
Promotion Analysis in Multi-Dimensional Space

Tianyi Wu† Dong Xin‡ Qiaozhu Mei† Jiawei Han†
† University of Illinois at Urbana-Champaign

‡ Microsoft Research
{twu5,qmei2,hanj}@illinois.edu dongxin@microsoft.com

ABSTRACT
Promotion is one of the key ingredients in marketing. It is often
desirable to find merit in an object (e.g., product, person, organi-
zation, or service) and promote it in an appropriate community.
In this paper, we propose a novel functionality, called promotion
analysis through ranking, for promoting a given object by lever-
aging highly ranked results. Since the object may not be highly
ranked in the global space, our goal is to discover promotive sub-
spaces in which the object becomes prominent. To achieve this
goal, the notion of promotiveness is formulated. We show that this
functionality is practical and useful in a wide variety of applica-
tions such as business intelligence. However, computing promo-
tive subspaces is challenging due to the explosion of search space
and high aggregation cost. For efficient computation, we propose a
PromoRank framework, and develop three efficient optimization
techniques, namely subspace pruning, object pruning, and promo-
tion cube, which are seamlessly integrated into the framework. Our
empirical evaluation on two real data sets confirms the effective-
ness of promotion analysis, and that our proposed algorithms sig-
nificantly outperform baseline solutions.

1. INTRODUCTION
Promotion has been playing a key role in marketing. It is always

desirable to identify competitive strengths of a product and promote
it on the market. Can we systematically develop such a function
that automatically finds interesting subspaces, if any, for a given
object so that it can be promoted confidently?

In this paper, we present a novel functionality, called promotion
analysis through ranking, that is important to many applications
like business intelligence. In a nutshell, we exploit a common fact
that ranking information, in particular top ranks, of a target ob-
ject (e.g., product, person, business, organization, or service) can
serve as effective means for promotional purposes. For example,
“Fortune 500” could deliver a positive image of an enterprise to
customers and be used for promotion, and a basketball player de-
scribed by “scoring champion” can easily impress others as well.
Therefore, our goal in this paper is to leverage such interesting
ranking information for object promotion. We observe that in many

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

cases such information would be simply impossible to obtain, as
most objects may not be prominent globally; that is, when com-
paring to all competitors in all aspects. Thus, toward our goal, sub-
space ranking analysis is carried out to discover interesting patterns
of object ranking in subspaces.

Example 1. (PRODUCT PROMOTION) A book retailer manager
intends to promote their brand. Unfortunately, in terms of book
sales, they rank lower than 30-th among all book retailers. How-
ever, when breaking down the market into segments, such as Year,
Category, and Readership, she finds out that they are in fact the
top-1 bookseller in the {Readership = College Students, Category
= Science and Technology} segment. This information can be ef-
fectively used for making advertisement and allocating marketing
resources to seek profits.

Example 2. (PERSON PROMOTION) An NBA manager would
like to promote Michael Jordan as a superstar. Having checked the
statistics, he realizes that Jordan is only ranked as the 3rd all-time
leading scorer. However, further analysis suggests more exciting
results: Jordan is the top scorer in the guard position, the top scorer
on the Chicago Bulls team, as well as 11 individual years’ scoring
champion.

These examples show typical applications of promotion. The
strategy adopted here is to break down the data space into sub-
spaces so that a globally low-ranked object becomes prominent in
some subspaces, which can be then used for promotion. In fact,
this strategy is not new as it has been extensively studied and prac-
ticed in marketing [13]. While existing commercial database and
data warehouse systems can well support the functionality of “re-
trieving top objects in some subspace”, there exists no subspace
ranking analysis method for promotional purposes. It would be
prohibitively difficult for users to navigate large data sets, because
of the potentially exponential number of subspaces as well as the
high cost of aggregation and ranking. In this paper, we systemati-
cally study this problem, which, to the best of our knowledge, has
not been studied before.

(PROMOTION QUERY) Given a target object, our goal is to dis-
cover its top-R promotive subspaces.

To address the problem, a new notion called promotiveness need
to be formulated. Intuitively, that a target object ranks high in
a subspace suggests that the subspace is promotive. The promo-
tion query returns the target object’s R most promotive subspaces,
which may have different uses depending on the task at hand. First,
the results can be directly used to find merit in the target object,
raising its image and profile. Second, it is able to help analysts dis-
cover the right market segment for promotion. For example, if a
book is highly ranked among college students, one would allocate

Location Year Object Score
NY 2008 T1 0.5
WA 2008 T1 0.8
WA 2007 T2 1.0
WA 2008 T2 1.0
NY 2007 T3 0.3
WA 2007 T3 0.6
WA 2008 T3 0.7

Figure 1: Sample multidimensional data.

Subspace Rank ObjCount
{*} 3rd 3
{NY} 1st 2
{WA} 3rd 3
{2008} 1st 3

{NY, 2008} 1st 1
{WA, 2008} 2nd 3

Figure 2: Target object T1’s subspaces and its ranks.

the marketing resources on colleges. Third, high rankings in pro-
motive subspaces can be more meaningful and informative to an
information seeker. For example, Forbes and U.S. News and World
Report regularly publish ranked results of businesses, universities,
not only in general, but also in various subfields (e.g., undergrad-
uate vs. graduate education). A university may discover “ranked
top-3 in biomedical research” to be more useful than “ranked top-
15 in medical sciences as a whole”.

Example 3. (CONTEXT) We use the multidimensional model to
accommodate typical decision support data. Figure 1 illustrates a
sample fact table, where dimensions are categorized by subspace
dimensions (Location, Year), object dimension (Object), and score
dimension (Score). Assume that our target object for promotion is
T1. Figure 2 lists T1’s 6 subspaces and the corresponding rank
of T1 in each subspace. Here assume that the rank is derived by
ordering objects in a subspace in descending order according to
the SUM aggregate score. For instance, in {WA} T1 ranks 3rd
because T2 : 2.0 > T3 : 1.3 > T1 : 0.8.

In different contexts, two types of object rankings can be distin-
guished. (i) Aggregate score-based: the computation of an object’s
rank in any subspace involves dynamic score aggregation (such as
in the above example); (ii) Constant score-based: each object’s
score is constant across all subspaces, so objects’ relative ranking
will be fixed in any subspace. We focus on the former case, which
is more general.

In order to quantify how well a subspace can serve a target ob-
ject for promotion, we need the key notion of promotiveness. Intu-
itively, a subspace in which the target object is highly ranked would
have high promotional value. However, this may not be the whole
story.

Example 4. (PROMOTIVENESS) Continue with our running ex-
ample in Figure 2. Observe that, {2008} is a promotive subspace
because T1 ranks 1st in it, much better for promotion than the full
space {*}, where T1 ranks last. However, also observe that, al-
though T1 has equal ranks in {2008} and {NY}, these two sub-
spaces may not be considered equally promotive, because in {2008}
T1 has two competitors but in {NY} there is only one. Clearly, this
indicates “more competition” in {2008} and it is desirable that
{2008} be considered more promotive. For the same reason, {NY,
2008} may not be considered promotive even though T1 ranks 1st.

That the target object is highly ranked in a subspace does not
necessarily suggest that the subspace is promotive, because other
factors such as the number of competitors would affect its promo-
tional value as well. In this paper, we support a class of measures to
gauge the promotiveness of subspace. Instead of solely relying on
rank, another element coined subspace significance is considered.
This class of measures enables users to model context-specific se-
mantics. However, a potential spurious promotion problem may
arise when seemingly promotive subspaces are actually caused by

random noises. To tackle the problem, statistical methods based on
analysis of variance are proposed as an integral part of our solution.

Technical challenges: The promotion query problem presents
significant challenges because of the following reasons. First, in
a d-dimensional data set, there is potentially an exponential num-
ber of subspaces. A naive approach that enumerates all subspaces
and computes the promotiveness value for each subspace would
be prohibitively expensive. Second, the promotiveness measure is
neither monotonic nor anti-monotonic. In other words, the promo-
tiveness of a child subspace can be either higher or lower than that
of its parent subspace. For example, in Figure 2, subspace {2008}
may have a higher promotiveness than both its child subspace {NY,
2008} and its parent subspace {*}. Such non-monotonicity pre-
vents us from utilizing existing aggregate computation methods,
which require monotonicity of the measure. Third, the promotive-
ness measure is holistic [10], which means that computing the pro-
motiveness measure incurs high aggregation cost, as scores must
be aggregated for all objects in order to derive the target object’s
rank. This makes shared computation of the promotiveness mea-
sure across subspace lattice difficult.

While answering promotion query is challenging, we develop al-
gorithms that significantly outperform baseline solutions, making
promotion analysis feasible for large-scale applications. We first
propose a generic PromoRank framework, and then develop the
following optimization techniques by exploiting the fact that users
are only interested in the top subspaces where the target object has
top ranks. (i) Subspace pruning: Users only desire the most promo-
tive subspaces, so aggregations in many “unpromising” subspaces
could be wasted. To avoid unnecessary aggregations, we establish
upper and lower bounds for the promotiveness measure by utiliz-
ing the parent-child relationships among subspaces. The results
of subspaces which have already been aggregated may be reused
to prune unseen ones with little overhead. (ii) Object pruning: In
many real data sets, object scores follow power-law distributions.
When computing a target object’s rank in a subspace, only objects
with aggregate score larger than that of the target object would af-
fect the target object’s rank, whereas objects in the long tail would
not. Therefore, they can be chopped off at an early stage, thereby
reducing subsequent aggregation and ranking cost. (iii) Promotion
cube: We develop a compact materialization strategy to further op-
timize the efficiency of query processing, which complements the
online algorithms and seeks the middle ground between space over-
head and query execution time. All these techniques are seamlessly
integrated in our framework. The contributions of this paper are
summarized as follows.

• Present the promotion analysis problem and its uses. To the best
of our knowledge, this is the first paper to systematically study
the problem;

• The notion of subspace promotiveness is formalized (Section
2);

• Efficient query execution algorithms are proposed in the Pro-
moRank framework (Section 3); a compact cube structure, called
promotion cube, is proposed to further speedup query process-
ing (Section 4);

• Discuss statistical methods for preventing spuriously promotive
results (Section 5);

• Verify the quality of promotion analysis using two real-world
data sets. An extensive performance study shows that our pro-
posed techniques are much more efficient than baseline algo-
rithms (Section 6).

The remainder of this paper is organized as follows. Section 2
formally introduces the promotiveness measure and the problem
definition. Section 3 discusses the PromoRank framework and
the pruning techniques. Section 4 proposes the promotion cube.
Section 5 discusses the method for removing spuriously promotive
subspaces. Section 6 reports our experimental results. Section 7
reviews related work. Finally, Section 8 concludes this study.

2. PROBLEM DEFINITION

2.1 Data Model
Consider a d-dimensional data set D consisting of a set of n

base tuples, each having d (categorical) subspace dimensionsA =
{A1, A2, . . . , Ad}, an object dimension Iobj, and a score dimen-
sion Iscore. Denote dom(Iobj) by O, namely the complete set of
object IDs (e.g., in Example 3,O = {T1, T2, T3}). Let dom(Iscore)
be R+, the set of non-negative real numbers.

A subspace is defined as S = {a1, a2, . . . , ad}, where ai ∈ Ai

or ai = ∗ (star refers to the “any” value). S induces a projec-
tion of the data set DS(⊆ D) and a subspace of objects OS(⊆
O) (e.g., in Example 3, O{NY} = {T1, T3}). A subspace S1 =
{a1, a2, . . . , ad} is called a child subspace of S2 = {b1, b2, . . . , bd}
iff there exists a j s.t. aj 6= ∗ ∧ bj = ∗ and ai = bi for any i 6= j.
Conversely, S2 is a parent subspace of S1.

For this d-dimensional data, all subspaces can be partitioned
into 2d cuboids (or group-by’s). We say that S belongs to a d′-
dimensional cuboidA′ denoted by A′1A

′
2 · · ·A′d′ iff S has non-star

values in these d′ dimensions and star values in the other d − d′

dimensions. These 2d cuboids form a cuboid lattice, where in par-
ticular the apex cuboid denoted by “∗” contains only the full space
{∗, ∗, . . . , ∗}.

In subsequent discussions, assume a query target object tq ∈ O
is given. Let Sq = {Sq|tq ∈ OSq} be the set of target sub-
spaces where tq occurs. These subspaces form a target lattice. In
Example 3, the target object T1 has 6 target subspaces as shown in
Figure 2; subspace {2007} is not a target subspace because T1 does
not occur in it.

2.2 A Unified Promotiveness Measure
For any target subspace Sq , we need to measure its promotional

value for tq . We assume that a higher rank of tq in Sq should make
Sq promotive. On the other hand, fixing tq’s rank, more competi-
tors in Sq indicates that it has larger promotional value. To formal-
ize the intuition, we define promotiveness as a class of composite
measures.

Definition 1. (PROMOTIVENESS) Given tq and Sq , the promo-
tiveness, P, can be defined as

P(tq, Sq) = f
(
Rank(tq, Sq)

) · g(
Sig(Sq)

)
, (1)

where Rank measures the rank of tq in Sq based on a given mono-
tone aggregate measure M, Sig measures Sq’s own significance
(i.e., promotional value), and f and g are monotone normalization
functions.

P consists of three components: Rank, Sig, and f and g. We
elaborate on each component and its assumptions in the following.

2.2.1 The Rank measure

Definition 2. (RANK) Given an aggregate measureM, tq’s rank
in Sq is defined as

Rank =
∣∣{t|t ∈ OS ∧ t 6= tq ∧MS(t) B MS(tq)}

∣∣ + 1, (2)

where B∈ {>,≥, <,≤} and MS(t) denotes the aggregate score
of object t in subspace S.

Rank is a deciding factor in promotiveness. Assume that M is a
monotone measure such as SUM, COUNT, MAX, etc.. For simplic-
ity, also assume B = “ > ”, and our techniques can be extended
to other relation operators.

2.2.2 The Sig measure
Sig measures the promotional value of the subspace itself, which

is independent of tq . Some instances of this measure are Tuple-
Count (the number of base tuples), ObjCount (the number of dis-
tinct objects), or Level (the number of star-values). For example, a
larger ObjCount may suggest that the subspace is “more compet-
itive”. In general, assume Sig is monotone such that the Sig of a
child subspace should be no greater than that of its parent subspace.

2.2.3 The normalization functions f and g
f(·) and g(·) are monotone normalization functions that combine

Rank and Sig in order to derive a meaningful promotiveness value.
We require r1 ≤ r2 ⇒ f(r1) ≥ f(r2) and s1 ≤ s2 ⇒ g(s1) ≤ g(s2).

2.2.4 Example instantiations
We illustrate several example instantiations of P to model certain

semantics of promotion query.
Enforcing iceberg constraint: One might use Rank to gauge

the promotiveness of subspaces while enforcing a minimum sup-
port threshold minsup to filter out “small” subspaces. In this case,
P could be like

P = f(Rank) · I(TupleCount ≥ minsup),

where I is an indicator function (which returns 1 when the condi-
tion is true and 0 otherwise) and f is any monotone function. Thus
any subspace not passing minsup will have 0 promotiveness.

Percentile rank: Another useful instantiation of P is the per-
centile rank. For example, a subspace where tq ranks to top-1%
might be much more promotive than a subspace with percentile
rank top-30%. The percentile rank is a common measurement for
studying student test scores. Formally, we can instantiate P as

P = Rank−1 · ObjCount,

such that a higher percentile rank of tq would result in a larger
promotiveness value.

Other functions: Users may propose other functions to cus-
tomize P. For example, one may use continuous g function to
penalize “small” subspaces, or assign static weights to subspaces
(e.g., larger weights are associated with the recent years than with
the past).

2.3 The Promotion Query Problem

Definition 3. (PROMOTION QUERY) Given data set D, target
object tq , and promotiveness measure P, return the top-R sub-
spaces with the largest promotiveness values.

Ties are broken arbitrarily. For clarity of presentation, in the
subsequent discussions, assume M is SUM and let P be Rank−1 ·
I(TupleCount ≥ minsup). These assumptions do not make our
solutions less general to the query model. We discuss how to avoid
spuriously promotive subspaces generated by random noise in Sec-
tion 5.

3. THE PROMORANK FRAMEWORK
In this section we discuss the PromoRank framework with two

pruning methods: subspace pruning and object pruning. We start
with a general framework that lays the foundation. This framework
is based on the bottom-up computation method discussed in [5].
The general idea is as follows. It runs in memory and recursively
partitions the data set according to some dimension, and objects are
aggregated in the subspace corresponding to each partition. Then
the promotiveness measure value for that subspace is computed.
Table 1 displays the outline of the framework, PromoRank, based
on the example instantiation of promotiveness measure assumed
in Section 2.3, i.e., P = Rank−1 · I(TupleCount ≥ minsup).
The framework is divided into an aggregation phase and a partition
phase.

Aggregation phase: In this phase, the Rank and P measures
are computed for the input subspace S (Line 2). Then the target
subspace S and its P value will be inserted into a priority queue
which maintains the top-R results (Line 3). We now elaborate on
the computation of P for S: Scan through the Iobj and Iscore dimen-
sions of the input base tuples inD and compute the aggregate score
(i.e., SUM) for each object in O. This is implemented using a hash
table keyed on object ID. The resulting hash table would have |O|
entries which map each object to its aggregate score. Rank is com-
puted directly by counting the number of aggregate scores strictly
larger than tq’s aggregate score. Finally, P is set to Rank−1.

Partition phase: The input dataD is iteratively sorted according
to the d′-th dimension in a depth-first search manner (Line 5). As
a result, D can be projected into multiple partitions such that each

Algorithm 1: PromoRank(S, D, O, d0)
Input

Target object tq , subspace S, and data set D;
Object set in current subspace O;
Previous partition dimension d0.

Output:
Top-R promotive subspaces Result.

1 if |D| < minsup ∨ tq /∈ O then return;
2 Compute Rank and P;
3 Update Results using (S, P);
4 for d′ ← d0 + 1 to d do
5 Sort D based on d′-th dimension;
6 foreach value v in d′-th dimension do
7 S′ ← S ∪ {d′ : v};
8 PromoRank(S′, DS′ , OS′ , d′);
9 end
10 end

Table 1: The PromoRank algorithm.

2:A 10:B 14:C 16:D

1:*

3:AB 7:AC 9:AD 11:BC 13:BD 15:CD

5:ABCD

4:ABC 6:ABD 8:ACD 12:BCD

Figure 3: Cuboid tree.

A B C D

1:*

AB AC AD BC BD CD

ABCD

ABC ABD ACD BCD

...relationships omitted...

...

...

Figure 4: Using subspace rela-
tionships to lower bound Rank.

partition corresponds to a distinct value on the d′-th dimension.
A child subspace S′ of S is defined on each partition (Line 7),
and PromoRank recursively progresses over subspace S′ and the
corresponding data partition of S′ (Line 8). Any subspace where
the target object does not occur will be pruned (Line 1). Also,
the iceberg constraint “TupleCount ≥ minsup” can be enforced as
well (Line 1). Figure 3 displays an example recursive process for 4
dimensions at cuboid-level. For each cuboid, we label the order it
is visited by PromoRank.

Although the PromoRank algorithm presented here supports an
instance of the promotiveness measure with iceberg constraint, it is
nevertheless generic that it is able to compute any promotiveness
measure. Specifically, given any aggregate measure M, Rank can
be computed using the hash table in the same way as described
above, and Sig can be directly derived from the input subspace S
and/or the input data D.

Analysis: At each recursion the aggregation runs in O(|D| +
|O|) time, due to the scan of the input data and hashing on ob-
jects. The partition phase runs in O(|D|) time because the input
data was sorted during the last recursion. Overall there will be
|Sq| recursions, so the total cost of the algorithm can be written as
Call =

∑|Sq|
i=1 (Cpar

i + Cagg
i), where Cpar

i and Cagg
i are the partition

and aggregation costs at the i-th recursion, respectively.
Notice that this algorithm computes all subspaces, and thus the

overall cost Call could be quite prohibitive for large data sets. Be-
cause users often ask for only the top subspaces where the target
object has top ranks, we further develop optimization techniques in
the subsequent sections.

3.1 Subspace Pruning
Now we discuss the subspace pruning technique. The key moti-

vations for this technique are that (i) users are often only interested
in top-R promotive subspaces, and (ii) the aggregate measureM is
monotone (e.g., SUM). Intuitively, it could be wasteful to perform
aggregation for all subspaces. To prune out “unpromising” sub-
spaces, the problem becomes to establish an upper bound for the
promotiveness measure.

Given the set of target subspaces Sq , the PromoRank algo-
rithm iterates through each subspace in it in a sequential order,
S1, S2, . . . , S|Sq| (illustrated in Figure 3), if both the dimension
ordering and the value ordering on each dimension are fixed. At
any time of the algorithm, the sequence of subspaces can be con-
ceptually split into a list of seen subspaces which have already been
aggregated, and a list of unseen subspaces which have not yet been
aggregated. From the list of seen subspaces, we compute the cur-
rent R-th largest promotiveness value as a threshold. For the list of
unseen subspaces, we derive an upper bound promotiveness value
for each of them using already aggregated results. Thus, any un-

seen subspace whose upper bound is less than the threshold can be
pruned. To derive the upper bound, we utilize parent-child relation-
ships between seen and unseen subspaces in the target lattice.

We first introduce some notation. At any time k of the algorithm,
let

• Sseen denote the list of seen subspaces {S1, . . . , Sk} (0 ≤ k ≤
|Sq|) which have been aggregated or pruned already;

• Sunseen denote the unseen subspace list {Sk+1, . . . , S|Sq|};

• M i(t) denote the aggregate score of object t (∈ OSi) in any
subspace Si (1 ≤ i ≤ |Sq|); in particular, M i(tq) denote the
aggregate score of the target object in Si;

• Si.P, Si.Sig, and Si.Rank denote the exact measure values of
Si (1 ≤ i ≤ |Sq|);

• Si.P, Si.Sig, and Si.Rank denote the upper bound P, upper
bound Sig, and lower bound Rank of an unseen subspace Si

(k + 1 ≤ i ≤ |Sq|);

• P denote the R-th largest promotiveness measure value of all
seen subspaces.

Now we consider the problem of computing a general upper
bound for promotiveness, i.e., computing Si.P given an unseen
subspace Si. By definition, Si.P = f(Si.Rank) · g(Si.Sig) be-
cause of the monotonicity of f and g. In general, Si.Sig can be
computed based on Si’s seen parents since Sig is monotone (note
that the iceberg constraint assumed is a specific instance of g(Sig)).
So now the problem is reduced to computing Si.Rank. Because
Rank is neither monotone nor convex, we cannot compute Si.Rank
directly from Si’s parent subspaces. A trivial lower bound is 1,
which assumes the best possible rank; however, this would not be
able to provide any pruning power. Our idea here is to exploit the
monotonicity of the aggregate measure in the subspace lattice.

Claim 1. (RANK MEASURE LOWER BOUND) Let Sc be any
child subspace of S, we can obtain a lower bound Rank measure
as S.Rank ≥ |{t|t ∈ OSc ∧MSc(t) > MS(tq)}|+ 1.

The claim is clear as aggregate scores must be monotone across
parent-child subspaces. Therefore, given an unseen subspace Si

and its seen child subspace Sj that has already been aggregated,

Algorithm 2: PromoRank+
1 for i ← 1 to |Sq | do /* initialization */
2 Compute M i(tq);
3 Si.P = Si.Sig ←∞, Si.Rank ← 1;
4 end
5 P ← 0;
6 D = D\{tq};
7 for i ← 1 to |Sq | do
8 if Si.P > P then /* if not pruned */
9 Compute Si.P, update P and top-R results;
10 foreach Si’s descendent Sj (j > i) do
11 Sj .Sig ← Si.Sig;
12 Update Sj .P;
13 foreach Si’s parent Sj (j > i) do
14 Update Sj .Rank and Sj .P;
15 end
16 Sort and partition; /* recursive */
17 end

Table 2: The subspace pruning algorithm.

we can compute the lower bound Rank for Si as Si.Rank =∣∣{t|t ∈ OSj ∧M j(t) > M i(tq)}
∣∣ + 1, by using M j(t), namely

the already aggregated object scores in the child subspace Sj , and
M i(tq), namely the target object’s aggregate score in Si. When
there are multiple unseen child subspaces of Si, there could be mul-
tiple lower bounds. In such cases, the maximum value is taken to
provide the tightest bound. This way, the upper bound for promo-
tiveness can be established, enabling our subspace pruning strategy.

PromoRank+, the subspace pruning algorithm based on the ba-
sic framework, is displayed in Table 2. However, as shown in Table
2, it is “flattened” for simplicity (i.e., instead of showing a recursive
algorithm, we use a for-loop to represent it). Note that in order to
compute Si.Rank for any Si, we need to first compute the target
object’s aggregate score in each target subspace (Line 2). Also, all
bounds are initialized (Lines 3 and 5), and the base tuples pertain-
ing to the target object are removed from the data (Line 6). Here
computing M i(tq) for all target subspaces is very efficient because
the number of base tuples related to tq often makes only a small
portion of the data. This could be even more efficient if a clustered
index has been built on the object dimension.

During partitioning, PromoRank+ iteratively aggregates each
subspace (Lines 7–17). At each iteration, one of the following two
cases happens. If the upper bound promotiveness of the current
subspace is less than the R-th largest promotiveness value seen so
far, the subspace can be pruned. In this case, its aggregation step
can be avoided (i.e., skips Line 9–14). Otherwise, object score ag-
gregation must be performed to obtain the exact P measure value
(Line 9). After that, Si.Sig can be used to upper bound the Sig
measure of all Si’s descendent subspaces (Lines 10–11). Mean-
while, the resulting aggregate scores can be reused to derive Rank
for its unseen parent subspaces (Lines 13–14). The updated bounds
of Sig and Rank of unseen subspaces are then propagated to the
upper bound of P (Lines 12 and 14).

Example 5. Figure 4 displays the computation of lower bound
Rank in a lattice view. Subspaces are recursively aggregated in
the order A → · · · → ABCD → ABD → · · · . When, for example,
a subspace in ABC has just been aggregated, the Rank of its corre-
sponding unseen parents in AC and BC can be updated; we do not
update AB because it is seen. Similarly, aggregated results in ABD
can be reused for AD and BD.

Figures 5 and 6 further show a concrete example. Assume the
target object is t7. Also assume P = Rank−1. When PromoRank
is executed, 4 target subspaces will be aggregated in the order
S1 → S2 → S3 → S4. The aggregate scores in each subspace are
listed in Figure 6, from which Rank and P can be derived.

Now suppose PromoRank+ is executed on the same data and
S1 → S2 → S3 have just been aggregated. Because S3 has an
unseen parent subspace S4, we can reuse S3’s result to compute
S4.Rank =

∣∣{t|t ∈ OS3∧M3(t) > M4(tq)}
∣∣+1. Since we have

M4(tq) = 0.4 during initialization, S4.Rank = |{t3, t6}| + 1 =
3. In this case, if we want to find the top-1 promotive subspace, we
would have P = S2.P = 1/2 (i.e., 1/2 being the largest P seen so
far), and we can safely prune out S4 because S4.P = 1/4 < P.

Analysis: Si.Rank can provide effective pruning power when
M i(tq) is relatively small, since in such cases Si.Rank would be
bounded away from top ranks. Because our goal is to find the top-
R most promotive subspaces, many target subspaces with small
M i(tq) can be pruned, leading to lower aggregation cost. Another
advantage of subspace pruning is that subspaces are pruned with
little overhead: First, computing tq’s aggregate scores beforehand
incurs no redundant cost because all base tuples related to tq are
removed subsequently. Second, no intermediate aggregate results

S1={a}

S2={ab} S4={ac}

S3={abc}

Figure 5: A subtree of subspaces
rooted at S1.

Subspace Objects (OS) and their aggregate scores (MS(t)) MS(tq) Rank P
S1 = {a} t6(1.2) t3(1.0) t1(0.7) t7(0.7) t4(0.3) t5(0.3) t2(0.2) 0.7 3 1/3
S2 = {ab} t6(0.7) t3(0.6) t7(0.6) t1(0.4) t4(0.3) t2(0.2) t5(0.2) 0.6 2 1/2
S3 = {abc} t3(0.6) t6(0.5) t7(0.3) t1(0.1) t5(0.1) 0.3 3 1/3
S4 = {ac} t3(0.8) t6(0.7) t1(0.6) t7(0.4) t5(0.2) t2(0.1) t4(0.1) 0.4 4 1/4

Figure 6: Example subspaces and their aggregated results.

need to be stored because the lower bound Rank is computed dur-
ing aggregation.

3.2 Object Pruning
In the basic PromoRank framework, the Rank measure is com-

puted in a holistic manner. That is, for each subspace, the complete
set of objects in that subspace are aggregated and compared in or-
der to derive Rank for the target object. However, this often incurs
huge waste as only the objects which have larger aggregate scores
than that of the target object would determine Rank, regardless of
how many objects there are. We motivate this pruning technique
using a typical real-world example: Figure 7 displays a power-law
distribution in the DBLP data set [1], where the X-axis (object)
corresponds to more than 450K authors and the Y -axis (aggregate
score) represents the number of publications each author has. We
observe that most authors in the long tail would not affect the com-
putation of Rank, and thus performing aggregation at each recur-
sion for all objects and recursively passing these objects to the next
child subspace would be unnecessary. This motivates us to develop
the object pruning technique, which aims to determine the minimal
set of objects that affect Rank, so that all remaining objects that do
not fall into this set are pruned early.

For a target subspace Si, let Si.MinScore denote the minimum
aggregate score of the target object in the Si’s subtree. Here the
subtree is defined as the depth-first search tree induced by the re-
cursive process, as illustrated in Figure 3. For example, in Figures 5
and 6, S1’s subtree consists of S1 through S4, and S1.MinScore =
min{0.7, 0.6, 0.3, 0.4} = 0.3.

Therefore, given a subspace Si and any object t ∈ OSi , t can be
pruned if M i(t) ≤ Si.MinScore. This is because, for any subspace
Sj in Si’s subtree, M j(t) ≤ M i(t) ≤ Si.MinScore ≤ M j(tq),
which means that t’s aggregate score is no greater than the target
object’s aggregate score in Sj . In other words, t would not affect
Sj .Rank, and this holds true for any Sj in Si’s subtree during the
depth-first search process. Therefore, t can be pruned from OSi .
Once t is pruned, its corresponding base tuples in the current data
partition DSi can be pruned as well.

Example 6. Continue with the example in Figures 5 and 6, where
S1.MinScore=0.3. Suppose the aggregate scores of objects in OS1

have just been computed for S1. By checking these scores, one can
see that t4 (0.3), t5 (0.3), and t2 (0.2) have scores no greater than

0

50

100

200

400

0% 50% 100%

N
um

be
r

of
 p

ub
lic

at
io

ns

Authors

PaperCount

Figure 7: Aggregate score distribution in DBLP.

S1.MinScore. This means that t4, t5, and t2 would not affect Rank
of any subspace in S1’s subtree (i.e., S2, S3, and S4). Therefore,
they can be safely pruned so that they do not need to be aggregated
in S2, S3, and S4. In Figure 6, we can see that the Rank of t7 in
all 4 subspaces are not decided by t4, t5, or t2.

This object pruning strategy can be pushed down into the Pro-
moRank algorithm recursively and be integrated with subspace
pruning. The complete query execution algorithm, PromoRank++,
is shown in Table 3. We highlight its differences from PromoRank+
as follows. (i) Initializing MinScore: This happens at the initializa-
tion stage (Line 5), which can be efficiently computed bottom-up
in the cuboid tree. (ii) Recursive object pruning: At the end of each
aggregation phase (except for those subspaces without any child
subspace), identify the set of objects to be pruned Omin = {t|t ∈
OS∧MS(t) ≤ S.MinScore} (Line 16). Then, prune all base tuples
related to Omin from the current data partition (Line 17).

Analysis: By pruning objects and data, the cost of both aggrega-
tion and partitioning would be greatly reduced. This pruning strat-
egy introduces little overhead as Omin can be directly computed
from aggregated results, and the additional space overhead is O(1)
per subspace. However, using this object pruning strategy, objects
and data are pruned at early stage and we may not be able to com-
pute some Sig measures like ObjCount exactly (other measures
like Level remain unaffected). Two techniques may be used to ad-
dress this problem. First, approximate Sig using selectivity estima-
tion techniques like [18]. Because promotiveness is not sensitive
to Sig, such approximation often would not harm result quality. In

Algorithm 3: PromoRank++
1 for i ← 1 to |Sq | do /* initialization */
2 Si.P = Si.Sig ←∞, Si.Rank ← 1;
3 Compute M i(tq);
4 end
5 Compute Si.MinScore for each Si;
6 P ← 0;
7 D ← D\{tq};
Procedure: PromoRank++(S, D, O, d0)
8 if S.P > P then /* subspace pruning */
9 Compute S.Rank, S.Sig, and S.P;
10 Update P and top-R results;
11 foreach S’ descendent Sj do
12 Sj .Sig ← Si.Sig;
13 Update Sj .P;
14 foreach S’ parent Sk (k > i) do
15 Update Sk.Rank and Sk.P;
16 ComputeOmin using S.MinScore;
17 D ← D\Omin; /* object pruning */
18 end
19 for d′ ← d0 + 1 to d do /* partition */
20 Sort D based on d′-th dimension;
21 foreach child target subspace S′ along d′-th dimension do
22 PromoRank++(S′, DS′ , OS′\Omin, d′);
23 end

Table 3: The complete query execution algorithm.

our experiments we verified that a simple approximation method
could work very well. Second, one may materialize Sig of sub-
spaces which pass a minsig threshold so that Sig can be accurately
obtained.

4. PROMOTION CUBE
In practice, interactive and explorative analysis requires very short

response time of queries. To further speedup promotion query pro-
cessing for real-world applications, we propose a Promotion Cube
technique to complement the online algorithms. The goal of the
promotion cube is to (i) quickly locate promotive subspaces, and
(ii) effectively prune out less promotive subspaces for an arbitrary
target object. Toward this end, we exploit two types of correla-
tions. First, the target object’s rank is strongly correlated with its
promotiveness value. In other words, high rank likely leads to large
promotiveness. Second, a promotive subspace is unlikely to be in-
significant. Therefore, the promotion cube precomputes only sub-
spaces with Sig above a certain threshold minsig, which is simi-
lar to an iceberg cube. In each precomputed subspace, instead of
directly materializing objects and their promotiveness values, we
materialize a set of order statistics. Specifically, only a very small
set of the largest aggregate scores is precomputed without consid-
ering actual object IDs. A key advantage of this structure is that the
threshold minsig and the size of the order statistics do not limit the
capability of query processing. Any top-R promotive subspace can
be discovered for any target object even if the subspace does not
satisfy the threshold or if the target object’s aggregate score in that
subspace is not precomputed.

The definition of the promotion cube structure is as follows.
Consider data set D and aggregate measure M. Assume two cube
parameters, maximum rank k and minimum significance threshold
minsig, are given. Another optional parameter, cell size k′, will be
discussed shortly.

Definition 4. (PROMOTION CELL) Given a subspace S, a pro-
motion cell S.PCell = (Mi)

k
i=1 is defined as the sequence of the

top-k largest object aggregate scores in S.

Definition 5. (PROMOTION CUBE) The promotion cube D con-
sists of a set of triples in the format (S, PCell, Sig), where any
subspace S must pass the minsig threshold. Formally, D = {S :
(S.PCell, S.Sig)|S.Sig ≥ minsig}.

If k = |O| and minsig = 0, D becomes equivalent to a full cube
because all subspaces and all object scores would be materialized.
Obviously, the storage cost would be very expensive because there
could be an exponential number of subspaces as well as a large
number of objects. In practice, we select minsig > 0, so that many
subspaces being insignificant will be ignored, resulting in a small
number of precomputed subspaces. Further, we have k ¿ |O|,
meaning that the size of each promotion cell is also small. As a
result, the promotion cube would be much more compact than the
corresponding iceberg cube, which is in turn much smaller than
the corresponding full cube. In fact, even for large data sets, the
promotion cube is able to reside in main memory. Also, it can be
efficiently computed using existing techniques like [17].

The promotion cube contributes to the online query execution by
enhancing subspace pruning. It provides non-trivial upper bound
and/or lower bound promotiveness scores to precomputed subspaces.
More specifically, given target object tq and target subspace S, the
computation of the upper bound promotiveness S.P (and the lower
bound S.P) can be separated into the following 3 cases.

• S ∈ D∧MS(tq) ∈ S.PCell: We can obtain the exact values of
S.Sig, S.Rank, and S.P (i.e., S.P = S.P = S.P);

• S ∈ D∧MS(tq) /∈ S.PCell: Here exact S.Sig can be obtained,
and Rank can be lower-bounded as S.Rank = k + 1. S.P can
be computed correspondingly;

• S /∈ D: This means that Sig can be upper-bounded as S.Sig =
minsig. S.P can be computed accordingly.

The integration of the promotion cube with the query execution
algorithm PromoRank++ (Table 3) is as follows. First, when ini-
tializing the promotiveness bound for each target subspace Si (Line
2), instead of assigning a trivial value, the upper bound Si.P and
in some cases the lower bound Si.P can be computed as described
above. Second, instead of initializing P to be 0 (Line 6), we let
it be the R-th largest lower bound promotiveness among all target
subspaces (i.e., the R-th largest Si.P). The rest of the algorithm
remains unchanged.

While in principle each promotion cell contains only the k largest
aggregate scores, M1, M2, . . . , Mk, a heuristic to further reduce
space is to materialize only a subset of these scores. Given another
cube parameter, cell size k′, where k′ ≤ k, one can select k′ aggre-
gate scores out of the k scores at evenly spaced ranks. For example,
if k = 50 and k′ = 5, we materialize M10, M20, . . . , M50. For a
target object, its upper and lower bound ranks are obtained by com-
paring its aggregate score with the k′ materialized scores, and then
the promotiveness bounds can be computed.

Unlike traditional data cubes which directly store aggregated re-
sults that users are interested in, the promotion cube complements
the online query execution through offline preprocessing. Since the
promotion cube will sit in memory, the additional query execution
overhead for computing the bounds for target subspaces can be ne-
glected. The parameters, minsig, k, and k′, allow users to control
the tradeoff between the online and offline costs so that users may
select these parameters to yield the desired tradeoff. On the other
hand, the parameters do not restrict the freedom of queries; that is,
given M, the promotion cube supports arbitrary promotion queries
and guarantees the correctness of results.

5. AVOIDING SPURIOUS PROMOTION
In our query model, the promotiveness measure P consists of two

components, the Rank measure, to make the target object promi-
nent in a result subspace, and the Sig measure, to penalize sub-
spaces being too sparse or too specific. There are cases, however,
that the promotiveness measure fails to guarantee the meaningful-
ness of results.

Example 7. (SPURIOUSLY PROMOTIVE SUBSPACES) Michael
Jordan is the top scorer among all players born in February and
the top scorer on sunny days.

The example illustrates that the two subspaces {BirthMonth =
February} and {Weather = Sunny}, both having high target object
ranks and are neither too sparse nor too specific, are nevertheless
meaningless. Clearly, there exists no causal relationship between
BirthMonth/Weather and NBA players’ ranking. Such kind of “pro-
motive” subspaces cannot be justified and thereby having no true
promotional value. We call them spuriously promotive subspaces
and formally discuss how to avoid them in this section.

We observe that the key difference between a spuriously pro-
motive subspace and a truly promotive one lies in that the former
involves at least one spurious dimension. For example, Weather is
a spurious dimension when promoting the player. Intuitively, such
a spurious dimension has no correlation with object ranking. When
conditioning on spurious dimension values, the object score dis-
tribution would not be significantly changed; in other words, the

Target object Top-3 promotive subspaces Rank ObjCount Top-%

Michael Jordan

{*} 3 3460 0.09%
{Position=Guard} 1 1417 0.07%

{Team=Chicago Bulls} 1 283 0.35%
{Year=1984 (ties: 1986-1992, 1995-1997)} 1 380 0.26%

LeBron James

{*} 251 3460 7.3%
{CareerStage=Young, Position=Guard} 4 1385 0.3%

{CareerStage=Young} 14 3387 0.4%
{Team=Cleveland Cavaliers} 1 278 0.4%

Al Jefferson

{*} 827 3460 23.9%
{Year=2007} 11 451 2.4%

{Position=Forward, Team=Boston Celtics} 24 139 17.3%
{Team=Minnesota Timberwolves} 27 143 18.9%

Raymond Felton

{*} 930 3460 26.9%
{Year=2006, CareerStage=Young} 5 142 3.5%
{Year=2005, CareerStage=Young} 9 139 6.5%
{Coach=Bernie Bickerstaff} 10 128 7.8%

Carlos Delfino

{*} 1337 3460 38.6%
{Position=Guard, Team=Detroit Pistons} 33 132 25.0%

{Coach=Flip Saunders} 32 92 34.8%
{Team=Toronto Raptors} 36 132 27.3%

Table 4: A case study on the NBA data.

promotion of the target object would be merely due to random per-
turbations of ranking.

Definition 6. (SPURIOUS PROMOTION) A subspace dimension
is spurious when it is statistically independent of the score distribu-
tion. Any promotive subspace which contains a non-star value in
some spurious dimension is considered to be spuriously promotive.

Now, given a data set D (n base tuples), a subspace dimen-
sion A, and the score dimension Iscore, our goal becomes to deter-
mine whether or not A and Iscore have any correlation. Suppose
A induces a partitioning of all base scores in Iscore into θ (i.e.,
A’s cardinality) groups of scores, denoted as {s1

j}ϕ1
j=1, {s2

j}ϕ2
j=1,

. . .,{sθ
j}ϕθ

j=1, where ϕi denotes the cardinality of the i-th group
(1 ≤ i ≤ θ) and

∑
i ϕi = n. These groups are considered as sam-

ples drawn from θ underlying populations. Note that a special case
is that when A induces a partitioning of all objects, we can instead
partition their aggregate scores into θ groups and hence

∑
i ϕi =

|O|. We employ the Analysis of Variance (ANOVA) test [14] to de-
termine if significant difference exists between these group means
or they only differ by chance. The idea of the ANOVA test is to
compare these sample scores’ between-group sum of squared devi-
ation (SSB) to their within-group sum of squared deviation (SSW).
The closer they are, the higher the probability that dimension A has
no effect on Iscore. Specifically, let the null hypothesis H0 state that
the mean is the same for all groups. Let σi and µi be the sum and
average score of the i-th group, respectively. Then let

SSB =
∑

i

σ2
i

ϕi
− (

∑
i σi)

2

n
,

SSW =
∑

i

∑
j

(si
j − µi)

2.

The F -ratio for dimension A can be calculated:

F (A) =
SSB/(θ − 1)

SSW /(n− θ)
.

Let Fc(A) be the sample scores’ corresponding critical value de-
termined by θ−1, n−θ (or |O|−θ for the special case), and a given
Type I error probability α (e.g., 0.05). If F (A) ≥ Fc(A), H0 can
be rejected; otherwise, we conclude that A does not significantly
influence Iscore and thus A is a spurious attribute.

ANOVA assumes normality of score distribution and homogene-
ity of score variances across different groups. When the assump-
tions are violated, one may alternatively apply power transforma-
tions to the data or employ non-parametric methods like Kruskal-
Wallis test [14].

Computational complexity: To avoid spurious promotion, we
preprocess the given data set D by removing all spurious dimen-
sions based on the ANOVA method and, during query execution,
avoid using any spurious dimension.

This preprocessing entails one-pass over the data to compute the
F -ratio for each subspace dimension. This requires O(nd) time
and O(

∑d
i=1 θi) space complexity, where d is the total number of

subspace dimensions and θi is the cardinality of the i-th subspace
dimension.

6. EXPERIMENTAL EVALUATION
In this section, our goal is to (i) verify the effectiveness of the

promotion query through case study, and (ii) analyze the perfor-
mance (in both time and space) of our proposed algorithms. We
break down our evaluation into 3 data sets and summarize our re-
sults as follows:

NBA data set [2] (Section 6.2) Conduct case study to show how
NBA players can be effectively promoted. Because this data set
is small, no performance result will be reported.

DBLP data set [1] (Section 6.3) Conduct both case and perfor-
mance studies. We confirm that the search results match our in-
tuition well, and the proposed algorithms perform significantly
better than baseline algorithms.

TPC-H [3] (Section 6.4) By generating synthetic data sets using a
wide range of parameters, we show that the proposed algorithms
consistently outperform the baseline ones.

6.1 Implementation
All experiments were done on a machine with a Pentium 3GHz

processor, 2GB of memory, and 160G hard disk. We implemented
the PromoRank, PromoRank++, and PromoCube algorithms.
Our performance evaluation is based on two measures: query exe-
cution time and space overhead. PromoRank is considered a base-
line for query execution time, while to evaluate the space overhead
of PromoCube, we compare it to a traditional iceberg cube which,

Target object Top-3 subspaces by P1 Rank ObjCount Top-% Top-3 subspaces by P2 Rank ObjCount Top-%

David DeWitt

{*} 376 451316 0.08%
{Database} 16 65321 0.02% {PDIS} 1 318 0.31%
{1990} 2 13170 0.02% {Database, SIGMOD} 1 1784 0.06%

{SIGMOD} 2 3519 0.06% {Database, 1985} 1 556 0.18%

Yufei Tao

{*} 3325 451316 0.74%
{Database, 2003} 11 6707 0.16% {ICDE, 2004} 1 334 0.30%
{Database, 2004} 18 8877 0.20% {Data Mining, Info. Retrieval, 2004} 2 690 0.29%

{ICDE} 30 4822 0.62% {SIGMOD, 2008} 5 471 1.06%

Table 5: Promotion query results on the DBLP data using different promotiveness measures.

for each subspace passing some given minsig threshold, fully ma-
terializes all object aggregate scores.

The source code was written in C# and compiled using Microsoft
Visual C# 2008 in Windows XP. All query processing algorithms
were executed in the main memory without any disk access (Pro-
moCube resides in memory).

6.2 The NBA Data Set
Data characteristics: The data set contains 18050 base tuples,

each recording a player’s statistics in a particular year. Each base
tuple contains 5 subspace dimensions, namely Year (62 values),
CareerStage (2 values, “Young” or otherwise), Position (3), Team
(68), and Coach (220). We used PlayerID (3460) as object dimen-
sion, and used statistics dimensions such as Points, Rebounds as
score dimensions.

Promotiveness measure: SUM was chosen as the measure M
to aggregate over Points in order to generate ranking. The promo-
tiveness measure was set to P1 = −Rank − 2−dlog(TupleCount/n)e,
where 2−dlog(TupleCount/n)e is a penalty equivalent to 2l (l being a
non-negative integer) when the subspace selectivity TupleCount

n
falls

in range (1
2l+1 , 1

2l].
We first conduct a case study. Table 4 shows the top-3 promotive

subspaces for 5 representative players. For comparison, it shows
their global and local ranks, as well as their precise ranks in per-
centage. We find these results to match the reality very well. For
example, the case for Michael Jordan has been used in the Exam-
ple 2 in Section 1. For LeBron James, he is ranked only 251st
among all players; however, our results reveal more exciting facts
such as that James being a talented young player (i.e., 14th out of
3387 young players). For other globally low-ranked players, their
promotive subspaces make sense as well.

The above results are obtained using PromoRank++, where the
object pruning method estimates the TupleCount of a subspace us-
ing the product of the selectivities of the subspace’ dimension val-
ues. In fact, the results in Table 4 are accurate, because the promo-
tiveness measure being used is not sensitive to selectivity.

Handling spurious promotion: Figure 8 shows the effective-

 0.1

 1

 10

 100

 1000

CareerStage

Position

Year
Team

Coach
BirthMonth

RandomDim

F-ratio
Critical value at α=.05

Figure 8: Correlation test on NBA dimensions.

ness of the ANOVA test for detecting spurious dimensions. In ad-
dition to the 5 subspace dimensions mentioned earlier, another 2
dimensions BirthMonth (12) and RandomDim (100) were also con-
sidered here for comparison. BirthMonth records a player’s birth
month and was extracted from [2], and RandomDim is a uniformly
randomly generated dimension. The score dimension was set to Re-
bounds. Figure 8 displays the F -ratio for each of the 7 dimensions
(on log scale/in a decreasing order) and the corresponding critical
values at α = 0.05. The null hypothesis for BirthMonth and Ran-
domDim cannot be rejected since their F -ratios are smaller than the
critical values. This means that they have no significant correlation
with the score dimension and thus the subspace object ranking. On
the other hand, the remaining 5 subspace dimensions have F -ratios
significantly larger than the critical values, exhibiting that they are
strongly correlated with player rankings. These results have em-
pirically verified that spurious dimensions indeed can be separated
from meaningful subspace dimensions by the statistical test.

6.3 The DBLP Data Set
Data characteristics: We extracted 1,763,888 base tuples from

the DBLP data set, each in the format (Author, Conference, Year, Ti-
tle). The cardinalities of Author, Conference, and Year are 451316,
2506, and 50, respectively. We used Author as object dimension
and consider Conference and Year as subspace dimensions. We
also extended Title to 4 boolean subspace dimensions, “Database”,
“Data Mining”, “Information Retrieval”, and “Machine Learning”
using a manually constructed keyword-to-field mapping, so totally
there are 6 subspace dimensions. For example, a base tuple with
title containing “bayesian” would have its “Machine Learning”
dimension set to “true”. The selectivities of the “true” value of
the 4 boolean dimensions are between 72K and 226K. We used
COUNT (i.e., number of publications) to compute aggregate scores.

Promotiveness measure: Often users may want to enforce sig-
nificance constraint on subspaces (much like an iceberg condition)
rather than imposing penalty on selective subspaces. Therefore, in
addition to P1, we experimented with another measure P2. Specif-
ically, let P2 be Rank−1 · I{TupleCount ≥ 100}; that is, only
subspaces having≥ 100 base tuples (i.e., a community with > 100
papers) will be considered, whereas the remaining ones will be
pruned. Intuitively, this measure prevents us from searching too
“deeply” in the target lattice.

Table 5 shows the top-3 query results for two typical authors us-
ing P1 and P2. Not surprisingly, the subspaces characterize the
authors’ strengths well. We can see that P1 prefers subspaces with
large population and reasonably high ranks, whereas P2 prefers ab-
solute high ranks as long as the subspace meets the significance
constraint. It is worth mentioning that there is no universally best
promotiveness measure, and it is up to the user to choose the proper
measure for her task.

Performance: We created a workload consisting of a set of 10
randomly selected authors with ≥ 10 papers as target objects. For
PromoCube, we chose minsig = 100; it turns out that k = k′ =

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 20

R
un

tim
e

(s
ec

)

Top-R

PromoRank
PromoRank++

PromoCube

(a) Runtime vs. top-R.

 0

 50

 100

 150

 200

 250

 300

 350

1 10 20

N
um

be
r

of
 a

gg
re

ga
tio

ns

Top-R

PromoRank
PromoRank++

PromoCube

(b) Number of subspace aggrega-
tions vs. top-R.

0

5

10

15

20

1 10 20

O
bj

ec
ts

 a
gg

re
ga

te
d

(1
00

,0
00

)

Top-R

PromoRank
PromoRank++

PromoCube

(c) Number of objects aggregated
vs. top-R.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 20

R
un

tim
e

(s
ec

)

Top-R

PromoRank
PromoRank++

PromoCube

(d) Runtime on promotiveness
measure P1.

Figure 9: Performance results on the DBLP data.

10 would suffice to materialize almost all distinct aggregate scores
in significant subspaces since paper counts are often small integers.
Thus, the resulting space overhead for the data set, 310KB, can be
regarded trivial, and we do not compare it with iceberg cube.

We report in Figure 9(a) the query execution time of the Pro-
moRank, PromoRank++, and PromoCube algorithms when vary-
ing R, the number of subspaces to be returned. The promotiveness
measure was set to P2. We can see that all these methods become
slower when R increases, as expected. PromoRank++ is consis-
tently 2 to 2.5 times faster than PromoRank, showing the supe-
riority of the proposed pruning techniques. PromoCube outper-
forms PromoRank by a ratio of 180, 9.6, and 5 when R is set to 1,
10, and 20, respectively. In particular, PromoCube performs ex-
tremely well when R is small, because in such cases, the promotion
cube can directly return the result using O(1) lookup time and ter-
minate early; when R increases, additional online cost is incurred
to aggregate non-pruned search space.

To explain the differences in query execution time, in Figure
9(b), we plot the total number of subspaces aggregated by each
of the 3 algorithms with respect to R. Clearly, this figure shows
that the query execution time is linearly correlated with the num-
ber of subspace aggregated. Moreover, Figure 9(c) shows the total
number of objects aggregated by each algorithm with respect to R.
Compared to PromoRank, the baseline strategy, PromoRank++
dramatically reduces the number of objects aggregated, due to the
power-law distribution of author aggregate scores. In fact, Pro-
moRank++ is able to prune out the long tail of over 50% authors
with small paper count at the very initial recursion, resulting in
significant cost saving of subsequent object aggregation and data
partitioning.

Figure 9(d) displays the runtime comparison of the 3 algorithms
based on the promotiveness measure P1, which enforces penalty
on subspaces. Again, PromoRank++ is up to 2.5 times faster than
PromoRank, verifying the effectiveness of the pruning techniques.
The total number of subspaces and objects aggregated are quite
similar to previous results so we do not plot them here. More-
over, PromoCube consistently performs extremely well due to the
relatively small domain of aggregate scores. Actually, for all the
queries being tested in here, looking up the promotion cube suf-
fices to answer them. In other words, the target object’s ranks were
already precomputed in the top subspaces.

6.4 The TPCH Data
Now we compare the performance of algorithms on the synthetic

TPCH data [3].
Default data characteristics: We generated a default data set

with scale factor set to 1 and extracted the lineitem file containing

6,001,215 base tuples and 16 dimensions. We used the following 6
dimensions as subspace dimensions: l shipdate (2526), l quantity
(50), l discount (11), l tax (9), l linenumber (7), and l returnflag
(3). Also, we used l suppkey (10,000) as object dimension and
l extendedprice (ranges from 901.00 to 104949.50) as score dimen-
sion. Let SUM be the aggregate measure and objects are ranked in
its descending order.

Performance: In this subsection we consider P1 as well as a
promotiveness measure P3 with iceberg constraint TupleCount ≥
1000. For PromoCube, we set minsig = 1000; for each sub-
space, we considered the largest k = 1000 aggregate scores and
materialized k′ = 8 of them at evenly spaced ranks. The result-
ing space overhead is 978.3KB, in contrast to 277.5MB, the size of
the iceberg cube with condition TupleCount ≥ 1000 (i.e., for each
subspace passing the condition, materialize all aggregate scores).
All results reported here were averaged over a set of 5 randomly
generated target objects.

Figure 10(a) compares the performance of PromoRank, Pro-
moRank++, and PromoCube in terms of R (using P1). Pro-
moRank++ is approximately 2 times faster than PromoRank, while
PromoCube is about 20 times faster than PromoRank. Compared
with DBLP, the synthetic data used here is more than 3 times larger,
so more query execution time is consumed by all methods. How-
ever, even when R = 30, PromoCube needs only 13.7s, showing
the feasibility of promotion analysis over large data sets.

Figure 10(b) displays the relation between promotion cube size
and query execution time when fixing R = 10 (using P3). To
generate promotion cubes with different sizes, we fix the minsig
parameter to 1000 and k to 1000 but vary k′. The sizes of the re-
sulting five cubes range from 0.3MB to 3.6MB, which are 0.11% to
1.26% of the corresponding iceberg cube’s size, 277.5MB. We can
see that an exponentially decreasing cube size leads to only linearly
increasing query execution time. In particular, when the cube size
is only 0.3MB (0.11% of the iceberg cube size), the runtime is 36s,
about 4.8 times faster than the baseline (176s as shown in Figure
10(a)). Our results verify the robustness of the promotion cube in
the sense that the query target objects’ promotive subspaces may or
may not be precomputed.

Now we fix the query parameters (i.e., the promotiveness mea-
sure, the set of 5 target objects, and R = 10), and further generate
different synthetic data sets by varying each of the following pa-
rameters: (i) the number of base tuples, (ii) the number of subspace
dimensions, (iii) the number of objects, and (iv) the average cardi-
nality of subspace dimensions. We report the performance results
of the algorithms as follows.

First, we evaluate the algorithms on four data sets with 1M , 3M ,
6M , and 10M base tuples. We set the space overhead of Pro-

 0

 50

 100

 150

 200

 250

1 10 20 30

R
un

tim
e

(s
ec

)

Top-R

PromoRank
PromoRank++

PromoCube

(a) Runtime vs. top-R.

 0

 10

 20

 30

 40

 50

0.3 0.5 1 1.8 3.6
0%

0.5%

1%

1.5%

2%

R
un

tim
e

(s
ec

) S
toarge ratio

Promotion cube size (MB)

Size
Runtime

(b) Runtime vs. space overhead.

 1

 10

 100

 1000

1M 3M 6M 10M

R
un

tim
e

(s
ec

)

Number of base tuples

PromoRank
PromoRank++

PromoCube

(c) Runtime vs. the number of base
tuples n.

 1

 10

 100

 1000

2 4 6 8 10

R
un

tim
e

(s
ec

)

Number of dimensions

PromoRank
PromoRank++

PromoCube

(d) Runtime vs. the number of di-
mensions d.

 0

 50

 100

 150

 200

10K 200K

R
un

tim
e

(s
ec

)

Number of objects

PromoRank
PromoRank++

PromoCube

(e) Runtime vs. the number of ob-
jects.

 0

 50

 100

 150

 200

 250

 300

 350

Low (13) Medium (434) High (1273)

R
un

tim
e

(s
ec

)

Average cardinality

PromoRank
PromoRank++

PromoCube

(f) Runtime vs. average cardinality.

Figure 10: Performance results on the TPCH data.

moCube to be proportional to the number of base tuples. The run-
time of PromoRank, PromoRank++, and PromoCube with re-
spect to the base tuple number n is depicted in Figure 10(c). As ex-
pected, PromoRank++ is about 2 times faster than PromoRank,
because both partitioning and aggregation costs are linear to n. On
the other hand, PromoCube is increasingly faster with respect to
n, because the PromoCube prunes subspaces before any online
aggregation happens, which is unlike PromoRank++ that prunes
subspaces during the online aggregation process. Therefore, the
actual aggregation and partitioning cost saving of PromoCube is
much larger than that of PromoRank++.

Second, we vary the number of subspace dimensions, d, for the
default data set with 6M base tuples. In addition to the 6 subspace
dimensions mentioned earlier, 4 more dimensions were included
for this test case: l commitdate (2466), l linestatus (9), l shipmode
(7), and l shipinstruct (4). As shown in Figure 10(d), the gap be-
tween PromoRank++ and PromoRank is not large when d ≤ 4.
This is because the total number of target subspaces itself is quite
small, so the pruning techniques would not be effective. When
d ≥ 6, the number of target subspaces becomes larger, so more
interdependent relationships can be exploited. Our conclusion is
that increasing the number of subspace dimensions may not re-
sult in an increasing gain of PromoRank++ over PromoRank;
nevertheless, it does make PromoCube more efficient (relatively)
because more likely there will be some subspaces where a target
object ranks high.

Third, to test the relation between the total number of objects
|O| and query execution time, we replace l suppkey (10,000) with
l partkey (200,000) as the object dimension on the default data set.
As shown in Figure 10(e), when |O| = 200K, all algorithms’ ab-
solute execution time is slower than when |O| = 10K, because the
more objects, the less the number of target subspaces there will be
(i.e., each object will appear in less base tuples). On the other hand,

the speedup ratio of PromoRank++ goes from 2 for 10K objects
to 2.8 for 200K objects. Intuitively, more objects tend to make the
subspace aggregation cost outweigh the partitioning cost relatively,
which would magnify the effectiveness of subspace pruning, which
aims to reduce the number of subspace aggregations. For the same
reason, PromoCube goes from 10 times faster for 10K objects to
30 times for 200K objects.

Lastly, we vary average cardinality by selecting 3 different sets
of 6 subspace dimensions from the default 6M data set. We la-
bel these sets as “low” (average cardinality 13), “medium” (i.e.,
the default set of 6 subspace dimensions studied earlier with av-
erage cardinality 434), and “high” (average cardinality 1273). As
displayed in Figure 10(f), PromoRank++ and PromoCube are 3
and 20 times faster than PromoRank on the high-cardinality data
set, and 2.1 and 8.7 times faster on the low-cardinality data set. It
is found that both algorithms favor large cardinalities, where ag-
gregates become very sparse. In such cases, the aggregate scores
would be equal (i.e., to base scores) across parent-child subspaces,
thereby providing a tighter lower bound for Rank.

7. DISCUSSION

7.1 Related Work
Data mining for marketing: Promotion is one of the 4 P’s in

marketing: Product, Price, Place, and Promotion [13], which serves
for developing brand, building awareness, etc.. The idea of lever-
aging ranked results for promotion is ubiquitous. In online search-
based advertising, researchers have proposed methods for optimiz-
ing the effectiveness of promotion (e.g., in terms of click-through
rate) given a keyword bidding budget [6]. There are other data
mining studies for marketing, including [12] for microeconomic
studies, [16] for maximizing product retrieval frequency, and [15]
for dominant relationship analysis. Our problem takes a unique

perspective in that we explicitly exploit ranking for promotion by
comparing objects in subspaces.

Ranking queries: Ranking has been extensively studied in Web
search, databases, and other fields. Ranking (top-k) query model
augments the traditional boolean query model by enabling ad-hoc
search and retrieval. Numerous techniques are developed for ef-
fective and efficient ranking queries [9, 11, 7]. Notably, ranking
optimization is discussed for multidimensional data and aggregate
queries [19, 4]. Our query model can be distinguished from them
as the target object is specified upfront as user input, as opposed to
be output. Another difference is that we use rank as a measure for
promotion, while previous ranking is for returning a digestible set
of results to user. Toward the problem of finding top-k attributes,
[8] investigates selecting the most useful attributes for explaining
ranked tuples, and [16] aims to find the best attributes to maximize
for a given workload the number of queries which can retrieve a
tuple. Their objectives are not to explore ranking for promotional
purposes and they focus on the attribute-level.

OLAP and decision support: Technically, promotion queries
are similar to OLAP and decision support queries as far as multi-
dimensional analysis is concerned. The data cube model has been
well-studied to enhance explorative analysis [10, 15]. The iceberg
cube model [5] is proposed to answer iceberg queries efficiently.
These techniques rely on monotonicity and/or convexity of an ag-
gregate measure to speedup query processing and/or reduce storage
size. The promotiveness measure, however, does not have mono-
tonicity, anti-monotonicity, or convexity property, and thus previ-
ous techniques are unable to handle promotion analysis. Other mul-
tidimensional anomaly and outlier detection models cannot replace
promotion analysis since they do not deal with ranking.

7.2 Extension
There could be various ways to model promotion applications

and our work addresses an interesting and technically difficult one.
Here we discuss several directions for future study.

Group promotion: Instead of promoting a single target object,
users may want to promote a target group of objects. For example,
the target group could be a collection of items in a product package.
For such group promotion, the promotiveness can be measured by
the average increase in rank for each object in the target group or by
some other aggregate measure. The PromoRank algorithm would
work with minor extensions so that the promotiveness of subspaces
can be iteratively computed and the most promotive subspaces are
maintained in a priority queue during query execution. How to
extend the pruning techniques, on the other hand, would be an in-
teresting open question.

Mining measure space: Mining promotive regions in the mea-
sure space is an orthogonal yet important problem. Unlike the mul-
tidimensional space that is organized in a finite number of cells,
the measure space is often numerical and thus impossible to be ex-
haustively enumerated. On the other hand, it would be very useful
for decision makers to understand the product attributes and posi-
tion products. For example, knowing by what criteria a product is
successful (e.g., by sales or by customer rating) can help further
position and promote it.

Promotion in social networks: A social network, with each
node and link carrying some multidimensional information, may
need promotion analysis as well to promote objects in such a net-
work or in its surrounding subnetworks. However, the promotion
measures of an object could be related to certain network property,
such as network density, connectivity, and centrality; the compu-
tation of such a promotion measure could be closely related to the
network topological structure and the node/link values. The meth-

ods for promotion analysis will need to be re-examined in such net-
works. We propose to perform network-based precomputation so
that an initial evaluation of the nodes and links can be done before
query time such that the online query-based promotion computa-
tion can avoid searching many hopeless paths. The detailed search
strategy is left as an interesting theme for future research.

8. CONCLUSION
We have introduced the promotion analysis problem. New prun-

ing techniques as well as the promotion cube approach have been
proposed for efficiently answering the promotion query. Our com-
prehensive experiments verified that the promotion query is able
to discover meaningful results, and the efficiency of our proposed
algorithms significantly outperform the baseline solutions. We be-
lieve that this work opens up new horizons for research and we plan
to investigate them in depth in the future.

Acknowledgements: We thank the anonymous reviewers for
their helpful comments. The work was supported in part by the
U.S. National Science Foundation grants IIS-08-42769 and BDI-
05-15813, and the Air Force Office of Scientific Research MURI
award FA9550-08-1-0265.

9. REFERENCES
[1] DBLP. http://www.informatik.uni-trier.de/∼ley/db/.
[2] NBA data set, http://www.basketballreference.com.
[3] TPC-H. http://www.tpc.org/tpch/.
[4] N. Bansal, S. Guha, and N. Koudas. Ad-hoc aggregations of ranked

lists in the presence of hierarchies. In SIGMOD, pages 67–78, 2008.
[5] K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse

and iceberg cubes. In SIGMOD, pages 359–370, 1999.
[6] C. Borgs, J. T. Chayes, N. Immorlica, K. Jain, O. Etesami, and

M. Mahdian. Dynamics of bid optimization in online advertisement
auctions. In WWW, pages 531–540, 2007.

[7] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
ranking of database query results. In VLDB, pages 888–899, 2004.

[8] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering the
attributes of query results. In SIGMOD, pages 395–406, 2006.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, 2001.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub totals.
Data Min. Knowl. Discov., 1(1):29–53, 1997.

[11] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4), 2008.

[12] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. Data Min. Knowl. Discov.,
2(4):311–324, 1998.

[13] P. Kotler and K. Keller. Marketing Management. Prentice Hall,
March 2008.

[14] R. Kuehl. Design of Experiments: Statistical Principles of Research
Design and Analysis. Duxbury Press, 2000.

[15] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a data cube for
dominant relationship analysis. In SIGMOD, pages 659–670, 2006.

[16] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a
crowd: Selecting attributes for maximum visibility. In ICDE, pages
356–365, 2008.

[17] Z. Shao, J. Han, and D. Xin. Mm-cubing: Computing iceberg cubes
by factorizing the lattice space. In SSDBM, pages 213–222, 2004.

[18] J. S. Vitter and M. Wang. Approximate computation of
multidimensional aggregates of sparse data using wavelets. In
SIGMOD, pages 193–204, 1999.

[19] T. Wu, D. Xin, and J. Han. Arcube: supporting ranking aggregate
queries in partially materialized data cubes. In SIGMOD Conference,
pages 79–92, 2008.

