of the hierarchy, {“ALL”}.

Figure 2: Domain generalization hierarchy for the sample
database

The Anonymize routine is called for the first time to split
the initial partition. The hierarchy cut of the initial parti-
tion has only one node, the root “ALL,” in it, so there is
only one way to drill down, which is ALL → {A, B}. This
drill down generates three possible buckets (sub-partitions),
namely P{A}, P{B} and P{A,B}, where the set of items in
the curly brackets of each bucket denotes the generalized
representation shared by all transactions in the partition.
All seven transactions are then distributed into these three
buckets, based on the leaf level items in their correspond-
ing original un-generalized transactions. We send T1 and
T2 to bucket P{A}, T3 and T4 to bucket P{B}, and T5-T7 to
bucket P{A,B}. All three buckets have at least 2 transac-
tions, so now we have three sub-partitions P{A}, P{B} and
P{A,B}.

Next we recursively invoke Anonymize on each of the
three resulting sub-partitions. Sub-partition P{A} has the
two transactions T1 and T2, and the hierarchy cut {A}.
The pick node subroutine again has only one choice for drill
down, which is {A} → {a1, a2}. This generates three buck-
ets, P{a1,a2}, P{a1} and P{a2}. T1 is sent to P{a1} and T2

to P{a1,a2}. Neither bucket is 2-anonymous, so the split
was unsuccessful. We roll back to the previous hierarchy
cut {A} and re-distribute T1 and T2 to the leftover parti-
tion in the balance partitions subroutine. Since there is no
other partitionable node, the partition will be fixed with the
generalized representation {A}.

The second sub-partition P{B} with T3 and T4 is then
passed to Anonymize. The choice of node to drill down is
node B, giving rise to three possible buckets P{b1,b2}, P{b1}
and P{b2}. P{b1,b2} has T1 and T2 in it while the other two
buckets are empty. Note that the resulting partition P{b1,b2}
has already reached leaf level so we stop here.

The last sub-partition, P{A,B} has three transactions, T5-
T7, with hierarchy cut {A, B}. By only drilling down one
node at a time, there are two possible choices, namely {A} →
{a1, a2}, or {B} → {b1, b2}. The pick node subroutine makes
that choice using a greedy information gain heuristic. Specif-
ically, drilling down {A} → {a1, a2} will give T5, T6 and T7

(2 + 2 + 2) ∗ 2/4/17 = 3/17 information gain, while drilling
down {B} → {b1, b2} generates (1 + 1 + 2) ∗ 2/4/17 = 2/17
information gain. Thus node A is chosen to be expanded for
this partition, and T5, T6 and T7 are all sent into P{a1,a2,B},
which becomes a new partition.

We proceed to the new partition P{a1,a2,B}, where the
only choice of node to expand is {B} → {b1, b2}. This
would distribute T5 and T6 to bucket P{a1,a2,b2}, and T7 to
P{a1,a2,b1,b2}. Since bucket P{a1,a2,b1,b2} has only T7 in it, T7

will be sent to the leftover partition in the balance partitions
subroutine. Note that we have less than 2 transactions in
the leftover partition, meaning transactions in other buckets
with least information gain will be taken and re-distributed

to the leftover partition. In our case it could either be T5

and T6, but that leaves P{a1,a2,b2} with only one transac-
tion. In that case all three transactions are sent to the left-
over partition. We roll back and stop with the generalized
representation P{a1,a2,B} for T5, T6 and T7.

The resulting generalized transactions are presented in the
“local recoding” column of Table 2. Note that due to the
local recoding nature of our algorithm, we can recode “a1,”
“a2” of T1 and T2 into “A,” while keeping “a1,” “a2” as is
in other transactions. Similarly “b1,” “b2” in T5, T6 and T7

will be generalized but other instances of “b1,” “b2” will be
left intact.

It is interesting to see how this anonymization generated
by our local recoding with heuristics compares with the op-
timal global recoding. The optimal global recoding using 2-
anonymity is presented in the last column of Table 2. Note
that for global recoding, if the {a1, a2} → {A} generaliza-
tion is necessary in some transaction, all other transactions
with item a1 or a2 have to be generalized. This can lead to
over-generalization.

As we discussed earlier, the bottom-up generalization al-
gorithm proposed in [32] uses the 22-anonymity, which is
a weaker privacy model compared with 2-anonymity. In
our case, as a result, the optimal anonymization under 22-
anonymity is better than the optimal global anonymization
for 2-anonymity, as we can see by comparing the last two
columns in Table 2. Note the generalization {b1, b2} → {B}
is necessary because the 2-item combination {a2, b1} only
has a support of 1, which is below the anonymity threshold
2.

It should be noted that this optimal global recoding under
the weaker 22-anonymity model, however, is still inferior to
the local recoding we produce using the top-down partition
algorithm under the stronger 2-anonymity. As we will see
in Section 5, this is the key reason why our top-down local
recoding outperforms the previous state-of-art, even when a
stronger anonymity criteria is adopted.

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Evaluation metrics and Platform
We evaluate our approach in terms of anonymization effi-

ciency and effectiveness. Specifically, we measure execution
time and anonymized data quality to compare our top-down
partition-based anonymization (Partition) with the bottom-
up Aprori-based Anonymization (AA) from [32], both using
our implementations in C++. We evaluated data quality
using the NCP information loss metric defined in [32, 39]
and described in Section 3.2. Execution times are reported
from experiments on an Intel Pentium4 3GHz server with
2GB memory running Linux.

5.1.2 Dataset and parameters
For the market-basket data, we used three real-world data-

sets BMS-WebView-1, BMS-WebView-2 and BMS-POS [42].
BMS-POS is a transaction log from several years of sales
of an electronics retailer, while BMS-WebView-1 and BMS-
WebView-2 contain several months worth of clickstream data
from two e-commerce web sites. All three are widely used
as benchmark datasets in the knowledge discovery commu-
nity. Some information about the three datasets is listed in

Table 3.

Table 3: Characteristics of the three benchmark datasets

dataset # Trans. # Dis-
tinct
items

Max
trans.
size

Avg.
trans.
size

BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

BMS-POS 515,597 1,657 164 6.5

We first give an overview of how our top-down Partition
algorithm performs compared with the bottom-up AA algo-
rithm from [32] with three datasets. We then drill down to
the dataset BMS-WebView-2, varying different parameters
to see how performance changes for these two approaches.
We note that this choice of dataset BMS-WebView-2 is due
to the fact that BMS-POS is too big for AA to run in reason-
able time (> 10 hours), while BMS-WebView-1 is perhaps
too small to give reliable insight into the performance of the
algorithms (around 8 seconds). We report results using the
medium sized BMS-WebView-2 in our detailed performance
studies, but we did observe similar trends in other datasets.

For the parameters in the privacy model, unless specified
otherwise, we fixed k in k-anonymity at 10 and m in km-
anonymity at 4. Note that this imposes a stricter condition
on Partition than AA. We also varied k and m and report
what effects these parameters have on the performance of
these two approaches.

One difficulty in applying generalization-based anonymi-
zation to these data sets is that they do not include gen-
eralization hierarchies. Accordingly, we followed the exam-
ple from [32] and artificially constructed a hierarchy on the
union of all items appearing anywhere in the transactions.
The node fan-out f of the hierarchy specifies how many
items are generalized from one level to its parent level in
the hierarchy tree. Picking a uniform node fan-out 5, for
instance, will result in a hierarchy of height of 5, 7 and 6 for
BMS-WebView-1, BMS-WebView-2 and BMS-POS respec-
tively.

The exact choice of fan-out f , however, is somewhat tricky,
as we realized later in our sensitivity analysis for f (Sec-
tion 5.2.5) that compared with Partition, AA is much more
sensitive to f (or alternatively, the shape of the hierarchy).
Even though the previous work [32] used AA on the same
data sets with f = 5, we observed that this is not the opti-
mal choice for AA, which we are comparing with (we will see
in Figure 7b, AA performs significantly better with f = 4
and f = 6 than f = 5 on BMS-WebView-2). To try to
guard against bias from a lucky or unlucky choice for f , we
ran experiments with f = 4, 5 and 6, and report the average
of the three runs.

5.2 Experimental Results

5.2.1 Comparison of Partition and AA
We first experiment to see how our Partition algorithm

compares with AA. In this first experiment, we set m to
mmax for AA, so that AA and Partition would have to sat-
isfy the same privacy guarantees.

Figure 3 shows how Partition compares with AA on the
three datasets. One can see from Figure 3a that Partition is
faster than AA with m = mmax, ranging from 8 times faster

(a) Time comparison (b) Info loss comparison

Figure 3: Time and data quality of three real-world datasets

(a) Time comparison (b) Info loss comparison

Figure 4: Effect of m on execution time and data quality

on the smallest dataset BMS-WebView-1, to more than 200
times on the biggest dataset BMS-POS. This is expected, as
the computation cost of our approach grows linearly; while
AA, although leveraging the a priori principle to prune the
search space, is still exponential in m and |I| in the worst
case.

The quality of the resulting anonymization in Figure 3b
shows that Partition also consistently outperforms AA on
all three datasets, using the NCP metric. This is expected,
because while AA uses “global recoding,” our Partition al-
gorithm adopts the more flexible “local recoding” scheme
in anonymization, resulting in less generalization and thus
higher data quality. Example 2 illustrates the flexibility of
“local recoding” in a more concrete way.

5.2.2 Sensitivity to Parameter m

We note, however, that AA was not initially designed to
be run with m = mmax; the idea was that AA could be
run with some smaller value m′, where m′ < mmax, if one
could really guarantee that no adversary will ever be able to
associate an individual with more than m′ items. In the re-
maining sections we will explore the performance of AA with
smaller m. From this point on, we will only present results
with the BMS-WebView-2 data set, although we observed
similar trends for other two datasets.

Figure 4 illustrates the effect of m in km-anonymity on the
performance of AA. Since Partition uses k-anonymity and
does not depend upon m, its performance stays constant
in this experiment. We observe that setting m to smaller
numbers does reduce the execution time of AA. Specifically,
the time of AA in Figure 4a goes down from 809 seconds
for m = mmax to 32 seconds for m = 1. It is worth noting,
however, that even when m = 1 (i.e., the adversary can only
tie one item to a specific individual a priori), AA still runs
slower than Partition.

(a) Time comparison (b) Info loss comparison

Figure 5: Effect of k on execution time and data quality

Figure 4b is a comparison of data quality. Setting m to
smaller numbers in AA improves the quality of the anony-
mization as well. The information loss reduces from 12.4%
for m = mmax to 0.02% for m = 1. We observe that AA
does provide a better information loss for m < 4, but it is
worse for all m ≥ 4.

5.2.3 Sensitivity to Parameter k

Figure 5 presents the effect of k on the performance of
both approaches. The execution time of Partition in Fig-
ure 5a is consistently 10+ times faster than AA across all
values of k. We observe that the execution time of AA drops
quickly as k increases. The reason is that a larger k entails
more generalization, and AA is very effective in leveraging
generalization to reduce the size of the item domain and thus
pruning the search space. The sharp increase of execution
time for small k, however, also suggests AA’s inefficiency in
anonymization when less generalization is necessary. This
is because when k is small, most item-combinations have a
support of at least k, in which case not much generalization
is necessary, rendering AA unable to reduce the exponential
search space.

To illustrate this point, we ran both algorithms on the
10-anonymization of BMS-WebView-2 produced by Parti-
tion. This is a trivial problem as the input data is already
10-anonymized and no generalization is necessary. While
Partition detects this in 10 seconds, AA eventually runs out
of virtual memory and aborts, unable to figure out that this
data is already 10-anonymous and requires no generaliza-
tion.

Figure 5b compares the information loss of the two ap-
proaches with increasing k. Partition consistently outper-
forms AA in all cases. Observe the sharp increase of infor-
mation loss from k = 25 to k = 50 for AA. The explanation
for this jump is that when k advances to large values, sig-
nificant generalization becomes necessary, which translates
to higher likelihood of over-generalization for AA, again due
to global recoding.

5.2.4 Sensitivity to Parameter |D|
Figure 6 shows how these two approaches scale as the

number of transactions in the database grows. In Figure 6a
we see that although both appear to be growing linearly, the
time of AA grows much faster. Figure 6b is a comparison
of information loss with increased volumes of data. For AA
there is a big drop from 1k to 3k, suggesting its likelihood to
over-generalize when data is “sparse,” in which case again
substantial generalization is necessary.

(a) Time comparison (b) Info loss comparison

Figure 6: Effect of |D| on execution time and data quality

(a) Time comparison (b) Info loss comparison

Figure 7: Effect of f on execution time and data quality

5.2.5 Sensitivity to Parameter f

Figure 7 shows how the two approaches perform with var-
ied node fan-out f in the balanced generalization hierarchy
tree. It is interesting to note from Figure 7a that the effi-
ciency of AA improves with larger f , while the efficiency of
Partition erodes. This actually makes sense because with
an increased f , the generalization tree tends to be shorter,
and there are fewer levels of generalization from leaf node to
the root. With fewer levels in the hierarchy tree, the search
space for AA is smaller as there are fewer possible ways to
generalize bottom-up, whereas for the top-down Partition,
each time a partition is split, with a larger node fan-out,
there are more possible sub-partitions for each split, result-
ing greater computational cost. This suggests that AA may
be attractive in terms of execution efficiency for very wide
hierarchy trees.

Unfortunately, this efficiency comes at the expense of in-
formation loss. In Figure 7b, we observe that information
loss for AA is comparable to that of Partition when f is
small, but increases to 28.4% at f = 10, whereas the infor-
mation loss for Partition increases more slowly. We believe
this sharp increase of information loss of AA is a direct con-
sequence of an increased f . A larger f means more items
will be generalized in a single step in AA; although this
translates to more efficient execution, it also increases AA’s
likelihood of over-generalization.

Also note that the curve of information loss for AA has a
surprising bump at f = 5, whereas the plot for Partition is
smoother. Similar curves were observed in other fan-out sen-
sitivity analyses we conducted. The reason for AA’s variable
behavior as a function of f lies in the shape of the hierarchy,
and is ultimately due to AA’s “global recoding” nature. In
this particular case, we found that with f = 4 the general-
izations produced by AA are mostly to the 4th level nodes
in the hierarchy (from leaf and count upwards), which cover

256 (44) leaf nodes. Similarly with f = 6 AA frequently
generalizes nodes to the 3rd level, which cover 216 (63) leaf
nodes. Now this generalization is very close to what Parti-
tion produces (quantitatively, the size of item domain 3340
times Partition’s around 6% information loss is about 200,
which represents the average number of leaf nodes covered
by the generic representation in Partition’s anonymization).

The two approaches generally agree on the rough amount
of generalization necessary to anonymize the data set and
thus are very close in the information loss metric. But when
f = 5, the “global recoding” AA could not generalize to the
right amount, because when f = 5 there is no level in the
hierarchy which covers about 200 leaves; instead it only has
the 3rd level nodes, which cover 125 leaves, or the 4th level
nodes, which cover 625 leaves. A study of the generalization
produced by AA confirmed our speculation, as we found 3
instances of generalization to the 4th level (with 625 leaves.)

6. QUERY LOG ANONYMIZATION
We mentioned the applicability of set-valued anonymiza-

tion techniques to privacy preserving query log publishing.
In this section we discuss query log anonymization as an ex-
tended application of our top-down partition-based anony-
mization, and present preliminary experimental results ob-
tained from anonymizing the infamous AOL query logs using
our technique.

6.1 Background and the Problem
The AOL query log release incident, since it happened, has

drawn a great deal of attention in the research community
[3, 15, 17, 18, 27, 38]. Among this work, [3, 15, 18, 27,
38] specifically talk about privacy-preserving publishing of
query logs. All of these papers illustrate the importance of
anonymizing query logs, and the relative ineffectiveness of
naive anonymization schemes such as token based hashing
[18].

[3] is the only work that we are aware of that proposes
specific measures to anonymize query logs. The authors in
[3] propose two mechanisms, the first of which is to remove
rare queries. This alone, however, will remove 97% of dis-
tinct queries (or 69% by query volume), which is a signifi-
cant loss of information under any metric. The second step,
which they call “split personality,” groups queries of one
user that belong to the same topic of interest together, and
assigns queries on different topics issued by the same user
to different fictional user ids. Assigning one user’s queries
to multiple fictional users, however, may limit the usability
of the query log.

Instead of treating the query log anonymization as an ad-
hoc problem, we address it as a set-valued anonymization
problem. Specifically, we treat each search query as an item,
and the set of queries issued by the same user as a transac-
tion.

6.2 AOL Log Anonymization Experiments
This experiment is an attempt to anonymize AOL query

log data so that it can be released safely without compromis-
ing any individual’s privacy. The query log data, although
quickly removed from AOL official website after its release,
was mirrored on many sites and is still available. It has 37M
instances of queries, issued by 650K users over the period of
3 months. The entire log has 10 chunks and is approximately

(a) Alphabetical Hierarchy (b) WordNet hierarchy

Figure 8: Partition performance on AOL query log data

Figure 9: Quality comparison of Partition and log removal

2.2GB in size. The log is of the format:

{AnonID, Query, QueryTime, ItemRank, ClickURL}

where AnonID is the numerical ID anonymized from an ac-
tual AOL user ID, and Query is the query issued by the
user. Although QueryTime, ItemRank, and ClickURL bear
useful information for research purposes and may need to
be anonymized before being released, we focused on anony-
mization of the first two fields, user ID and query text.

In our experiments we used the partition-based algorithm
detailed in Section 4 to anonymize the AOL query log. To
apply this approach, we need a generalization hierarchy. Un-
fortunately, query logs do not come with any such general-
ization hierarchy. The construction of a hierarchy for query
logs by itself is a non-trivial problem. To tackle the ab-
sence of a generalization hierarchy, we built a quick and
dirty, alphabetically-ordered generalization tree as well as a
more sophisticated, semantically meaningful generalization
tree derived from the WordNet dictionary [10], to assess the
effectiveness of our generalization algorithm on the query
log.

We pre-processed the logs by normalizing queries to lower
case, with duplicate queries belonging to same user removed.
In the first experiment, we built a random generalization hi-
erarchy. We treated each query as an item, sorted all the
queries in alphabetical order, and then built a balanced gen-
eralization tree on them. This hierarchy is rather arbitrary
(generalizing alphabetically adjacent queries like “how to
write a resume,” “how to write a critique,” “how to write a
complaint” to one parent may make some sense, while gener-
alizing “apple,” “apple store” and “Applebee’s” to the same
parent does not). Nonetheless, even an arbitrary hierarchy
allows some interpretation of the anonymized search logs (if
only by looking at terms that are not generalized and seeing
what terms are grouped in the arbitrary hierarchy.)

Figure 8a shows how partition based anonymization per-

forms on this alphabetical hierarchy. We note that we were
able to anonymize this large data set in a reasonable amount
of time (about 70 minutes for k = 5). The information loss
was significantly higher than that for the shopping basket
data. This, we believe, is due to two properties of the log
data. First, the domain size of the query log data (or the
number of distinct queries) is around 10M, whereas the do-
main size of market-basket data is typically on the order of a
couple of thousands. A much more diverse domain will lead
to more sparsely distributed data, thus more generalization
is necessary to ensure k-anonymity. The second possible fac-
tor is that transactions in the query log data are much longer
than that of shopping basket data. BMS-POS, for instance,
with an average transaction size of 6.5, already boasts the
longest among the three benchmark shopping basket data-
sets. The number of queries issued by a user over a certain
period of time, however, can easily be much larger than that;
the average number of queries issued by a user is 24.7 for
the AOL query log. This, we believe, also contributes to the
larger information loss we see on the query logs.

Figure 9 shows how the quality of the resulting data com-
pares between our generalization approach and the log re-
moval approach presented in [3], again using the NCP in-
formation loss metric as defined in [32, 39] and described in
Section 3.2. Clearly, the partition-based generalization ap-
proach outperforms the log removal approach, where all rare
queries are removed. Given the diverse domain of queries
that people can issue, a majority of queries have to be re-
moved. Specifically, 97% of distinct queries (or 69% by
query volume) are removed to ensure 3-anonymity.

Although the alphabetical generalization hierarchy we used
was not very meaningful, it is interesting to see what queries
were left un-generalized (thus still readable and semantically
meaningful after anonymization). We note that quite a few
popular queries were left untouched (110 such queries when
we pick k = 100 in k-anonymity). Just to give a sense
of what they are, these queries include “yahoo,” “google,”
“mailbox,” “mapquest,” “myspace,” “weather.”

As a second step, we tried to build a more semantically
meaningful hierarchy for the query logs. Building such a
generalization hierarchy is an open research question and
is by no means a trivial task. We attempted to build a
crude hierarchy by using a semantic ontology derived from
the WordNet dictionary [10]. According to the WordNet
classification, nouns have a natural and deep generalization
hierarchy (with every noun generalizes to the root node,
which is “entity”). The hierarchy for verbs, by contrast, is
short and bushy, while adjectives are grouped into clusters
with similar meanings.

As a first cut of the problem, we treated each noun as an
item, and the union of the nouns in the collection of queries
issued by the user as the user’s transaction, thus discarding
all other words except nouns. In addition to the fact that
verbs and adjectives were removed altogether, which dis-
carded useful information, using words provided by Word-
Net is by no means a perfect approach. Many popular terms
like “myspace,” “mapquest” are absent from the dictionary
and thus are not recognized and not processed. But we feel
using WordNet suffices as an initial, simple example of a se-
mantically meaningful hierarchy with which to experiment.

The performance of our partition-based anonymization
using this WordNet hierarchy is presented in Figure 8b.
Again it runs in reasonable time when anonymizing the large

query logs. Since now we have a meaningful generaliza-
tion, we look into the resulting anonymized data to get a
sense of what the anonymized data looks like. We see that
some queries are reasonably anonymized. For example, with
queries searching for a place in a state, the location is often
recognized and generalized to either the state level, or to the
“US” level. At the other extreme, many transactions with
long and complex queries tend to be generalized to generic
representations, which are not very informative. For exam-
ple, we often find queries being generalized to something
like “psychological state,” “event,” “process,” or merely a
“thing.”

Overall, besides this anecdotal evidence that we may be
generalizing too much to be meaningful in browsing the re-
sulting anonymization, the information loss metric applied
to these anonymized query logs also suggests a significantly
higher information loss when anonymizing query logs than
that obtained over market basket data. As we discussed ear-
lier, this could be due to the much larger domain size and
longer transaction size of query log data, compared with the
market basket data.

7. CONCLUSION AND FUTURE WORK
We have proposed a top-down, partition-based technique

to anonymize set-valued data. It heuristically partitions set-
valued data by descending down a domain hierarchy, and in
our experiments it is an order of magnitude more efficient
than the current state-of-art. This partition based anonymi-
zation, by adopting a local recoding scheme, also turns out
to preserve better data utility in most cases. We have il-
lustrated how our set-valued anonymization techniques can
be applied to real world data sets including retailer pur-
chase transaction anonymization and search engine query
log anonymization.

For search query logs, our algorithm is efficient enough
to be applied to non-trivial real-world data, but the infor-
mation loss results, while better with respect to information
loss than previous work [3], are not as satisfactory as was the
case when we applied our algorithm to market-basket data.
It appears that anonymizing data containing large sets from
large domains appears to be a very difficult problem that
may require techniques beyond generalization.

In the end, all anonymization techniques, including our
proposed k-anonymity for set-valued data, just serve to make
privacy breaches more difficult, and none make them impos-
sible. Just as the early work on k-anonymity in relational
data sets led to follow-on work refining that model to provide
stronger privacy protection, we hope that our work and the
pioneering work in [13, 25, 32, 40, 41] will serve as a spring-
board for future work refining our anonymity models and
algorithms.

In particular, the notion of k-anonymity on set-valued
data, like k-anonymity on relational data, attempts to offer
protection via ”safety in numbers” without incorporating
safeguards for diversity. This means, for example, that it is
possible in an extreme case to have a data set in which more
than k individuals have purchased exactly the same set of
items, in which case no generalization will be performned,
and it may be possible to determine exactly what is in some
individual’s set (with the only possible comfort being the
knowledge that at least k − 1 individuals also have exactly
the same set.) Other techniques for anonymizing set-valued
data have exploited the notion of sensitive vs. non-sensitive

values or quasi-identifiers to prevent this, essentially requir-
ing that for all equivalence classes of records that agree on
their non-sensitive values or quasi-identifiers, the sensitive
values satisfy some diversity criterion. It is not clear how
this can directly be applied to the case we study, in which
there is no sensitive vs. non-sensitive value distinction and
no notion of quasi-identifier. Developing definitions of an-
onymity that guarantee some analog of ”diversity” in this
setting, and algorithms that perform anonymizations satis-
fying these definitions, is an interesting area for future work.

8. REFERENCES
[1] AOL search data scandal,

http://en.wikipedia.org/wiki/aol search data scandal.

[2] Chronicle of AOL search query log release incident,
http://sifaka.cs.uiuc.edu/xshen/aol querylog.html.

[3] E. Adar. User 4xxxxx9: Anonymizing query logs. In
Query Logs Workshop at WWW, 2007.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of VLDB, 1994.

[5] R. Agrawal and R. Srikant. Privacy-preserving data
minding. In Proc. of ACM SIGMOD, 2000.

[6] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.
Anonymity preserving pattern discovery. VLDB
Journal, 2008.

[7] M. Barbaro and T. Zeller. A face is exposed for aol
searcher no. 4417749. New York Times, August 9,
2006.

[8] R. Bayardo and R. Agrawal. Data privacy through
optimal k-anonymization. In Proc. of ICDE, 2005.

[9] A. Evfimievski, R. Srikant, R. Agrawal, and
J. Gehrke. Privacy preserving mining of association
rules. In Proc. of KDD, 2002.

[10] C. Fellbaum. WordNet, an Electronic Lexical
Database. MIT Press, Cambridge MA, 1998.

[11] D. Frankowski, D. Cosley, S. Sen, L. Terveen, and
J. Riedl. You are what you say: Privacy risks of public
mentions. In Proc. of SIGIR, 2006.

[12] J. H. Friedman, J. H. Friedman, and R. A. Finkel. An
algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software (TOMS), 1977.

[13] G. Ghinita, Y. Tao, and P. Kalnis. On the
anonymization of sparse high-dimensional data. In
Proc.of ICDE, 2008.

[14] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. of ACM SIGMOD, 1984.

[15] R. Jones, R. Kumar, B. Pang, and A. Tomkins. “I
know what you did last summer” - query logs and user
privacy. In Proc. of CIKM, 2007.

[16] D. Kifer and J. Gehrke. Injecting utility into
anonymized datasets. In Proc of ACM SIGMOD, 2006.

[17] A. Krause and E. Horvitz. Privacy, personalization,
and the web: A utility-theoretic approach. In Proc. of
AAAI, 2008.

[18] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On
anonymizing query logs via token-based hashing. In
WWW, 2007.

[19] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Incognito: Efficient full-domain k-anonymity. In Proc.
of ACM SIGMOD, 2005.

[20] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In Proc. of
ICDE, 2006.

[21] J. Li, R. C. W. Wong, A. W. C. Fu, and J. Pei.
Anonymization by local recoding in data with
attribute hierarchical taxonomies. IEEE TKDE, 2008.

[22] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In Proc.
of ICDE, 2007.

[23] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In Proc. of ICDE, 2006.

[24] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In Proc. of ACM PODS, 2004.

[25] M. Nergiz, C. Clifton, and A. Nergiz. Multirelational
k-anonymity. In Proc. of ICDE, 2007.

[26] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
grid file: An adaptable, symmetric multikey file
structure. ACM Transactions on Database Systems,
1984.

[27] B. Poblete, M. Spiliopoulou, and R. Baeza-Yates.
Website privacy preservation for query log publishing.
In Proc. of the First International Workshop on on
Privacy, Security, and Trust in KDD, 2007.

[28] J. Quinlan. Induction of decision trees. In Machine
Learning, 1986.

[29] S. Rizvi and J. Haritsa. Maintaining privacy in
association rule mining. In Proc. of VLDB, 2002.

[30] R. Srikant and R. Agrawal. Mining generalized
association rule. In Proc. of VLDB, 1995.

[31] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[32] M. Terrovitis, N. Mamoulis, and P. Kalnis.
Privacy-preserving anonymization of set-valued data.
In Proc. of VLDB, 2008.

[33] V. Verykios, A. Elmagarmid, E. bertino, Y. Saygin,
and E. Dasseni. Association rule hiding. IEEE TKDE,
16:434–447, 2004.

[34] R. Wong, Y. Liu, J. Yin, Z. Huang, W. Fu, and J. Pei.
(a, k)-anonymity: An enhanced k-anonymity model
for privacy-preserving data publishing. In Proc. of
SIGKDD, 2007.

[35] X. Xiao and Y. Tao. Anatomy: Simple and effective
privacy preservation. In Proc. of ACM SIGMOD,
2007.

[36] X. Xiao and Y. Tao. m-invariance: Towards privacy
preserving re-publication of dynamic datasets. In
Proc. of SIGMOD, 2007.

[37] X. Xiao and Y. Tao. Dynamic anonymization:
Accurate statistical analysis with privacy preservation.
In Proc. of SIGMOD, 2008.

[38] L. Xiong and E. Agichtein. Towards
privacy-preserving query log publishing. In Query Logs
Workshop at WWW, 2007.

[39] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu.
Utility-based anonymization using local recoding. In
Proc. of SIGKDD, 2006.

[40] Y. Xu, B. C. M. Fung, K. Wang, A. W.-C. Fu, and
J. Pei. Publishing sensitive transactions for itemset

utility. In ICDM, 2008.

[41] Y. Xu, K. Wang, A. W. C. Fu, and P. S. Yu.
Anonymizing transaction databases for publication. In
KDD, 2008.

[42] Z. Zheng, R. Kohavi, and L. Mason. Real world
performance of association rule algorithms. In Proc. of
KDD, 2001.

