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ABSTRACT
The advent of location-based services has led to an increased de-
mand for performing operations on spatial networks in real time.
The challenge lies in being able to cast operations on spatial net-
works in terms of relational operators so that they can be performed
in the context of a database. A linear-sized construct termed a path
oracle is introduced that compactly encodes then2 shortest paths
between every pair of vertices in a spatial network havingn vertices
thereby reducing each of the paths to a single tuple in a relational
database and enables finding shortest paths by repeated application
of a single SQL SELECT operator. The construction of the path
oracle is based on the observed coherence between the spatial posi-
tions of both source and destination vertices and the shortest paths
between them which facilitates the aggregation of source and desti-
nation vertices into groups that share common vertices or edges on
the shortest paths between them. With the aid of the Well-Separated
Pair (WSP) technique, which has been applied to spatial networks
using the network distance measure, a path oracle is proposed that
takesO(sdn) space, wheres is empirically estimated to be around
12 for road networks, but that can retrieve an intermediate link in
a shortest path inO(logn) time using a B-tree. An additional con-

struct termed the path-distance oracle of sizeO(n ·max(sd,
1
ε

d
))

(empirically (n ·max(122, 2.5
ε

2
))) is proposed that can retrieve an

intermediate vertex as well as anε-approximation of the network
distances inO(logn) time using a B-tree. Experimental results in-
dicate that the proposed oracles are linear inn which means that
they are scalable and can enable complicated query processing sce-
narios on massive spatial network datasets.

†Now at Google Inc., 4720 Forbes Ave, Pittsburgh, PA 15213
∗This work was supported in part by the National Science Foun-
dation under Grants IIS-08-12377, CCF-08-30618, and IIS-07-
13501, as well as NVIDIA Corporation, Microsoft Research, the
E.T.S. Walton Visitor Award of the Science Foundation of Ireland,
and the National Center for Geocomputation at the National Uni-
versity of Ireland at Maynooth.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

1. INTRODUCTION
The trend towards smaller and smaller computing platforms,as

well as the concomitant increase in their power, has led to anin-
creasing interest in their use to facilitate the mobility oftheir own-
ers. This has resulted in the development of a new component
of the software industry known collectively as location-based ser-
vices. Such services can be used to continuously monitor ever-
changing user positions as well as their destinations, and provide
up-to-the-minute (second) information about their environment, as
well as paths to their destinations. This is especially useful in an
emergency response environment where destination, or, even more
drastically, the destinations may change given the ever-changing
conditions on the ground. The challenge in providing this informa-
tion lies in the fact that these paths are not simple to compute as
obviously we want to take the shortest paths, and the total distance
is computed along a network instead of “as the crow flies.”

In fact, these changes may happen so fast that we may not even
have enough time to compute the exact answer and thus must re-
sort to estimates (i.e., approximate answers) with some guarantee
of optimality (i.e., within some toleranceε). Moreover, in these sit-
uations, there is a need to interact with a multitude of information
sources such as road networks, building diagrams, service areas,
etc. Increasingly, these information sources are stored indatabases
that must be accessible using a common interface (i.e., language),
most often some variant of SQL.

In this paper we address how to find shortest paths in such
a dynamically changing environment which is only the first step
in being able to perform a wide variety of operations on spatial
networks such as region searches [9, 10], nearest neighbor find-
ing [2, 3, 7, 9–11] and distance joins [9]. The problem is thatfind-
ing shortest paths and distances invariably involve a search process
(e.g., via use of a shortest path algorithm [5, 6, 17]), whichtakes
quite a bit of time, and is not a satisfactory solution in terms of data
that is organized using a relational database and is accessed via
SELECT operations. Our solution is based on precomputing the
shortest paths between all possible sources and destinations, and
encoding them in a compact form which lends itself to being stored
and retrieved in/from a conventional relational database.

Our results are a natural extension of our earlier work that led to
the formulation of the concept of the shortest-path map, whose rep-
resentation by the shortest-path quadtree, enabled us to reduce the
necessary storage for the set of all of the shortest paths from O(n3)
to O(n1.5) [11]. This was achieved by taking advantage of the fact
that the shortest paths from a particular vertexv to all of the remain-
ing vertices can be partitioned intoi subsets depending on the iden-
tity of the first edge (there arei such edges) on the shortest paths to
them fromv (e.g., Figure 1). We characterize this as taking advan-



tage of thepath coherenceof the destination vertices. The shortest
paths are derived by an iterative process that repeatedly finds the
next edge to the destination and thus lends itself to a database solu-
tion (i.e., the repeated retrieval of information) rather than a graph
search. In particular, the process is several times faster than con-
ventional graph-based solutions [9], and also casts a nice balance
between offline and online computation of the shortest paths.

Figure 1: Space partition induced by aggregating vertices shar-
ing the same first link in the shortest path from a given source
vertex in the road network of Silver Spring, MD

In this paper we expand on this work to reduce the space require-
ments fromO(n1.5) to O(n) by also capturing the path coherence
of the source vertices, instead of just the path coherence ofthe des-
tination vertices. Our motivation can be seen by observing that
someone who is driving along the shortest route from the North-
east of the US to the Northwest Coast of the US will invariablyend
up using Highway I-80 West. This path coherence is most evident
when the sources and destinations are sufficiently far apartin the
road network. As an example, of the amount of space that can be
potentially saved, suppose that we have one million source vertices
and one million destination vertices. If for each such pair of ver-
tices, we store a vertex on I-80 West, then we would incur a storage
cost of 1012 pieces of information, while when using our path co-
herence techniques, we can achieve this inO(1) space by virtue of
storing just one item of information for the set of vertices in the
Northeast Coast, one intermediate vertex, and one item of informa-
tion for the set of vertices on the Northwest Coast. Figure 2 is an
example of such a configuration of a set of sources and destinations
that share vertices in the shortest paths resulting in storing partial
path information of 30,000 shortest paths usingO(1) storage. In
the rest of the paper we show that for a spatial network of sizen,
there areO(n) such groups ofO(1) size that capture all of theO(n2)
shortest paths of the network. This partitioning of the vertices into
appropriate subsets of source and destination vertices is achieved
by appealing to the Well-Separated Pair (WSP) decomposition [1],
and conditions under which it is satisfied for a spatial network are
specified here. Our presentation uses the termoracle to describe
a data structure, or representation, or a relation in a database that
captures all the shortest paths. We describe three such oracles.

First, given a source and a destination vertex in a spatial network
G, and lettingsbe a factor depending onG, we present a path oracle
of sizeO(s2n) that enables the retrieval of an intermediate vertex
on the shortest path between them inO(logn) time. This is done
via use of a B-tree.

Next, we make use of an earlier result of ours [13] that for
a source and a destination vertex in a spatial networkG, an ε-
approximate distance oracle that requiresO( n

ε2 ) space can be con-
structed that enables the retrieval of a network distance between the
two vertices that lies withinε of the true network distance between
them inO(logn) time.

Finally, the main result of this paper is the combination of the
above two oracles to define a path-distance oracle that can provide
both an intermediate vertex, as well as anε-approximate distance in
O(logn) time usingO(n·max(s2, 1

ε2 )) space via the use of a B-tree.
Experimental results show that for road networks of different

sizesn (for which s turned out to lie in the range 8–15), the size
of the path-distance oracle is about 122n and provides answers in
10–35µseconds forε = 20%. Whenε was allowed to vary be-
tween 1 and 50%, andn was kept constant at 91,113, the size of the

path-distance oracle wasn ·max(122, 2.5
ε

2
) and provided answers

in 30–35µseconds.
The significance of our work lies in demonstrating that short-

est paths can be calculated by repeated SQL SELECT operators.
Moreover, by having the ability to refine the paths, we can also
refine the network distance value, which is an improvement on
our earlier result [13] that only provided one predicted approxi-
mate distance value. This ability to refine the distance enables us
to obtain exact values and thereby enables obtaining exact,rather
than approximate, responses to a number of spatial queries via
SQL relational operators. Our path-distance oracle on a spatial
network is related to oracles on other kinds of graphs (e.g.,gen-
eral graphs [14]) as well as to those that view spatial networks as
a general metric space and apply an embedding method [8]. The
interested reader is referred to [13] for a more a detailed discussion
of these related methods.

The oracles proposed in this paper, and our earlier efforts with
shortest-path quadtrees [11] and distance oracles [13], depart from
the existing literature in three fundamental ways. First ofall, meth-
ods [5, 6, 17] that speed up shortest-path finding do so by limit-
ing the search space on a general graph. Precomputation of the
shortest-paths obviates the need to search, and instead replaces it
with a retrieval process which is much faster. Next, traditional
query processing on spatial network is made up of graph-based
approaches [2, 3, 9]. Query processing using the oracles andthe
shortest-path quadtree instead perform operations that are purely
spatial in nature and hence, more suitable for incorporation into a
database. Finally, once our representation is computed fora spa-
tial network it can be used in conjunction with any dataset ofenti-
ties (e.g., restaurants, coffee shops) that lie on the spatial network
as long as the network itself remains unchanged which is differ-
ent from other precomputational efforts (e.g., [7]) that require a
renewed precomputational effort every time a dataset is changed,
or a new dataset is introduced.

The rest of this paper is organized as follows. Section 2 provides
some definitions. Section 3 expands on the notion of path-coherent
pairs, the construction of the various oracles, and also shows how
a number of spatial queries can be implemented via SQL relational
operators. Section 4 contains an analysis of the storage require-
ments of the decomposition of a spatial network into a set of path-
coherent pairs by appealing to the equivalence between the path
coherent pair decomposition of a spatial network and the WSPde-
composition of a point set. The results of experiments are discussed
in Section 5, while conclusions are drawn in Section 6.

2. PRELIMINARIES
Spatial networks are general graphs whose vertices and edges are

augmented with spatial information. LetSdenote ad-dimensional
embedding space(i.e., a reference coordinate system), which is
two-dimensional for road networks. A spatial network can beab-
stracted to form an equivalent graph representationG = (V,E),
whereV is the set of vertices,E is the set of edges,n = |V|, and
m= |E|. Given edgee∈ E, w(e)≥ 0 denotes the distance alonge.
In addition, for everyv∈V, p(v) denotes the spatial position ofv
with respect toS.

A pathπ of lengthk is a sequence of vertices(π1, . . . ,πk+1) such
that (πi ,πi+1) ∈ E for 1 ≤ i ≤ k. We refer toπ1 as thesource
vertex ofπ and refer toπk+1 as thedestinationvertex of π. Let



π(u,v) denote a path (not necessarily the shortest path) withu as
its source vertex andv as its destination vertex. The sequence of
edges that make up the pathπ is denoted by the sequenceϕ(π),
whereϕi(π) = (πi ,πi+1). Furthermore, theweight w(π) of a pathπ
of lengthk is w(π) = ∑k

i=1w(ϕi(π)). Two pathsπ1(v,t) andπ2(t,u)
can be composed to form another pathπ denoted byπ1 π2. A
subpathof a pathπ is a subsequence ofπ. The set of vertices that
make up the shortest path between a pair of verticesu,v ∈ V is
denoted byπG(u,v). Also, any subpathπ(r,t) of πG(u,v) is also
the shortest path betweenr and t. If there are multiple shortest
paths of the same length between vertex pairs, extra care must
be taken to ensure that the above property holds. In such cases,
the first path in the lexicographic ordering on the set of possible
shortest paths is chosen, such that the ordering is defined ontriples
(w(π),k, reverse(π)), where the reverse operator takes an ordered
set as input and reverses its ordering. Furthermore, two sequences
π1 andπ2 aredisjoint, if and only ifπ1∩π2 = ∅. Notice that if two
pathsπ1(v,t) andπ2(t,u) are disjoint from a pathπ∗ then the path
π1 π2 is also disjoint fromπ∗. Moreover, ifπ1 is disjoint from
π2 then any subpath ofπ1 is also disjoint fromπ2.

For verticesu,v∈V, we definedG(u,v) = w(πG(u,v)) to be the
shortest network distancefrom u to v with respect toG(V,E). We
define the spatial distancedS(u,v) (i.e., “as the crow flies”) between
verticesu,v∈V in a spatial network as a function onp(u) andp(v).
We also definelu(v) to be thenext vertexvisited (afteru) on the
shortest path fromu to v. Note that the first edge on the shortest
path fromu to v is (u, lu(v)).

Let T be the root block of a PR-quadtreeH (e.g., [10]) on the
spatial positions of the verticesV. A PR-quadtree is a hierarchical
decomposition of the embedding spaceS such that every block is
decomposed into 2d children blocks until aleaf block is obtained,
which corresponds to a region in space containing a single vertex
in V. A non-leafblock inH, on the other hand, represents a region
in the embedding space containing a subset of vertices (morethan
one) inV. We can devise an addressing scheme for a blockb by
a bit-encoding obtained by concatenating the bits corresponding to
the path taken to reachb from the root blockT. This representation,
also known as the MORTON BLOCKS[10], is used by us in order to
uniquely identify blocks in a PR-quadtree.

3. PATH-COHERENT PAIRS

Figure 2: The 30,000 shortest paths between two subsetsA,B of
vertices in a road network of Silver Spring, MD pass through a
single common vertex

We observe that vertices in a spatial network that are spatially
close to one another share a number of common properties. In par-
ticular, often two verticesu,v that are spatially close to each other
share large common segments of their shortest paths to two other
verticest,w that are also spatially close to each other, but far from
u,v. We use the term path coherence to describe the coherence
between the shortest paths from nearby sources to nearby destina-
tions. Figure 2 shows a configuration of sourceA and destinationB
vertices such that every shortest path from a vertexu∈A to a vertex

t ∈B passes through a particular set of vertices. Two sets of vertices
A,B are said to form aPath-Coherent Pair (PCP)if and only if all
the shortest paths from source vertices inA to destination vertices
in B have at least one vertex or one edge in common as shown in
Figure 2. Our path oracle relies on the decomposing a given spatial
networkG into path-coherent pairs such that they capture all then2

shortest paths inG.

3.1 Definition of Path-Coherent Pairs
The arrangement of vertices and shortest paths in Figure 2 de-

scribes adumbbell-like structure. APath-Coherent Pair(PCP)
(A,B,Ψ,λ) in a spatial networkG(V,E) consists of a set of source
verticesA⊂V, a set of destination verticesB⊂V, a setΨ which
is a vertex or an edge such that all the shortest paths from source
vertices inA to destination vertices inB containΨ, λ ∈R+ approx-
imates the network distances of all the shortest paths fromA to B.
We refer toA andB as theheadsof the PCP. A PCP(A,B,Ψ,λ)
belongs to one of the two possible configurations given below:

• (A,B,Ψ = {u},λ), whereA∩B= ∅, u∈V, u 6∈ A andu 6∈ B

• (A,B,Ψ = {< u,v >},λ), whereA∩B= ∅, < u,v>∈ E and
u 6∈ B andv 6∈ A

Note that any edge< u,v >∈ E in G is a PCP of the form(u,v,<
u,v >,λ).

3.2 PCP Decomposition
Given a spatial networkG, we now perform adecomposition G⊗

G of G, into a set of PCPs, such that the resulting decomposition
has the following properties given below:

1. G⊗G =
Sl

i=1(Ai ,Bi ,Ψi ,λi), where (Ai ,Bi ,Ψi ,λi) is a PCP
∀i = 1, ..., l , such thatA =

Sl
i=1Ai andB =

Sl
i=1 Bi .

2. (Ai
T

Bi) = ∅, ∀i = 1, ..., l .

3. For any two PCPs(Ai ,Bi ,Ψi ,λi), (A j ,B j ,Ψ j ,λ j), 1≤ i <

j ≤ l in G⊗G, the resulting decomposition has the property
that (Ai

T

A j)× (Bi
T

B j) = ∅. In other words, for any pair
of vertices(u,v), there exists a unique PCP(Ai ,Bi ,Ψi ,λi) in
G⊗G, s.t. u∈ Ai ,v∈ Bi .

The first property ensures that the decomposition ofG results in
a set containingl PCPs, where theith PCP in the decomposition
is denoted by(Ai ,Bi ,Ψi ,λi). The second property ensures that the
headsAi andBi of a PCP are disjoint. The third property ensures
that any pair of vertices(u,v) in G is contained in exactly one of
the PCPs in the decomposition. This also means that the PCP de-
composition contains all then2 shortest paths inG. This leads us
to the definition of path, distance and path-distance oracles.

DEFINITION 1. A path oracle of a spatial network G is a PCP
decomposition of G.

DEFINITION 2. A path-distance oracle of a spatial network G
is a PCP decomposition of G of the form(Ai ,Bi ,Ψi ,λi) with the
additional property that

(1− ε) ·λi ≤ dG(u,v)≤ (1+ ε) ·λi ,

where u∈ Ai and v∈ Bi . In other words, a path-distance oracle
stores a common intermediate vertex or edgeΨi in the shortest
paths from Ai to Bi as well as anε-approximationλi of the network
distances from Ai to Bi .



DEFINITION 3. A distance oracle [13] is a decomposition of
a spatial network G into triples of the form(Ai ,Bi ,λi) such that
Ai ⊂V, Bi ⊂V, Ai ∩Bi = ∅, λi is an ε-approximation of the net-
work distances from Ai to Bi and given any pair of source and des-
tination vertices, it is contained exactly in one of the triples in the
decomposition. In other words, the above decomposition is similar
to the path-distance oracles with the difference that, now,all the
shortest paths from Ai to Bi no longer have to pass through a single
common vertex or edge.

3.3 Oracle Construction
We now describe an algorithm for constructing path, distance,

and path-distance oracles. Algorithm 1 decomposes a spatial net-
work G(V,E) into a set of PCPs. The algorithm takesG, the root
block T of a PR-quadtreeH (e.g., [10]) on the spatial positions of
V, the type of oracle ORACLETYPE, and the quality of approxima-
tion ε as inputs. The possible values for ORACLETYPE are PATH,
DISTANCE, or PATH-DISTANCE. The value ofε needs to be spec-
ified for distance and path-distance oracles, but is assumedto be∞
for path oracles.

Let Q be a list of block-pairs, which is initialized with the pair
(T,T) in line 1. At each stage of the algorithm, a block-pair(A,B)
is retrieved fromQ and examined in line 3. Note thatA andB cor-
respond to blocks in the PR-quadtree onV. If A andB refer to the
same block (line 4) andA (andB) is a non-leaf block, then we in-
voke DECOMPOSEANDINSERToperator withQ, A, andB. This
operator operator takes two blocksA andB and a listQ as inputs. It
first breaks upA andB into their 2d children blocks, forms all pos-
sible pairs obtained by taking non-empty children blocks ofA and
B which are then inserted intoQ. Note that if the DECOMPOSE-
ANDINSERToperator is invoked onA andB such that one of them
is a LEAF block, it can be still broken up into 2d children blocks,
but all but one of the children blocks will be empty.

If A andB do not refer to the same block in the PR-quadtree, the
algorithm invokes the FINDPATHCOHERENTPAIRS operator onA
andB in line 9 that returns, if it exists, a vertex or an edgeΨ that
is common to the shortest paths from source vertices inA to des-
tination vertices inB, as well as an approximate network distance
λ, and the maximum errorεH in approximating the network dis-
tances byλ. Optionally, we can also obtain the minimum error in
approximating the network distances between vertices inA andB
by λ. Both the values ofεL andεL can also be stored along with
the PCPs in the output. Given(A,B), efficient methods for comput-
ing λ andεH are described in [13]. One possible way of finding if
a common vertex or edgeΨ exists is to compute the shortest path
from every pair of source vertices inA to destination vertices inB
using Dijkstra’s algorithm and determine if there is a vertex or edge
in common between all the shortest paths. If there is more than one
vertex in common to all the shortest paths then one of the vertices
is chosen at random; preferably one not belonging to eitherA or B.
The case that an edge is common to all the shortest paths occurs
only if all the shortest paths pass through an edge< u,v >, such
thatu∈ A or {u}= A, andv∈ B or {v}= B. An example of such a
configuration arises if a bridge or a tunnel represented by anedge
connects vertices belonging to two cities denoted byA andB. The
algorithm SPATH (Algorithm 2) that we propose for computing the
shortest paths will not work whenΨ is a vertex and ifΨ ∈ A, or
Ψ ∈ B, or {Ψ} = A, or {Ψ} = B. Similarly, if Ψ =< u,v > is an
edge, the algorithm will not worku ∈ B or v ∈ A. Algorithm 1
handles all these cases appropriately.

If ORACLETYPE is DISTANCE (line 10), we examine if the qual-
ity of the approximationεH is less than or equal to the desired ap-
proximationε. If so, we add the pair(A,B, ,λ) to the result set

using the REPORTPCP procedure. If not, we splitA and B into
block-pairs formed by children blocks ofA andB, which are then
inserted intoQ.

If ORACLETYPE is PATH, we check ifΨ is empty in which case
(A,B) is not a valid PCP and the block-pair(A,B) has to be further
decomposed. IfΨ is a vertex that does not belong to eitherA or B,
we report it as a PCP, else we further decompose it. IfΨ = (u,v)
is an edge, we ensure thatu 6∈ B and v 6∈ A, in which case it is
reported as a PCP. We point out that all other possible cases i.e.,
whenu∈ B, or/andv∈ A are all undesirable. Finally, if ORACLE-
TYPE is PATH-DISTANCE and (A,B,Ψ,λ) satisfies both the path
and distance constraints, it is added to the result set.

The algorithm terminates whenQ is empty at which point the
decomposition ofG into PCPs is complete. Note that our algorithm
breaks up bothA andB in a symmetric fashion which means that
the heads of the PCP in the output are at the same level inH, and
consequently, of the same size.

Algorithm 1
ProcedurePCPDECOMPOSE[G, T, ORACLETYPE, ε = ∞]
Input: G(V,E)← Input spatial network
Input: T ← Root node of a PR-quadtreeH onV
Input: ORACLETYPE← PATH, DISTANCE, or PATH-DISTANCE

Input: ε← Required approximation;∞ if not specified
Output: Set of PCPs(A,B,Ψ,λ, [εL,εH ]); [εL,εH ] is optional
(∗ Q←list of block-pairs∗)
1. INSERT(Q, (T,T))
2. while (ISNOTEMPTY(Q)) do
3. (A,B)←POP(Q) (∗ Remove head element∗)
4. if A = B then
5. if ISNONLEAF(A) then
6. DECOMPOSEANDINSERT(Q,A, B)
7. end-if
8. else
9. (Ψ,λ,εH , [εL])←FINDPATHCOHERENTPAIRS(A,B)
10. if ORACLETYPE = DISTANCE or PATHDISTANCE then
11. if εH > ε then
12. DECOMPOSEANDINSERT(Q,A, B)
13. else ifORACLETYPE= DISTANCE then
14. REPORTPCP(A,B,Ψ,λ, [εL,εH ])
15. end-if
16. end-if
17. if ORACLETYPE = PATH or PATH-DISTANCE then
18. if Ψ = ∅ then
19. DECOMPOSEANDINSERT(Q,A, B)
20. else ifTYPE(Ψ) = VERTEX then
21. if Ψ ∈ A or {Ψ}= A or Ψ ∈ B or {Ψ} = B then
22. DECOMPOSEANDINSERT(Q,A, B)
23. else
24. REPORTPCP(A,B,Ψ,λ, [εL,εH ])
25. end-if
26. else ifTYPE(Ψ =< u,v >) = EDGE then
27. if u 6∈ B andv 6∈ A then
28. REPORTPCP(A,B,Ψ =< u,v >,λ, [εL,εH ])
29. else
30. DECOMPOSEANDINSERT(Q,A, B)
31. end-if
32. end-if
33. end-if
34. end-if
35. end-while

It is not difficult to see that Algorithm 1 decomposesG into
a set of PCPs that satisfies properties 1–3. Hence, given a ver-



tex paira,b, we are guaranteed that there exists exactly one PCP
(A,B,Ψ,λ) in the output of Algorithm 1 such thatA containsa, B
containsb, Ψ is an intermediate vertex or edge in the shortest path
from a to b, andλ approximates the network distance betweena
andb.

3.4 The Oracle as a Database Relation
The REPORTPCP routine in Algorithm 1 stores the PCP decom-

position as a relationO in a database system with the following
schema:O(AB, IE, V I, Es, EE, λ), whereAB are the heads of the
PCP represented as a single four-dimensional Morton block,IE is
a Boolean flag that indicates if the tuple representing a PCP stores
an intermediate vertex or edge. If IE is set tofalse, then VI stores
an intermediate vertex, else<ES, EE> represents an intermedi-
ate edge. Finally, the value ofλ represents the approximate net-
work distance between the heads of the PCP. Recall that both the
heads of the PCP,A andB, correspond to nodes of a PR-quadtree
onV. Hence,(A,B) can be compactly represented as a single four-
dimensional Morton block [10]. A four-dimensional Morton block
ABof (A,B) is obtained by first constructing the Morton blocks cor-
responding toA andB, and then bit-interleaving them to obtainAB.
Now, the attributeAB in the relationO is indexed using a B-tree
or B+-tree, and the resulting representation is known as alinear
quadtree[10], which is a disk-efficient access structure.

Given a sourceu and destinationv, we can obtain an interme-
diate vertex or edge in the shortest path betweenu andv as well
as an approximate network distanceλ using the relationO by first
constructing the four-dimensional Morton blockZ4(u,v) of (u,v),
and using it to search the B-tree or B+-tree onAB for the longest
prefix matchto Z4(u,v), whereZ4(., .) is a function that takes a pair
of two dimensional points and converts them into a single four-
dimensional Morton block representation. Note thatZ4(., .) can be
computed inO(1) time using bit-operations. Searching the index
on AB takes logarithmic time in the number of tuples inO. We
will later show that this can be achieved inO(logn) time as the
size of the oracle is linear inn. The above operation corresponds
to a simple “SELECT” operator onO. The shortest path betweenu
andv can be retrieved by the repeated application of the SELECT
operation onO, which is described next.

3.5 Finding Shortest Paths
Algorithm 2 takes a source vertexu and a destination vertexv as

inputs and retrieves the shortest pathπG(u,v) betweenu andv in
G. In lines 1–3, we check ifu andv are the same, in which case,
the algorithm returns{u}. This is thebase caseof the algorithm.
In line 4, using the Morton blockZ4(u,v) of u,v as the search key
on the B-tree onAB, we can obtain tuple inO(AB, IE, V I, Es, EE,
λ), such thatAB containsZ4(u,v). Note that the nature of the PCP
decomposition guarantees that there will be exactly one matching
tuple in O for any search keyZ4(u,v). If A andB share an edge
(in which case IE is set totrue as shown in lines 5–6),πG(u,v)
is represented as a composition of SPATH(u,ES)  <ES, EE>

 SPATH(EE,v), resulting in subsequent recursive calls to Algo-
rithm 2. If A andB share an intermediate vertex VI (in which case
IE is set tofalse), we recursively invoke two instances of Algorithm
SPATH with inputs(u,V I) and(V I,v) as shown in line 8.

Algorithm 2
ProcedureSPATH[u, v]
Input: u,v← Source and Destination vertices
Output: Shortest pathπG(u,v) betweenu andv
(∗ O(AB, IE, V I, Es, EE, λ)←Oracle relation∗)
1. if u = v then (∗ Base case of the recursion∗)
2. return {u}

3. end-if
4. SELECT IE, V I, ES, EE FROMO WHEREAB= Z4(u,v)
5. if (IE = true) then
6. return SPATH(u, ES) <ES,EE> SPATH(EE, v)
7. else(∗ IE = false∗)
8. return SPATH(u, V I) SPATH(V I,v)
9. end-if

3.6 Query Processing
We now outline how to incorporate a path-distance oracle

in a SQL-based system that can perform complex queries on a
spatial network using a relational database system. LetO be the
path-distance oracle with the schema:O(AB, IE, V I, ES, EE, λ, εL,
εH ). Notice that we have expanded on the schema from Section 3.4
by augmenting two additional attributesεL and εH , εL ≤ εH ≤ ε
which are the minimum and maximum errors, respectively, due
to approximating all the network distances fromA to B with λ.
The value ofεL andεH can be trivially obtained by modifying the
procedure FINDPATHCOHERENTPAIRS in Algorithm 1 (line 9)
to compute and associate it with a PCP. We also introduce a
refinementoperator which when given a sourceu and destinationv,
can improve upon the quality of the approximation (known as the
effective error) provided byλ by retrieving additional intermediate
vertices in the shortest path fromu to v. Note that an approximate
error can be refined at mostk times before the exact network
distance is obtained, wherek is the number of intermediate vertices
in the shortest path betweenu and v. Also, we assume that the
refinement operator will keep its own state information suchas the
set of intermediate vertices, effective error, etc., all ofwhich are
abstracted from the user of this system. In addition, we assume that
a number of macros have been provided which given a source and
destination vertex, will keep invoking the refinement operator as
many times as needed to either achieve a predicted approximation
quality, or until a certain condition is satisfied. We make use of a
few macros below, but due to space constraints, we assume that
their workings are clear from their assigned descriptive names.

Approximate Network Distance Query: Given source vertexp
and destination vertexq, find an intermediate vertex or edge, ap-
proximate network distanceλ, and minimumεL and maximumεH
errors due to the use of the approximation.

SELECT IE, VI, ES, EE λ, εL, εH FROMO WHEREAB= Z4(p,q)

η-approximate Network Distance Query: Given sourcep and
destinationq, find an approximate network distance with an ap-
proximation quality ofη or better. The macro REFINEUNTIL
invokes the refinement operator until the desired approximation η
is attained.

SELECTλ, εL, εH FROMO WHEREAB= Z4(p,q) and
REFINE UNTIL(EFFECTIVE ERROROF(O.λ)≤ η)

Region Search: Given a query locationq, find all restaurants
R(position, type) that are within 10 miles ofq. The macro RE-
FINE UNTIL DECIDE IF invokes the refinement operator until it
is clear if a restaurant is within 10 miles ofq or is not.

SELECTR.position,λ FROMO, RWHEREAB= Z4(q,R.position) and
REFINE UNTIL DECIDE IF(O.λ ≤ 10 miles)

k-Nearest Neighbor Search:Given a query locationq, find thek
closest restaurants inR(position, type) to q that serveItalian cui-
sine. The results are produced by sorting on theλ values using
a comparator (not given here) that is modified so that given two
restaurants at distancesλ1 andλ2, the comparator refines bothλ1
andλ2 until it is clear ifλ1 ≤ λ2 or λ1 > λ2.



SELECTR.position,λ FROMO, R
WHEREAB= Z4(q,R.position) andR.type = “Italian”

ORDER BYO.λ LIMIT k

Distance Join Operator: Suppose that in addition toR, we are also
given a relation of coffee shopsQ(position, type). Now, find thek
closest pairs of restaurants and coffee shops. This query uses the
same sorting operator onλ as in thek-nearest neighbor algorithm.

SELECTR.position,Q.position,λ FROMO, R, Q
WHEREAB= Z4(R.position,Q.position)

ORDER BYO.λ LIMIT k

4. ANALYSIS
In this section, we provide bounds on the size of the decompo-

sition of G into PCPs by appealing to the equivalence between the
PCP decomposition of a spatial network and the WSP decompo-
sition of a point set. The rest of this section is organized asfol-
lows. Section 4.1 introduces the concept of a Well-Separated Pair
(WSP) decomposition of a point set. Next, Section 4.2 develops a
model of a path-coherent spatial network and shows that the size
of the WSPD using the network distance measure is linear inn.
Section 4.3 discusses thefour coherent pathsproblem, using it in
Section 4.4 to arrive at our final result that the WSPD of a spatial
network for a suitable WSP parametric values is a PCP decomposi-
tion. Finally, Section 4.5 derives the size of the PCP decomposition
of a spatial network that is a regular grid, which is one of theprob-
lematic cases of the PCP decomposition.

4.1 Preliminaries
Given a set of pointsA, the diameter ofA is the maximum pos-

sible distance between any two points belonging toA. Similarly,
given two sets of pointsA andB, theminimum distancebetween
A andB is the minimum possible distance between any point inA
to any point inB. Two sets of pointsA andB are said to bewell-
separatedif the minimum distance betweenA andB is at leasts· r,
wheres> 0 is aseparation factorandr is the larger diameter of the
two sets. The pair(A,B) is termed aWell-Separated Pair(WSP). A
Well-Separated Pair Decomposition(WSPD) of a point setR, de-
composesR into pairs of subsets(A,B), such that∀p,q∈ S, p 6= q,
there exists exactly one WSP(A,B), such thatp∈ A,q∈ B. Given
a point setR in a d-dimensional space, we construct a WSPD of
R by first constructing a PR-quadtree [10]H on R. For the sake
of simplicity, we assume thatR is contained in a unit[0,1)d d-
dimensional hypercube. This hypercube forms the root blockT
of H. The PR-quadtree is constructed by recursively decomposing
the block into 2d congruent children blocks. The process contin-
ues until each block contains a single point, in which case, further
subdivision is not possible. Unfortunately, if two points are close
to one another inR, it may lead to a long path of trivial blocks of
which only one block would form an internal node. Callahan and
Kosaraju’s construction [1] did not incur this problem because they
used a fair-split tree which is a data-dependent decomposition. This
problem is overcome by Fischer and Har-Peled [4] through theuse
of a variant of apath compressedquadtree which is obtained from
the PR-quadtree by compressing such trivial paths into one single
compressed link. The advantage of the path compressed quadtree
over the PR-quadtree is that its use results in a tree with a total of
O(n) nodes.

Our discussion does not need to resort to the path compressed
quadtree while still using regular decomposition because of certain
assumptions that we make about the distribution of the vertices in
the embedding space. In particular, letting∆ be the ratio of the di-
ameter of the set of verticesV to the distance between the closest

pair of vertices inV and lettingH be a PR-quadtree onV, the max-
imum depth ofH is O(log∆). Consequently, given a vertexv in
V, the Morton block representation ofp(v), the spatial position of
v, would beO(log∆) bits long. To cast this quantity in terms ofn,
we note that even if the data is heavily skewed so that∆ is linear
in n, the length of the Morton block ofv would still beO(logn).
We claim that this assumption fits closely with the actual nature
of real road networks. From a practical standpoint with respect to
our experience with road networks, we observe that the minimum
geodesic distance between any two vertices on a road networkis
at least 1 meter. A PR-quadtree on a sphere corresponding to the
Earth with radius 6378 km and depth 24, has a 1 meter resolution at
the equator. For such data, the size of the Morton block for a vertex
on the road network using geographical coordinates is at most 48
bits in length.

The following result is due to Callahan and Kosaraju [1] and we
restate it below as Lemma 4.1, which is referenced in the subse-
quent discussion.

LEMMA 4.1. Given a point set R containing n d-dimensional
points, a fixed separation factor s≥ 2, the WSPD of R, R⊗R has
O(sdn) WSPs [1]

4.2 Path-Coherent Spatial Networks
We now introduce the concept of Well-Separated Pair Decom-

position (WSPD) of a spatial network by first making two key as-
sumptions about the nature of spatial networks. We first assume
that the ratio between the network and spatial distances is bounded
from both above and below (Assumption 1). Note that for any given
finite graph, we can always compute the values ofγ1 andγ2, albeit
large. The interested reader is referred to [13] for methodsto com-
puteγ1 andγ2 values of a spatial network.

ASSUMPTION 1. γ1≤ dG(u,v)
dS(u,v) ≤ γ2, u,v∈V,γ1 andγ2 > 0.

At this point, we show how to extend the notion of a well-
separated pair decomposition in terms of a spatial distanceto one in
terms of a network distance. This is captured by Lemma 4.2 below.

LEMMA 4.2. Given a WSPD with a separation factor s of the
vertices V of G(V,E) based on a spatial distance also yields a
WSPD with a separation factor of s′ of V using a network distance
such that s′ = s· γ1

γ2
[13].

DEFINITION 4. Two cycle free pathsπ1(u1,v1) and π2(u2,v2)
are core-disjoint, if and only if they share no common vertices be-
sides the source or destination vertices. Formallyπ1(u1,v1) and
π2(u2,v2) are core-disjoint if and only ifπ1∩π2 = ({u1}∩{v1})∪
({u2}∩{v2}).

DEFINITION 5. The shortest core-disjoint pathπ(u,v) from u
to v in G is a cycle-free pathπ between u and v in G that is core-
disjoint fromπG(u,v) such that w(π) is minimized.

We now introduce another assumption on the nature of our spa-
tial networks which enables us to ensure that there cannot bemany
shortest core-disjoint paths of the same length between subsets of
sources and destinations in a spatial network. Spatial networks for
which the lengths of the alternate shortest core-disjoint paths are
lower bounded are said to bepath-coherent. The motivation is that
the greater the number of shortest core-disjoint paths of the same
length, the less likelihood that the shortest paths share a common
vertex (i.e., be path-coherent).



ASSUMPTION 2. Given any u,v ∈ V in a spatial network
G(V,E), we let 1

δ , δ > 1, serve as an upper bound on the ratio
of the network distance dG(u,v) along the shortest pathπG(u,v)
between u and v, to the network distance along the shortest core-
disjoint path toπG(u,v).

We now define two concepts that builds on Assumption 2.

DEFINITION 6. The shortest path between any pair of vertices
(u,v) is said to beδ-redundantwith respect to G(V,E) if and only
if for any pathπ from u to v that is core-disjoint fromπG(u,v), we
have w(π)≥ δw(πG(u,v)).

DEFINITION 7. A spatial network G(V,E) is said to be path-
coherent if and only if the shortest paths between every pairof ver-
tices areδ-redundant.

The careful reader will have observed that our model of a path-
coherent spatial network does not include spatial networksthat are
regular grids, as given a sourceu and destinationv vertex on such a
spatial networkG there is more than one shortest core-disjoint path
betweenu andv of the same length. This also means that the value
of δ for G is 1 and Assumption 2 does not hold. Please note that
the correctness of Algorithm 1 when applied to regular grid spatial
networks is not under question here. Instead, the storage bounds of
the PCP decomposition derived in this Section are not applicable
to them. We address the size of the PCP decomposition of regu-
lar grids separately in Section 4.5. Finally, it is clear that real road
networks are not path-coherent spatial networks as there may be a
small percentage of source and destinations vertices with multiple
shortest core-disjoint paths of equal length. Although ouranaly-
sis assumes that the minimum value ofδ computed over all then2

shortest paths in a spatial network is greater than 1, empirical re-
sults in Section 5 show that even for road networks like Manhattan,
NY where a large percentage of vertices lying in a regular grid, the
storage bounds derived in this Section hold pretty well.
We state the following lemma without providing a proof.

LEMMA 4.3. If the pathπ1(u1,v1) is core-disjoint from the two
pathsπ2(u1,t) andπ3(t,v2), thenπ1 is core-disjoint fromπ2 π3.

4.3 Four Coherent Paths Problem
We now examine the nature of the shortest paths between two

subsets of vertices(A,B) in a path-coherent spatial network that
are well-separated. In particular, we will show that for a suitably
defined value ofs, four shortest paths from two sources inA to two
destinations inB will always have some vertices in common.

DEFINITION 8. The branch-out vertex of a pathπ1 with respect
to a pathπ2 is the last vertex ofπ1 that is inπ1∩π2.

DEFINITION 9. The branch-in vertex of a pathπ1 with respect
to a pathπ2 is the first vertex ofπ1 that is inπ1∩π2.

LEMMA 4.4. Consider a WSP(A,B) in the WSPD of a path-
coherent spatial network G(V,E) with s> 2+ 2

δ−1. For u1,u2 ∈
A and v1,v2 ∈ B, the shortest pathsπ1 = πG(u1,v1) and π2 =
πG(u2,v2) are not disjoint.

PROOF. Assume to the contrary that the pathsπ1 and π2 are
disjoint. Figure 3 shows an example of such a scenario. Letd1 =
w(π1) andd2 = w(π2). Without loss of generality, we assume that
d2 ≤ d1.

Consider the pathπG(u1,u2). Let u∗ be the branch-out vertex
of πG(u1,u2) with respect toπG(u1,v1). Similarly, let v∗ be the

u1

v1
*u

d2

d1

*vπPath 1

Path π2

v2u2

BA

Figure 3: (A,B) is a WSP configuration containing two disjoint
paths between them

branch-in vertex ofπG(v2,v1) with respect toπG(u1,v1). Notice
that πG(u∗,v∗) is a subpath ofπ1 and is hence disjoint fromπ2
because of our assumption. The definition ofu∗ andv∗ ensure that
πG(u∗,u2) and πG(v2,v∗) are both core-disjoint fromπG(u∗,v∗).
Let d∗ = dG(u∗,v∗).

Consider the pathπ3 = πG(u∗,u2)  π2. πG(u∗,v∗) is core-
disjoint fromπ3 due to Lemma 4.3. Consider the pathπ∗ = π3 

πG(v2,v∗) betweenu∗ and v∗. By re-applying Lemma 4.3, we
claim thatπG(u∗,v∗) is core-disjoint fromπ∗.

For rG, the larger diameter ofA andB, we have,dG(u1,u2)≤ rG,
anddG(v2,v1)≤ rG. Therefore,dG(u1,u2)+dG(v2,v1)≤ 2rG.

We have,

d1 = dG(u1,u
∗)+d∗+dG(v∗,v1) (1)

w(π∗) = dG(u∗,u2)+d2 +dG(v2,v
∗) (2)

Adding Equations 1 and 2,

w(π∗)+d1 = dG(u1,u
∗)+dG(u∗,u2)+d∗+

d2 +dG(v2,v
∗)+dG(v∗,v1)

w(π∗)+d1 = dG(u1,u2)+dG(v2,v1)+d∗+d2

w(π∗)+d1 ≤ 2rG +d∗+d2 (3)

By the assumption ofδ-redundancy, we havew(π∗)≥ δd∗. Com-
bining this with Equation 3, we get,δd∗+d1 ≤ 2rG +d∗+d2, and
asd2 ≤ d1 we getδd∗+d1 ≤ 2rG +d∗+d1, or,

(δ−1)d∗ ≤ 2rG (4)

As (A,B) is a WSP, the network distanced1 between the pair of
pointsu1 ∈ A andv1 ∈ B is at leasts· rG and thuss· rG≤ d1. Com-
bined this result with Equation 1 we get,s· rG ≤ dG(u1,u∗)+d∗+
dG(v∗,v1). But asdG(u1,u∗) ≤ dG(u1,u2) ≤ rG anddG(v∗,v1) ≤
dG(v2,v1)≤ rG, we gets· rG ≤ rG +d∗+ rG, or

(s−2)rG ≤ d∗ (5)

By combining Equations 4 and 5, we get(δ−1)(s−2)rG ≤ 2rG,
but s >

2
δ−1 + 2 and hence by substituting fors, we get 2< 2.

This contradicts our initial assumption thatπ1 andπ2 are disjoint.
Thereforeπ1 andπ2 must not be disjoint.

We now state the following two properties of shortest paths with-
out providing a proof.

LEMMA 4.5. If t ∈ a b and r∈ a t, then t∈ r  b.

LEMMA 4.6. If r ∈ a t and t∈ a r then t= r.

LEMMA 4.7. [Four Coherent Paths Problem] Consider two
source vertices u1,u2 and two destination vertices v1,v2 in a path-
coherent spatial network G(V,E), such that there exist four short-
est paths between the source and the destination pairs, namely,
π1 = u1 v1, π2 = u1 v2, π3 = u2 v1, and π4 = u2 v2.
Given that no two shortest paths are disjoint from Lemma 4.4,there
exists a vertex t that is common to all the four shortest paths.
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Figure 4: (a) Shortest pathsπ1 and π2, where t is the branch-
out vertex of π1 (π2) with respect to π2 (π1), (b) Shortest path
π3 has been added to the setup in (a), such thatr1 ∈ t  v2,
r2 ∈ t v2, p1 ∈ t v1, v1 6= t, v2 6= t, and p1 6= t

PROOF. Figure 4a shows the shortest pathsπ1 = u1 v1 and
π2 = u1 v2, such thatt is the branch-out vertex ofπ1 (π2) with
respect toπ2 (π1). The vertext can be trivially shown to exist, as
t = u1 is at least one vertex that is always common toπ1 andπ2.
We refer toπG(u1,t) as thestemof the shortest paths.

We now add theπ3 = u2 v1 to the setup in Figure 4a, while
ensuring that thatπ3 is not disjoint from eitherπ1, or π2. Let r1 be
the incoming vertex ofπ3 with respect toπ2. Let r2 be the branch-
out vertex ofπ3 with respect toπ2. Let p1 be the incoming vertex
of π3 with respect toπ1. Note thatπ3 cannot have an branch-out
vertex with respect toπ1, asp1 v1 is a common subpath to both
u1 v1 andu2 v1.

We point out that there can only be three possible configurations
of r1, r2 and p1 with respect tot,u1,v1 and v2, which are listed
below.

1. If r1 6= t, r1 ∈ t  v2, r2 ∈ u1  v2, and p1 = t, it can be
verified that pathπ4 cannot exist now without being disjoint
from eitherπ1, or π2. Hence, this case is infeasible.

2. If r1 6= t, r2 6= t, r1, r2 ∈ t v2, andp1 ∈ t v1, p1 6= t, we
show thatπ4 can exist only iffδ = 1, and hence is infeasible.

3. If r1, r2, p1 ∈ u1 t, we show thatπ4 can exist only iffr1 =
r2 = p1, thus proving the lemma.

Figure 4b illustrates case-2, which we show to be infeasible. We
have added the shortest pathπ4 = u2 v2 to the configuration in
Figure 4b, resulting in Figure 5.
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Figure 5: Figure 4b has been redrawn to includeπ4, such that
r ′2 ∈ t  p1 and p2 6∈ r1  r2, p2 ∈ r1  v2. Note that labels
a–h, x,y on an edge indicates its weight.r ′1 r ′2 is the subpath
shared betweent p2 and t ′ p1. Similarly, r1 r2 is shared
betweent ′ p2 and t p1

Let r ′1 andr ′2 be incoming and outgoing vertices ofπ4 with re-
spect toπ1. While ensuring thatπ4 is not disjoint withπ1, we
observe that the only feasible condition is whenr ′1 ∈ t  p1 and
r ′2 ∈ t  p1 is satisfied. Letp2 be the incoming vertex ofπ4 with
respect toπ2, and alsop2 6∈ r1 r2, p2 ∈ r1 v2. Figure 5 shows
the shortest path configuration containing the four shortest paths.
Also, the labels (a–h, x, y) assigned to edges in Figure 5 correspond
to the weights of the edges. We now show that this configuration is
realizable, iffδ = 1.

In Figure 5, we observe thatt  p1 is at a distanceg+ y+ f ,
while an alternate core-disjoint patht  r1 r2 p1 is at a dis-

tancea+x+d, leading to

a+x+d ≥ δ(g+y+ f ) (6)

Similarly, t p2 is at a distancea+x+b, while an alternate core-
disjoint patht  r ′1 r ′2 p2 is at a distanceg+ y+ h, leading
to

g+y+h≥ δ(a+x+b) (7)

t ′  p1 is at a distancec+ x+ d, while an alternate core-disjoint
patht ′ r ′1 r ′2 p2 is at a distancee+y+ f , leading to

e+y+ f ≥ δ(c+x+d) (8)

t ′  p2 is at a distancec+ x+ b, while an alternate core-disjoint
patht ′ r1 r2 p2 is at a distancee+y+h, leading to

e+y+h≥ δ(c+x+b) (9)

Now adding the inequalities in Equations 6–9, we get

(a+b+c+d+e+ f +2·x+2·y)≥ δ(a+b+c+d+e+ f +2·x+2·y)
As, (a+ b+ c+ d+ e+ f + 2 · x+ 2 · y) > 0, we getδ = 1, which
contradicts our assumption thatδ > 1. Hence, case-2 is infeasible.
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Figure 6: a) r, r ′ ∈ u1 t, such that r = r1 = p1, r ′ = r ′1 = p2,
and t ′ is the branch-out vertex ofπ3 (π4) with respect toπ4 (π3),
b) the only feasible configuration is whenr = r ′ and t = t ′

We now examine case-3, whenr1, r2, p1 ∈ u1 t. First of all,
we can trivially show thatr2 = t, and p1 = r1. Let r ′1 and r ′2 be
incoming and outgoing vertices ofπ4 with respect toπ1. Let p2
be the incoming vertex ofπ4 with respect toπ2. Upon addingπ4,
we can further show that thatr ′1 = p2 andr ′2 = t. Let r ′ = r ′1 = p2,
r = r1 = p1, andt ′ is the branch-out vertex ofπ3 (π4) with respect
to π4 (π3). The resulting configuration is shown in Figure 6a.

We can now further claim thatr = r ′, failing which there would
be two shortest paths fromu2 to r ′ or alternately, fromu2 to r, if
r ′ ∈ u1  r. Hence, the only feasible configuration is shown in
Figure 6b, wherer is the incoming vertex ofπ3 andπ4 with respect
to π1 andπ2, andt = t ′ is the common vertex to the four shortest
paths.

4.4 Size of the Oracles
In this Section, we prove a key property of path-coherent net-

works that a WSPD of a spatial network using a network distance
function for a suitable value ofs is a PCP decomposition.

LEMMA 4.8. Given a WSPD decomposition of a path-coherent
spatial network G(V,E) with a separation factor s> 2+ 2

δ−1 , such
that (A,B), is a WSP in the decomposition, then all the shortest
paths from source vertices in A to destination vertices in B pass
through one single common vertex. In other words, for s> 2+ 2

δ−1 ,
the WSPD of G is a PCP decomposition of G.

PROOF. We adopt the following strategy in proving this lemma.
Our initial configuration continues where we left off in Lemma 4.7.
We know for s > 2+ 2

δ−1 , the four shortest paths between two
source verticesu1 andu2 in A, and destination verticesv1 andv2 in
B pass through a single common vertext. We will now keep adding
one additional destination vertex fromB to this arrangement, in no



particular order, until all the shortest paths fromu1 andu2 to all
vertices inB have been accounted for. We then start adding one
additional source vertex at a time fromA to the arrangement, until
all the possible shortest paths fromA to B have been account for.
At the end of it, we will show that there will still be one vertex that
is in common to all the shortest paths.

Supposeu1, u2 ∈ A are source vertices andv1,v2 ∈ B are desti-
nation vertices such that the four possible shortest paths between
them areπ1 = πG(u1,v1), π2 = πG(u1,v2), π3 = πG(u2,v1), and
π4 = πG(u2,v2). Let t be the common vertex to the four shortest
paths and corresponds to the branch-out vertex ofπ1 with respect
to π2. Also, r is the incoming vertex ofπ1 andπ3 with respect to
π2 andπ4.

We claim that the addition of an additional vertexv3 ∈ B, may
potentially replacet with another vertext ′, such thatt ′ ∈ r  t.
Thus, after all verticesv∈Bhave been added,r ∈ u1 t would still
have a vertex in common. With the addition of all the destination
vertices inB, we would have accounted for the shortest paths from
u1 andu2 to all destination vertices inB.

Let v3 be a destination vertex inB. Let π5 = πG(u1,v3), and
π6 = πG(u2,v3) be the shortest paths fromu1 andu2 to v3. Let t1
be the branch-out vertex ofπ5 with respect toπ1 andπ3. Let t2 be
the branch-out vertex ofπ6 with respect toπ2 andπ4.

In the three cases below, the addition ofv3 does not affectt.

• If t1 ∈ t v1 andt1 6= t, thent2 = t.

• If t2 ∈ t v2 andt2 6= t, thent1 = t.

• t1 = t2 = t.

If t1,t2 ∈ r  t, thent1 must be equal tot2. Let t ′ = t1 = t2. We
replacet with t ′, v1 (or v2) with v3. This resulting configuration
would still resemble Figure 4.

The final case is whent1 is the branch-out vertex ofπ5 with
respect toπ1 andπ2, and letr1, r2 be the incoming and branch-out
vertex ofπ5 with respect toπ3 andπ4. Similarly, let r ′1, r

′
2 be the

incoming and branch-out vertex ofπ6 with respect toπ1 andπ2,
and lett2 be the branch-out vertex ofπ6 with respect toπ3 andπ4.
The resulting configuration resembles Figure 5, which is only true
is δ = 1, which is a contradiction.

We have shown that an addition of a destination vertexv3, either
does not affectt, in which case, it can be ignored, or replacest with
t ′ ∈ r  t. After all the destination vertices have been added,r
would still satisfyr ∈ u1 t andr ∈ u2 t.

Adding the a source verticesu3 in A to the setup in Figure 4b is
symmetric to adding a destination vertexv3, although the insertion
of u3 may affectr instead oft. In effect, after all the source vertices
in A have been accounted for, all the shortest paths fromA to B pass
throught, which means that the WSP(A,B) is a PCP.

An immediate consequence of Lemma 4.8 is that for the separa-
tion factors> 2+ 2

δ−1 , the WSPD is, in fact, a PCP decomposition.
That is — the shortest paths between all sources inA to all destina-
tions inB in a WSP(A,B) pass through a single common vertex or
an edge. We now show that given such a decomposition, the short-
est path between any vertex pair can be retrieved inO(k logn) time,
wherek is the length of the shortest path.

THEOREM 4.9. Given a PCP decomposition of a path-coherent
spatial network G(V,E) which is of size O(sdn) by Lemma 4.2, the
shortest path between any vertex pair in V can be retrieved from
the decomposition in O(k logn) time, where k is the length of the
shortest path.

PROOF. Assume a PCP(A,B,Ψ,λ) in the decomposition of a
spatial network of sizel such thatA,B are nodes in the PR-quadtree
on the spatial positions ofV. The pairA,B is represented as a Mor-
ton block. which is then stored in a B-tree or a B+-tree, termed
a linear quadtree [10]. Given a sourceu ∈ V and a destination
t ∈ V, the PCP containingu and t is retrieved by invoking a bi-
nary search on the linear quadtree, which takesO(logl) time. The
entire shortest path can be obtained recursively inO(k logl) time,
wherek = |πG(u,t)|. As l = O(sdn) from Lemma 4.2, the shortest
path between any pair of vertices inG can be retrieved inO(k logn)
time.

This leads to the main result of this paper:

THEOREM 4.10. A path oracle of a path-coherent spatial net-
work of size O(sdn) can be constructed that can retrieve an inter-
mediate link of a shortest path in O(logn) time using a B-tree.

Below, we repeat the size bound of anε-approximate distance
oracle from [13]:

THEOREM 4.11. Anε-approximate distance oracle of a spatial
network of size O(( 1

ε )dn) can be constructed that can retrieve anε-
approximate network distance between a source and a destination
in O(logn) time using a B-tree. [13]

Combining Theorems 4.10 and 4.11, we can now obtain the size
of a path-distance oracle.

THEOREM 4.12. An ε-approximate path-distance oracle of a

path-coherent spatial network of size O(n ·max(sd,
1
ε

d
)) can be

constructed that can retrieve an intermediate link as well as an
ε-approximate network distance in O(logn) time using a B-tree.

PROOF. A path oracle is a WSPD ofV with a separation fac-
tor s> 2+ 2

δ−1. The distance oracle is also a WSPD ofV with a

separation factor of2ε . During the construction of a path-distance
oracle in Algorithm 1, a PCP is decomposed until both the path
constraint (i.e.,Ψ exists) and the distance constraint (i.e.,λ is anε-
approximation) are fulfilled. Hence, the size of the oracle is upper-

bounded byO(n·max(sd,
1
ε

d
)).

The access times can be further improved toO(1) by making
use of a hash table that takesO(sdnlogn) for path oracles and

O(nlogn·max(sd,
1
ε

d
)) for path-distance oracles. For more details,

see [12].

4.5 PCP Decomposition of Regular Grids
We now derive the size of the PCP decomposition of a spatial

network that is a regular grid.

w

v

A B

DC

Figure 7: A spatial network G which is a regular grid. v and
w are vertices in G. A,B,C and D are blocks resulting from
the partition of the embedding space spanned byG into 4 con-
gruent blocks. Notice thatw is an intermediate vertex on the
shortest paths fromA to B, B to C, C to B, and D to A



LEMMA 4.13. Given a spatial network G which is a regular
grid, the PCP decomposition of G take O(n

√
n) space.

PROOF. Let G be a spatial network which is a regular grid con-
taining n vertices as shown in Figure 7. LetA,B,C andD be the
blocks resulting from the partition of the embedding space spanned
by G into 4 congruent blocks. All the shortest paths fromA to B, B
toC, C to B, andD to A pass through the common vertexw and are
recorded using four Morton blocks. However, the shortest paths be-
tween the pairs(A,A), (A,B), (A,C), (B,B), (B,D), (C,C), (C,D),
and(D,D) would still have to captured. However, each of the above
eight pairs is a smaller instance of the original problem (one-fourth
the size), and hence the total storage required by the PCP decom-
position ofG in terms of Morton blocks can be represented by the
solution of the following recurrence relation:

T(n) = 8T(
n
4
)+2 (10)

Solving Equation 10, we obtain that then2 shortest paths inG can
be captured usingn

√
n+n Morton blocks.

5. EXPERIMENTS
In this Section, we evaluate the performance of the oracles ob-

tained by decomposing a spatial network into a set of PCPs. Us-
ing this approach, we construct three oracles — path, distance and
path-distance — that capture the shortest paths and distances be-
tween every pair of vertices in a spatial network. In particular, we
will show that the empirical evaluations closely follow ourtheoret-
ical results. Furthermore, we compare the oracles with the SILC
framework [11] which is the only other approach that takes advan-
tage of path coherence in spatial networks. The oracles introduced
in this paper capture the coherence in the shortest paths from mul-
tiple sources to multiple destinations, which is in contrast to the
SILC framework that only captures the coherence between a single
source vertex to multiple destination vertices. Note, however, that
SILC is still a superior data structure when it comes to querypro-
cessing such ask nearest neighbor finding as refinements in SILC
result in the retrieval of the next link in the shortest path which
means that the refined network distance is a composition of anex-
act network distance between the source and intermediate vertices,
and a network distance interval between the intermediate and desti-
nation vertices. In the case of the path-distance oracles, refinement
results in the composition of twoε-approximate network distances,
which means that refinements in the path-distance oracles may not
be as effective as the SILC framework. We compare the sizes of
these two approaches and show that the path oracles yield a smaller
representation.

The experiments were carried out on a Linux (2.4.2 kernel) quad
2.4 GHz Xeon server with one gigabyte of RAM. We implemented
our algorithms using GNU C++. A number of publicly available
road network datasets were used in the evaluation. These were ob-
tained from the US Tiger Census [15] and the National Atlas [16]
websites. Some of the datasets that we used are given in Figure 8a.
In particular, we used a dataset containing all the major roads in the
USA (i.e., more than 380,000 vertices and 400,000 edges). Sam-
ple random rectangular regions were drawn from the dataset and
the road network segments contained completely within themwere
extracted to serve as inputs to the evaluation of our algorithm. By
taking the samples at random we were able to account for varia-
tions such as rural versus urban, and various spatial arrangements
of vertices such as those lying on a regular grid.

In this paper, we derived the size of the path oracles in termsof
δ, which is the minimum of the ratio of the network distance to
the spatial distance recorded over every pair of vertices ina spatial

(a)

(b)

Dataset n Oracle Size (Sw) seff
Silver Spring (SS) 4233 277,918 8.1
Washington (DC) 12304 1,695,600 11.7
Boston (BOS) 17397 1,605,074 9.6
Manhattan (MAN) 39604 5,932,839 12.2
East Coast (EAS) 91113 15,306,561 12.9
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Figure 8: a) Various urban datasets and b) the percent-
ages of shortest paths in them as a function ofδ f

:

network. Our theoretical model is only applicable to those spatial
network that are path-coherent, which, in other words, means that
their δ value is greater than 1. Road networks are not always path-
coherent as there may be a small set of vertex pairs with shortest
core-disjoint paths of the same lengths, which means that the value
of δ of such networks is 1. However, this does not mean that the
analysis performed in this paper is not applicable to them. In order
to explain why this is the case, we first compute a function foreach
of the input spatial network datasets in the evaluation which records
the the ratioδ f of the network and spatial distance between pairs
of vertices as a percentage of the totaln2 shortest paths in a spa-
tial network withn vertices. Note that the minimumδ f value of a
road network is itsδ value, which is usually 1. Figure 8b shows the
δ f value distribution of some of the various urban datasets given
in Figure 8a. Some of the datasets, especially the road networks
of Manhattan (MAN) and Boston (BOS), have a large number of
vertices lying on a regular grid. We remind the reader that sub-
graphs of road networks that are regular grids will have several
source and destination vertex pairs with multiple alternate shortest
core-disjoint paths of the same length. The MAN dataset, in partic-
ular, has a larger percentage of shortest paths withδ f values very
close to 1 compared to the SS, BOS and DC datasets. Figure 8a
records the number of verticesn and the resulting size of the path
oracleSw in terms of number of PCPs. In addition, we provide the
effective separationfactor seff of the road network datasets which
is defined to be the square-root of the ratio of size of the pathora-
cle Sw, i.e., the number of PCPs, to the number of verticesn, i.e.,

seff =
√

Sw
n . The seff value of MAN dataset (from Figure 8a) is

12.2 and not unbounded as the theoretical results suggest. It isim-
portant to note that even though the MAN dataset represents abad
case scenario for our algorithm, theseff value of the MAN dataset
is within acceptable limits. This is because 75.1% of the shortest
paths in the MAN dataset haveδ f values greater than 1.5, which
makes our model of a path-coherent spatial network applicable to
datasets such as MAN. In other words, what we have shown is that
the size of the path oracle depends more on the average value of
δ f , and not so much on theδ value, which is 1 for almost all road
networks datasets. Moreover, notice that the values ofseff did not
change considerably between DC and EAS even though the size
of the road network dataset essentially increased by a factor of 8.
This validates our result in Theorem 4.10 that the size of these or-
acles are linear inn which means that the size of the path oracle
normalized byn is a value that is independent ofn.

Next, we further investigate the effect ofn on the size of the
path, distance, and path-distance oracles. Figure 9a–c shows that
asn varies, the number of PCPs that make up these oracles, nor-
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Figure 9: Effective separation factorseff of a) path, b) distance,
and c) path-distance oracles forε = 0.2 on road networks of
varying sizes. d) A comparison of the sizes of path oracles and
SILC framework for varying n

malized byn, is more or less a constant value. This value, known
as the effective separation factorseff, depends only on the nature of
the spatial network and not onn. It is seen that theseff values for all
three oracles are more or less constant, independent ofn, indicating
that the size of the oracles is linear in the size of the road network.
The seff values of the path oracle in Figure 9a lies between 8 and
15 (average: 12), the distance oracle in Figure 9b forε = 0.2 lies
between 5 and 8 (average: 6), and the path-distance oracle inFig-
ure 9c forε = 0.2 lies between 8 and 15 (average: 12). Note that,
although incidental, the path and path-distance oracles for ε=0.2
are more or less of the same size, which means that path oracles
associated with approximate distance information will operate at
20% error rates without incurring significant additional space, but
the quality can be further improved by expending more storage.
We also compared the size of the path oracle with that of the SILC
framework in Figure 9d for various road networks of comparable
sizes. Observe that the size of path oracle, normalized byn, is more
or less constant asn varies, while the size of the SILC framework,
normalized byn, steadily increases withn. In particular, the size
of a path oracle for the EAS dataset is less than 50% of the SILC
framework. Much higher savings are expected when we apply these
two techniques on larger network datasets such as the road network
of US as the storage complexity of the SILC framework isO(n

√
n),

while our representation is linear inn.
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Figure 10: Observed a) maximum, b) average, and c) standard
deviation of the errors of distance oracles and their average ac-
cess times forε=0.2 and varying values ofn

We now study the quality of the distance approximations pro-

duced by our use of the distance oracles. Figure 10a–c shows the
observed maximum, average and standard deviation errors com-
puted over 100,000ε-approximate network distance queries on dis-
tance oracles withε = 0.2 for varying values ofn. Note that the
distance oracles (produced by Algorithm 1) do not store any path
information. Distance oracles forε = 0.2 (20%) have a maximum
observed error of about 16%, an average observed error of around
3%, and an observed standard deviation of about 6%. Moreover,
Figure 10d shows that anε-approximate network distance between
a given source and destination can be retrieved in 10–35µ seconds
using our distance oracle.
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Figure 11: Observed a) maximum, b) average, and c) standard
deviation of the errors in the network distance when using the
path-distance oracles and their average access times forε=0.2
and varying values ofn

Next, we studied the observed errors in the network distances as-
sociated with the use of the path-distance oracle. Recall that a path-
distance oracle combines a path oracle with a distance oracle which
means that given a sources and a destinationw, the path-distance
oracle provides an intermediate vertex in the shortest pathfrom s
to w as well as anε-approximation of the network distance along
this path. Figure 11a–c shows the observed maximum, averageand
standard deviation errors obtained due the use of the path-distance
oracle withε = 0.2 measured over 100,000ε-approximate network
distance queries for varying values ofn. The observed maximum
error was about 16%, the average error was around 3%, and the
standard deviation was about 6%. Moreover, Figure 11d showsthat
the access time lies in the range of 10–40µ seconds which grace-
fully increased withn.
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Figure 12: a) Effective separation factorseff and the b) average
access times of path-distance oracles on the EAS dataset for
varying values ofε

Figure 12 shows the effect of varyingε on the size and the access
times when applying the path-distance oracles to the EAS dataset.
Recall that this dataset contains all the important roads inthe east-
ern seaboard states of the US, consisting of 91,113 verticesand
114,176 edges. From Theorem 4.12, we know that the size of the

path-distance oracle is given byO(n ·max(s2
,

1
ε

2
)). In Figure 12a,



we showseff, the effective separation factor, of the path-distance
oracle for various values ofε between 0.5 (50%) and 0.01 (1%).
Note that the process of computing the path-distance and path or-
acles in Algorithm 1 depends on the satisfaction of both the path
and distance constraints. In order to evaluate the additional decom-
position incurred due to the increased precisionε required by the
path-distance oracle, Figure 12a separates the costs of these two
oracles. We use a broken line to depict the cost of the path oracle
which is seen to be constant as there is no decomposition due to
the distance constraint. On the other hand, the path-distance ora-
cle requires more space as the precision increases (i.e.,ε decreases)
although little extra space is required for values ofε between 0.5
(50%) and 0.3 (30%). We note that from our experimental anal-
ysis that the size of the path oracle for road networks is roughly

captured byO(n ·max(122, 2.5
ε

2
)). Moreover, the average access

time, shown in Figure 12b, to obtain an intermediate vertex as well
as anε-approximate network distance lies in the range of 30–35µ
seconds that stays more or less the same with decreasingε.

Finally, we examine the errors resulting from the use of the path-
distance oracle for the EAS dataset for varying values ofε. Fig-
ure 13 shows the observed maximum, average, and standard devia-
tion errors of path-distance oracles obtained by varying the values
of ε between 0.5 (50%) and 0.01 (1%). Figure 13a–b shows that the
observed maximum and average errors are less thanε (depicted by
a broken line) and the standard deviation in Figure 13c is relatively
low. For example, the path-distance oracle for the EAS dataset
with ε=0.05 (5%), has an observed maximum error of about 4.7%.
Moreover, from Figure 13d, we see that we can answer queries in
about 30µ seconds, on the average, with an observed average error
of 1.1% and a standard deviation of 1.9%.
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Figure 13: Observed a) maximum, b) average, and c) standard
deviation of the errors of path-distance oracles and d) their av-
erage access times for varying values ofε on the EAS dataset

6. CONCLUDING REMARKS
In this paper, we introduced two linear-sized constructs termed

path and path-distance oracles that represent then2 shortest paths in
a spatial network concisely. The key idea is to exploit the observed
coherencebetween the spatial positions of vertices and their inter-
connectivity. This enabled the decomposition of a spatial network
into groups of source and destination vertices, called path-coherent
pairs, that share common vertices in their shortest paths. With
the aid of the well-separated pair decomposition method, wecon-
structed a path oracle that takesO(s2n) space (s> 2+ 2

δ−1 for δ > 1

and empirically is 122n), but which can retrieve an intermediate
link in the shortest path between a source and a destination vertex
in O(logn) time using a B-tree. We also introduced another repre-

sentation called a path-distance oracle that takesO(n·max(s2, 1
ε

2
))

space (empiricallyn·max(122, 2.5
ε

2
)) but which can yield an inter-

mediate link in the shortest path as well as anε-approximation of
the network distance inO(logn) time using a B-tree. The average
access time for the oracles was on the order of tens of microsec-
onds. We can further reduce the access time of the path and path-
distance oracles toO(1) using a hash table of sizeO(s2nlogn) for

the path oracle andO(nlogn·max(s2, 1
ε

2
)) for the path-distance or-

acle [12]. The result of our work is that now shortest paths can be
retrieved by making repeated SQL SELECT operations on the or-
acle relations which are stored in a database. Even more complex
query processing scenarios on spatial networks can be performed
by using the initialε-approximation of the network distances, and
performing subsequentrefinementoperations on the distances to
improve the approximation. Such a strategy was adopted in the
SILC framework [11] which is also applicable to the path and path-
distance oracles. Future work includes investigating the perfor-
mance of various operations, such as region search, nearestneigh-
bor finding and distance joins, on road networks in the context of a
database system using our path-distance oracles.
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