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ABSTRACT
Database statistics are crucial to cost-based optimizers for
estimating the execution cost of a query plan. Using tradi-
tional basic statistics on base tables requires adopting unre-
alistic assumptions to estimate the cardinalities of interme-
diate results, which usually causes large estimation errors
that can be several orders of magnitude. Modern commer-
cial database systems support statistical or sample views,
which give more accurate statistics on intermediate results
and query sub-expressions. While previous research focused
on creating and maintaining these advanced statistics, only
little effort has been done towards automatically recom-
mending the most beneficial statistical views to construct.
In this paper, we present StatAdvisor, a system for recom-
mending statistical views for a given SQL workload. The
StatAdvisor addresses the special characteristics of statis-
tical views with respect to view matching and benefit es-
timation, and introduces a novel plan-based candidate enu-
meration method, and a benefit-based analysis to determine
the most useful statistical views. We present the basic con-
cepts, architecture, and key features of StatAdvisor, and
demonstrate its validity and benefits through an extensive
experimental study using a prototype that we built in the
IBM R© DB2 R© database system as part of the DB2 Design
Advisor tools.

1. INTRODUCTION
Cost-based query optimizers rely on a cost model to choose

the best possible execution plan for a given query. The ac-
curacy of cost estimates is the main factor that affects the
quality of the query execution plan. Cost estimates depend
mainly on cardinality estimations of various sub-plans (in-
termediate results) generated during optimization. Tradi-
tional query optimizers often assume data uniformity and
independence of query predicates to estimate output car-
dinalities of intermediate result sets, using statistics built
over base tables. However, these assumptions are usually
incorrect, causing cardinality estimates to be off by orders
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of magnitude, leading to suboptimal execution plans.
Base table statistics, including histograms, have several

shortcomings when dealing with complex query constructs.
Examples include predicates with arbitrary expressions on
multiple columns and aggregate functions. It is not uncom-
mon to use a guess or magic number as the selectivity esti-
mate of the predicates that have these constructs [11].

1.1 Statistical Views
The inability to accurately estimate the output cardinality

of complex query expressions triggered the idea of collecting
statistics on views [11], also known as SITs – statistics on
intermediate tables (or SQEs – statistics on query expres-
sions) [6, 7]. In this paper, we use the term statistical views
(or statviews), which can be defined as follows:

Definition 1.1. A statview is a view definition (SQL
query) augmented with statistics collected on the result of
executing this view, without the actual data.

The statistics that can be collected on a statview are the
same as those that can be collected on a base table, e.g.,
the number of tuples in the statview, the number of distinct
values in each column, the highest and lowest values in each
column, and optionally, column group statistics, histograms
and frequent values on some or all of its columns. Statviews
make it possible to estimate the cardinality of some complex
sub-expressions that otherwise would have to be guessed or
estimated using unrealistic assumptions.

Example 1.1. Consider the following query Q:
SELECT ∗ FROM Car, Owner

WHERE Car.OwnerID = Owner.ID

AND Owner.Sal=3000

AND Owner.Age=30

AND Car.Price∗(1-Car.Discount)<5000

To estimate the output cardinality of this query, the op-
timizer has to estimate the output cardinality of each table
after applying the local predicates, then estimate the output
cardinality of the join operator. To estimate the cardinality
of the Owner table, the optimizer estimates the selectivity of
each of the two predicates Owner.Sal=3000 and Owner.Age=30

from the number of distinct values (and possibly the fre-
quent values) in the columns Sal and Age, respectively. The
combined selectivity of the two predicates is estimated as-
suming independence. The independence assumption can
be relaxed if a two-dimensional histogram on Age and Sal

is available (in which case, the uniformity assumption is



employed to some extent to interpolate values within his-
togram buckets). However, two-dimensional histograms on
arbitrary pairs of attributes are not usually available. Esti-
mating the selectivity of a predicate involving an expression
like (Price∗(1-Discount)<5000) is usually hard using base ta-
ble statistics, and most optimizers obtain a selectivity esti-
mate for such predicates using some predefined magic num-
ber [11]. The estimation errors in both tables are further
magnified as a result of the join predicate [13]. On the other
hand, assume that we have the following statviews:

v1: SELECT ∗ FROM Owner WHERE Sal=3000 AND Age=30

v2: SELECT ∗ FROM Car WHERE Price∗(1-Discount)<5000

Collecting statistics on these statviews gives us accurate
information about the number of rows in each view, thus
reducing the estimation error considerably.

To the best of our knowledge, little work has been done
to automate the process of deciding which statistical views
to create [6]. In addition, previous work did not study the
interaction of multiple statviews when presented together to
the query optimizer. In this paper, we focus on recommend-
ing the most beneficial statviews for a workload, taking into
account the interaction between statviews and their effect
on query plans.

1.2 Background: Statistics Collection
In this section, we briefly explain some of the techniques

currently used to collect statistics on views. The simple
approach to collect statistics on a statview is to execute the
statview’s query, materialize the results, collect statistics on
the results, then drop the query’s results. This approach is
not efficient, especially when there are multiple statviews,
many of which involve the same tables.

A better approach is to create and maintain random sam-
ples of the base tables. Suppose there are two statviews
v1 = σp1(A) and v2 = σp2(A). To collect statistics on these
statviews, the sample of table A is scanned only once, and
each tuple is checked against the predicates p1 and p2.

Unfortunately, base table samples cannot be used for
statviews with multiple joined tables, since joining the base
table samples does not yield a random sample of the join [2,
8, 18]. To overcome this problem, join synopses [2] can be
used. The join synopsis for table A is built as follows [4]:

1. Create a uniform random sample of A.

2. For every table B such that A has a foreign key to B,
join the sample of A with the full table B.

3. Repeat Step 2 recursively, i.e., for each table B from
Step 2, follow all its foreign keys.

Now suppose there is a statview on a group of tables that
are all joined using foreign key joins. Join synopses can be
used to collect statistics on this statview as follows:

1. Determine the root table R in the set of joined tables.
This table is the one that has foreign keys to other
tables, but with no foreign keys to it from other tables.

2. Scan the join synopsis of R, and check the scanned tu-
ples against the selection predicate(s) in the statview.

The join synopsis of table R can be used to collect the
statistics on any statview on a set of tables whose root table
is R. The algorithms presented in this paper (Section 3.2)
use samples and join synopses to collect statistics.
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Figure 1: View benefit

1.3 Materialized vs. Statistical Views
Statistical views are similar in concept to materialized

views except that materialized views contain pre-computed
data, while statistical views are used only for cardinality es-
timation, not for query evaluation. Exploiting materialized
or statistical views is based on view matching. The opti-
mizer tries to match (part of) the query in question with
one or more of the existing views. Matching is usually per-
formed using the internal representation of the SQL query,
which is different from one DBMS to another. If a match
is found, the matched view can be used to improve the per-
formance of that query, by reusing the result of the view
(in the case of materialized views), or by improving the cost
estimates, and thus getting a better execution plan (in the
case of statviews).

Unfortunately, the techniques used to recommend ma-
terialized views cannot be directly adopted to recommend
statviews, due to multiple fundamental differences. We men-
tion two of these differences here:

(1) The Benefit of a View
Consider the following example: Figure 1 depicts the logical
tree of a query Q, where p1 and p2 are some selection pred-
icates on tables A and B, respectively. Suppose that two
views v1 and v2 are defined. If v1 and v2 are materialized
views, v2 is more beneficial than v1, since v2 is matched with
the whole query, and can be used directly to provide the re-
sults without any further processing, while v1 matches only
the circled part of Q and thus requires additional process-
ing to obtain the results of Q. In contrast, if v1 and v2 are
statviews, then v1 provides an accurate cardinality estimate
of the selection, allowing the optimizer to choose the appro-
priate join method, while v2 provides only statistics about
the top operator of Q, which generally does not help the op-
timizer1. Therefore, in this case, v1 is more beneficial than
v2. In Section 4, we propose a benefit metric that reflects
the way statviews are used.

(2) View Matching
Materialized view matching is based on subsumption; a ma-
terialized view is considered an exact match of a certain part
of the query if the view produces the same tuples that are
produced by that part of the query [23]. In case of non-
exact matches (where the view produces more tuples than
the query), a compensation operation is applied on the view
to extract only the desired tuples. This compensation is
usually in the form of applying additional predicates, joins,
and/or aggregate functions to get only the desired results.
The work in [23] describes the cases and conditions required
for materialized view matching.

1Usually, input cardinalities are used for costing and plan-
ning an operation. However, some operations can be better
planned knowing the output cardinality as well.



In the case of statviews, if a statview matches part of
the query, the statview statistics can be used by the opti-
mizer to accurately determine the output cardinality of this
sub-query. However, the matching conditions in the case of
statviews can be more relaxed than in materialized views.

Example 1.2. Consider the following query Q and views
v1, v2 and v3:

Q: SELECT R.e, S.c, S.f, v1: SELECT DISTINCT R.e,
AVG(R.d) FROM R, S, T S.c, S.f FROM R, S, T
WHERE R.a = S.a WHERE R.a = S.a
AND S.b = T.b AND S.b = T.b
GROUP BY R.e, S.c, S.f

v2: SELECT R.e, S.c, v3: SELECT R.e, S.c, S.f
AVG(R.d) FROM R, S, T FROM R, S
WHERE R.a = S.a WHERE R.a = S.a
AND S.b = T.b
GROUP BY R.e, S.c

Suppose that v1, v2 and v3 are materialized views. v1

cannot be matched with Q, since it does not contain the
data needed to compute AVG(R.d). v2 cannot be matched
with Q, since the view is only grouped by two columns,
thus losing information which cannot be retrieved using any
compensation. Even though v3 matches the sub-expression
involving tables R and S, it cannot be matched with Q,
since the SELECT clause of v3 does not include S.b, which is
needed later on for joining the view with table T .

Now suppose that v1, v2 and v3 are statviews. v1 can
provide the number of tuples produced as a result of the
GROUP BY operation in Q, which is the same as the number
of distinct combinations of the values in the three grouping
columns. v2 can give the number of groups (i.e. number
of distinct values) based on the column group (R.e, S.c).
Ideally, this information can still be useful while optimiz-
ing Q, especially if the number of distinct values in column
S.f is also available (from base table statistics or another
statview). The concept of using partial information and as-
suming independence or uniformity unless otherwise known
has been used in [10, 19]. v3 can provide the exact output
cardinality of joining R and S. Thus the three statviews
should be considered beneficial matches during query opti-
mization. However, note that whether these statviews are
considered successful matches or not could differ from one
database system to another, depending on the matching ca-
pabilities of the system, and how it utilizes statviews in
query optimization. We discuss this further in Section 5.

The aforementioned differences between statviews and ma-
terialized views, as well as other special properties that we
discuss in Section 2, warrant the development of a dedicated
advisor that takes these special characteristics into account.

1.4 Contributions and Organization
In this paper we propose StatAdvisor, a system to auto-

matically recommend statistical views that are most bene-
ficial for a particular workload. We introduce a novel plan-
based candidate enumeration technique, as well as a benefit
metric that takes into account the characteristics and effect
of statviews. Our work also considers the possible depen-
dency between multiple statviews in terms of their effect
on the chosen execution plan. The system amortizes the
benefit of the candidate statviews across the whole work-
load in order to get the final recommendations. The algo-
rithms presented in this paper have been implemented in
IBM DB2, and used to conduct an extensive experimental

study to demonstrate the effectiveness of the StatAdvisor,
and its impact on workload performance.

The rest of this paper is organized as follows: Section 2 de-
fines the problem of recommending statviews, and outlines
the architecture of the StatAdvisor framework. Section 3
describes our novel plan-based candidate enumeration tech-
nique. Section 4 introduces our benefit metric, which is later
used to select the final recommendations. We discuss the
dependency of the StatAdvisor on the database engine in
Section 5. Section 6 demonstrates our experimental results,
Section 7 outlines related research in query optimization,
and Section 8 concludes with a summary.

2. PROBLEM DEFINITION AND SYSTEM
OVERVIEW

Let W = {Q1, Q2, ..., Qn} be a workload, where Qi is an
SQL query. Let cmax be a defined constraint (e.g. the max-
imum number of statviews that can be maintained in the
system, or the maximum size of the materialized statistics).
The problem of recommending statviews is defined as fol-
lows: Find a set of statviews that minimizes the execution
time of W while satisfying the constraint cmax.

2.1 Key Insights
In this section we present a set of observations that are

instrumental to our approach.

Observation 2.1. Statviews have a direct effect on exe-
cution cost only when they help the optimizer choose a dif-
ferent (better) execution plan.

A tangible benefit of statviews is the improvement in
query performance. This improvement only occurs if the
query optimizer chooses a different (better) execution plan
based on the new statistics. Unfortunately, reducing errors
in estimating the cost of (some) query predicates does not
guarantee changing the current plan to a better one. Con-
sider the case where the optimizer chooses the same plan
with and without the statviews present. The estimated
costs are different in the two instances, since they are com-
puted from different sets of statistics, which might suggest
that these statviews are beneficial to the query. However,
effectively, since the same plan is chosen, the actual exe-
cution cost of the query is the same, indicating that the
collected statviews are not beneficial. We consider a set of
statviews beneficial only if their availability causes a plan
change. Therefore, it is necessary to study the effect of spe-
cific statistics on the change in the execution plan. The
use of plan change as a measure of statistics relevance has
been previously used in [9] in the context of reducing a set
of statistics to a necessary subset that has the same overall
effect on choosing an execution plan.

Observation 2.2. It is hard to estimate the effectiveness
of statistics on workload performance without actually col-
lecting the statistics.

When recommending auxiliary database structures, one
of the most essential tasks is to estimate the effectiveness
(or benefit) of a particular structure (e.g., an index or a ma-
terialized view) on query performance. This is usually ac-
complished by simulating the existence of these structures,
and estimating their properties using the available statis-
tics. The cost of the query is estimated with and without



the structure, and the benefit is the difference between the
two cost estimates. These cost estimates are comparable,
since they are both computed assuming correctness of the
available statistics (which are the same in both cases), and
using the same assumptions employed by the optimizer.

In the StatAdvisor, the structures under investigation
are the statistics themselves. In contrast to indexes or ma-
terialized views, we cannot simulate the existence of statis-
tics. If there was a method to estimate the value of a par-
ticular statistic without employing unrealistic assumptions,
then such method would have been used to obtain more ac-
curate statistics in the first place. Another possibility is
estimating the extreme values of a statistic, estimating the
cost of the query using both extremes, then computing the
benefit as the difference between the two cost estimates (as
done in [6]). However, the benefit of a statistic should not
be based on the difference between query costs in extreme
conditions, but rather on the difference between the plans
generated with and without the statistic (Observation 2.1).
We explain in Section 4 how the benefit of a statview is
estimated in StatAdvisor.

Observation 2.3. Statviews achieve their effectiveness in
groups.

Given a query workload, it is often the case that we can-
not recommend all the beneficial statviews for all the queries
(due to some constraint, as mentioned in the problem def-
inition). Traditionally, a benefit score is assigned to each
statview in isolation, and each statview might or might not
be part of the final recommendations. The problem here is
that, in many cases, a query benefits only if a certain set of
statistics are all present, but not if one or more of them are
missing. Therefore, recommending only a subset of these
statviews might not introduce any benefit.

Consider the query plan at the top left corner of Figure 2.
This is a plan obtained when no statviews are available. The
values in parentheses represent the estimated cardinality at
each operator in the plan. The circled sub-expressions repre-
sent two candidate statviews. Collecting only one of the two
statviews results in changing the cardinality estimate of the
corresponding sub-expression and all its parents, but it does
not cause a plan change. However, collecting both statviews
causes the optimizer to choose a different plan. In the ex-
treme case, collecting a subset of the required statviews can
cause the optimizer to choose an execution plan that is worse
that the initial plan obtained using only base table statis-
tics. Here the original plan may have been obtained by
chance when “two wrongs made a right”. Previous efforts
for automated selection of statistics (e.g. [6, 9]) picked one
statistic at a time, assuming independence between statis-
tics. However, the authors recognized this as a limitation in
their respective approaches.

Based on this observation, we introduce the concept of
statview-groups. Once we identify the set of beneficial
statviews for a given query, we treat these statviews as a
single unit (called a statview-group). A benefit score is com-
puted and is assigned to each statview-group as a whole, as
opposed to individual statviews (more details in Section 4).

Observation 2.4. It is expensive to collect all statviews
needed to find the optimal plan.

Before elaborating on this observation, we need to define
the following terms:
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Figure 2: Effect of statview-groups

Definition 2.1. Accurate Cost Estimate: Consider a
query plan P . The accurate cost estimate of P , denoted
by cP

acc, is the estimated cost of P if the cardinality at each
operator in P is estimated without any simplifying assump-
tions (e.g. independence, uniformity or inclusion).

Definition 2.2. Overestimation and Underestimation:
Let c be the estimated cost of P while employing an arbi-
trary number of assumptions. The cost of P is said to be
overestimated if c is greater than cP

acc. Similarly, the cost of
P is said to be underestimated if c is less than cP

acc.

For a given query, in order to guarantee getting the opti-
mal plan, statviews that correspond to the following subex-
pressions are relevant and should be available:

1. Subexpressions that appear in any plan chosen by the
optimizer whose cost is underestimated

2. Subexpressions that appear in any plan whose cost is
overestimated, and that will be chosen by the opti-
mizer when corrected

The first set of statviews rectifies the problem where a
suboptimal plan is chosen by the optimizer because its cost
is underestimated. Whenever a plan P1 is chosen by the
optimizer, collecting statistics on expressions that appear
in P1 will correct the estimated cost of this plan, but it
might also cause the optimizer to choose a different plan
P2, whose cost is still underestimated and is less than the
currently accurate cost of P1. Therefore, getting the set of
statviews that correct all plans with underestimated costs
requires repeating this process until a stable state is reached
(no new plan is chosen). The second set of statviews rectify
the problem where the actual optimal plan is not chosen
because its cost is overestimated, leading the optimizer to
favor another plan.

Determining the first set of statviews is feasible. The
plans in question are those returned by the optimizer. We
only need to collect the statviews that appear in each plan
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returned by the optimizer, then re-optimize until no new
plan is returned. This is the main idea behind our candi-
date enumeration technique in Section 3.1. The second set
of statviews is more challenging. Plans with overestimated
costs are not returned by the optimizer. Finding these plans
is only possible if we search the whole plan space of the given
query. This plan space can be significantly large, making it
expensive to search for such plans.

However, the number of plans with overestimated costs
can be reduced by examining the query structure (as op-
posed to specific plans), and collecting statistics on objects
that exhibit certain characteristics, e.g.:

• Attributes with highly skewed distributions that ap-
pear in the query predicates

• Arithmetic expressions and user-defined functions that
appear in the query predicates (e.g. the expression
Price∗(1-Discount)<5000 in Example 1.1)

• Significant mismatch in the range of values in the join
attributes of two relations

Candidate statviews can be generated based on these ob-
jects during an initial analysis of the query structure before
the optimizer is invoked to obtain an execution plan. Rec-
ommending statviews based solely on analyzing the query
structure is the technique used by current approaches [6].
Our plan-based approach is novel in the way it uses the
generated plans to eliminate the possibility of choosing any
plans with underestimated costs, in addition to using query
analysis to reduce the space of overestimated plans.

If we only determine the first set of statviews, we guar-
antee that the cost of the plan chosen by the optimizer is
accurate and not underestimated. This chosen plan might
not be optimal, but at least there will be no surprises in
its execution cost. Plans with this property are often called
predictable plans. A related line of work is concerned with
the trade-off between optimal and predictable plans [4].

Based on this observation, instead of collecting enough
statviews to find the optimal plan, we opt for the more
relaxed (and less expensive) objective: collecting enough
statviews to guarantee getting a predictable plan. The tech-
nique we use to achieve this objective is explained in more
detail in Section 3.1.

Algorithm 1 StatAdvisor(W, cmax)

1: (V, G) ← PlanAnalysis(W )
2: while V 6= φ do
3: CollectStatviews(V )
4: (V, G) ← PlanAnalysis(W )
5: end while
6: EstimateBenefit(G)
7: R ← StatviewGroupSelection(G, cmax)
8: Return(R)

2.2 StatAdvisor Framework
We adopt a benefit-cost analysis to recommend the most

beneficial statviews (subject to the constraint cmax). This
approach is similar in concept to most database design ad-
visors [3, 22, 24]. However, the computation of the benefit
estimates takes into account the special characteristics of
statviews and their effect on query performance.

Figure 3 depicts the general framework of the StatAdvisor.
The system takes as input a workload of SQL queries, and
outputs a set of recommended statviews. The Plan Analy-
sis module is responsible for finding the candidate beneficial
statviews for each query in the workload. This is achieved
by invoking the optimizer for each query in the workload
and analyzing the returned execution plan (Section 3). The
candidate statviews are stored in the Candidate Repository,
grouped into statview-groups (based on which queries gener-
ated them). The Statistics Collection module takes a list of
candidate statviews, creates and collects statistics on these
statviews, and stores the collected statistics in the system
catalog, to be used by the query optimizer. The Benefit Es-
timation and Statview-group Selection module assigns a ben-
efit score to each statview-group, based on the plan change
in its corresponding query, then chooses a subset of the can-
didate statview-groups that maximizes the benefit while sat-
isfying the predefined constraint (Section 4).

Algorithm 1 gives a high-level overview of our approach.
The algorithm starts by analyzing the workload W , and ob-
taining the set of candidate statviews V , partitioned into a
set of statview-groups G (line 1). Subsequently, the algo-
rithm performs a number of iterations while V is not empty
(lines 2-5). In each iteration, the statistics on the statviews
in V are collected and added to the catalog, then the plan
analysis module is re-invoked. Finally, a benefit score is as-
signed to each statview-group, and the algorithm selects the
groups with the maximum benefit that satisfy the constraint
cmax, compiling them into the recommendation set R.

3. PLAN-BASED CANDIDATE ENUMERA-
TION

In this section, we discuss our approach for finding the
candidate statviews that can cause a plan change in the
given queries. First we describe the technique for a single
query in Section 3.1, then we extend it to process the whole
workload in Section 3.2.

3.1 Candidate Enumeration for a Query
Given a query Q, let P0 denote the plan chosen by the

optimizer in the absence of any statviews. Due to cardinal-
ity estimation errors, the estimated cost of P0 is likely to
be inaccurate, which means that P0 might not be a good
choice for executing Q. As mentioned in Observation 2.4,
our objective is to ensure that the cost of the chosen plan
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is accurately estimated, in which case the chosen plan is
predictable. To achieve this, we need to have accurate car-
dinality estimates for all the sub-expressions that appear in
P0. Each of these sub-expressions corresponds to a statview.
Collecting all the statviews that appear in P0 gives a better
estimation of the cost of P0. In most cases, collecting all
statviews is unnecessary and extremely expensive. Hence,
we define important statviews as follows:

Definition 3.1. Given a query plan P , the important
statviews in P are statviews that correspond to logical ex-
pressions in P that involve one or two tables, along with the
corresponding selection predicates.

In our experiments (Section 6.2), we found that collecting
only the important statviews provides enough accuracy, and
collecting any more statviews increases the running time of
the StatAdvisor without introducing significant benefit.

After collecting the important statviews in P0, we re-
optimize the query. There are two possible scenarios: the
optimizer might choose the same plan, or it might choose
a different one due to changes in cost estimates. If the op-
timizer chooses the same plan, the collected statviews were
not necessary, since they caused no plan change (cf. Obser-
vation 2.1). On the other hand, if the optimizer chooses a
different plan, this might be due to underestimating the cost
of the new plan, which penalizes the old plan for having a
more accurate cost estimate. Therefore, we need to repeat
the process for the new plan P1. The process is repeated
until either: (1) we reach a plan that has been encountered
before (since all the important statviews of that plan would
have already been collected, and its cost would be accu-
rately estimated), or (2) the important statviews of the cur-
rent plan have already been collected. For example, consider
the plan P0 in Figure 4(a). After collecting the important
statviews in P0 and re-optimizing, the obtained plan is P1

(Figure 4(b)). After another iteration, the plan obtained
(P2) is the same as P1, thus the algorithm terminates.

The set of all statviews collected so far are the candidate
statviews for the query, since they are necessary to reach
the final plan. As mentioned in Observation 2.3, all the
candidate statviews for the query are treated as a single unit
(statview-group) from now on, since they are all needed to
achieve the objective.

This technique guarantees that all plans that have been
chosen at some point are accurately estimated, and the last
chosen plan P is indeed the best one among them. Let P ′

denote a plan that has never been chosen by the optimizer.
P ′ could be any of the following:

1. The cost of P ′ is accurately estimated, thus it is indeed
worse than P (P is favored by the optimizer over P ′)

2. The cost of P ′ is underestimated, thus it is still worse
than P (since the estimated cost of P ′ is already greater
than that of P )

3. The cost of P ′ is overestimated, which means it could
possibly be better than P . However, as discussed
in Observation 2.4, finding P ′ requires searching the
whole plans space.

Using this technique, we will miss getting the optimal plan
if its cost has been overestimated by the optimizer, due to
overestimating the cardinality of a certain sub-expression
whose cardinality has not been collected (cf. Observation 2.4).

3.2 Candidate Enumeration for a Workload
The näıve approach to obtain the candidates for the whole

workload is to repeat the technique described in Section 3.1
for each query. The problem with this simple approach is
that the technique includes actual collection of statistics,
and repeating it for each query will result in accessing the
same data pages multiple times. This can become a per-
formance issue because of the repeated I/O operations on
the same disk pages. To overcome this problem, we process
all the queries in the workload in parallel, and employ batch
statview collection; statviews that involve the same set of
tables are collected simultaneously from the same table sam-
ple or join synopsis [2], thus causing the respective sample
or join synopsis to be read from disk only once. Algorithm 2
gives our approach to produce the candidates with respect
to the whole workload W of n queries. Algorithm 2 provides
the details of lines 1-5 in Algorithm 1. For each query Qi,
the algorithm returns Vi, a statview-group containing the
candidate statviews for Qi.

The algorithm starts with an initialization step (lines 2-9).
For each query Qi, a flag finishedi is set to false (indicating
that processing Qi is not finished), Qi is optimized produc-
ing plan Pi,0, and the important statviews in that plan are
determined (V Ti). The iterative part of the algorithm is
in lines 10-37. In each iteration, the set V is the union of
all V Ti for the queries that are still being processed (i.e.
V is the set of all newly discovered statviews). V is parti-
tioned into disjoint sets U1, ..., Um, such that the statviews
in Uj are all on the same table(s) but most likely with dif-
ferent selection predicates. For each set Uj , a sample or a
join synopsis is collected (depending on how many tables
are involved) and all statviews in Uj are collected simul-
taneously. Note that if the required sample already exists
(from previous iterations), it is not recreated. The tuples
in the sample are scanned only once, and checked against
the selection predicates in each statview. If a tuple satisfies
the selection predicate of statview v ∈ Uj , this tuple takes
part in computing the statistics on v. After all the statviews
are collected, the queries are re-optimized, and the obtained
plans are examined. If a query produces the same plan, or a
different plan whose important statviews have already been
collected, processing is stopped for that query (as in Sec-
tion 3.1). Only the remaining queries are entered into the
next iteration. Processing stops when no queries are left.

Ideally, we would know beforehand which statviews we
need to collect on each query in the workload. In that case,
we would group all statviews that have the same set of ta-
bles, and collect them simultaneously from the correspond-
ing sample, thus only touching that sample once. Our exper-
iments show that most queries require 1-3 iterations before



Algorithm 2 CandidateEnumeration(W )

1: Assume that W = {Q1, Q2, ...Qn}
2: for i = 1 to n do
3: finishedi ← false
4: Optimize Qi, let Pi,0 be the chosen plan
5: Vi ← {}
6: V Ti ← FindImportantStatviews(Pi,0)
7: end for
8: k ← 1
9: done ← false
10: while ¬done do
11: V = {⋃i V Ti|finishedi = false}
12: Partition V into m disjoint sets s.t. each set Uj contains

statviews on the same set of tables
13: for j = 1 to m do
14: if Uj is on a single table then
15: Get a sample of that table
16: else{Uj is on multiple tables}
17: Get a join synopsis
18: end if
19: Collect all statviews in Uj

20: end for
21: done ← true
22: for i = 1 to n ∧ finishedi = false do
23: done ← false
24: Optimize Qi, let Pi,k be the chosen plan
25: if Pi,k = Pi,l for some l < k then
26: finishedi ← true
27: else(different plan)
28: Vi ← Vi ∪ V Ti

29: V Ti ← FindImportantStatviews(Pi,k)
30: V Ti ← V Ti − Vi

31: if V Ti is empty then
32: finishedi ← true
33: end if
34: end if
35: end for
36: k ← k + 1
37: end while

termination. The convergence of the algorithm is addressed
in detail in our experimental evaluation (Section 6.2). We
observed that the running time of the algorithm grows lin-
early with the number of queries in the workload as well as
with the number of tables referenced in these queries.

For a given query, our candidate enumeration algorithm
finds the set of statviews that are guaranteed to make the
optimizer choose an execution plan with an accurately esti-
mated cost. However, the statviews in the produced statview-
group might be more than what is actually needed to get the
final predictable plan. As a result, it is possible to reduce
the statview-group to the minimal set of necessary statviews
that give the same result. This can be accomplished using a
similar concept to the shrinking set algorithm presented in
[9]; which takes as input a set of statistics, and gives a subset
of this set that has the same overall effect. The algorithm
starts with the whole set, and checks whether the removal of
any statview from the set would change the produced plan.
A statview whose removal does not affect the produced plan
is not necessary and can be safely discarded. The algorithm
repeats until no more statviews can be removed.

4. BENEFIT ESTIMATION AND STATVIEW
SELECTION

As mentioned in Section 2, the objective is to choose
the statviews that have the maximum benefit (minimize

the workload execution time) while satisfying the cost con-
straint. As a result, we need to define a benefit metric for
statview-groups that captures the saving in the execution
time. In Section 4.1, we define the benefit of a statview-
group to a particular query, and in Section 4.2, we extend
that definition to the whole workload. Section 4.3 presents
our selection algorithm that exploits these benefit estimates.

4.1 Benefit for a Single Query
The most accurate and intuitive metric for measuring the

benefit of a statview-group V to a query Q is the reduction
in the execution cost of Q as a result of using V in the
optimization. Let P0 be the plan chosen by the optimizer
when no statviews are present, and let PV be the plan chosen
when V exists. The benefit B(V, Q) can be expressed as:

B(V, Q) = ActCost(Q, P0)−ActCost(Q, PV ) (1)

where ActCost(Q, P ) is the actual execution cost of Q us-
ing plan P . B(V, Q) represents the saving in the execution
cost. Note that the difference in costs is primarily due to the
change of execution plans triggered by the presence of more
accurate statistics (statviews) in V . If the statistics pro-
vided by V are not significant enough to cause a plan change,
then P0 = PV , and B(V, Q) = 0. Computing B(V, Q) re-
quires compiling and executing Q twice (with and without
V present), to get the actual execution cost in each case.
This is infeasible for a large workload with complex queries.

To avoid having to execute the query twice, a possible
approach is to use the estimated cost of the query instead
of the actual cost. This is based on the assumption that
the estimated cost is monotonic in the actual execution
cost. For a given query plan P and a statview-group V ,
let EstCost(P, V ) denote the estimated cost of P in the
presence of V . The monotonicity assumption between the
estimated and actual execution cost implies that given a
query Q, two plans P1 and P2, and a statview-group V , if
EstCost(P1, V ) > EstCost(P2, V ), then ActCost(Q, P1) >
ActCost(Q, P2). However, benefit estimation using the esti-
mated costs is not straightforward. In other words, we can-
not use the difference in estimated cost with and without the
statviews. This is because the estimated cost without the
statviews is computed based on inaccurate statistics, hence
it is not comparable to the estimated cost with the statviews
(as they are computed using different sets of statistics). To
illustrate this problem, consider the following example.

Example 4.1. The optimizer is invoked without statviews
and the output is plan P0 with estimated cost c0 = 100. The
optimizer is invoked once again, with the statviews present,
and it produces plan PV with estimated cost cV = 150.
At first glance, this might indicate that the presence of the
statviews harmed the query. However, in reality, it is im-
portant to examine the chosen plans themselves, and not
just the estimated execution cost. In the second invocation
of the optimizer (with V present), the estimated cost of PV

is clearly lower than that of P0 (since PV was favored by
the optimizer over P0). Therefore, we can only compare the
plan costs estimated with the same set of statistics.

Based on this observation, we can compute an approxi-
mate benefit as follows:

B′(V, Q) = EstCost(P0, V )− EstCost(PV , V ) (2)



Computing B′ requires only optimizing Q twice; the first
time to obtain P0, and the second time to obtain PV as well
as the cost of both plans. This eliminates the need to execute
Q while providing an approximate benefit score for V . Note
that, in our solution, the plans and their respective costs are
already obtained as part of the candidate enumeration pro-
cess, so we need only one additional call to the optimizer’s
costing functions to get EstCost(P0, V ). Again, if the opti-
mizer chooses the same plan both times, then P0 = PV , and
B′(V, Q) = 0.

4.2 Benefit for a Workload
Given the benefit of statview-groups to individual queries,

it is easy to compute the benefit of these statview-groups
to the whole workload. Consider a statview-group V . Let
WV ⊂ W be the set of queries that generated V (i.e. V has
been separately generated by each query in WV ). The ben-
efit of V to the workload W can be computed by summing
the benefits of V to each query in WV , or more formally:

B(V, W ) =
∑

Q∈WV

B′(V, Q) (3)

Note that the benefit of V for each individual query is
independent from the other queries, therefore they can be
safely added. From this point on, we shall write B(V, W )
simply as B(V ).

4.3 Statview-Group Selection
At this point, we have a set of statview-groups G =

{V1, ..., Vn} where n is equal to the number of queries in
the workload. For a given statview-group Vi, B(Vi) and
C(Vi, R) denote the benefit and cost of Vi respectively. The
cost can be computed differently depending on the database
system and the computing environment. For example:

• In systems where the main concern is storage space,
the cost can represent the space needed to store the
statview and its statistics. Since the statistics are ac-
tually collected as part of the enumeration phase, it is
not hard to determine how much space they occupy.

• If the main concern is query optimization speed, then
the fewer statviews maintained by the system, the bet-
ter (since fewer statviews are considered for matching).
In this case, the cost of all statviews is the same (can
be set to 1). Note that even if all statviews have the
same cost, the cost of statview-groups is different, since
the number of statviews in each group is arbitrary.

Note that C(Vi, R) is also a function of the recommenda-
tion list R, since the statview-group Vi might contain some
statviews that have already been added to R, and do not in-
troduce any extra cost. For any two statview-groups Vi, Vj :

• Benefit(Vi, Vj) = B(Vi)+B(Vj), since the two statview-
groups benefit different queries

• Cost(Vi, Vj) ≤ C(Vi, R) + C(Vj , R), since there might
be some common statviews, and their cost should not
be counted more than once

This problem is a generalization of the 0/1 knapsack prob-
lem, where the cost of an item is not constant, but de-
pends on the items chosen. The exact solution is exponen-
tial. However, we can use the same greedy algorithms used

Algorithm 3 StatviewGroupSelection(G, cmax)

1: c ← 0, R ← φ
2: while (|G| > 0 ∧ c < cmax) do
3: Vbest ← null
4: Bbest ← 0
5: for all V ∈ G do
6: if B(V ) > Bbest ∧ C(V, R) ≤ cmax − c then
7: Vbest ← V
8: Bbest ← B(V )
9: end if
10: end for
11: if Vbest 6= null then
12: c ← c + C(Vbest, R)
13: G ← G− Vbest

14: R ← R ∪ Vbest

15: else
16: Break
17: end if
18: end while
19: Return(R)

for knapsack, but taking care to dynamically modify items’
costs based on the items chosen so far.

In our implementation, we use the greedy solution given
in Algorithm 3. The algorithm takes as input the set of
candidate statview-groups G = {V1, ..., Vn}, as well as the
user-defined constraint on the maximum cost (cmax). The
output of this module is the set R of final recommendations,
where R ⊆ V1 ∪ ... ∪ Vn.

The algorithm is iterative. At each iteration, the algo-
rithm tries to find the statview-group with the maximum
benefit that can still fit within the constraint. If such statview-
group is found, its contents are added to the recommenda-
tion list R. The algorithm has a polynomial running time in
the number of candidate statview-groups (which is almost
equal to the number of queries in the workload).

5. DEPENDENCY ON DATABASE ENGINE
The implementation details and some algorithms of

StatAdvisor depend mainly on the underlying database en-
gine. This is because currently the way statviews are defined
and utilized is not standard across DBMSs. Specifically, the
engine-dependent module of StatAdvisor is the plan anal-
ysis module. All the remaining modules are independent of
the database engine and how statviews are used.

The plan analysis module is mainly affected by the statview
matching and utilization capabilities of the database engine.
In the extreme case, if the database engine does not sup-
port statview matching, then the execution plans will never
change no matter what statviews are created, and the plan
analysis module will not produce any candidates. For an
engine that supports statview matching, the plan analysis
module must be aware of how the matching is performed in
order to come up with the candidate statviews. Some of the
criteria that have to be considered include:

• Whether or not the matching has to be exact (the
statview has to be strictly equivalent to the sub-
expression being matched)

• For non-exact matching, what differences can exist
while still resulting in a successful match (e.g., par-
tial set of predicates, different output columns)

• Whether or not multiple partial selectivities can be



obtained from several statviews to estimate the selec-
tivity of one sub-expression

• What statistics on the statviews can be used by the op-
timizer (e.g., only the number of tuples in the statview,
histograms on statview columns, etc.)

Producing candidates that are not matchable means that
the optimizer will not have access to any usable new statis-
tics, and will choose the same plan.

6. EXPERIMENTAL EVALUATION
In this section, we present experimental results of an im-

plementation of the StatAdvisor in IBM DB2.

6.1 Setup
Data: We carried out our experiments on two different

data sets. The first data set, DS1, is a version of the TPC-
DS [21] data set with scale factor 1. The second data set,
DS2, is a synthetic database with six relations CAR, OWNER,

DEMOGRAPHICS, ACCIDENTS, LOCATION, and TIME. The size of
this data set is 1 GB. Several primary-key-to-foreign-key
relationships exist between the tables. Each table is com-
posed of four to eight attributes. Some attributes are uni-
formly distributed and others are more skewed. A number
of correlations between attributes, such as Make and Model,

are inherent in the attribute definitions.
Workloads: We used two workloads for our experiments.

The first workload, W1, consists of 23 queries from the
TPC-DS benchmark (queries 3, 7, 9, 12, 13, 15, 19, 20,
26, 42, 43, 44, 48, 52, 55, 62, 75, 76, 82, 84, 91, 98 and
99). These queries were selected because they do not con-
tain subqueries2. However, the selected queries include var-
ious constructs, e.g. arithmetic expressions, functions, equi-
joins, range joins, equality and range filtering predicates,
conjuncts and disjuncts. Each query consists of three to
seven joined tables. The second workload, W2, corresponds
to the second data set (DS2), and contains 100 synthetically
generated SPJG queries. Each query consists of one to five
joined tables, and several selection predicates, some of which
are correlated. Some of the queries also include aggregate
functions and grouping. An example query is:

SELECT city, COUNT(*) FROM owner o, car c

WHERE c.ownerid = o.id

AND c.make = ’Honda’ AND c.model = ’Civic’

GROUP BY city

6.2 Candidate Enumeration
As mentioned in Section 3.1, given a particular query

plan, the plan analysis module determines the important
statviews for this plan. Assume that we let the StatAdvisor
collect all statviews in the given plan that include up to
t tables. Figure 5(a) depicts the running times of the
StatAdvisor for different values of t, when it is invoked
for workload W1, as well as the running times of W1 given
the obtained recommendations for each value of t. The
StatAdvisor running time increases almost linearly with t.
On the other hand, the major performance improvement for

2At the time of writing this paper, DB2 does not match
statviews with queries that include subqueries. However,
StatAdvisor can generally recommend statviews that cor-
respond on any query expression, including subqueries
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Figure 5: Important statviews

the workload occurs at t = 2, i.e. when the system col-
lects statviews with up to 2 joined tables. As t increases
further, there is slight improvement, but it is overweighed
by the increase in the running time of the StatAdvisor. If
the workload is executed more than once, it becomes even
more evident that the best performance is achieved at t = 2.
Generally, the total running time = (StatAdvisor running
time + s * workload execution time), where s is the number
of executions of the workload. Figure 5(b) depicts the total
running time against t, for different values of s. The best
performance for most values of s occurs at t = 2. Figures
5(c) and 5(d) depict the corresponding results for the second
workload W2, in which the same effect can be seen. Based
on these results, we decide to limit the important statviews
to those with one or two joined tables, along with their se-
lection predicates, since including more statviews increases
the overhead without introducing significant benefit.

Figure 6 shows the convergence of the candidate enumera-
tion algorithm when (1) all statviews in a plan are collected,
and (2) only the important statviews in a plan (cf. Defini-
tion 3.1) are collected. The x-axis represents the various
iterations, and the y-axis represents the number of queries
being processed in each iteration. Figures 6(a) and 6(b)
correspond to workloads W1 and W2, respectively. When
all statviews are collected, the algorithm terminates after 4
iterations, whereas it terminates after 2 or 3 iterations when
only the important statviews are collected. The reason be-
hind this behavior can be explained as follows:

Consider a query Q. At the kth iteration, the algorithm
is processing the plan Pk. Assume that we collect only the
important statviews, and that re-optimizing the query still
results in the same plan Pk. Let Cimp(Pk) be the estimated
cost of Pk using the important statviews. In an alternative
scenario, assume that we collect all statviews in Pk. Let
Call(Pk) be the estimated cost of Pk in this case. Since
the important statviews capture most of the estimation er-
ror, the estimated cost should not change drastically by col-
lecting all statviews. Therefore Cimp(Pk) and Call(Pk) are
usually very close. However, even though they are close,
Call(Pk) can be slightly higher than Cimp(Pk). In this case,
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Figure 6: Convergence of candidate enumeration

another plan Pk+1 whose estimated cost C(Pk+1) < Call(Pk),
will be chosen by the optimizer, leading to more iterations.

Note that since Pk+1 was not chosen in the first sce-
nario, this means that Cimp(Pk) < C(Pk+1). In other words
Cimp(Pk) < C(Pk+1) < Call(Pk). And since Cimp(Pk) and
Call(Pk) are very close, the estimated cost of Pk+1 cannot
be significantly less than that of Pk. Therefore, even though
a different plan is chosen, the performance gain is negligible.

6.3 Overall Workload Performance
The test workloads are executed in the following settings:

1. Statistics are available on all base tables and their at-
tributes, including table cardinalities, number of dis-
tinct values in each column, etc. This represents the
common case in most database systems.

2. Statistics are available on base tables and their at-
tributes, plus statistics on the statviews recommended
by the StatAdvisor for this particular workload.

The StatAdvisor recommended 35 statviews for workload
W1, and 50 statviews for W2 (given that no user limitations
were set). Generally, the recommended statviews can be
categorized into two main types:

Statviews on single tables: These eliminate the errors in
single-table expressions. Such errors usually arise from
correlation between predicates on the same table.

Statviews on two joined tables: When local predicates
are applied to one or two tables, the distribution of the
results is usually very skewed. It is hard to estimate
the size of joining these two result sets, and the estima-
tion error is usually very large. Thus, having statviews
on joined pairs of tables eliminates these errors.

An example of a query that benefited from the recom-
mended statviews is the second query in W1 (TPC-DS query
7). The query includes 3 filtering predicates on the Customer

Demographics table, 1 predicate on the Date Dim table, and 2
disjunctive predicates on the Promotion table. Figure 7(a)
shows the plan chosen for this query with no statviews in the
system. The values in parentheses represent the estimated
cardinality at each operator in the plan. The recommended
statviews based on this query are:

v1: σ1(Date Dim)

v2: σ2(Promotion)

v3: σ3(Customer Demographics)

v4: Store Sales ./ (σ1(Date Dim))

(a) (b)

(2880140)
Store_Sales

(73049) 
Date_Dim

(300)
Promotion

(1920800)
Customer_
Demographics

σ1

σ3

(18000)
Item

σ2

(205.036)

(205.036)

(14352.6)

(14400.7)

(365.245)

(300)

(0.0142857)

σ3
(2880140)

Store_Sales

(1920800)
Customer_
Demographics

(27440)

(39409)

(73049) 
Date_Dim

σ1

(366)

(6273.49)

(300)
Promotion

σ2
(300)

(6252.65)(18000)
Item

(6252.65)

Figure 7: Execution plans for TPC-DS query 7

Figure 7(b) shows the plan chosen for this query after cre-
ating the statviews. Note the large estimation error in the
expression corresponding to v3 (due to the correlation be-
tween the 3 predicates on Customer Demographics). Also, the
expression corresponding to v4 had a large estimation error
resulting from applying the selection predicate on Date Dim),

which results in having skewed data, then joining this data
with Store Sales). However, the expression corresponding
to v4 does not appear in the final plan (the actual cardinal-
ity of this expression is 553,476). Collecting v4 provides an
accurate estimate for this expression, improving the query
execution time from 610 to 106 seconds (5.5 times faster).

Figure 8(a) is a box plot (a graph depicting the small-
est observation, lower quartile, median, upper quartile and
largest observation) of the execution time of the queries of
W1 in the two settings. Figure 8(b) shows a scatter plot of
the elapsed times of the individual queries of W1, where the
x-axis represents the time in the first setting, and the y-axis
represents the time in the second setting. Some queries lie
in the degradation region, since the presence of base table
statistics is often sufficient to get accurate estimates, and
the presence of statviews only introduces extra overhead.
However, for most queries, the overhead introduced by the
statviews is outweighed by the gain in performance as a re-
sult of better statistics, and hence, a better execution plan.
Figures 8(c) and 8(d) represent the corresponding results for
W2. As can be seen, the introduction of statviews signifi-
cantly improves the performance of the system.

We conducted this same experiment with indexes avail-
able for both workloads. The indexes were obtained by run-
ning the DB2 Design Advisor [22, 24] on each workload and
materializing the recommended indexes. We then ran each
workload with and without the recommended statviews ob-
tained from StatAdvisor. The performance improvement
was similar to the no-indexes scenario, and is not shown
here for lack of space.

6.4 Comparison with Previous Work
For this experiment, we implemented the statistics selec-

tion algorithm given in [6]. We shall refer to this implemen-
tation as SITadvisor. We invoked both our StatAdvisor

and SITadvisor for the workload W2, with no limitations
on the number or size of the recommended statviews. We
then executed the workload given each set of recommen-
dations and recorded the execution time for each query in
both cases. We were unable to test SITadvisor with the
workload W1 because the queries in W1 involve constructs
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Figure 8: Workload performance

like arithmetic expressions, range joins, and disjuncts, while
SITadvisor only supports queries with conjuncts of predi-
cates, equi-joins, and selection predicates on table columns
(not on arbitrary arithmetic expressions).

Table 1 gives a summary of the differences between
SITadvisor and StatAdvisor. Note that SITadvisor does
not collect statistics, so we added the collection time of
its recommended statistics to make the comparison with
StatAdvisor possible. StatAdvisor takes longer to run,
since it collects more statistics than it needs to determine
whether or not there is a plan change. However, it produces
almost 50% fewer statviews than SITadvisor. The workload
performs 32% better given the StatAdvisor recommenda-
tions than it does given the SITadvisor recommendations.

Figure 9 shows the individual execution times of each
query in the workload in the two cases. The x-axis is the ex-
ecution time given the SITadvisor recommendations while
the y-axis is the execution time given the StatAdvisor rec-
ommendations. Most queries run faster with the StatAdvisor
recommendations, since SITadvisor assumes predicate in-
dependence and does not recognize statview-groups.

7. RELATED WORK
A considerable amount of research has addressed the im-

pact of database statistics on query performance. The ap-
proaches that tackle the statistics aspect of cost-based opti-
mization can be categorized mainly as being either reactive
or proactive. Reactive approaches are based on monitoring
a query during execution, and reacting to observed errors
between the initial estimates and the actual values from the
query feedback. One possible approach is to use the er-
ror as an adjustment factor to correct statistics for future
queries [20], or to trigger statistics collection if it exceeds
a certain threshold [1]. A different approach is to react
to errors by re-optimizing the current query [14, 17]. In
contrast, proactive approaches try to predict, identify and
possibly solve potential problems by doing additional work

Table 1: SITadvisor vs. StatAdvisor
SITadvisor StatAdvisor

Advising + Collection time 4045 sec 5309 sec
No. of statviews 102 50
Workload running time 5701 sec 3876 sec
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Figure 9: SITadvisor vs. StatAdvisor

before query execution. Babu et al. [5] proposed a system
that enumerates and maintains different plans, then chooses
among them during execution based on query feedback. A
different approach [9] performs sensitivity analysis in order
to decide which statistics to collect so that the optimizer will
have enough information to optimize a given query, and col-
lects these statistics during query optimization. The work
in [10] introduced a system that also collects statistics on
the fly. However, the statistics collected are Query-Specific
Statistics (QSS) as opposed to general statistics.

A related line of work is that concerned with constructing
views for statistics collection purposes. Bruno and Chaud-
huri [6, 7] extend traditional optimizers to exploit statistics
built on expressions corresponding to intermediate nodes of
query plans. View matching techniques are used to decide
which views to use. The use of views provide more accurate
statistics and reduces the need to employ simplifying as-
sumptions. Larson et al. [15] proposed using Sample Views
for cardinality estimation. Sample views are similar in con-
cept to statviews except that they contain a sample of the
actual data, and its statistics. The work in [15] is mostly
concerned with maintaining the sample views to keep them
up-to-date with data activity. Resampling is triggered when
query feedback shows that a certain view has become stale.

Building and maintaining query performance enhancers,
such as database indexes and materialized views has been
extensively studied. The Design Advisor in IBM DB2 [22,
24] analyzes a given workload, and builds a list of candidate
views and indexes for each query using some heuristic rules,
and simulates the existence of these indexes and views. The
indexes/views that are actually used in the plan given by
the optimizer are recommended for this particular query.
A benefit/cost analysis is used to select from these candi-
dates. A slightly different approach is used in Microsoft R©
SQL Server [3]. First the system obtains the candidates in a
similar manner. Subsequently, the system attempts to gen-
erate more candidate views by merging similar views that
are recommended for different queries, and a benefit/cost
analysis is used to determine the final workload-level recom-
mendations. Generating views that can be used by multiple
queries has also been an ongoing research problem [16].

The closest work to our proposal is the work in [6], which
includes automated recommendation of SITs (statistics on
intermediate tables). First, filtering predicates are investi-
gated one at a time. For the predicate under investigation,
the system uses “min” and “max” estimation strategies to



estimate the extreme values of the predicate’s selectivity,
and propagate these values throughout the query join graph.
The optimizer is invoked twice for the query on hand (for
each predicate); once given all the minimum selectivity esti-
mates, and another time given all the maximum selectivity
estimates. The estimated cost in each case is recorded. If
the difference between the two estimated costs exceeds a
certain threshold, then the predicate under investigation is
considered a candidate. The algorithm proceeds to find the
generating queries for the SITs. For each candidate predi-
cate, the algorithm examines the propagation of uncertainty
in the selectivity estimation through the joins in the query
graph. The join that contributes the most to the uncertainty
in the whole query is the one used as the SIT for this partic-
ular predicate. A benefit score is assigned to each candidate
SIT, and the system selects the SITs with the highest scores
that fit within a predefined constraint. This approach does
not recognize plan change as the main cause of performance
gain as in Observation 2.1. In addition, it has no way of
finding which SITs should be grouped together in order to
cause such performance gain (Observation 2.3).

Other approaches tackling different aspects of the query
optimization problem include generating robust plans that
are resilient to estimation errors [4], or detecting the correla-
tion in the data to avoid the independence assumption [12].

8. CONCLUSION AND FUTURE WORK
Collecting statistics on statviews gives the optimizer more

accurate cardinality estimates at various points in the query
plan, thus allowing the optimizer to estimates more accu-
rate costs and consequently make better decisions in choos-
ing execution plans. Choosing the correct statviews is cru-
cial, since having too many statviews increases optimiza-
tion time and administration overhead to collect statistics.
StatAdvisor recommends the most beneficial statviews by
analyzing the workload and using a plan-based candidate
enumeration approach, along with a benefit/cost analysis to
prune the candidates and choose the final recommendations.

For future work, we are interested in studying view match-
ing techniques in more detail, and investigating the dif-
ferences between materialized view matching and statview
matching, ultimately devising specialized techniques that
take into consideration the special characteristics of statviews.
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