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ABSTRACT

The advent of location-based services has led to an indealese
mand for performing operations on spatial networks in riaét
The challenge lies in being able to cast operations on $patta
works in terms of relational operators so that they can bfopaed

in the context of a database. A linear-sized construct terangath
oracle is introduced that compactly encodes rifeshortest paths
between every pair of vertices in a spatial network havirgrtices
thereby reducing each of the paths to a single tuple in aioaklt
database and enables finding shortest paths by repeatéchsippl
of a single SQL SELECT operator. The construction of the path
oracle is based on the observed coherence between thd ppatia
tions of both source and destination vertices and the s$tqrtghs
between them which facilitates the aggregation of sourdedasti-
nation vertices into groups that share common verticesgedn
the shortest paths between them. With the aid of the Wela&epd
Pair (WSP) technique, which has been applied to spatialork&sy
using the network distance measure, a path oracle is prdpbae
takesO(sdn) space, whereis empirically estimated to be around
12 for road networks, but that can retrieve an intermediateih

a shortest path i@(logn) time using a B-tree. An additional con-

. 1d
struct termed the path-distance oracle of sdi@- maxs9, £ )
(empirically (n- max(122, %2))) is proposed that can retrieve an
intermediate vertex as well as arapproximation of the network

distances irO(logn) time using a B-tree. Experimental results in-
dicate that the proposed oracles are linean iwhich means that

narios on massive spatial network datasets.
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1. INTRODUCTION

The trend towards smaller and smaller computing platfoams,
well as the concomitant increase in their power, has led tman
creasing interest in their use to facilitate the mobilityttogir own-
ers. This has resulted in the development of a new component
of the software industry known collectively as locatiorséd ser-
vices. Such services can be used to continuously monitar eve
changing user positions as well as their destinations, aodde
up-to-the-minute (second) information about their enwinent, as
well as paths to their destinations. This is especially ulsefan
emergency response environment where destination, or,ravee
drastically, the destinations may change given the evanging
conditions on the ground. The challenge in providing thisrima-
tion lies in the fact that these paths are not simple to compst
obviously we want to take the shortest paths, and the tastdnice
is computed along a network instead of “as the crow flies.”

In fact, these changes may happen so fast that we may not even
have enough time to compute the exact answer and thus must re-
sort to estimates (i.e., approximate answers) with someagtee
of optimality (i.e., within some tolerana. Moreover, in these sit-
uations, there is a need to interact with a multitude of imfation
sources such as road networks, building diagrams, serveasa
etc. Increasingly, these information sources are storedtiabases
that must be accessible using a common interface (i.e.u&aye),
most often some variant of SQL.

In this paper we address how to find shortest paths in such
a dynamically changing environment which is only the firgpst
in being able to perform a wide variety of operations on gpati
networks such as region searches [9, 10], nearest neighizbr fi
ing [2,3,7,9-11] and distance joins [9]. The problem is fivad-
ing shortest paths and distances invariably involve a bganacess
(e.g., via use of a shortest path algorithm [5, 6, 17]), whadkes
quite a bit of time, and is not a satisfactory solution in tewhdata
that is organized using a relational database and is actesse
SELECT operations. Our solution is based on precomputieg th
shortest paths between all possible sources and destisatiad
encoding them in a compact form which lends itself to beiogest
and retrieved in/from a conventional relational database.

Our results are a natural extension of our earlier work tctd
the formulation of the concept of the shortest-path map,sshep-
resentation by the shortest-path quadtree, enabled uduoeehe
necessary storage for the set of all of the shortest paths@m®)
to O(n'®) [11]. This was achieved by taking advantage of the fact
that the shortest paths from a particular vextéx all of the remain-
ing vertices can be partitioned intsubsets depending on the iden-
tity of the first edge (there aiesuch edges) on the shortest paths to
them fromv (e.g., Figure 1). We characterize this as taking advan-



tage of thepath coherencef the destination vertices. The shortest
paths are derived by an iterative process that repeatediy fhe
next edge to the destination and thus lends itself to a dsgedziu-
tion (i.e., the repeated retrieval of information) rathart a graph
search. In particular, the process is several times falsér ton-
ventional graph-based solutions [9], and also casts a ritanbe
between offline and online computation of the shortest paths

Figure 1: Space partition induced by aggregating verticestsar-
ing the same first link in the shortest path from a given source
vertex in the road network of Silver Spring, MD

In this paper we expand on this work to reduce the space equir
ments fromO(n’®) to O(n) by also capturing the path coherence
of the source vertices, instead of just the path coherentteeafes-
tination vertices. Our motivation can be seen by observiva t
someone who is driving along the shortest route from the iNort
east of the US to the Northwest Coast of the US will invariadig
up using Highway 1-80 West. This path coherence is most etide
when the sources and destinations are sufficiently far apane

sizesn (for which s turned out to lie in the range 8-15), the size
of the path-distance oracle is aboutizand provides answers in
10-35pseconds fore = 20%. Whene was allowed to vary be-
tween 1 and 50%, anmdwas kept constant at 91,113, the size of the

path-distance oracle was max(122, %2) and provided answers
in 30—35pseconds.

The significance of our work lies in demonstrating that short
est paths can be calculated by repeated SQL SELECT operators
Moreover, by having the ability to refine the paths, we ca als
refine the network distance value, which is an improvement on
our earlier result [13] that only provided one predicted ragp
mate distance value. This ability to refine the distance lesals
to obtain exact values and thereby enables obtaining esetber
than approximate, responses to a number of spatial queides v
SQL relational operators. Our path-distance oracle on &iadpa
network is related to oracles on other kinds of graphs (gen-
eral graphs [14]) as well as to those that view spatial neksvas
a general metric space and apply an embedding method [8]. The
interested reader is referred to [13] for a more a detailsdudision
of these related methods.

The oracles proposed in this paper, and our earlier effoitts w
shortest-path quadtrees [11] and distance oracles [18hrtEom
the existing literature in three fundamental ways. Firsilbfmeth-
ods [5, 6, 17] that speed up shortest-path finding do so byt-limi
ing the search space on a general graph. Precomputatiore of th
shortest-paths obviates the need to search, and insteladeeit

road network. As an example, of the amount of space that can berth a retrieval process which is much faster. Next, traditional

potentially saved, suppose that we have one million soudices
and one million destination vertices. If for each such péiver-
tices, we store a vertex on 1-80 West, then we would incur mg®
cost of 132 pieces of information, while when using our path co-
herence techniques, we can achieve thi®(f) space by virtue of
storing just one item of information for the set of verticesthe
Northeast Coast, one intermediate vertex, and one itenfahma-
tion for the set of vertices on the Northwest Coast. Figurs &ni
example of such a configuration of a set of sources and déstisa
that share vertices in the shortest paths resulting inrggquartial
path information of 30,000 shortest paths us®(L) storage. In
the rest of the paper we show that for a spatial network of sjze
there ar@D(n) such groups oD(1) size that capture all of th@(n?)
shortest paths of the network. This partitioning of theices into
appropriate subsets of source and destination verticeshis\ed
by appealing to the Well-Separated Pair (WSP) decompaditip
and conditions under which it is satisfied for a spatial nekware
specified here. Our presentation uses the teracle to describe
a data structure, or representation, or a relation in a datathat
captures all the shortest paths. We describe three suclesrac

First, given a source and a destination vertex in a spattalar&

G, and lettingsbe a factor depending @B, we present a path oracle
of size O(s?n) that enables the retrieval of an intermediate vertex
on the shortest path between themQlogn) time. This is done
via use of a B-tree.

Next, we make use of an earlier result of ours [13] that for
a source and a destination vertex in a spatial netwayrkan €-
approximate distance oracle that requiﬁ{%%) space can be con-
structed that enables the retrieval of a network distanteds the
two vertices that lies withig of the true network distance between
them inO(logn) time.

Finally, the main result of this paper is the combination tue t
above two oracles to define a path-distance oracle that cadpr
both an intermediate vertex, as well asaapproximate distance in
O(logn) time usingO(n- max(s?, g%)) space via the use of a B-tree.

Experimental results show that for road networks of diffiere

query processing on spatial network is made up of graphebase
approaches [2, 3,9]. Query processing using the oracleghend
shortest-path quadtree instead perform operations teapurely
spatial in nature and hence, more suitable for incorpanatito a
database. Finally, once our representation is computed fma-
tial network it can be used in conjunction with any datasesraf-
ties (e.g., restaurants, coffee shops) that lie on theapatwork
as long as the network itself remains unchanged which igrdiff
ent from other precomputational efforts (e.g., [7]) thajuiee a
renewed precomputational effort every time a dataset ingdd
or a new dataset is introduced.

The rest of this paper is organized as follows. Section 2igesv
some definitions. Section 3 expands on the notion of patlereot
pairs, the construction of the various oracles, and alswsHmw
a number of spatial queries can be implemented via SQL oelati
operators. Section 4 contains an analysis of the storagéreeq
ments of the decomposition of a spatial network into a setattip
coherent pairs by appealing to the equivalence betweendtie p
coherent pair decomposition of a spatial network and the \WSP
composition of a point set. The results of experiments aedised
in Section 5, while conclusions are drawn in Section 6.

2. PRELIMINARIES

Spatial networks are general graphs whose vertices and adge
augmented with spatial information. L&denote al-dimensional
embedding spacé.e., a reference coordinate system), which is
two-dimensional for road networks. A spatial network carabe
stracted to form an equivalent graph representaGos (V,E),
whereV is the set of vertices: is the set of edges) = |V|, and
m= |E|. Given edgee € E, w(e) > 0 denotes the distance aloag
In addition, for everw €V, p(v) denotes the spatial position of
with respect t&.

A pathttof lengthk is a sequence of verticésy, ..., Tk, 1) such
that (T5,1M1) € E for 1 <i < k. We refer tory as thesource
vertex of rtand refer torg, 1 as thedestinationvertex of . Let



1(u,v) denote a path (not necessarily the shortest path) wak

its source vertex and as its destination vertex. The sequence of
edges that make up the pathis denoted by the sequend€r),
whered; (1) = (15, T541). Furthermore, theveight w(tr) of a pathrt

of lengthk is w(1r) = z};lw(q;i (1)). Two pathsg (v,t) andmp(t,u)

can be composed to form another patdenoted by ~ ™. A
subpathof a pathrtis a subsequence of The set of vertices that
make up the shortest path between a pair of verticesc V is
denoted byrig(u,v). Also, any subpath(r,t) of Tig(u,Vv) is also
the shortest path betweenandt. If there are multiple shortest

t € B passes through a particular set of vertices. Two sets atesrt

A, B are said to form #@ath-Coherent Pair (PCPif and only if all

the shortest paths from source verticeg\ito destination vertices

in B have at least one vertex or one edge in common as shown in
Figure 2. Our path oracle relies on the decomposing a givatiadp
networkG into path-coherent pairs such that they capture alhthe
shortest paths .

3.1 Definition of Path-Coherent Pairs
The arrangement of vertices and shortest paths in Figure 2 de

paths of the same length between vertex pairs, extra caré mus scribes adumbbeHlike structure. APath-Coherent PaifPCP)

be taken to ensure that the above property holds. In sucls,case
the first path in the lexicographic ordering on the set of fss
shortest paths is chosen, such that the ordering is definghtas
(w(m), k,reversém)), where the reverse operator takes an ordered
set as input and reverses its ordering. Furthermore, twoesegs

™ andrp aredisjoint, if and only if Ty N, = @. Notice that if two
pathsm (v,t) andTi(t,u) are disjoint from a patit* then the path

m ~ T is also disjoint fromrt". Moreover, ifTy is disjoint from

T then any subpath af; is also disjoint fronTtp,.

For verticesu,v € V, we definedg (u,v) = w(Tig(u,V)) to be the
shortest network distandeom u to v with respect taG(V, E). We
define the spatial distandg(u,v) (i.e., “as the crow flies”) between
verticesu,v €V in a spatial network as a function @{u) andp(v).

We also defindy(v) to be thenext vertexvisited (afteru) on the
shortest path fronu to v. Note that the first edge on the shortest
path fromu tovis (u,ly(v)).

Let T be the root block of a PR-quadtrét (e.g., [10]) on the
spatial positions of the verticd& A PR-quadtree is a hierarchical
decomposition of the embedding spa&&euch that every block is
decomposed into®children blocks until deaf block is obtained,
which corresponds to a region in space containing a singtexe
inV. A non-leafblock inH, on the other hand, represents a region
in the embedding space containing a subset of vertices (thare
one) inV. We can devise an addressing scheme for a bioli
a bit-encoding obtained by concatenating the bits cormdipg to
the path taken to readhfrom the root blockT . This representation,
also known as the MRTON BLOCKS[10], is used by us in order to
uniquely identify blocks in a PR-quadtree.

3. PATH-COHERENT PAIRS

Figure 2: The 30,000 shortest paths between two subseisB of
vertices in a road network of Silver Spring, MD pass through a
single common vertex

We observe that vertices in a spatial network that are djyatia
close to one another share a number of common propertiesrin p
ticular, often two verticesl, v that are spatially close to each other
share large common segments of their shortest paths to tves ot
verticest,w that are also spatially close to each other, but far from

(A,B,¥, ) in a spatial networks(V, E) consists of a set of source
verticesA C V, a set of destination verticd&C V, a set¥ which
is a vertex or an edge such that all the shortest paths fromceou
vertices inA to destination vertices iB containW, A € Rt approx-
imates the network distances of all the shortest paths fkamB.
We refer toA andB as theheadsof the PCP. A PCRA,B,W,\)
belongs to one of the two possible configurations given below

o (AB,W={u},A), whereANB=@,ucV,u¢Aandu¢B

e (AB,W={<uv>} M), whereANB=g, <u,v>c E and
ugBandvg A

Note that any edge: u,v >€ E in G is a PCP of the fornfu,v, <
u,v>A).

3.2 PCP Decomposition

Given a spatial networts, we now perform aecomposition @
G of G, into a set of PCPs, such that the resulting decomposition
has the following properties given below:

1. GoG=_;(A,Bi,¥,\), where §,B;,W;,\) is a PCP
Vi=1,..1,suchthad=J!_; A andB=Ul_, B;.

2. ANNB)=2,vi=1,..1.

3. For any two PCP$A;, B, Wi, Aj), (Aj,Bj,Wj,Aj), 1<i<
j <l'in G® G, the resulting decomposition has the property
that (AjNA;j) x (BiNBj) = @. In other words, for any pair
of vertices(u,v), there exists a unique PGR;, B, W;,Aj) in
GRG,s.t. ue Aj,ve B.

The first property ensures that the decompositio® oésults in
a set containing PCPs, where thé" PCP in the decomposition
is denoted by A;, B, W;,Aj). The second property ensures that the
headsA; andB; of a PCP are disjoint. The third property ensures
that any pair of verticesu,v) in G is contained in exactly one of
the PCPs in the decomposition. This also means that the PCP de
composition contains all the? shortest paths is. This leads us
to the definition of path, distance and path-distance osacle

DEFINITION 1. A path oracle of a spatial network G is a PCP
decomposition of G.

DEFINITION 2. A path-distance oracle of a spatial network G
is a PCP decomposition of G of the forf#;, Bj, W;,Ai) with the
additional property that

(1—¢)-N <dg(u,v) < (1+¢€)-Aj,

u,v. We use the term path coherence to describe the coherencevhere ue A and ve B;. In other words, a path-distance oracle

between the shortest paths from nearby sources to nearigades
tions. Figure 2 shows a configuration of soufcand destinatioB
vertices such that every shortest path from a vanteXA to a vertex

stores a common intermediate vertex or edgein the shortest
paths from Ato B as well as are-approximation\; of the network
distances from Ato B;.



DEFINITION 3. A distance oracle [13] is a decomposition of
a spatial network G into triples of the forifA;, Bj,Aj) such that
A CV,B CV, AnB; =g, Aj is an&-approximation of the net-
work distances from&o B; and given any pair of source and des-
tination vertices, it is contained exactly in one of the legpin the
decomposition. In other words, the above decompositioimiges
to the path-distance oracles with the difference that, ralwthe
shortest paths from;Ao B; no longer have to pass through a single
common vertex or edge.

3.3 Oracle Construction

We now describe an algorithm for constructing path, diganc
and path-distance oracles. Algorithm 1 decomposes a kpatia
work G(V, E) into a set of PCPs. The algorithm takBsthe root
block T of a PR-quadtreél (e.g., [10]) on the spatial positions of
V, the type of oracle @ACLETYPE, and the quality of approxima-
tion € as inputs. The possible values foR@CLETYPE are RATH,
DISTANCE, or PATH-DISTANCE. The value of needs to be spec-
ified for distance and path-distance oracles, but is asstionieglo
for path oracles.

Let Q be a list of block-pairs, which is initialized with the pair
(T,T)inline 1. At each stage of the algorithm, a block-pgh; B)
is retrieved fromQ and examined in line 3. Note thAtandB cor-
respond to blocks in the PR-quadtree\onif A andB refer to the
same block (line 4) and (andB) is a non-leaf block, then we in-
voke DECOMPOSEANDINSERTOperator withQ, A, andB. This
operator operator takes two blockandB and a listQ as inputs. It
first breaks upA andB into their 2 children blocks, forms all pos-
sible pairs obtained by taking non-empty children blockéaind
B which are then inserted intQ. Note that if the IECOMPOSE
ANDINSERTOperator is invoked oA andB such that one of them
is a LEAF block, it can be still broken up into®children blocks,
but all but one of the children blocks will be empty.

If AandB do not refer to the same block in the PR-quadtree, the
algorithm invokes the INDPATHCOHERENTPAIRS operator orA
andB in line 9 that returns, if it exists, a vertex or an edgehat
is common to the shortest paths from source vertices to des-
tination vertices irB, as well as an approximate network distance
A, and the maximum erragy in approximating the network dis-
tances by\. Optionally, we can also obtain the minimum error in
approximating the network distances between vertice’s amd B
by A. Both the values of_ andg_ can also be stored along with
the PCPs in the output. GivéA, B), efficient methods for comput-
ing A andey are described in [13]. One possible way of finding if
a common vertex or eddé€ exists is to compute the shortest path
from every pair of source vertices &to destination vertices iB
using Dijkstra’s algorithm and determine if there is a vedeedge
in common between all the shortest paths. If there is moredha
vertex in common to all the shortest paths then one of thécesrt
is chosen at random; preferably one not belonging to eflarB.

The case that an edge is common to all the shortest pathssoccur og

only if all the shortest paths pass through an edge v >, such
thatu € Aor {u} = A, andv e B or {v} =B. An example of such a
configuration arises if a bridge or a tunnel represented bydge
connects vertices belonging to two cities denoted\@andB. The
algorithm SRTH (Algorithm 2) that we propose for computing the
shortest paths will not work wheW is a vertex and i € A, or
WeB, or {W} =A or {W} =B. Similarly, if ¥ =<u,v>is an
edge, the algorithm will not worki € B or v € A. Algorithm 1
handles all these cases appropriately.

If ORACLETYPEIs DISTANCE (line 10), we examine if the qual-
ity of the approximatiorey is less than or equal to the desired ap-
proximatione. If so, we add the paifA,B,_,\) to the result set

using the RPORTPCP procedure. If not, we spl§ andB into
block-pairs formed by children blocks &fandB, which are then
inserted intaQ.

If ORACLETYPEis PATH, we check if¥ is empty in which case
(A,B) is not a valid PCP and the block-pdik B) has to be further
decomposed. ¥ is a vertex that does not belong to eitt#eor B,
we report it as a PCP, else we further decompose i # (u,v)
is an edge, we ensure thatZ B andv ¢ A, in which case it is
reported as a PCP. We point out that all other possible cases i
whenu € B, or/andv € A are all undesirable. Finally, if @ACLE-
TyYPE is PaTH-DISTANCE and (A, B,W,\) satisfies both the path
and distance constraints, it is added to the result set.

The algorithm terminates whe@ is empty at which point the
decomposition 06 into PCPs is complete. Note that our algorithm
breaks up botlA andB in a symmetric fashion which means that
the heads of the PCP in the output are at the same le\¢) and
consequently, of the same size.

Algorithm 1

Procedure PCPDECOMPOSHEG, T, ORACLETYPE, € = ]
Input: G(V,E) — Input spatial network

Input: T < Root node of a PR-quadtrééonV

Input: ORACLETYPE «+ PATH, DISTANCE, or PATH-DISTANCE
Input: € — Required approximatior if not specified

Output: Set of PCP$A B, W, A, [eL,€n]); [€L,€n] is optional

(x Q «list of block-pairs«)

1. INSERT(Q, (T,T))

2. while (ISNOTEMPTY(Q)) do

3 (A,B) —PoP(Q) (x Remove head elemer}

4 if A= Bthen

5. if ISNONLEAF(A) then

6 DECOMPOSEANDINSERT(Q, A, B)

7 end-if

8 else

9. (W,\,en, [eL]) < FINDPATHCOHERENTPAIRS(A, B)
10. if ORACLETYPE= DISTANCE Or PATHDISTANCE then
11. if g > €then

12. DeECOMPOSEANDINSERT(Q, A, B)

13. else ifORACLETYPE= DISTANCE then

14. REPORTPCPA,B,W, A, [eL,&H])

15. end-if

16. end-if

17. if ORACLETYPE= PATH or PATH-DISTANCE then
18. if ¥ =2 then

19. DeECOMPOSEANDINSERT(Q, A, B)

20. else if TYPE(W) = VERTEXthen

21. if WeAor{W}=Aor¥eBor{W} =Bthen
22. DECOMPOSEANDINSERT(Q, A, B)

23. else

24. REPORTPCPA,B,W, A, [eL,€H])

25. end-if

else if TYPE(W =< u,v >) = EDGE then

27. if u¢g Bandv ¢ Athen

28. REPORTPCRA,B,W =< u,v> A, [EL,€eH])
29. else

30. DECOMPOSEANDINSERT(Q, A, B)

31. end-if

32. end-if

33. end-if

34. end-if

35. end-while

It is not difficult to see that Algorithm 1 decompos€sinto
a set of PCPs that satisfies properties 1-3. Hence, given-a ver



tex paira,b, we are guaranteed that there exists exactly one PCP 3.

(A,B, ¥, ) in the output of Algorithm 1 such tha containsa, B
containsh, W is an intermediate vertex or edge in the shortest path
from a to b, andA approximates the network distance betwaen
andb.

3.4 The Oracle as a Database Relation

The REPORTP CP routine in Algorithm 1 stores the PCP decom-
position as a relatio® in a database system with the following
schema:Q(AB, Ig, VI, Es, E, A\), whereAB are the heads of the
PCP represented as a single four-dimensional Morton blecls
a Boolean flag that indicates if the tuple representing a R@Rs
an intermediate vertex or edge. H is set tofalse then Vi stores
an intermediate vertex, elseEs, EE> represents an intermedi-
ate edge. Finally, the value &f represents the approximate net-
work distance between the heads of the PCP. Recall that beth t
heads of the PCR andB, correspond to nodes of a PR-quadtree
onV. Hence,(A,B) can be compactly represented as a single four-
dimensional Morton block [10]. A four-dimensional Mortoiobk
ABof (A, B) is obtained by first constructing the Morton blocks cor-
responding t&A andB, and then bit-interleaving them to obtai.
Now, the attributeAB in the relationQ is indexed using a B-tree
or B-tree, and the resulting representation is known ésear
quadtre€[10], which is a disk-efficient access structure.

Given a sources and destinatiorv, we can obtain an interme-
diate vertex or edge in the shortest path betweemdv as well
as an approximate network distaric@sing the relatior® by first
constructing the four-dimensional Morton bloZ(u,v) of (u,V),
and using it to search the B-tree or" Bree onAB for the longest
prefix matcho Z4(u,v), whereZy(.,.) is a function that takes a pair
of two dimensional points and converts them into a single-fou
dimensional Morton block representation. Note tAat,.) can be
computed inO(1) time using bit-operations. Searching the index
on AB takes logarithmic time in the number of tuplesn We
will later show that this can be achieved @(logn) time as the
size of the oracle is linear in. The above operation corresponds
to a simple “SELECT” operator of. The shortest path betwean

end-if
SELECT E, V1, Es, EE FROMO WHEREAB = Z4(u,V)
if (1E =true) then

return SPATH(u, ES)~ <ES,EE>~~SPATH(EE, V)
else(x | = falsex)

return SPATH(u, V1)~ SPATH(V1,V)
. end-if

©CoNo g

3.6 Query Processing

We now outline how to incorporate a path-distance oracle
in a SQL-based system that can perform complex queries on a
spatial network using a relational database system.CLbe the
path-distance oracle with the schemAB, I, V1, Es, EE, A, €,
€H)- Notice that we have expanded on the schema from Section 3.4
by augmenting two additional attributes andey, g <ey <¢
which are the minimum and maximum errors, respectively, due
to approximating all the network distances fraginto B with A.

The value ofgp. andey can be trivially obtained by modifying the
procedure WDPATHCOHERENTPAIRS in Algorithm 1 (line 9)

to compute and associate it with a PCP. We also introduce a
refinemenbperator which when given a soure@nd destination,

can improve upon the quality of the approximation (knownles t
effective erroy provided byA by retrieving additional intermediate
vertices in the shortest path fromto v. Note that an approximate
error can be refined at mogttimes before the exact network
distance is obtained, whekas the number of intermediate vertices

in the shortest path betweenandv. Also, we assume that the
refinement operator will keep its own state information saslhe

set of intermediate vertices, effective error, etc., allwfich are
abstracted from the user of this system. In addition, werasegthat

a number of macros have been provided which given a source and
destination vertex, will keep invoking the refinement oparas
many times as needed to either achieve a predicted apprijaima
quality, or until a certain condition is satisfied. We make o$ a

few macros below, but due to space constraints, we assurhe tha
their workings are clear from their assigned descriptivees

andv can be retrieved by the repeated application of the SELECT Approximate Network Distance Query: Given source vertey

operation or), which is described next.

3.5 Finding Shortest Paths

Algorithm 2 takes a source vertedand a destination vertexas
inputs and retrieves the shortest patk(u,v) betweenu andv in
G. In lines 1-3, we check ifi andv are the same, in which case,
the algorithm returngu}. This is thebase casef the algorithm.
In line 4, using the Morton block,(u,v) of u,v as the search key
on the B-tree orAB, we can obtain tuple ifD(AB, IE, VI, Es, E,
M), such thatAB containsZs(u, V). Note that the nature of the PCP
decomposition guarantees that there will be exactly onemrag
tuple in O for any search key4(u,v). If A andB share an edge
(in which case & is set totrue as shown in lines 5-6)ig(u, V)
is represented as a composition of S3R(u,Es) ~ <Es, EE>
~» SPATH(EE, V), resulting in subsequent recursive calls to Algo-
rithm 2. If A andB share an intermediate vertex {in which case
IE is set tofalse), we recursively invoke two instances of Algorithm
SPTH with inputs(u, V1) and(V1,v) as shown in line 8.

Algorithm 2

Procedure SPATH[u, V]

Input: u,v « Source and Destination vertices
Output: Shortest pathig(u,v) betweeru andv
(x O(AB, Ig, V1, Es, B, A\) «—Oracle relationx)
1. if u=vthen (x Base case of the recursieh
2. return {u}

and destination verteg, find an intermediate vertex or edge, ap-
proximate network distance, and minimume;. and maximurney
errors due to the use of the approximation.

SELECT E, VI, Es, EE A, £, & FROMO WHEREAB = Z4(p,q)

n-approximate Network Distance Query: Given sourcep and
destinationg, find an approximate network distance with an ap-
proximation quality ofn or better. The macro REFINEINTIL
invokes the refinement operator until the desired appraxima

is attained.

SELECTA, €, ey FROMO WHEREAB= Z4(p, ) and
REFINELUNTIL(EFFECTIVEEERROROFQ.A) <n)

Region Search: Given a query locatiorg, find all restaurants
R(position, type that are within 10 miles 0of. The macro RE-

FINE_UNTIL _DECIDELIF invokes the refinement operator until it
is clear if a restaurant is within 10 miles gbr is not.

SELECTR position, A FROM O, RWHEREAB = Z4(q, R position) and
REFINE.UNTIL_DECIDE.IF(O.A < 10 miles)

k-Nearest Neighbor Search:Given a query locatiow, find thek
closest restaurants R(position, typé to q that servetalian cui-
sine. The results are produced by sorting on Xhealues using

a comparator (not given here) that is modified so that givem tw
restaurants at distancés andA,, the comparator refines boly
andA; until it is clear if A1 <A or A1 > As.



SELECTR position,A FROMO, R
WHEREAB = Z4(q, R.position) andR.type = “ltalian”
ORDER BYQ.A LIMIT k

Distance Join Operator: Suppose that in addition & we are also
given a relation of coffee shog3(position, typg. Now, find thek

closest pairs of restaurants and coffee shops. This ques/the
same sorting operator dnas in thek-nearest neighbor algorithm.

SELECTR position,Q.position,A FROMQ, R, Q

WHEREAB = Z4(R position Q.position)
ORDER BYQ.A LIMIT k

4. ANALYSIS

In this section, we provide bounds on the size of the decompo-
sition of G into PCPs by appealing to the equivalence between the
PCP decomposition of a spatial network and the WSP decompo-

sition of a point set. The rest of this section is organizedoks
lows. Section 4.1 introduces the concept of a Well-Sepdrassr
(WSP) decomposition of a point set. Next, Section 4.2 dpsb
model of a path-coherent spatial network and shows thatitiee s
of the WSPD using the network distance measure is linear. in
Section 4.3 discusses tf@ur coherent pathgroblem, using it in
Section 4.4 to arrive at our final result that the WSPD of aiapat
network for a suitable WSP parametric vakie a PCP decomposi-
tion. Finally, Section 4.5 derives the size of the PCP decsition
of a spatial network that is a regular grid, which is one ofpihab-
lematic cases of the PCP decomposition.

4.1 Preliminaries

Given a set of pointg, the diameter ofA is the maximum pos-
sible distance between any two points belongind\toSimilarly,
given two sets of point# and B, the minimum distancéetween
A andB is the minimum possible distance between any poirk in
to any point inB. Two sets of point#\ andB are said to bevell-
separatedf the minimum distance betweekandBiis at leass-r,
wheres > 0 is aseparation factoendr is the larger diameter of the
two sets. The paifA, B) is termed aVell-Separated PaifWSP). A
Well-Separated Pair DecompositigiSPD) of a point seR, de-
composeR into pairs of subsetéA, B), such that'p,qe S p # q,
there exists exactly one WSR, B), such thatp € A,q € B. Given
a point sefR in a d-dimensional space, we construct a WSPD of
R by first constructing a PR-quadtree [18]on R. For the sake
of simplicity, we assume thaR is contained in a unif0,1)d d-
dimensional hypercube. This hypercube forms the root blbck
of H. The PR-quadtree is constructed by recursively decomgosin
the block into 8 congruent children blocks. The process contin-
ues until each block contains a single point, in which casehér
subdivision is not possible. Unfortunately, if two pointe @lose
to one another iR, it may lead to a long path of trivial blocks of
which only one block would form an internal node. Callahad an
Kosaraju’s construction [1] did not incur this problem besathey
used a fair-split tree which is a data-dependent deconiposithis
problem is overcome by Fischer and Har-Peled [4] througlusige
of a variant of gpath compressequadtree which is obtained from
the PR-quadtree by compressing such trivial paths into orges
compressed link. The advantage of the path compressedrgeadt
over the PR-quadtree is that its use results in a tree withah b
O(n) nodes.

pair of vertices irV and lettingH be a PR-quadtree ah the max-
imum depth ofH is O(logA). Consequently, given a vertexin
V, the Morton block representation pfv), the spatial position of
v, would beO(logA) bits long. To cast this quantity in terms of
we note that even if the data is heavily skewed so thit linear
in n, the length of the Morton block of would still be O(logn).
We claim that this assumption fits closely with the actualuret
of real road networks. From a practical standpoint with eespo
our experience with road networks, we observe that the nuimm
geodesic distance between any two vertices on a road neigork
at least 1 meter. A PR-quadtree on a sphere corresponditng to t
Earth with radius 6378 km and depth 24, has a 1 meter resolatio
the equator. For such data, the size of the Morton block fartex
on the road network using geographical coordinates is at #®s
bits in length.

The following result is due to Callahan and Kosaraju [1] ared w
restate it below as Lemma 4.1, which is referenced in theesubs
quent discussion.

LEMMA 4.1. Given a point set R containing n d-dimensional
points, a fixed separation factor>s 2, the WSPD of R, R R has
O(s%n) WSPs [1]

4.2 Path-Coherent Spatial Networks

We now introduce the concept of Well-Separated Pair Decom-
position (WSPD) of a spatial network by first making two key as
sumptions about the nature of spatial networks. We firstragsu
that the ratio between the network and spatial distancesuisded
from both above and below (Assumption 1). Note that for amgmi
finite graph, we can always compute the valuegaindy,, albeit
large. The interested reader is referred to [13] for mettiod®m-
putey; andy, values of a spatial network.

dg(u,v)
ASSUMPTION 1. y1 < G

<vy2,uveV,y andy, > 0.

At this point, we show how to extend the notion of a well-
separated pair decomposition in terms of a spatial distenaee in
terms of a network distance. This is captured by Lemma 4 @bel

LEMMA 4.2. Given a WSPD with a separation factor s of the
vertices V of GV,E) based on a spatial distance also yields a
WSPD with a separation factor of sf V using a network distance
such that §=s- % [13].

DEFINITION 4. Two cycle free paths (u1,vy) and T (U, Vo)
are core-disjoinf if and only if they share no common vertices be-
sides the source or destination vertices. Formatlyus,v;1) and
T (Up,V2) are core-disjoint if and only ify N = ({ur }N{v1})U

({uz}n{va}).

DEFINITION 5. The shortest core-disjoint path(u,v) from u
to v in G is a cycle-free patit between u and v in G that is core-
disjoint fromrig (u,v) such that vm) is minimized.

We now introduce another assumption on the nature of our spa-
tial networks which enables us to ensure that there cannwidngy
shortest core-disjoint paths of the same length betweesessilof
sources and destinations in a spatial network. Spatialové&safor

Our discussion does not need to resort to the path compressedvhich the lengths of the alternate shortest core-disjoathg are

quadtree while still using regular decomposition becadisexain
assumptions that we make about the distribution of theaastin
the embedding space. In particular, lettiadpe the ratio of the di-
ameter of the set of verticdé to the distance between the closest

lower bounded are said to Ipath-coherentThe motivation is that
the greater the number of shortest core-disjoint pathsett#me
length, the less likelihood that the shortest paths sha@mamn

vertex (i.e., be path-coherent).



ASSUMPTION 2. Given any uv € V in a spatial network

1 . o Path T Vi T
G(V,E), we lets, & > 1, serve as an upper bound on the ratio e X V1
of the network distanceg{u,v) along the shortest pathig(u,v) Jup o Y B |
between u and v, to the network distance along the shortest co ‘A 1 - ’
disjoint path torig(u, v). ouy & d, ~ v,
\\\;;J\ PathT[2 \\x/

We now define two concepts that builds on Assumption 2.
Figure 3: (A,B) is a WSP configuration containing two disjoint

DEFINITION 6. The shortest path between any pair of vertices paths between them

(u,v) is said to bed-redundantvith respect to &, E) if and only
if for any pathrtfrom u to v that is core-disjoint fromg(u,v), we

branch-in vertex ofiig(v2,v1) with respect torig(ug,v1). Notice
have W) > dw(Tig(u,Vv)).

that i (u*,v*) is a subpath ofyy and is hence disjoint frorm,
because of our assumption. The definitionuofindv* ensure that
Tig(U*,up) andTig(vp,Vv*) are both core-disjoint frommg (u®,v*).
Letd* = dg(u*,v*).

Consider the pathg = Tig(u*,up) ~ ™. Ti(U*,V*) is core-
disjoint from 1z due to Lemma 4.3. Consider the path= 13 ~
Ti(V2,V*) betweenu* andv*. By re-applying Lemma 4.3, we
claim thatrig (u*,v*) is core-disjoint fronvt*.

Forrg, the larger diameter g andB, we havedg(ui, up) <rg,
anddg(v2,v1) < rg. Thereforedg(uz,uz) + dg(v2,v1) < 2rg.

DEFINITION 7. A spatial network @V,E) is said to be path-
coherent if and only if the shortest paths between everyqfaier-
tices ared-redundant.

The careful reader will have observed that our model of a-path
coherent spatial network does not include spatial netwibrisare
regular grids, as given a souraend destination vertex on such a
spatial networlG there is more than one shortest core-disjoint path
betweeru andv of the same length. This also means that the value

of & for G is 1 and Assumption 2 does not hold. Please note that We have,

the correctness of Algorithm 1 when applied to regular gpitil di = dg(ug,u”)+d" +dg(v,v1) @)
networks is not und(?r. questlpn hgre. I.nstead., the storagmf w(Tt") do (U*, Up) + dp + dg (V2, v¥) )
the PCP decomposition derived in this Section are not agipkc . .

to them. We address the size of the PCP decomposition of regu- Adding Equations 1 and 2,

lar grids separately in Section 4.5. Finally, it is clearttieal road _ « " "

networks are not path-coherent spatial networks as theyebma W) +dy = dg(u,U") +dg (U, Up) +d" +

small percentage of source and destinations vertices wittipte d +dg(V2,V") +dg(V',v1)

shortest core-disjoint paths of equal length. Although analy- w(rt)+d; = dg(ug,U2) +dg(ve,vi)+d* +d;

sis assumes that the minimum valuedafomputed over all the? W) +dy < 2rg+d+dp @)

shortest paths in a spatial network is greater than 1, ecapire-
sults in Section 5 show that even for road networks like M#ana
NY where a large percentage of vertices lying in a regulat,ghie
storage bounds derived in this Section hold pretty well.
We state the following lemma without providing a proof.

LEMMA 4.3. If the pathry (uz, V1) is core-disjoint from the two
pathsmy(us,t) andis(t, v2), thenm is core-disjoint fronrp ~ 1.

4.3 Four Coherent Paths Problem

We now examine the nature of the shortest paths between twodG(

subsets of vertice§A,B) in a path-coherent spatial network that
are well-separated. In particular, we will show that for &ahly
defined value o§, four shortest paths from two sourcesAino two
destinations irB will always have some vertices in common.

DEFINITION 8. The branch-out vertex of a path with respect
to a pathty, is the last vertex ofy that is inTy N To.

DEFINITION 9. The branch-in vertex of a patiy with respect
to a patht, is the first vertex ofy that is inTy N T.

LEMMA 4.4. Consider a WSKRA,B) in the WSPD of a path-
coherent spatial network &, E) with s> 2+ 6%1. For ug,up €
A and u,v; € B, the shortest pathsy = 1g(ug,v1) and o =
Ti (U, v2) are not disjoint.

PROOF Assume to the contrary that the paths and T, are
disjoint. Figure 3 shows an example of such a scenario.di et
w(ty) anddy = w(T). Without loss of generality, we assume that
dy <dj.

Consider the pathmg(uz,up). Let u* be the branch-out vertex
of Tig(ug,Up) with respect torg(uy,vi). Similarly, letv* be the

By the assumption @¥-redundancy, we hawe(tt") > 6d*. Com-
bining this with Equation 3, we gedd* +d; < 2rg+d* +dy, and
asd, < d; we getdd* +d; < 2rg+d* +dy, or,

(53— 1)d* < 2rg )

As (A,B) is a WSP, the network distandeg between the pair of
pointsu; € Aandv; € Bis at leass: rg and thuss-rg < d;. Com-
bined this result with Equation 1 we gstrg < dg(ug,u*)+d* +
dg(v*,vq). But asdg(ug,u”) < dg(ug,up) <rg anddg(v*,vq) <
vo,Vv1) <rg, we gets-rg <rg+d* +rg, or

(s=2rg <d’ ©)

By combining Equations 4 and 5, we dét-1)(s—2)rg < 2rg,
but s > ﬁ + 2 and hence by substituting far we get 2< 2.
This contradicts our initial assumption that and T, are disjoint.
Thereforery and, must not be disjoint. [

We now state the following two properties of shortest patitis-w
out providing a proof.

LEMMA 45. Iftea~ bandrea~t,thenter ~b.
LEMMA 4.6.Ifrea~tandtea~srthent=r.

LEMMA 4.7. [Four Coherent Paths Problem] Consider two
source vertices 4up and two destination verticeg w» in a path-
coherent spatial network (,E), such that there exist four short-
est paths between the source and the destination pairs, Ipame
Ty = Ug ~ V1, T = Up ~» Vo, Tl = Up ~> Vq, andTl'4=U2«~>V2.
Given that no two shortest paths are disjoint from Lemmattgte
exists a vertex t that is common to all the four shortest paths



(a)
Figure 4: (a) Shortest pathsm and 1, wheret is the branch-
out vertex of Ty (Tp) with respect to T, (1), (b) Shortest path
13 has been added to the setup in (a), such thay €t ~ vy,
rpEt~ Vo, ppEt~ vy, vy AL, Vo £t and pp #t

PROOF. Figure 4a shows the shortest patis= u; ~ v and
Th = Uy ~ Vp, such that is the branch-out vertex af; (Tn) with
respect tan (). The vertext can be trivially shown to exist, as
t = uy is at least one vertex that is always commorgoand .
We refer torig (us,t) as thestemof the shortest paths.

We now add thetz = up ~ v; to the setup in Figure 4a, while
ensuring that thatr; is not disjoint from eithery, or To. Letr; be
the incoming vertex oftz with respect taw. Letr, be the branch-
out vertex ofrz with respect tat. Let p; be the incoming vertex
of T with respect taw. Note thatrz cannot have an branch-out
vertex with respect toy, asp; ~ vi is a common subpath to both
U ~ Vvp anduz ~ V1.

We point out that there can only be three possible configamati
of rq,rp and p; with respect ta,u1,v1 andv,, which are listed
below.

1. Ifri£tri €t~ vy, rpeup ~ Vo, andp; =t, it can be
verified that pathy cannot exist now without being disjoint
from eithermy, or . Hence, this case is infeasible.

2. Ifri £t rp#£t, ry,rp €t~ vp, andpy €t~ vq, p1 #t, we
show thatry can exist only iffd = 1, and hence is infeasible.

3. Ifrq,rp, p1 € Uug ~ t, we show thaiy can exist only iffr; =
ro = p1, thus proving the lemma.

Figure 4b illustrates case-2, which we show to be infeasibvie
have added the shortest path= u, ~ v» to the configuration in
Figure 4b, resulting in Figure 5.

Figure 5: Figure 4b has been redrawn to includery, such that
r, et~ ppand pp €rq~ ra, P2 €1~ V. Note that labels
a-h, x,y on an edge indicates its weightr/ ~~ r} is the subpath
shared betweert ~ p, andt’ ~ py. Similarly, ry ~ r5 is shared
betweent’ ~ py andt ~ py

Letr} andr}, be incoming and outgoing vertices o with re-
spect tory. While ensuring thaty is not disjoint withty, we
observe that the only feasible condition is whéne t ~» p; and
r, et~ py is satisfied. Lep, be the incoming vertex af, with
respect tatp, and alsopy € r1 ~ rp, p2 € r1 ~ Vo. Figure 5 shows
the shortest path configuration containing the four shopaths.
Also, the labelsdh, x, y) assigned to edges in Figure 5 correspond
to the weights of the edges. We now show that this configuragio
realizable, ifféd = 1.

In Figure 5, we observe that~ p; is at a distancg+y+ f,
while an alternate core-disjoint path~ r1 ~» ro ~» py is at a dis-

tancea+ x+d, leading to

a+x+d>o6(g+y+f) (6)

Similarly,t ~ py is at a distanca+ x+ b, while an alternate core-
disjoint patht ~» r{ ~ r5 ~» py is at a distance+ y+ h, leading
to

g+y+h>d(a+x+b) @

t' ~~ pp is at a distance +x+ d, while an alternate core-disjoint
patht’ ~~ r} ~ 15, ~» py is at a distance+y+ f, leading to
e+y+f >9d(c+x+d) (8)

t' ~ py is at a distanc&+ x+ b, while an alternate core-disjoint
patht’ ~ rq ~ rp ~ py is at a distance+y+ h, leading to

e+y+h>9(c+x+b) 9)
Now adding the inequalities in Equations 69, we get
(a+b+c+d+e+f+2-x42y) >d(a+b+c+d+e+f42-x42-y)

As, (a+b+c+d+e+f+2-x+2-y) >0, we getd =1, which
contradicts our assumption that> 1. Hence, case-2 is infeasible.

\" \"
Ve W

V2 uye -~ V2

ug r rt

(b)

Figure 6: a)r,r’ € uyp ~ t, such thatr =ry = p, I’ =1} = py,
andt’ is the branch-out vertex of i3 (T14) with respect to Ty (1),
b) the only feasible configuration is wherr =1’ andt =t’

We now examine case-3, whefirp, p1 € up ~ t. First of all,
we can trivially show that, =t, andp; =ry. Letr} andr} be
incoming and outgoing vertices af, with respect tay. Let py
be the incoming vertex afiy with respect tawn. Upon addingry,
we can further show that thef = p, andr}, =t. Letr’ =r} = py,

r =rq = py1, andt’ is the branch-out vertex afs (1) with respect
to Ty (1). The resulting configuration is shown in Figure 6a.

We can now further claim that= r’, failing which there would
be two shortest paths fromp to r’ or alternately, fromu, tor, if
r’ € up ~ r. Hence, the only feasible configuration is shown in
Figure 6b, where is the incoming vertex afi; andmy with respect
to y andTp, andt =t is the common vertex to the four shortest
paths. O

4.4 Size of the Oracles

In this Section, we prove a key property of path-coherernt net
works that a WSPD of a spatial network using a network diganc
function for a suitable value afis a PCP decomposition.

LEMMA 4.8. Given a WSPD decomposition of a path-coherent
spatial network GV, E) with a separation factor s 2+ é, such
that (A,B), is a WSP in the decomposition, then all the shortest
paths from source vertices in A to destination vertices inaBsp
through one single common vertex. In other words, fork+ ﬁ,
the WSPD of G is a PCP decomposition of G.

PrROOF We adopt the following strategy in proving this lemma.
Our initial configuration continues where we left off in Lerar.7.
We know fors > 2+ %, the four shortest paths between two
source vertices; anduy in A, and destination verticeg andvs in
B pass through a single common verteXVe will now keep adding
one additional destination vertex froBito this arrangement, in no



particular order, until all the shortest paths fremandu, to all PROOF Assume a PCRA,B,¥,\) in the decomposition of a
vertices inB have been accounted for. We then start adding one spatial network of sizésuch that, B are nodes in the PR-quadtree
additional source vertex at a time frofnto the arrangement, until  on the spatial positions &f. The pairA, B is represented as a Mor-
all the possible shortest paths frokto B have been account for.  ton block. which is then stored in a B-tree or a-#ee, termed

At the end of it, we will show that there will still be one vextehat a linear quadtree [10]. Given a sourue= V and a destination
is in common to all the shortest paths. t € V, the PCP containing andt is retrieved by invoking a bi-
Supposels, Uy € A are source vertices and, Vv, € B are desti- nary search on the linear quadtree, which taR@egl) time. The

nation vertices such that the four possible shortest pathsden entire shortest path can be obtained recursivel@(klogl) time,
them arery = 1ig(ug, V1), T = Tig(U1,V2), Tl = Tig(Uz,V1), and wherek = |Tig(u,t)]. Asl = O(sdn) from Lemma 4.2, the shortest

Ty = Tig(Uz,V2). Lett be the common vertex to the four shortest path between any pair of vertices@can be retrieved i©(klogn)
paths and corresponds to the branch-out vertex ofith respect time. O

to . Also, r is the incoming vertex ofy andTig with respect to

o andTy. This leads to the main result of this paper:

We claim that the addition of an additional vertexe B, may )
potentially replace with another vertex’, such that’ e r ~ t. THEOREM 4.10. A path oracle of a path-coheren.t spatlall net-
Thus, after all verticeg € B have been addedg u; ~t would still work of size @s’n) can be constructed that can retrieve an inter-
have a vertex in common. With the addition of all the desiimat ~ Mediate link of a shortest path in(f@gn) time using a B-tree.
vertices inB, we would have accounted for the shortest paths from
u; andus, to all destination vertices iB.

Let v3 be a destination vertex iB. Let 15 = Tig(u1,Vv3), and
T = Tig(U2,V3) be the shortest paths from andu, to vz. Lett;
be the branch-out vertex o with respect tay andtg. Lett, be
the branch-out vertex afg with respect tan, andmy.

In the three cases below, the additiorvgfdoes not affect.

Below, we repeat the size bound of exapproximate distance
oracle from [13]:

THEOREM 4.11. Ang-approximate distance oracle of a spatial
network of size Q%)dn) can be constructed that can retrieve &n
approximate network distance between a source and a déstina
in O(logn) time using a B-tree. [13]

o Ifty €t~ vy andty #t, thentp =t. Combining Theorems 4.10 and 4.11, we can now obtain the size

o Ifty €t~ vy andty £t, thent; —t. of a path-distance oracle.

THEOREM 4.12. An g-approximate path-distance oracle of a

path-coherent spatial network of size(rO max(sd,%d)) can be
If t1,t, €1 ~ t, thent; must be equal tp. Lett’ =t; =t,. We constructed that can retrieve an intermediate link as wsllaa
replacet with t’, vy (or v) with v3. This resulting configuration e-approximate network distance in(ldgn) time using a B-tree.
would still resemble Figure 4.
The final case is whety is the branch-out vertex dfi; with
respect tay andtp, and letrq,ro be the incoming and branch-out

o t1 =t =t.

PROOF A path oracle is a WSPD of with a separation fac-
tors> 2+ é. The distance oracle is also a WSPDWfvith a

vertex of T with respect ta andty. Similarly, letr},r} be the separa’gion factpr o§. During the construction of a.path-distance
incoming and branch-out vertex o with respect tory and o, oracle in Algorithm 1, a PCP is decomposed until both the path
and lett, be the branch-out vertex o with respect tat and . constraint (i.e. exists) and the distance constraint (i2eis ane-
The resulting configuration resembles Figure 5, which iy ¢nle approximation) are fulfilled. Hence, the size of the oraslepper-
is d= 1, which is a contradiction. bounded byO(n- max(s?, %d)). O

We have shown that an addition of a destination vevtexither
does not affect, in which case, it can be ignored, or replatesth The access times can be further improvedd{d) by making
t' €1~ t. After all the destination vertices have been added, use of a hash table that tak€s’nlogn) for path oracles and
would still satisfyr € uy ~t andr € uz ~ t. O(nlogn-max(s%, %d)) for path-distance oracles. For more details,

Adding the a source vertices in Ato the setup in Figure 4bis  see [12].
symmetric to adding a destination vertex although the insertion . .
of uz may affectr instead ot. In effect, after all the source vertices 4.5 PCP Decomposition of Regular Grids

in A have been accounted for, all the shortest paths fk¢aB pass We now derive the size of the PCP decomposition of a spatial
throught, which means that the WSR, B) is a PCP. ] network that is a regular grid.
An immediate consequence of Lemma 4.8 is that for the separa- X 5
tion factors > 2+ é, the WSPD is, in fact, a PCP decomposition.
That is — the shortest paths between all sourcestmall destina-
tions inB in a WSP(A, B) pass through a single common vertex or
an edge. We now show that given such a decomposition, thé shor
est path between any vertex pair can be retrievédklogn) time, v,
wherek is the length of the shortest path. C D

Figure 7: A spatial network G which is a regular grid. v and
w are vertices inG. A,B,C and D are blocks resulting from
the partition of the embedding space spanned b into 4 con-
gruent blocks. Notice thatw is an intermediate vertex on the
shortest paths fromAto B,Bto C,Cto B,andD to A

THEOREM 4.9. Given a PCP decomposition of a path-coherent
spatial network @V, E) which is of size @&°n) by Lemma 4.2, the
shortest path between any vertex pair in V can be retrievesh fr
the decomposition in G&logn) time, where k is the length of the
shortest path.



LEMMA 4.13. Given a spatial network G which is a regular  (a) Dataset n__| Oracle Sized) | Seff

grid, the PCP decomposition of G take1/fi) space. VRshingon o0 | 12301 | Te08e00] 117

PROOF LetG be a spatial network which is a regular grid con- EAZSJE;EZ?(%AN) égggz 2'822'323 12-2
taining n vertices as shown in Figure 7. L&tB,C andD be the East Coast (EAS) | 91113 15306.561] 12.9
blocks resulting from the partition of the embedding spa=sed
by G into 4 congruent blocks. All the shortest paths frérto B, B El ——
to C, Cto B, andD to A pass through the common verterand are % MAN — 1
recorded using four Morton blocks. However, the shortetgbe- by Be -
tween the pairgA, A), (A,B), (A,C), (B,B), (B,D), (C,C), (C,D), () £ ]
and(D, D) would still have to captured. However, each of the above < ]
eight pairs is a smaller instance of the original problene¢@urth S s i ]
the size), and hence the total storage required by the PGirdec s i T
position of G in terms of Morton blocks can be represented by the 1111213 15 17 2 22
solution of the following recurrence relation: ] ] &

n Figure 8: a) Various urban datasets and b) the percent-
T(n) = 8T(21) +2 (10) ages of shortest paths in them as a function a¥s
Solving Equation 10, we obtain that thé shortest paths i® can network. Our theoretical model is only applicable to thosatisl
be captured using,/n-+ n Morton blocks. [ network that are path-coherent, which, in other words, méhat
their & value is greater than 1. Road networks are not always path-

5. EXPERIMENTS coherent as there may be a small set of vertex pairs withestort

core-disjoint paths of the same lengths, which means teatatue
of & of such networks is 1. However, this does not mean that the
analysis performed in this paper is not applicable to thenorder
to explain why this is the case, we first compute a functiorefarh
of the input spatial network datasets in the evaluation twwhécords
the the ratiods of the network and spatial distance between pairs

of vertices as a percentage of the tatlshortest paths in a spa-
tial network withn vertices. Note that the minimudx value of a
road network is it® value, which is usually 1. Figure 8b shows the
O+ value distribution of some of the various urban datasetsrgiv
in Figure 8a. Some of the datasets, especially the road netwo
of Manhattan (MAN) and Boston (BOS), have a large number of
vertices lying on a regular grid. We remind the reader that su
graphs of road networks that are regular grids will have rsgve
source and destination vertex pairs with multiple altezrsitortest
core-disjoint paths of the same length. The MAN datasetatig
ular, has a larger percentage of shortest paths &ithalues very
close to 1 compared to the SS, BOS and DC datasets. Figure 8a
records the number of verticesand the resulting size of the path
oracleSy in terms of number of PCPs. In addition, we provide the
effective separatiofactor gt of the road network datasets which

In this Section, we evaluate the performance of the oradbes o
tained by decomposing a spatial network into a set of PCPs. Us
ing this approach, we construct three oracles — path, distand
path-distance — that capture the shortest paths and destdres
tween every pair of vertices in a spatial network. In patticuve
will show that the empirical evaluations closely follow dheoret-
ical results. Furthermore, we compare the oracles with th€ S
framework [11] which is the only other approach that takesmad
tage of path coherence in spatial networks. The oraclesduted
in this paper capture the coherence in the shortest patimsrfrol-
tiple sources to multiple destinations, which is in cortrtasthe
SILC framework that only captures the coherence betweemgesi
source vertex to multiple destination vertices. Note, haxethat
SILC is still a superior data structure when it comes to quoeny
cessing such dsnearest neighbor finding as refinements in SILC
result in the retrieval of the next link in the shortest pathich
means that the refined network distance is a composition ekan
act network distance between the source and intermedigiees
and a network distance interval between the intermediatelasti-
nation vertices. In the case of the path-distance ora@désement
res_ults in the compos_ltlon of tvm_aapproxmatg network distances, is defined to be the square-root of the ratio of size of the pedh
which means that refinements in the path-distance oraclgsota cle Sy, i.e., the number of PCPs, to the number of vertigel
be as effective as the SILC framework. We compare the sizes of » 18, u ' u Verteese.,
these two approaches and show that the path oracles yieldllesm  Seff = \/% The sert value of MAN dataset (from Figure 8a) is
representation. 122 and not unbounded as the theoretical results suggesinit is

The experiments were carried out on a Linux (2.4.2 kernedJdqu  portant to note that even though the MAN dataset represdras a
2.4 GHz Xeon server with one gigabyte of RAM. We implemented case scenario for our algorithm, thgs value of the MAN dataset
our algorithms using GNU C++. A number of publicly available is within acceptable limits. This is because 75.1% of thatsisb
road network datasets were used in the evaluation. Theseoker paths in the MAN dataset havg values greater than 1.5, which
tained from the US Tiger Census [15] and the National Atl& [1 = makes our model of a path-coherent spatial network appédab
websites. Some of the datasets that we used are given ineFagur datasets such as MAN. In other words, what we have showntis tha
In particular, we used a dataset containing all the majatsdathe the size of the path oracle depends more on the average Value o
USA (i.e., more than 380,000 vertices and 400,000 edges). Sam-ds, and not so much on th&value, which is 1 for almost all road
ple random rectangular regions were drawn from the datagkt a networks datasets. Moreover, notice that the valuegsotlid not
the road network segments contained completely within tivene change considerably between DC and EAS even though the size
extracted to serve as inputs to the evaluation of our algoritBy of the road network dataset essentially increased by arfatt®.
taking the samples at random we were able to account for-varia This validates our result in Theorem 4.10 that the size cfehe-
tions such as rural versus urban, and various spatial @naeigts acles are linear im which means that the size of the path oracle
of vertices such as those lying on a regular grid. normalized byn is a value that is independent rof

In this paper, we derived the size of the path oracles in tafms Next, we further investigate the effect afon the size of the
0, which is the minimum of the ratio of the network distance to path, distance, and path-distance oracles. Figure 9a+esstat
the spatial distance recorded over every pair of verticesspatial asn varies, the number of PCPs that make up these oracles, nor-



100 100 duced by our use of the distance oracles. Figure 10a—c slnaws t
observed maximum, average and standard deviation errons co
puted over 100,006-approximate network distance queries on dis-
tance oracles witls = 0.2 for varying values of. Note that the

1 1 distance oracles (produced by Algorithm 1) do not store ati p
0 25000 50000 75000 0 25000 50000 75000 information. Distance oracles far= 0.2 (20%) have a maximum
Number of Vertices (n) Number of Vertices (n)
(a) (b) observed error of about 16%, an average observed error efidro
100 3%, and an observed standard deviation of about 6%. Morgover
i Figure 10d shows that amapproximate network distance between
3 a given source and destination can be retrieved in 10s86onds
& using our distance oracle.
! 0 25000 50000 75000 0 20000 50000 75000 5 100 _ 10
Numbe{(c:)f)Vertices (n) Number of Vertices (n) u;] U%
=1 g +
Figure 9: Effective separation factorsg of a) path, b) distance, % g %W% -
and c) path-distance oracles fore = 0.2 on road networks of = TR <
varying sizes. d) A comparison of the sizes of path oracles dn S 0 T e soooo 7000 Lo 25000 50000 75000
SILC framework for varying n Number of Vertices (n) Number of Vertices (n)
malized byn, is more or less a constant value. This value, known 5 ,, (2) 35 b .
as the effective separation fac®f, depends only on the nature of g %%#%ﬁ e g % -
the spatial network and not an It is seen that the. values for all S 52 1{
three oracles are more or less constant, independentraficating g g 20 %
that the size of the oracles is linear in the size of the roagor. g sy
The set values of the path oracle in Figure 9a lies between 8 and & ', 25000 50000 7s000 o 25000 50000 75000

15 (average: 12), the distance oracle in Figure 9tefer0.2 lies Number of Vertices (n) Number of Vertices (n)
between 5 and 8 (average: 6), and the path-distance oraElg-in (c) (d)
ure 9c fore = 0.2 lies between 8 and 15 (average: 12). Note that, Figure 11: Observed a) maximum, b) average, and c) standard

although incidental, the path and path-distance oracles=0.2 deviation of the errors in the network distance when using tte

are more or less of the same size, which means that path ®racle path-distance oracles and their average access times fer0.2

associated with approximate distance information will rape at and varying values ofn

20% error rates without incurring significant additionahse, but Next, we studied the observed errors in the network distase

the quality can be further improved by expending more s®@rag  gciated with the use of the path-distance oracle. Relbthath-
We also compared the size of the path oracle with that of th€ Sl jigtance oracle combines a path oracle with a distancesordtth

framework in Figure 9d for various road networks of comp&ab  means that given a sours@nd a destinatiom, the path-distance
sizes. Observe that the size of path oracle, normalized isymore oracle provides an intermediate vertex in the shortest frath s
or less constant asvaries, while the size of the SILC framework, to w as well as are-approximation of the network distance along

normalized byn, steadily increases with. In particular, the size this path. Figure 11a—c shows the observed maximum, avarate
of a path oracle for the EAS dataset is less than 50% of the SILC ¢i5ndard deviation errors obtained due the use of the We

framework. Much higher savings are expected when we appBeth  4¢je withe = 0.2 measured over 100,08@Gpproximate network

two techniques on larger network datasets such asthe roadmke istance queries for varying values f The observed maximum

of US as the storage complexity of the SILC framewor®isi/n), error was about 16%, the average error was around 3%, and the
while our representation is linear m standard deviation was about 6%. Moreover, Figure 11d shuats

the access time lies in the range of 10g4@conds which grace-
fully increased with.
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£ i; 15+ M+ Figure 12: a) Effective s_eparatlon factorsess and the b) average
g 10§ access times of path-distance oracles on the EAS dataset for
s 1 5 .
S o 25000 50000 75000 0 25000 50000 75000 varying values ofe

N”mbe'(‘éf)"e”'ces ™ Number °(f dV)e”'C‘fs ™ Figure 12 shows the effect of varyimgn the size and the access

) ) times when applying the path-distance oracles to the EASsdat
Figure 10: Observed a) maximum, b) average, and c) standard  Recall that this dataset contains all the important roadséreast-
deviation of the errors of distance oracles and their averag ac- ern seaboard states of the US, consisting of 91,113 vericds
cess times fore=0.2 and varying values ofn 114,176 edges. From Theorem 4.12, we know that the size of the

We now study the quality of the distance approximations pro- path-distance oracle is given k(n- max(s?, %2)). In Figure 12a,



% Error

Note that the process of computing the path-distance ardqrat

acles in Algorithm 1 depends on the satisfaction of both i p

and distance constraints. In order to evaluate the additaecom-
position incurred due to the increased precisarequired by the
path-distance oracle, Figure 12a separates the costs sd the

oracles. We use a broken line to depict the cost of the pattieora
which is seen to be constant as there is no decompositionadue t

the distance constraint. On the other hand, the path-distara-

cle requires more space as the precision increases (@llecreases)

although little extra space is required for values dfetween 0.5

we showsgf, the effective separation factor, of the path-distance the path oracle an@(nlogn-max(s?, %2)) for the path-distance or-
oracle for various values af between 0.5 (50%) and 0.01 (1%).

acle [12]. The result of our work is that now shortest paths loa
retrieved by making repeated SQL SELECT operations on the or
acle relations which are stored in a database. Even moreleemp
guery processing scenarios on spatial networks can berpertb
by using the initiak-approximation of the network distances, and
performing subsequengfinementoperations on the distances to
improve the approximation. Such a strategy was adopteden th
SILC framework [11] which is also applicable to the path aathp
distance oracles. Future work includes investigating taeop-
mance of various operations, such as region search, nemight
bor finding and distance joins, on road networks in the cdrita

(50%) and 0.3 (30%). We note that from our experimental anal- database system using our path-distance oracles.

ysis that the size of the path oracle for road networks is liug

captured byO(n-max(lZ{%z)). Moreover, the average access 7. REFERENCES

time, shown in Figure 12b, to obtain an intermediate vertewell
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