Structured Search Result Differentiation

Ziyang Liu

Arizona State University
ziyang.liu@asu.edu

ABSTRACT

Studies show that about 50% of web search is for informa-
tion exploration purpose, where a user would like to inves-
tigate, compare, evaluate, and synthesize multiple relevant
results. Due to the absence of general tools that can effec-
tively analyze and differentiate multiple results, a user has
to manually read and comprehend potentially large results
in an exploratory search. Such a process is time consuming,
labor intensive and error prone. With meta information em-
bedded, keyword search on structured data provides the po-
tential for automating or semi-automating the comparison
of multiple results.

In this paper we present an approach for differentiating
search results on structured data. We define the differentia-
bility of query results and quantify the degree of difference.
Then we define the problem of identifying a limited number
of valid features in a result that can maximally differentiate
this result from the others, which is proved to be NP-hard.
We propose two local optimality conditions, namely single-
swap and multi-swap. Efficient algorithms are designed to
achieve local optimality. To show the applicability of our
approach, we implemented a system XRed for XML result
differentiation. Our empirical evaluation verifies the effec-
tiveness and efficiency of the proposed approach.

1. INTRODUCTION

Studies show that about 50% of keyword searches on the
web are for information exploration purposes, and inherently
have multiple relevant results [3]. Such queries are classified
as informational queries, where a user would like to inves-
tigate, evaluate, compare, and synthesize multiple relevant
results for information discovery and decision making, in
contrast to navigational queries whose intent is to reach a
particular website. Without the help of tools that can au-
tomatically or semi-automatically analyze multiple results,
a user has to manually read, comprehend, and analyze the
results in informational queries. Such a process can be time
consuming, labor-intensive, error prone or even infeasible
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due to possibly large result sizes.

For example, consider a customer who is looking for stores
that sell cameras in Phoeniz and issues a keyword query
“Phoeniz, camera, store”. There are many results returned,
where the fragments of two results by searching an XML
repository are shown in Figure 1(a), and some statistics in-
formation of the results is shown next to the results. As
each store sells hundreds of cameras, it is very difficult for
users to manually check each result, compare and analyze
these results to decide which stores to visit.

To help users analyze search results, the websites of many
banks and online shopping companies, such as Citibank,
Best Buy, etc., provide comparison tools for customers to
compare specific products based on a set of pre-defined met-
rics, and have achieved big success. However, in these web-
sites, only pre-defined types of objects (rather than arbitrary
search results) can be compared, and the comparison met-
rics are pre-defined and static. Such hard coded approaches
are inflexible, restrictive and not scalable.

A general and widely used method that helps users judge
result relevance without checking the actual results is to
generate snippets. By summarizing each result and its rel-
evance to the query, snippets are very popular and useful,
and thus have been supported by not only every web search
engine but also some structured data search engines. How-
ever, without considering the relationships among results, in
general, the snippets are not helpful to compare and differ-
entiate multiple results.

For example, Figure 1(b) shows the snippets of results
in Figure 1(a) generated by eXtract [11], a system for gen-
erating result snippets for XML keyword search, given the
upper bound of snippet size of 14 edges. These snippets
highlight the most dominant features in the results. As we
can see from the statistics information in Figure 1(a), the
store in result 1 mainly sells Canon and Sony DSLR cam-
eras, with roughly twice as many Canon cameras as Sony
cameras; while the store in result 2 mainly sells Canon and
HP Compact cameras. However, snippets are generally not
comparable. From their snippets, we know result 2 focuses
on Compact cameras, but have no idea whether or not result
1 focuses on Compact or DSLR, since the category informa-
tion about the store, is missing in its snippet due to space
limitation. Similarly, result 1 has many Sony cameras, but
we do not have information about whether result 2 has many
Sony cameras or not. As we can see, snippets are not de-
signed to help users find out the differences among multiple
results.

Although a general tool for informative query result com-
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Figure 1: Two Results of Query “Phoeniz, camera, store” (a), Their Snippets with Size Limit = 14 (b) and

Differentiation Feature Sets with Size Limit = 5 (c)

parison is very useful in diverse domains, it is not supported
in existing text search engines. The main reason is that
text documents are unstructured, making it extremely dif-
ficult if not impossible to develop a tool that automatically
compares the semantics of two documents.

On the other hand, when searching structured data, the
meta information of results presents a potential to enable
result comparison. For example, directly generating a “com-
parison table” of an apple and an orange based on two tex-
tual paragraphs of general descriptions is difficult, but it be-
comes possible if the description is presented in structured
format, with markups in XML or column names in relational
databases to hint their features such as size, color, isFruit,
and so on.

However, many challenges remain, even for enabling struc-
tured result comparison. For example, which features in
the search results should be selected for result comparison?
One desideratum is, of course, such features should max-
imally highlight the differences among the results. Then,
how should we define the difference, and the degree of dif-
ferentiation of a set of features? Another desideratum is, the
selected features should reasonably reflect the correspond-
ing results, so that the differences shown in the selected
features reflect the differences in the corresponding results.
Furthermore, how should we select desirable features from
the results efficiently?

In this paper, we propose techniques for comparison and
differentiation of structured search results. The algorithm
takes as input a set of structured results, each with a set
of features (which will be defined in Section 2), and out-

puts a Differentiation Feature Set (DFS) for each result to
highlight their differences within a size bound. To show the
applicability of the proposed techniques, we implemented a
system XRed (XML Result Differentiation), which differen-
tiates search results on XML data. Sample DFSs for the
query results in Figure 1(a) are shown in Figure 1(c). The
contributions of this work include:

e We initiate the problem of differentiating structured
search results, which is critical for diverse application
domains, such as online shopping, employee hiring,

job/ institution hunting, etc.

We identify three desiderata of selecting Differentia-
tion Feature Set (DFS) from search results in order to
effectively help users compare and contrast results.

We propose an objective function to quantify the de-
gree of differentiation among a set of DFSs, and prove
that the problem of identifying valid features that max-
imize the objective function given a size limit is NP-
hard.

We propose two local optimality criteria which judge
the quality of an algorithm for selecting DFSs: single-
swap optimality and multi-swap optimality, and de-
veloped efficient algorithms to achieve these criteria.

We have developed the XRed system, whose effective-
ness and efficiency is verified through extensive empir-
ical evaluation.

Our approach can be used to augment existing search
engines for structured data to provide the functionality
of helping users easily compare search results.



The rest of the paper is organized as follows: Section 2
introduces three desiderata of selecting features from results
for comparison purpose, formalizes the problem definition,
and shows the NP-hardness of the problem. Section 3 dis-
cusses two local optimality criteria and presents efficient al-
gorithms to achieve them. Section 4 reports results of em-
pirical evaluations. Section 5 discusses related works and
Section 6 concludes the paper.

2. PROBLEM DEFINITION: CONSTRUCT-

ING DIFFERENTIATION FEATURE SETS

In this section we first review some background on data
models and features. Then we discuss three desiderata for
Differentiation Feature Set (DFS): limited size (Section 2.1),
reasonable summary (Section 2.2), and maximal differenti-
ation (Section 2.3). While maximal differentiation is the
optimization goal in generating DFSs, limited size and rea-
sonable summary are necessary conditions: the former en-
sures that the DFSs can be easily checked by a user, and
the later ensures that the comparison based on DFS cor-
rectly reflects the comparison of results. Then we formalize
the problem of generating optimal DFSs for a set of query
results with a size bound and prove the NP-hardness of the
problem (Section 2.4).

We define a feature in a query result as a triplet (en-
tity, attribute, value), and a feature type as an (entity, at-
tribute) pair. Entities and attributes in relational databases
are defined in the Entity-Relationship model. Entities and
attributes in XML data can be inferred using the heuris-
tics proposed in [18]. Specifically, an entity is inferred as a
*-node in the DTD, i.e., the node that have some siblings
with the same label, such as camera in Figure 1(a). An
attribute is inferred as a non-entity node with a single leaf
child, such as category. The child of an attribute node is
called the value of the attribute. The remaining nodes are
connection nodes. Other heuristics for identifying entities
and attributes can also be used.

As an example, (camera, category, DSLR) in Figure 1 is
a feature, whose type is (camera, category).

2.1 Being Small

To help users compare search results, we would choose
a subset of features from each result that maximizes the
differences of this result and others, named as Differentiation
Feature Set (DFS) in this paper.

To enable users quickly differentiate query results, the first
desideratum of Differentiation Feature Set (DFS) is: small,
so that users can quickly browse and understand them. The
upper bound size of a DF'S can be specified by the user.

Desideratum 1: [Small] The size of each DFS D, denoted
as | D|, is defined as the number of features in D. |D| should
not exceed a user-specified upper bound L, i.e., |D| < L.

]

2.2 Summarizing Query Results

For the comparisons based on DFSs to be valid, a DFS
should be a reasonable summary of the corresponding result
by capturing the main characteristics in the result. Other-
wise, the differences shown in two DFSs do not reflect the
actual differences between the corresponding query results.

Example 2.1: Consider again the two results of query

“Phoeniz, camera, store” in Figure 1(a). Both results mainly
sell Canon cameras. The store in result 1 also sells a cou-
ple of HP cameras. Suppose we have the DFS for result 1,
D, ={store:brand:HP}, and the DFS for result 2, Dy={store:
brand:Canon}. Obviously these two DFSs are different.
However, the difference is meaningless as they give users
the impression that store 1 differs from store 2 by mainly
selling HP cameras instead of Canon cameras, which is un-
true. Intuitively, a feature that has more occurrences in the
result should have a higher priority to be selected in the
DF'S, so that the DF'S reflects the most important feature in
the result, and the differences among DFSs correctly reflect
the main differences of their corresponding results.
Furthermore, although both stores in these results sells
Canon and HP, it is undesirable to have a single occurrence
of Canon and HP in the DFS of each result. Such DFSs give
users the impression that the two stores are similar in terms
of their speciality on Canon and HP. However, the store in
result 1 mainly focuses on Canon with just a couple of HP;
whereas the store in result 2 focuses on both Canon and HP,
with roughly the same number of cameras. Intuitively, the
distributions of features of the same type in a DFS should
roughly reflect their distribution in the data (up to the size
limit). L]

As we can see from Example 2.1, a valid DFS should be
a reasonable summary of the result, so that the compar-
ison/differentiation based on the DFSs is meaningful and
correct with respect to their results. There are two aspects
of a reasonable summary of a result: important features
should be output first, and the distributions of feature oc-
currences should be preserved. Hence we have the following
desideratum.

Desideratum 2: [Validity] A DFS D should be valid wrt a
result R and a threshold p (the maximum number of occur-
rences of a feature in D), denoted as valid(D, R, p), defined
by the following rules.

1. Dominance Ordered: A feature can be included in
D only if the features of the same type that have more
occurrences in R are already included in D. That is,
features of the same type should be ordered by dom-
inance (defined as their number of occurrences); and
the feature order of a DFS should be consistent with
that of the result.

2. Distribution Preserved: For any two features of the
same type in R, if they are both included in D, then
the ratio of their number of occurrences in D must be
as close to their ratio in R as possible, subject to the
upper bound p.

n

To achieve “Dominance Ordered”, we sort the features
of the same type in each result by their number of occur-
rences. Features of the same type with the same number of
occurrences can be sorted in any way that is uniform for all
results. We use alphabetical order in this paper.

To achieve “Distribution Preserved”, we first calculate the
number of occurrences of each feature in the DFS which is
proportional to their occurrences in the result subject to p.
If this number is not an integer, we round it to the nearest
integer when space allows (otherwise take the floor).

Example 2.2: In the result 1 in Figure 1(a), features of
type camera:brand, in the descending order of their domi-
nance, are Canon, Sony, Nikon and HP. Then according to



Dominance Ordered, a feature Nikon can be included in the
DFS only if both features preceding it, Canon and Sony, are
already included.

According to Distribution Preserved, query result 1 has
103 cameras of brand Canon, and 50 cameras of brand Sony.
If the maximum number of occurrences of a feature p is 3,
then in the DFS, we have round((103/(103 + 50)) x 3) = 2
Canons, and round((50/(103 + 50)) x 3) = 1 Sony. n

2.3 Differentiating Query Results

Being small and a good summary are necessary conditions
for a DFS, yet they are insufficient." In this section, we
propose the unique and most challenging requirement for a
good DFS: differentiability, i.e., a set of features that can
differentiate one result from others.

Differentiability of DFSs. We define that two results
are comparable by their DFSs if their DFSs have common
features types. Two results are differentiable if the DFSs
have different characteristics of those shared feature types.
Let us look at some examples before presenting the formal
definition.

Example 2.3: Suppose all the features in each snippet in
Figure 1(b) compose a DFS for the corresponding result,
denoted by S1 and S2. Then we have:

S1={store:city: Phoeniz, store:name:BHPhoto, camera:brand:

Canon, camera:megapizel:12, camera:brand:Sony}

So={store:city:Phoeniz, store:name:Adorama, camera:brand:

Canon, camera:megapizel:12,camera:category:Compact}.

Several observations can be made. First of all, features of
different types are not comparable, e.g., we are not able to
compare camera:brand:Canon in S1 with camera:category:
Compact in Ss.

Second, the two results can not be differentiated by fea-
tures of type camera:megapizel, since both of them have ex-
actly the same feature 12 on this type. So does the feature
store:city.

Third, notice that S2 has camera:category: Compact, but
S1 does not have features of type camera:category. Thus the
two results cannot be differentiated by this feature type, as
the user does not know whether the store in result 1 sells
many compact cameras or not. It could be the case that
result 1 sells more cameras that are compact than cameras
of any other categories. In that case, if we add more features
to S1, then the first feature of type camera:category will be
Compact, thus making S; and Sz indifferentiable by this
feature type. This is analogous to “null” values in databases:
the absence of a value only means “unknown”, but does not
necessarily mean that the value is not what we are looking
for.

For the same reason, the two results can not be differ-
entiated by features of type camera:brand. Besides Canon
cameras, S1 additionally has Sony, but S2 does not have any
more features of this type. If more space is allowed, the next
feature of type camera:brand outputted by S2 may also be
Sony. Thus these two results can not be differentiated by
this feature type. n

As we can see, two DFSs are considered as identical with
respect to a feature type, if their features of this type have

'Indeed snippets are generally small and summarize results,
nevertheless are ineffective for result comparison and differ-
entiation, as discussed in Section 1.

exactly the same dominance order and occurrence distribu-
tion. Furthermore, they are indifferentiable if adding more
features of this type to one or both DFSs can make these
two DFSs identical.

Now we formally define the differentiability of two DFSs
with respect to a feature type as the following.

Definition 2.1: Given DFSs D; and D5 of two results, for
a feature type t, let N1 = |F(¢(D1))| and N2 = |F(t(D2))|,
where F(¢t(D)) denotes the set of distinct features of type ¢
in DFS D. Let N[F(t(D))] be the first N distinct features
of type t in D. Dy and D2 are differentiable on feature type
t, or they can be differentiated by t, if and only if one of the
following three conditions hold:

1. N1 < No,and df € F(t(Dl)), such that f &€ N; [F(t(DQ))]

2. symmetrically, No < Np, and 3f € F(t(D2)), such
that f & No[F(t(D1))].

3. Af1, f2 € F(t(D1)) N F(t(D2)), such that ni : no #
n3 : n4, where n1 = [{fi|fi € F{t(D1))}|, n2 =
{falf2 € F(H(D1))}], ns = [{filfi € F(¢(D2))}| and
na = [{f2|f2 € F(t(D2))}].

The first two conditions specify that for a feature type
t, two DFSs differ in the order of feature dominance. In
particular, condition (1) indicates that there is at least one
different feature in the top-NV; distinct features of type ¢ in
D; and D2, i.e., D1 has at least one feature f in the top-INVy
features that is not in the top-NN1 features of Dy. The third
condition states that for a feature type ¢, two DFSs differ on
the occurrence distribution of the corresponding features.

Example 2.4: As we can see, according to Definition 2.1,
DFSs S; and S5 in Example 2.3 are not differentiable with

respect to feature type store:city, camera:brand, camera:megapixel

or camera:category.

On the other hand, consider the two DFS D; and D in
Figure 1(c). Take feature type camera:category for example.
According to Definition 2.1, Ny = N2 = 1 and the features
in D1 and D3 are different. Therefore, for feature type cam-
era:category, D1 and D2 satisfy conditions 1 and 2, and can
be differentiated.

Similarly, for feature type camera:brand, D1 and D3 also
satisfy conditions 1 and 2. Assuming that we use feature
HP to replace Sony in D1, then they are still differentiable
by satisfying condition 3: the ratios between the number of
occurrences of Canon and that of HP are about 2:1 in D,
and 1:1 in D3, respectively. [

Degree of Differentiation between Two DFSs. Hav-
ing defined the differentiability of DFSs with respect to a
feature type, now we quantitatively define the degree of dif-
ferentiation of two DFSs. Intuitively, given two results, the
more feature types that can differentiate them, the more
differences are indicated.

Definition 2.2: The degree of differentiation (DoD) of two
DFSs is defined as the number of feature types on which the
DFSs are differentiable. n

Example 2.5: The two DFSs in Figure 1(c), for example,
have a DoD of 3, as they can be differentiated on all three
feature types store:name, camera:brand and camera:category.

n

Degree of Differentiation of a Set of DFSs. When



the user chooses to differentiate a set of results, the DFS of
each result should be chosen to maximize the total degree of
differentiation of every two results. Therefore, we have the
following desideratum 3 for differentiation feature sets:

Desideratum 3: [Differentiability] Given a set of results
R1,Rs,- -+ , Ry, their DFSs, D1, Ds,--- , Dy, should maxi-
mize the total degree of differentiation computed as the sum
of the degree of differentiation of every pair of DFSs:

,D,)= > Y DoD(D;,D;)

1<i<ni<j<n

DOl)(Dl,DQ7 R

Example 2.6: Suppose another result of the sample query
“Phoeniz, camera, store” has a DFS D3 ={store:name:

porter’s, camera:brand: Canon, camera:category: Compact, cam-

era:category:DSLR }. Comparing D1 and Ds, since they are

differentiable on feature types store:name and camera:category,

we have DoD(D1,D3) =2. D and D3 are differentiable
only on feature type store:name, and thus DoD(D2, D3) =
1. Since DoD(D1, D2) = 3, the DoD of these three DFSs is
6. [

We will show in the next subsection that, unfortunately,
generating valid and small DFSs that maximize their DoD
is NP-hard.

2.4 Problem Definition and NP-Hardness

In this section, we formally define the problem of gener-
ating DFSs for search result differentiation and analyze its
complexity.

As we discussed in Sections 2.1 - 2.3, given a set of results,
their DF'Ss should maximize the DoD, i.e., the total degree
of differentiation, and the DFSs should be valid with respect
to the corresponding result, and be small.

Definition 2.3: The DF'S construction problem (R1, Ra,- - ,

R, m, L, p) is the following: given n search results R1, Ra, - - ,

R,,, each with no more than m feature types, compute a DFS
D; for each result R;, such that:

e DoD(D1,Ds, -, D,) is maximized.
e Vi, valid(D;, R;, p) holds.
o Vi, |D| < L.

Theorem 2.7: The DFS construction problem is NP-hard.

ProOOF. We prove the NP-completeness of the decision
version of the DFS construction problem by reduction from
X3C (exact 3-set cover). The decision version of the DFS
construction problem is: given n results R1, Ra,--- , Ry, is it
possible to generate a DFS D; for each result R;, such that
valid(D;, R, p), |Di| < L, and DoD(D1, Da2,--- ,Dy) > S?

This problem is obviously in NP, as computing the DoD
of a set of DFSs can be done in polynomial time. Next we
prove the NP-completeness.

Recall that each instance of X3C consists of:

e A finite set X with |X| = 3¢;

e A collection C of 3-element subsets of X, i.e., C =
{C1,Co,--- ,C1},|C| =1, C; € X and |C;| = 3.

The X3C problem is whether we can find an exact cover
of X in C, i.e., a subcollection C* of C, such that every
element in X is contained in exactly one subset in C*.

Now we transform an arbitrary instance of X3C to an in-
stance of the DFS construction problem. We construct an
instance of the DFS construction problem, in which there
are 3q query results, and [ different feature types. Each
C; € C corresponds to a feature type t;, which has three
different features: Fj1, Fi2, Fi3. For each C; = {Xa, Xp, Xc}
in the X3C instance, let feature type t¢; appear once in
the X,-th, Xp-th and X.-th results, with feature Fji, F;
and Fj3, respectively. Let the DFS size limit L be 1, i.e.,
there can only be one feature in each DFS. The question
is: can we find a DFS for each of the 3¢ results, such that
DOD(Rl, ce ,R3q) Z 3q?

If we can find an exact cover C* for the X3C instance,
then we select the corresponding ¢ feature types. For each
selected feature type, we add its 3 features to the corre-
sponding 3 DFSs. In this way, each DFS has exactly one
feature. Each feature type contributes 3 to the DoD, thus
the total DoD is 3q.

If we can find a set of DFSs such that their DoD is 3q,
then it is easy to see that we must find ¢ feature types, and
for each feature type, all its 3 features must appear in the
corresponding DFSs. Otherwise, if a feature type has only 1
feature appearing in the DFSs, then it does not contribute
to the DoD; if it has 2 features appearing in the DFSs, it
takes 2 slots but only contributes 1 to the DoD, making the
total DoD impossible to reach 3q.

This means that there is an exact cover for the instance
of X3C if and only if we can find a set of DFSs with a DoD
of 3q. Therefore, it is a reduction. Since this reduction
obviously can be performed in polynomial time, the decision
version of the DFS construction problem is NP-complete,
and the DFS construction problem is NP-hard. ]

3. LOCALOPTIMALITY AND ALGORITHMS

Due to the NP-hardness of the DF'S construction problem,
in order to address the problem with good effectiveness and
efficiency, we propose two local optimality criteria: single-
swap optimality and multi-swap optimality. An algorithm
that satisfies a local optimality criterion does not necessarily
produce the best possible result, but always produces results
that are good in a local sense. We show in Section 3.1 that
single-swap optimality can be achieved efficiently in poly-
nomial time. On the other hand, multi-swap optimality is
more challenging to achieve, as a naive algorithm would be
exponential. We present an efficient dynamic programming
algorithm in Section 3.2 that realizes multi-swap optimality.

3.1 Single-Swap Optimality

In this section we present the first local optimality crite-
rion, single-swap optimality, for the DFS construction prob-
lem, and present a polynomial time algorithm achieving it.

Definition 3.1: A set of DFSs is single-swap optimal for
query results Rq, Ra,- -, Ry if, by changing or adding one
feature in a DFS D; of R;,, 1 < i < n, while keeping
valid(D;, R;,p) and |D;| < L, their degree of differentiation,
DoD(D1, D2, -+, D,), cannot increase. n
Let us look at an example.
Example 3.1: The two DFSs in Figure 1(c) satisfy single-
swap optimality, i.e., changing or adding any feature won’t
increase their DoD. For instance, if we change camera:brand:
Sony in D to camera:megapizel:12, then Dy and Dy are no



longer differentiable on feature type camera:brand. On the
other hand, D; and Dy are still not differentiable on cam-
era:megapizel, since there is no feature of this type in Ds.
Thus their DoD decreases by 1. ]

Algorithm 1 Algorithm for Single-Swap Optimality

CONSTRUCTDFS  (Query Results: QRI[n];  Size Limit:
L)

1: for i =1 ton do

2:  arbitrarily generate DFS[i] for QR[]

3: fori =1tondo

4:  for each feature type ¢t in DFS[i] do

5: f = the next feature of type ¢ that is in result[i] but not

in DFS[i]

6: occy = the number of occurrences of f in DFS[i], cal-
culated according to Distribution Preserved

T add f into DFS|i]

8: if DFS[i].size > L then

9: remove f from DFS[i]

10: else

11: benefit = COMPUTEBENEFIT(DF'S, ,t, f, null, null)

12: if benefit > 0 then

13: goto line 3

14: else

15: remove f from DFS[i]

16: for each feature type t’ in result[i] do

17: f = the last feature of type ¢t in DFS[i]

18: f! = the next feature of type t’ that is in result[i] but
not in DFS[i]

19: occyr = the number of occurrences of f in DFS[i],
calculated according to Distribution Preserved

20: change the occurrences of f to occys occurrences of
#' in DFSJi]

21: if DFS[i].size > L then

22: undo the change from f to f’

23: else

24 benefit = COMPUTEBENEFIT(DFS,1,t, f,t’, f)

25: if benefit > 0 then

26: goto line 3

27: else

28: undo the change from f to f’

COMPUTEBENEFIT (DFS[n]; i; Feature Type: t; Feature Value:
f; Feature Type: t'; Feature Value: f’)

1: benefit =0

2: for j = 1tondo

3:  if j =i then

4: continue

5:  if DIFFERENTIABLE(DF S[i], DFS[j],t') = true then

6: remove f’ from DFS[i]

T if DIFFERENTIABLE(DF S[i], DFS[j],t') = false then

8: benefit — — {Since DFS[i] and DFS[j] are distin-

guishable on ¢’ with f/, but not without f’, we de-
crease the benefit by 1}

9: add f’ into DFS[i]

10:  if DIFFERENTIABLE(DF'S[i], DF'S[j],t) = false then

11: add f to DFS[i]

12: if DIFFERENTIABLE(DFS[i], DFS[j],t) = true then
13: benefit + +
14: remove f from DFS[i]

15: return benefit
DIFFERENTIABLE (DFS: D;; DFS: Dao;
t)
1: {This can be checked according to Definition 2.1. The pseudo
code is omitted.}

Feature Type:

Single-swap optimality can be achieved by a polynomial-
time algorithm: enumeration. The pseudo code of this al-
gorithm is presented in Algorithm 1. There are four steps.

1. Initialization. We start with a randomly generated

# of cameras120

Category: Compact00; Others20
Brand: Nikon70; Kodak:35; Others15
Megapixel: 1080; 11:25;12:15

(a) Statistics Information of Result 3

iteration D, D, Ds

0 store: name: BHPhoto | store: name: Adorama
camera: brand: Canon | camera: brand: Canon
camera: megapixel: 12 | camera: brand: HP

store: name: Porter's
camera: brand: Nikon
camera: category: Compact

1 store: name: BHPhoto
camera: brand: Canon
camera: megapixel: 12
camera: category: DSLR

same as above same as above

2 store: name: BHPhoto
(failed) | camera: brand: Canon
camera: brand: Canon
camera: brand: Sony
camera: megapixel: 12
camera: category: DSLR

same as above same as above

3 same as iteration 1 store: name: Adorama same as above
camera: brand: Canon
camera: brand: HP
camera: category: Compact
4 same as above same as above store: name: Porter's
camera: brand: Nikon
camera: category: Compactt
camera: megapixel: 10
5 same as above store: name: Adorama | same as above

camera: brand: Canon
camera: brand: HP

camera: category: Compagt
camera: megapixel: 12

(b) Iterations Performed by Algorithm 1

Figure 2: Running Example of Algorithm 1

valid DF'S for each result, satisfying the size limit (pro-
cedure CONSTRUCTDF'S lines 1-2).

2. Checking. Performing an iteration of checking and up-
dating DFSs (lines 3-28). For each DFS DFS[i], we
check whether the DoD of all DFSs can increase af-
ter adding a feature of type ¢ to DFS[i] (lines 4-15) or
switching an existing feature of type t to a new feature
of type t' that is currently not in DFS (lines 16-28).

3. Updating and Iteration. If such a DFS is found, then
we make the update and restart the iteration in step
2 (lines 13 and 26).

4. Termination. If there is no DFS that can be changed
to further improve the DoD, then we terminate and
output the DFSs.

As we can see, in the Initialization step, DFSs are gener-
ated randomly. In fact, the initialization of DFS does not
affect the local optimality of the proposed algorithms, but
has impact on the generated DFSs and where a local optimal
point is achieved. Investigation of good DFS initialization
is an orthogonal problem.

Although the high-level description of the algorithm and
the example look simple, there are three technical challenges
to be addressed. First, when updating a feature in a DFS,
we must ensure its validity with respect to the correspond-
ing result and satisfaction of the size limit. Recall that a
feature type can have multiple features included in a DFS.
According to the Dominance Ordered rule, the addition of
a feature to a DFS must be in the dominance order of this
feature type, and the removal of features from a DFS must



be in the reverse order of feature dominance. For single-
swap optimality, we only check whether altering one feature
can improve the DoD. Thus, to add a feature of type ¢ to a
DFS, only the most dominant feature of type ¢ that is not in
the DFS can be added; to remove a feature of type t’, only
the least dominant feature of ¢’ that is in the DFS can be
removed. Let us look at an example.

Example 3.2: To explain the single-swap optimal algo-
rithm, we use the two results in Figure 1(a), and another
result whose statistics information is shown in Figure 2(a),
as a running example. Suppose that the three DFSs are ran-
domly initialized as in iteration 0 in Figure 2(b), and that
the size limit for each DFS is 5. As we can see, their initial
DoD is 5. The algorithm updates one DFS for one of the
three results in the 4 iterations as shown. In iteration 1, the
algorithm attempts to add a feature of type camera:category
to Di. The feature to be added must be the most dominant
one of this type: DSLR. The addition can make D1 and D3
differentiable on this type, and increase the DoD to 6. n

According to the Distribution Preserved rule, the addition
of a new feature of type t to a DF'S may result in the addition
of multiple occurrences of some existing features of £. Sym-
metrically, the removal of a feature of type ¢’ from a DFS
will result in all occurrences of this feature to be removed.
Meanwhile, the number of occurrences of other features of
type t’ may also need to be divided by their common divisor.
As we can see, changing or adding one feature may result in
an increase of the DFS size. Thus it is necessary to check
the size of the updated DFS. Any change that violates the
constraint of size limit will be denied.

Example 3.3: Continuing our example, in iteration 2, the
algorithm attempts to add feature Sony of type camera:brand
into D1. According to Figure 1(a), the ratio of Canon and
Sony of this feature type is roughly 2:1 in query result 1.
Thus, to add Sony, an extra Canon must be added together
according to rule Distribution Preserved. Although such ad-
dition can increase DoD(D1, D3), it will make the size of
D1 exceed the size limit 5, hence the attempted addition is
rolled back. n

The second challenge is that, due to the interactions among
DFSs, one DFS may need to be updated multiple times,
where the number of updates cannot be determined before
the termination of the algorithm.

Example 3.4: Continuing Example 3.3, since the previous
attempt fails, Algorithm 1 tries to add feature Compact, the
most dominant feature of type camera:category, to D2. This
succeeds and DoD(D1, D2) is increased by 1. Similarly, in
iteration 3, camera:megapizel:10 is added to D3, making D1
and D3 differentiable and increasing DoD by 1. At this
time, it becomes valuable to add camera:megapizel:12 to D2
in iteration 4. Adding such a feature before we add cam-
era:megapizel:10 to Ds (iteration 3) does not increase DoD,
but does increase DoD(D2, D3) by 1 at this point. As we
can see, after Do was first checked and updated in itera-
tion 2, it needs to be updated again to further improve the
DoD after other DFSs are updated. Now DoD(D1, D2, D3)
becomes 9. [ ]

The iteration continues till no DFSs can be added or
changed to improve the DoD. Since the number of times
that we may update a DFS is unknown, one question is
whether the algorithm terminates and how many iterations

will be performed. As will be analyzed shortly, this enu-
meration algorithm is guaranteed to run in polynomial time
in terms of the number of results (n) and the number of
features (m).

The third challenge is that we need to compute the delta
of DoD upon an altered or added feature (Procedure cOM-
PUTEBENEFIT). Note that the removal of a feature f’ of
type t' may or may not decrease the DoD. The DoD is
decreased by one if two DFSs originally can be differenti-
ated by feature type t’, but are no longer differentiable with
respect to type t’ after the removal of f' (lines 5-9). Simi-
larly, we measure the possible increase to the DoD upon the
addition of a feature (lines 10-14).

Now we analyze the complexity of the Algorithm 1. Recall
that n is the number of query results, and m is the number
of feature types in a result.

e In each iteration, we check at most n DFSs. For each
DFS DF'S[i] (in a single iteration), we check at most
m? feature pairs to see whether an existing feature
should be replaced, and check at most m features to
see whether a feature should be added. As discussed
earlier, for each feature type, we have to check the fea-
tures with respect to their dominance order, thus there
are only m choices of feature swap or addition for one
result in one iteration. Each check will compute the
delta of DoD by invoking Procedure COMPUTEBENE-
FIT. Procedure COMPUTEBENEFIT computes the DoD
by checking whether DFS[i] can be differentiated on
type t and t' from each of the rest (n — 1) DFSs. To
check whether two DFSs can be differentiated given a
feature type t, we need to sort the features of type ¢
in both DFSs, then scan them and determine the dif-
ferentiability according to Definition 2.1. Therefore,
it takes O(LlogL) time, where L is the snippet size
limit. Thus, COMPUTEBENEFIT takes O(nLlogL), and
each iteration takes at most O(n?m?LlogL) time.

e In each iteration except the last one, the DoD of the
DFSs at least increases by 1. The maximum possible
DoD is bounded by O(n*m?), since the degree of dif-
ferentiation of every two DFSs is at most O(m?), and
there are O(n?) pairs. This means we need at most
O(n*m?) iterations, and thus the algorithm runs in
polynomial time in terms of n and m.

3.2 Multi-Swap Optimality

After discussing single-swap optimality, we propose multi-
swap optimality, a stronger criterion. Then we present an
efficient dynamic programming algorithm to achieve it.

Recall that single-swap optimality guarantees that the
DoD of a set of DF'Ss won’t increase by changing one feature
in a DFS. On the contrary, multi-swap optimality requires
that the DoD cannot increase by changing any number of
features in a DF'S, as formally defined below.

Definition 3.2: A set of DFSs is multi-swap optimal for
query results R1, Ro,-- - , R, if, by making any changes to a
DFS D; of R;, 1 <i < n, while keeping valid(D;, R;, p) and
|D;| < L, DoD(Dy, Da,- -+, D,) cannot increase. n

Example 3.5: Figure 3 is an example of DFSs achieving
single-swap optimality but not multi-swap optimality. D]
and Do are DFSs of the two results in Figure 1(a). As we
can see, DoD(D1, D) = 2 cannot be improved by changing



store: city: Phoenix store:name:BHPhoto

store:name:BHPhoto camera:brand:Canon
1 camera:megapixel:12 ——> cameracbrand.Canon !
' camera:category:DSLR ! ' camera:brand:Sony
: ! camera:category:DSLR |
i DFSforresultl (D) ; gory '
Ll ! : DFSforresultl ()

'
! store:name:Adorama

! camera:brand:Canon

1 camera:brand:HP

i camera:category:Compact
:

:

:

:

Figure 3: Single-Swap Optimality and Multi-Swap
Optimality

or adding a single feature in either DFS. However, if we
change features store:city: Phoeniz and camera:megapizel:12
into 2 camera:brand:Canons and 1 camera:brand:Sony, then
feature type camera:brand becomes differentiable in the two
DFSs, and the DoD becomes 3. [ ]

In fact, achieving multi-swap optimality is more challeng-
ing than achieving single-swap optimality. Consider an enu-
meration based algorithm, adapted from Algorithm 1. While
keeping the Initialization, Updating and Iteration and Temi-
nation steps the same, the Checking step is different. Instead
of checking whether adding a single feature or swapping a
single feature in a DF'S can improve the DoD, we now need
to check every possible combination of features in a DFS.
Since the number of features in a query result is bounded
by the result size n, there can be up to 2" different combi-
nations of features in its corresponding DFS, leading to an
exponential time complexity.

To efficiently achieve multi-swap optimality, we have de-
signed a dynamic programming based algorithm that runs in
polynomial time with respect to n (the number of query re-
sults) and m (the maximum number of features in a result).
We address the technical challenges in Step 2 Checking: ver-
ifying whether there exists any change to a DFS, referred to
as “target DFS”, that can improve the total DoD. Instead
of enumerating changes to a DFS (as the number of possible
changes are exponential), our algorithm directly generates a
valid multi-swap optimal target DFS, given the others DFSs.

To generate such a target DF'S, we first need to determine
for each feature type, what are the choices of selecting fea-
tures to compose a valid DFS. As discussed in Section 3.1,
for a DFS to be valid with respect to the corresponding
query result, features of the same type have to be added
to the DFS in the order of feature dominance, with distri-
bution preserved subject to a size threshold. Given these
constraints, there are still many choices of including the fea-
ture types to generate a valid DFS, each with a different
number of features included. To measure the effect of each
choice, we define benefit and cost of a feature type. Specifi-
cally, if we include x features into the target DF'S, then the
cost is x, and the increase of DoD obtained by adding these
x features is considered as benefit y.

Example 3.6: We use the query results in Figure 1(a) and
Figure 2(a) to explain the benefits and costs of a feature
type. For feature type camera:brand, we have

Dy = {Canon, HP}, D3 = {Nikon},

Consider D; as the target DFS. According to Figure 1(a),
the list of features of this type in the order of their dom-

inance in result 1 is {Canon, Sony, ....}, and the ratio of
Canon and Sony is roughly 2:1.

(1) If we have D; = {Canon}, then cost=1, benefit=1.
Note that D; is indifferentiable with D2 at this point, but
is differentiable with D3, hence a benefit of 1.

(2) If we have D1 = {Canon, Canon, Sony}, then cost=3,
as 3 features are included, and benefit=2, since D2 and Dy,
as well as D3 and D; are differentiable on this feature type.

As we can see, for each feature type, there is a list of
choices of how many features can be selected in a DF'S, each
with a benefit and a cost. We denote the above two choices
as (1, 1) and (3, 2), respectively.

Also note that not every possible cost corresponds to a
valid DFS. For instance, there is no valid DFS with benefit
of 3 and cost of 2. [

Algorithm 2 Algorithm for Multi-Swap Optimality
(Query Results: QRI[n];  Size Limit:

CONSTRUCTDF'S

for i =1ton do
arbitrarily generate DFS[i] for QR[]
DoD[i] =0
for : =1tondo
for j = 1tondo
for each feature common feature type t in DF'S[i] and
DFS[j] do
if DIFFERENTIABLE(DFS[i], DF'S[j],t) then
DoDli| + +
for i = 1ton do
10:  DoD’, newDFS = cHECKDFS(QR][i|, DF'S, 1, L)
11:  if DoD’ > DoDJi] then
12: DFS[i] = newDFS
13: DoDJi| = DoD’
14: goto line 9
CHECKDFS (Query Result: QR; DFSs: DFS[n]; 4; Size Limit:

vo ouswnml

t = number of feature types in QR
: forl =1to L do
compute s1; according to Figure 4
Suppose s ; is maximized by outputting z features of type
1
best;; =z
for k =2totdo
for{ =1to L do
compute sj; according to Figure 4
Suppose s,; is maximized by outputting = features of
type k
10: besty; =«
11: k=t
12: 1=1L
13: newDFS =0
14: while kK > 0 and I > 0 do
15:  output z features of type k in newDF'S

couso swn=E

16:  k——
17 I—==x
18: DoD’' =0

19: for j =1 ton do

20:  DoD’+4+ = the degree of differentiation between DFS[i]
and DFS[j]

21: return DoD’, newDFS

Given the choices of generating valid DFSs discussed above,
our goal is to calculate the optimal valid target DF'S that can
maximize the DoD, given the DFSs of the other results. We
use Sm,r to denote the maximum DoD that can be achieved
by a valid optimal target DFS, where m is the total number
of feature types in the result and L is the DF'S size limit.

Sm,r can be computed using dynamic programming. We



give an arbitrary order to the feature types in the query
result of target DFS. Let si,; denote the maximum DoD
that can be achieved by considering the first k feature types
in the result, with DF'S size limit {. Each sy is calculated
using the recurrence relation discussed in the following.

o If k =1, si,; = the maximal benefit of the first feature
type that can be achieved with cost not exceeding .

e If k£ > 1, then we have multiple choices. We can choose
not to include any feature of the k-th feature type at
all, thus sy, = sk—1,;. Otherwise, for the k-th fea-
ture type, suppose the list of feature selections that
comprise a valid and small DFS is denoted as a list of
benefit and cost pairs: (b1, c1), (b2,c2), and so on. We
can choose any item in this list. For instance, if we
choose to output c; features, then we can increase the
benefit with b1, but to accommodate the cost c1, the
first k—1 feature types can only include [ —c; features,
ie., Sk = Sk—1,1—c; + 1.

Therefore, the recurrence relation for calculating s, is
shown in Figure 4, where we assume that the k-th fea-
ture type has p; different benefit and cost pairs, (be1, ck1),
(br2,ck2); -+ (bkpy, Chpy,), and 1 < i < py.

_ Emax{b, ¢, <1} k=1

Skd =
gmax{s,_,, max{s,_,, . +b,lc, <l}} k>1

Figure 4: Recurrence Relation

The dynamic programming procedure that computes the
optimal valid DFS[i] is given in Algorithm 2 procedure
CHECKDFS. We first compute s1,; for each [ (lines 2-5),
then compute sy as discussed. Meanwhile, we record array
best, which is used to re-produce the optimal DFS, newDF'S
(lines 11-17). Finally, DoD’ is calculated by comparing
newDFS with every other DFS (lines 18-21).

The entire algorithm for multi-swap optimality is pre-
sented in Algorithm 2. Similar as Algorithm 1, it begins with
randomly generating a DFS for each result (Procedure CON-
STRUCTDF'S lines 1-3). Then it computes DoD[i], the total
DoD between DF'S[i] and other DFSs (lines 4-8). In each it-
eration (lines 9-14), instead of tentatively making changes to
each DFS as what Algorithm 1 does, this algorithm directly
generates a valid multi-swap optimal newDFS given the
other DFSs, whose DOD is DoD’, by invoking Procedure
cHECKDFS. If DoD’ is bigger than DoD][i], then DFS[i]
is replaced by newDF'S with DoD[i] updated (lines 11-14).
Similar as Algorithm 1, Algorithm 2 terminates when no
DFS can be changed to further improve the DoD.

Now we analyze the complexity of Algorithm 2. Let n, m,
m/, L denote the number of results, number of feature types,
number of features and DF'S size limit, respectively. In pro-
cedure CHECKDF'S, we first compute newDF'S using the
equation in Figure 4 (lines 2-17), with complexity O(m’L).
Lines 18-20 of cHECKDFS compute the DoD of two DFSs.
Since determining whether two DFSs can be differentiated
on a given feature type takes O(LlogL) time, the complexity
of newDFS is O(m’'L + mLlogL). In CONSTRUCTDFS, we
first compute the DoD of every two results in O(nmLlogL)
(lines 4-8). Similar as Algorithm 1, the iteration in lines 9-
14 is executed at most O(n?*m?) times. Therefore, the total
complexity of Algorithm 2 is O(n?*m? LlogL(mn +m')).

As to be shown in Section 4, the algorithm is in fact quite
efficient in practice, as the number of iterations is generally
far less than n?m?.

4. EVALUATION

To verify the effectiveness and efficiency of our proposed
approach, we implemented the XReD system, which differ-
entiates search results on XML data, and performed empiri-
cal evaluation from three perspectives: the quality of DFSs,
the time for generating the DFSs and the scalability upon
the increase of query result size, number of query results,
and the DFS size limit.

4.1 Environments and Setup

The evaluations were performed on a laptop with Intel
Core(TM) 2 CPU 1.66GHZ, 2GB memory, running Win-
dows XP Professional.

We used two data sets in our evaluation: a film data set
and a camera retailer data set. The film data set records
information about movies, which has the combined informa-
tion of 7 XML documents.? Camera retailer is a synthetic
data set that has a similar shape as the one in Figure 1. The
value of each node is randomly generated. The test query
set is shown in Table 1. The queries are chosen to represent
a variety of query patterns, e.g., they include single-keyword
and multi-keyword queries; queries with relatively small re-
sults (such as QF¢) and large results (such as QC1); queries
with relatively few results (such as QCs) and with many
results (such as QFs5, which has 52 results). The query re-
sults of these queries are generated using one of the existing
keyword search approaches [18]. The size of a query result
varies from 1KB to 9KB.

For each query, we generate DFSs for all the results using
three approaches: the single-swap optimal algorithm (Algo-
rithm 1), the multi-swap optimal algorithm (Algorithm 2),
and a global optimal algorithm. The global optimal algo-
rithm searches the entire solution space (with some pruning)
to find the optimal DFS for each query result, which takes
exponential time. Specifically, the pruning used in the global
optimal algorithm is: if two DFSs are already differentiable
by a feature type, then we do not further check other fea-
tures of this type for this pair of DF'Ss. All three approaches
initialize the DF'S of a query result such that they are valid
and do not exceed the size limit. For each query, we choose
a DF'S size limit equal to 10% of the number of feature types
in all the results.

In the next subsections we report the evaluation results
for DFS quality, DFS processing time and scalability, re-
spectively.

4.2 Quality

For each query, the quality of the DFSs for its results
is measured by their degree of differentiation (DoD). The
qualities of the DFSs generated by the three approaches are
shown in Figure 5.

As verified empirically, the single-swap optimal algorithm
always exhibits an inferior quality to the multi-swap and
global optimal algorithms. This is because the simple-
swap algorithm can only change one feature in a DFS at
one time, and terminates if it cannot find such a change
that can improve the DoD. For several queries such as QF4,

http://infolab.stanford.edu/pub/movies
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Figure 5: Quality of DFSs Generated by Single-Swap, Multi-Swap and Global Optimal Algorithms
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For the processing times that exceed the scope of the vertical axis, we annotate the time within the corresponding bars.

Figure 6: DFS Processing Time by Single-Swap, Multi-Swap and Global Optimal Algorithms

Table 1: Data and Query Sets

Film

QF1 famous, director

QF2 Italy, film

QF'3 1940, writers

QF4 Hitchcock, studio, Paramount
QF5 site, Russia, film

QFg Metro, studio, film

QF7 Austria, films

QFsg Epic, director, studio
Camera

QCy store

QCao retailer, Sony, DSLR

QCs3 megapixel, 13, DSLR, retailer
QCy Texas, compact

QCs DSLR, Canon, Olympus, Nikon
QCs 12, 14, 13, Kodak

QCr compact, Olympus, store
QCs retailer, 14, Kodak

QF7 and QCy, the single-swap algorithm only achieves half
of the DoD compared with those achieved by the other two
approaches.

On the other hand, the multi-swap optimal algorithm
achieves the same DoD as the global optimal algorithms
for most of the queries, as it is capable of changing multiple
features at a time in a DFS, hence produces the optimal
DFS given the DFSs of the other results. However, in a few
occasions it is slightly outperformed by the global algorithm
such as QF1, QF4 and QCs, i.e., the DFSs it generates are

not necessarily global optimal. The reason is that since the
multi-swap algorithm updates one DFS at a time, it may
miss the opportunity to improve the DoD by updating mul-
tiple DFSs at the same time. For instance, consider QF1,
there is no feature of type “film:category” in any initial DF'S.
In the iterations of the multi-swap optimal algorithm, DFSs
are updated one by one. Adding features of this type to a
single DFS will not increase the DoD, since no other DFS
contains this feature. Thus features of this type can not be
introduced to the DFSs in the multi-swap algorithm. How-
ever, by introducing features of type “film:category” in the
DFSs of multiple query results, the optimal algorithm can
improve the DoD and achieve a better quality.

4.3 Processing Time

To evaluate the efficiency of our algorithms, we measure
the times that all three approaches take to generate DFSs
for the results of test queries in Table 1, which is shown in
Figure 6.

As we can see, the multi-swap optimal algorithm not only
achieves a better quality than the single-swap optimal algo-
rithm, but generally has a better efficiency. The single-swap
algorithm enumerates all possible changes to a single feature
in a single DFS in each iteration, and has the iteration repeat
till no further improvements can be made. The multi-swap
algorithm checks possible changes of any number of features
in a single DFS in an iteration, which can be potentially
more expensive. However, by exploiting dynamic program-
ming, overlapping subproblems are identified in achieving
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the optimal solution, and thus repetitious computation is
avoided to gain a better performance.

The global algorithm, on the other hand, searches the
entire solution space for the optimal set of DFSs. Although
some pruning are performed, the huge size of the solution
space makes it very inefficient. As we can see, for some
queries, their DFSs cannot be generated in several hours,
such as QF3, QC;. For most queries, it is more than 10
times slower than the other two algorithms.

4.4 Scalability

We have tested the scalability of the single-swap and multi-
swap optimal algorithms on the camera data set over three
parameters: Size of Query Result, Number of Query Results
and DF'S Size Limit. Since the performance of the global
optimal algorithm is significantly worse than the other two
approaches and deteriorates rapidly with these parameters,
we do not include it in the scalability test. We use QC; for
the scalability evaluation.

Size of Query Result. The scalability test with respect
to query result size is shown in Figure 7(a). There are 10
query results, each of which is replicated between 10 and 80
times to make the size of the query result larger each time,
ranging from 1KB to 80KB. The DF'S size limit is fixed to
be 10 features in a DFS. As we can see, the processing times
of both single-swap and multi-swap optimal algorithms grow
almost linearly; and the processing time of the multi-swap
optimal algorithm grows slower than that of the single-swap
optimal algorithm. For query results of 80KB, multi-swap
algorithm requires less than 0.15 second for DFSs genera-
tion.

Number of Query Results. In order to increase the
number of query results, we simulate query results whose
features are randomly chosen from all the features in the 10
results of QC1. These randomly generated results have sim-
ilar size and similar features as the existing ones, and were
treated, together with the original results, as the results of
QC;i. The DFS size limit is 10 features in a DFS. The per-
formance of the two algorithms is shown in Figure 7(b). As
we can see, the processing time of both algorithms increases
quadratically, which is reflected by the complexity of the two
algorithms. The multi-swap optimal algorithm has consis-
tently better efficiency than the single-swap algorithm. Note
that in practice a user rarely can compare and analyze more
than 20 results at the same time. The multi-swap optimal
algorithm only spends 0.6 seconds in generating DFSs for

50 results and thus is practically efficient.

DF'S Size Limit. In this test we evaluate the processing
times of the two algorithms with respect to the increase
of DFS size limit (i.e., the maximum number of features
allowed in a DFS), while keeping the query result size to be
1KB, and the number of query results to be 10. The average
number of features in a query result is 28, and the DFS size
varies from 2 to 26. When the DFS size limit increases,
both algorithms take more iterations to update the DFSs
and improving the DoD, and thus require longer processing
time. The result in Figure 7(c) suggests that the processing
times of both algorithms increase linearly, while the multi-
swap algorithm is much more efficient, with less than 0.05
second to generate DFSs for 10 results with DFS size limit
of 26.

To summarize, the multi-swap optimal algorithm works
best among these three algorithms. It can achieve almost
the same quality as that of the global optimal algorithm in
most cases, but is much more efficient than the global op-
timal algorithm. It has both superior quality and efficiency
compared with the single-swap optimal algorithm.

5. RELATED WORK

In this section, we review the literature in several cate-
gories.

Attribute Selection in Tables. There are works on re-
lational databases that select important attributes from re-
lations [5, 21]. [5] selects a set of attributes from ranked
results in order to “explain” the ranking function. [21] se-
lect attributes of a tuple that can best “advertise” this tuple.
Specially, it takes as input a relational database, a query log,
and a new tuple, and computes a set of attributes that will
rank this tuple high for as many queries in the query log as
possible. On the other hand, our work selects features from
structured search results, with the goal of differentiating re-
sults in a small space.

Keyword Search and Result Ranking on Structured
Data. Many approaches have been proposed for supporting
keyword search on XML data [4, 8, 9, 14, 15, 16, 17, 19, 22,
24, 18], and keyword search on graphs / relational databases
[10, 23, 1, 2, 12, 20, 6, 16, 13, 7]. Various ranking schemes
have been proposed in these studies, including IR-style rank-
ing (term frequency, document frequency, etc.), result size,
page rank variants, etc..

Result Snippets. The problem of generating snippets for



keyword search on XML data is discussed in eXtract [11].
eXtract selects dominant features from each result to gen-
erate a small and informative snippet tree. Snippets are
displayed with a link to each result, similar as a text search
engine, to complement imperfect ranking schemes and en-
able the users to quickly understand each query result.

Note that although result ranking, result snippet genera-
tion, as well as result differentiation are all helpful in key-
word search, they are orthogonal problems and are useful in
different aspects. Result ranking attempts to sort the query
results in the order of expected relevance, so that the most
relevant results can be easily discovered by the user from a
large set of results. Due to the imperfectness of ranking, the
users still need to manually check some results to find the
most desirable ones. Result snippets help users easily judge
the relevance of a query result by providing an informative
summary of the result. When there are multiple relevant
query results (which is the case for informational queries,
as discussed in Section 1), a user typically would like to
compare and analyze a set of results. Since snippets aim at
summarizing each individual result, they are generally un-
able to differentiate a set of results. Our proposed XReD
system addresses this open problem. It automatically high-
lights the differences among a set of results concisely, and
enables the users to easily compare a set of results.

The XReD system can take the results generated by any
of the existing XML keyword search engine as the input and
generate DF'Ss for result differentiation. In fact, the gener-
ated DFSs can also be used to compare results of structured
query (e.g., XPath and XQuery) upon user request.

6. CONCLUSIONS AND FUTURE WORK

Informational queries are pervasive in web search, where
a user would like to investigate, evaluate, compare, and syn-
thesize multiple relevant results for information discovery
and decision making. In this paper we initiate a novel prob-
lem: how to design tools that automatically differentiate
structured search results, and thus relieve users from labor
intensive procedures of manually checking and comparing
potentially large results. Towards this goal, we define Dif-
ferentiation Feature Set (DFS) for each result and quantify
the degree of differentiation. We identify three desiderata for
good DFSs, i.e., differentiability, validity and small size. We
then prove that the problem of constructing DFSs that are
valid and can maximally differentiate a set of results within a
size bound is an NP-hard problem. To provide practical so-
lutions, we propose two local optimality criteria, single-swap
optimality and multi-swap optimality. Then we design effi-
cient algorithms for achieving these criteria. Our proposed
techniques are applicable to general query results which have
features defined as (entity, attribute, value). We also imple-
mented the XReD system, which can be used to augment
any existing XML keyword search engine, and whose effi-
ciency and effectiveness has been verified through extensive
experiments.

As a new area, result differentiation has many open prob-
lems that call for research, which will be investigated in our
future work. For instance, when selecting features from a
DFS, we may further consider whether it is interesting to
the user. Furthermore, there can be other functions that
measure the degree of differentiation. Approximation algo-
rithms for DFS constructions are also in demand.
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