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ABSTRACT 

As geo-realistic rendering of land surfaces is becoming 

commonplace in geographical information systems (GIS), games 

and online Earth visualization platforms, a new type of k Nearest 

Neighbor (kNN) queries, “surface” k Nearest Neighbor (skNN) 

queries, has emerged and been investigated recently, which 

extends the traditional kNN queries to a constrained third 

dimension (i.e., land surface). All existing techniques, however, 

assume a static environment, limiting their utility in emerging 

applications (e.g., Location-based Services) where objects move. 

In this paper, for the first time, we propose two exact methods that 

can continuously answer skNN queries in a highly dynamic 

environment which allows for arbitrary movements of data 

objects. The first method, inspired by the existing techniques in 

monitoring kNN in road networks [7] maintains an analogous 

counterpart of the Dijkstra Expansion Tree on land surface, called 

Surface Expansion Tree (SE-Tree). However, we show the 

concept of expansion tree for land surface does not work as SE-

tree suffers from intrinsic defects: it is fat and short, and hence 

does not improve the query efficiency. Therefore, we propose a 

superior approach that partitions SE-Tree into hierarchical chunks 

of pre-computed surface distances, called Angular Surface Index 

Tree (ASI-Tree). Unlike SE-tree, ASI-Tree is a well balanced thin 

and tall tree. With ASI-Tree, we can continuously monitor skNN 

queries efficiently with low CPU and I/O overheads by both 

speeding up the surface shortest path computations and localizing 

the searches. We experimentally verify the applicability and 

evaluate the efficiency of the proposed methods with both real 

world and synthetic data sets. ASI-Tree consistently and 

significantly outperforms SE-Tree in all cases. 

1. INTRODUCTION 
With advances in remote sensing (e.g., LIDAR sensors) and 

computer graphics, a realistic, accurate and detailed rendering of 

Earth surfaces is becoming feasible in many applications. For 

example, both Microsoft Virtual Earth™ and Google Earth™ 

have started the display of accurate terrain models. Computer 

games, GIS systems and training simulators are other examples in 

which geo-realistic rendering of surfaces is included. Since the 

terrain models are no longer sparse nor based on synthetically 

generated data, disk-based structures are needed to store the large 

real-world datasets. Unfortunately, most data structures are 

designed to expedite the rendering of this geo-realistic data rather 

than its querying and access. The database community has 

recently started paying attention to this important but untapped 

area by studying a new type of k Nearest Neighbor (kNN) queries 

on surfaces, called surface kNN (skNN) queries [2, 3, 4]. 

Given a query point, a conventional kNN query [14] returns the 

number of k objects with the minimum distance with reference to 

this query point. In the case of skNN, the distance is measured by 

the surface distance. Note that this is different from 3D Euclidean 

space as the 3rd dimension is constrained by the terrain model. 

The skNN problem is analogues in some sense to supporting kNN 

query on road networks, where the distance is the network 

distance. However, the main difference is that the surface model, 

represented as triangular meshes, is much larger than road 

networks and even worse, the state-of-the-art algorithm to 

compute the surface distance (i.e., Chen-Han algorithm [1]) is 

much more complex than the Dijkstra algorithm [5] to find the 

shortest network path. To illustrate, note that the digital surface is 

usually represented as the Triangular Irregular Network model 

(TIN), a mesh generated from the sampled ground positions with 

3D coordinates known as Digital Elevation Model (DEM). If we 

consider this TIN model as a graph with triangles’ sides and 

vertices as edges and nodes, a reasonable size area (e.g., 

downtown Los Angeles) of 14km×10.7km using a 10m sampling 

interval contains about 1,498,000 nodes [11]. However, the graph 

of the road networks of the same area contains only 79,800 nodes 

[20]. Besides, the Chen-Han algorithm needs O(N2) time to 

compute the shortest surface path between a pair of points, where 

N is the size of the surface model. In [2], it is reported that this 

operation will take tens of minutes on a modern PC while it only 

takes a few seconds for the Dijkstra algorithm to compute the 

shortest path on a road network with the same size.  

In this paper, for the first time, we study the problem of 

“Continuous” Surface k Nearest Neighbor (CskNN) query, which 

similar to its counterparts in Euclidean and network spaces, 

monitors the moving k nearest neighbors on land surfaces. Current 

skNN techniques [4] cannot support continuous queries efficiently 

as the data structures are expensive to update. Meanwhile, current 

continuous kNN methods on Euclidean and road networks cannot 

support CskNN due to the complexities of land surfaces. 

In addition to their general utility in virtual environments, 

computer games, GIS and simulations, CskNN queries are 

applicable to a wide range of specific real-world applications as 

with CskNN the objects can arbitrarily move on land surfaces. For 
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example, in the domain of disaster response, when one of the 

deadliest earthquakes hit Sichuan, a mountainous region in China, 

in May 2008, the entire transportation system collapsed, limiting 

movements to land surface. Under this circumstance, CskNN 

queries become extraordinarily important to save lives as they can 

monitor and coordinate among the moving objects (e.g., rescue 

teams) as well as provide exact shortest surface paths for 

evacuation purposes. In scientific research and environment 

protection domains, CskNN can be used to monitor the 

movements of animals to understand their habitats and the 

relationship between species. Finally, with recent advances in 

robotics, autonomy and ubiquitous sensors, new generation of 

terrain rovers are capable to perform difficult tasks in rough 

terrains for research in natural science and resource (e.g., coal, oil 

and mine) and space exploration. Therefore, it is essential to 

monitor these robots in order to maximize their effectiveness.  

To tackle the CskNN queries, we start by studying the 

applicability of one of the most successful CkNN approaches in 

road networks to our problem. In particular, we introduce a 

counterpart of Dijkstra Expansion Tree [7] for surface, called 

Surface Expansion Tree or SE-Tree for short. For a static query 

point (or site), an SE-Tree computes the shortest surface path 

from the site to all the vertices of TIN. We show that unlike its 

counterpart, due to the special characteristics of land surfaces, SE-

Tree is usually fat and short (e.g., for SE-Tree of a sample area 

with 11,406 vertices, the fan-out of the root node is 6,038) while 

the average fan-out of a node in Dijkstra Expansion Tree is 

usually small as a typical intersection (vertex) in a road network is 

a junction of two crossing roads. Nevertheless, studying SE-Tree 

and its features helped us to devise a more effective spatial index 

structure called Angular Surface Index Tree (ASI-Tree).  

We build one ASI-Tree for each static query point (or site) as 

follows. First, centered at the query point, we partition the surface 

horizontally and vertically into several chunks. Each vertical 

partition, called Surface Shortest Path Container, includes vertical 

cuts on overlays of SE-tree. This is feasible due to the observation 

from the SE-tree structure that the shortest paths do not cross each 

other. The horizontal partitions are created by several contours 

centered at the query point, each of which with equal surface 

distance to the query point, called Surface Equidistance Lines. 

The intersection of these two partitions is called a surface chunk. 

Each surface chunk also stores some pre-computed information 

that can be used to expedite the exact shortest surface path 

computation. Next, an ASI-tree is built by hierarchically indexing 

these chunks rather than all the vertices in the triangular mesh.  

ASI-Tree has several useful features. First, ASI-Tree is much 

smaller than SE-Tree (e.g., in the area of downtown Los Angeles, 

ASI-Tree only contains about 45,000 nodes). Second, since each 

container (a vertical partition) includes some pre-computed 

intermediate results (image sources), the time complexity of 

surface shortest path computation between the site and a moving 

object is reduced to O(Nlog(M)/M) where N is the size of the 

surface model and M is the total number of containers. This time 

complexity is even less than the Dijkstra algorithm (O(Nlog(N))) 

if we consider the mesh as a network. Third, ASI-Tree is a well 

balanced thin and tall tree. The fan-out of the root is usually less 

than 8 (number of opposite edges of the query point) and the fan-

out of the intermediate nodes is fixed (e.g., 2). Finally, ASI-Tree 

shrinks the search area within the small chunks containing the 

target moving objects. Our extensive experimental evaluation 

shows that ASI-Tree always outperforms SE-Tree in both I/O and 

CPU time by large margins. 

The remainder of the paper is organized as follows. Section 2 

briefly discusses some related research. In Section 3, we define 

the problem and provide some preliminaries. Section 4 describes a 

naïve CskNN algorithm based on the utilization of SE-Tree. 

Section 5 describes the details of our surface index (ASI) and its 

corresponding CskNN algorithm. In Section 6, we report the 

results of our experiments. Finally, in Section 7, we summarize 

the paper and discuss our future work. 

2. RELATED WORK 
In this section, we briefly survey the related work in the areas of 

kNN query processing, which can be classified into two categories 

of static and dynamic. 

The first category is called static (or snapshot) queries. With this 

category, the query points, data objects and the underlying 

constrained environment (e.g., road networks, surfaces) are 

assumed as static during the query time. In the Euclidean space, 

Roussopoulos et al. [14] propose an R-tree based branch-and-

bound kNN algorithm; Korn et al. [15] and Tao et al. [16] study 

the reverse nearest neighbor (RNN) problem, which finds the 

objects that take the query point as one of their nearest neighbors. 

Similar studies have been conducted in the constrained space 

(e.g., road networks, land surfaces). Papadias et al. [10] employ 

the Incremental Network Expansion (INE) algorithm to answer 

kNN queries in road networks. This algorithm performs a Dijkstra 

style expansion from the query point and examines objects in the 

order they are encountered. Kolahdouzan et al. [20] propose a 

Voronoi-based algorithm, VN3, for spatial network databases. 

Samet et al. [9] present an algorithm which takes advantages of 

pre-computed shortest paths on the graph of the road networks. 

Recently, static kNN queries on land surface have been 

investigated as well. In [2, 3], Deng et al. propose a distance 

ranking method for the skNN query on the multi-resolution terrain 

model. However, since the exact shortest surface path is neither 

computed nor stored, continuous queries can only be answered as 

independent snapshot queries from scratch. Shahabi et al. [4] 

propose a surface R-Tree (SIR-Tree) based method which utilizes 

two surface indices (TSI and LSI) to process skNN queries 

efficiently and accurately. Unfortunately, neither TSI nor LSI can 

be applied to the scenario where objects are moving because TSI 

and LSI are built on static objects and online updating is costly. 

With the second category, during the life of the query, the query 

points or objects or both are dynamic. In Euclidean space, Tao et 

al. [17] discuss time-parameterized queries, assuming linear 

trajectories for both the query point and objects. Tao et al. [18] 

also study the continuous NN (CNN) query which allows for 

arbitrary query movements while the objects are static, hence the 

input is a polyline which represents the query trajectory rather 

than a single query point. Yu et al. [21] propose two grid based 

algorithms to monitor nearest moving objects. Meanwhile, in road 

networks, Shahabi et al. [19] propose an embedding technique to 

transfer the road network to a constraint-free high dimensional 

space to fast but approximately retrieve nearest moving objects. 

Mouratidis et al. [7] propose an exact monitoring method for 

moving objects. In this method, a Dijkstra expansion tree is 

generated on the graph of the road network to keep track of the 



shortest paths to all the nearest objects. This expansion tree grows 

or shrinks as the objects move away from or towards the query 

point. This paper considers three types of updates: object 

movements, query movements and fluctuations of edge weights. 

However, this method is more efficient to deal with object 

movements than the latter two, since both query movements and 

edge updates require online modifications or even the 

reconstruction of the entire expansion tree, which is usually 

expensive. To the best of our knowledge, there is no existing 

technique for any type of dynamic kNN queries on surface. 

3. PRELIMINARIES 
Before we explain the approaches for continuous monitoring 

algorithms, we would like to first state the underlying assumptions 

and formally define the problem. Next we explain a technique to 

compute the shortest path on surface and subsequently introduce 

the concept of Surface Expansion Tree. 

3.1 Assumptions and Problem Definition 
We assume a land surface is represented by the Triangular 

Irregular Network (TIN) model. A land surface also contains a set 

of moving objects and fixed position CskNN queries. A moving 

object is also called a point of interest. A CskNN query represents 

a request from a user at a fixed position to monitor its k closest 

objects. The query point is regarded as static during the query 

time, which could be a field observation station or a watch tower 

in real applications, while the objects move arbitrarily on the 

surface, which could be GPS attached vehicles or animals in real 

applications. Whenever the moving objects change locations, they 

send update requests to a centralized server to notify their new 

locations. Note that the objects or the query points are not 

necessarily located on the vertices of the TIN model.  

Three distance metrics are typically considered on land surface: 

Euclidean Distance DE, Network Distance DN and Surface 

Distance DS. The surface distance between two points on a terrain 

T is defined as the length of the shortest path connecting these two 

points on T while the network distance is defined as the length of 

the shortest path between two points on the graph G of T. In [4], 

the formal definitions of these three distance metrics and their 

relationships are provided. In sum, the Euclidean distance is 

always the lower bound of the surface distance while the network 

distance is always the upper bound of the surface distance.  

Now we are ready to formally define the CskNN problem: 

Problem Definition: Let T be the surface model and P be a set of 

moving data objects, given a query point q and a time interval τ, a 

CskNN query continuously identifies the k nearest objects in P to 

q based on the surface distance on T during τ. 

Evaluating a CskNN query consists of two steps: 1) initial result 

computation as a snapshot skNN query which has been studied in 

[2, 3, 4]; and 2) continuously monitoring and updating the result 

sets as the objects move. The focus of this paper is on the latter. 

3.2 Shortest Surface Path Computation  
Chen-Han algorithm [1] is the state-of-the-art algorithm and has 

been widely used to compute the shortest path on a polyhedron 

surface. The basic idea of this algorithm is to first unfold all the 

faces of the polyhedron to one plane and then the straight lines on 

this plane that connect the source point to each vertex are the 

shortest surface paths from the source to these vertices. This 

algorithm costs O(N2) time and Θ(N) space, where N is the 

number of polyhedron faces. Chen-Han algorithm is practically 

expensive because there are many possible unfolding alternatives 

at each step of the algorithm. During the unfolding process, an 

unfolding sequence tree is kept in memory to traverse all the 

unfolding possibilities. This algorithm terminates when all the 

faces on the polyhedron surface have been processed (unfolded). 

We explain this algorithm using the following example [4]. 

Example 1: Figure 1 shows the process of computing the surface 

path between A and B on a tetrahedron. The triangular face 1, 2, 3 

and 4 are unfolded to a plane with different unfolding alternatives 

(Case 1--3). The surface distance is the length of the shortest 

straight lines connecting A and B across all possible cases. The 

algorithm will compare the unfolding results and output Case 2 as 

the shortest surface path. 

 

Figure 1. The unfolding process of Chen-Han Algorithm [4] 

3.3 Surface Expansion Tree 
With road networks, the Dijkstra Expansion tree is used to 

process kNN queries [7, 10]. This tree is generated by running 

Dijkstra Algorithm on the graph of a road network. The advantage 

of this tree is that it is embedded with the spatial proximity 

information of the underlying environment and is independent 

from the distribution of the data objects. Analogous to the 

Dijkstra Expansion tree, based on the Chen-Han algorithm, we 

define surface expansion tree as follows: 

Definition 1 (Surface Expansion Tree): Let T be a surface model 

with the vertex set V and a source point s, the Surface Expansion 

Tree (SE-Tree) of T rooted at s is defined as the layout of Chen-

Han algorithm, whose nodes are V and edges represent the 

shortest surface paths from s to these nodes.  

 

Figure 2. The SE-Tree and its overlay on surface 



Figure 2 depicts the appearance of a Surface Expansion Tree. It is 

important to note the Surface Expansion Tree is different from the 

unfolding sequence tree since the Surface Expansion Tree is the 

final result of Chen-Han algorithm and there is only one path from 

the source to one vertex while the unfolding sequence tree is an 

intermediate result and all alternative paths are preserved. 

From Figure 2, we have the following observations: 

Observation 1: On a surface T with a source point s, any two 

shortest path sv1, sv2 from s to two different vertices v1, v2 do not 

cross each other. 

 Proof (by contradiction): Suppose sv1, sv2 cross at point p; thus 

sp1 and sp2 become two different paths from s to p as depicted in 

Figure 3(a). Without loss of generality, assume the length of sp1 is 

equal or smaller than the length of sp2, then the sum of the lengths 

of the paths sp1 and pv2 is equal or smaller than the length of sv2, 

therefore the shortest path from s to v2 is not sv2, which 

contradicts our assumption. □ 

 

Figure 3. Observation 1  

However, it is possible but infrequent for different shortest paths 

to share common segments from the source point as Figure 3(b) 

depicts. If the split point p happens to be a vertex on the surface, 

then v1, v2 are p’s descendants in the SE-Tree. Observation 1 is 

very important. It makes partitioning these surface shortest paths 

of an SE-Tree possible. Since these paths share a common source 

and do not cross each other, it is possible to partition the entire 

surface into several sector-shaped sub areas without cutting 

through any path. In Section 5, we will show how to utilize this 

observation to prune the search space. 

Observation 2: Given a surface T and a source point s, the 

surface expansion tree of s has a very large fan-out at the root and 

a very low depth (i.e., a short and fat tree). 

As depicted in Figure 2, unlike Dijkstra Expansion Tree on the 

road network, SE-Tree in general is fat and short because two 

paths rarely share any common segment. This observation points 

out the major drawback of SE-Tree: its extremely large size which 

is quadratic to the terrain size with an almost linear search time 

due to the tree being short and fat. Therefore, in Section 4, we 

only keep a very small fraction of the tree in memory at the just 

enough level to monitor the nearby data objects. 

4. A NAIVE APPROACH  
In this section, we describe a naïve approach which is a variation 

of techniques proposed in [7, 10] on road networks to surface by 

exploiting the counterpart of Dijkstra Expansion Tree of road 

networks, which is Surface Expansion Tree. We first present the 

algorithm and then analyze its drawbacks and deficiencies. 

4.1 Initial Query Processing 
We use the techniques based on MR3 framework [2] for initial 

query processing. We first describe the algorithm and then define 

the concepts of two areas used in this algorithm. 

First of all, a 2D kNN Query is issued using Euclidean distance 

and k objects are acquired. Next, in the filter step, among these k 

objects, we select the one with the largest network distance and 

use this distance denoted as DL to bound the search area as a 

range query in Euclidean Space. Finally, in the refinement step, 

we calculate the surface distances of all objects within this area 

and rank them to find the k nearest neighbors. In the result set, we 

denote the surface distance of the kth nearest neighbor as DR.  

Now we formally define Expansion Area and Result Area: 

Definition 2 (Expansion Area): Let T be a surface model with a 

source point s, expansion area EA(s) is a polygonal area around s, 

defined by EA(s) = {p: p ∈ T and DE (p, s) ≤ DL}. The boundary of 

EA(s) is called the expansion boundary and denoted as EB(s). 

Definition 3 (Result Area): Let T be a surface model with a 

source point s, result area RA(s) is a polygonal area around s, 

defined by RA(s) = {p: p ∈ T and DS (p , s) ≤ DR }. The boundary 

of RA(s) is called the result boundary and denoted as RB(s). 

The expansion boundary bounds the area that needs unfolding by 

Chen-Han algorithm while the result boundary keeps track of the 

current result. 

4.2 Object Movements 
The data objects update their locations as they move. In this 

section, without loss of generality and to simplify discussion, we 

assume that there is only one query q in the system. Similar to [7], 

we classify the object movements into three categories: the 

movement within the result boundary, the incoming movement 

and the outgoing movement. We ignore those object movements 

that are outside the result boundary because they have no impact 

on the result set at all. Although movements within the result 

boundary may alter the ordering among k objects, the result set 

remains the same and we can ignore this case as well except the 

movement of the kth object where the result boundary itself needs 

updating. With respect to the number of objects passing through 

the result boundary, the maintenance of the result set can be 

divided into two scenarios depending on whether there are more 

outgoing objects or more incoming objects. 

 

Figure 4. Objects updates for 3-NN monitoring 



If there are more outgoing objects than the incoming ones, the 

number of objects inside the original result boundary will be less 

than k and SE-Tree needs growing. As the example depicted in 

Figure 4(a) shows, both p2’ and p3’ become the candidates for kth 

NN since they are now in the area between the original result 

boundary and the new expansion boundary. On the other hand, if 

the outgoing objects are no more than the incoming ones, there 

are at least k objects located in the original result boundary and 

the result boundary probably shrinks. As the example depicted in 

Figure 4(b) shows, p6 no longer belongs to the result set as it is 

outside of the new result boundary. Figure 5 depicts the algorithm 

to process a CskNN query. 

Figure 5. The naïve algorithm for CskNN 

Proposition 1: Let N be the size of the surface model T in number 

of vertices and m be the total number of objects, Algorithm 1’s 

time complexity is O(N2 + mlog(m)). 

Proof: The major time consuming step is the expansion step (Line 

12-13) where the surface distances are computed. The algorithm 

needs O(Nlog(N)) time to calculate the expansion boundary and 

O(N2) time to compute the surface distance by using Chen-Han 

algorithm. Besides, it takes mlog(m) to update results (Line 7, 14-

19). Thus the total time complexity is O(N2 + mlog(m)). □  

Since O(N2) is usually at several orders of magnitude larger than 

mlog(m), the overall time complexity of Algorithm 1 is O(N2). 

However, in the shrinking phase, there is no surface distance 

computation; hence the overall complexity is reduced to mlog(m). 

Therefore, in our implementation, we cache the result of surface 

distance computation during the growing phase to avoid 

redundant computation for future object movements. 

4.3 Analysis 
Compared with techniques for kNN on road networks, this naïve 

approach shares some fundamental similarities. First, all these 

methods built an expansion tree rooted at the query point. Second, 

during the continuous monitoring phase, whether to update the 

result is determined by the result boundary (termed Influencing 

Interval in [7]). However, unlike Dijkstra algorithm, Chen-Han 

algorithm is suboptimal, that is, it is possible for SE-Tree to reach 

a vertex that has larger surface distance earlier than another vertex 

with smaller surface distance. Consequently, we need both the 

result boundary (to keep track of results) and expansion boundary 

(to bound the search) while these two boundary are the same on 

road networks.  

This naïve approach could be fast during the phase when the SE-

Tree shrinks. On the other hand, if there are more outgoing 

objects, the expansion tree has to grow to include k desired 

objects. In the case where there are many more outgoing objects 

or the kth nearest neighbor is far away, this algorithm may take 

tremendous CPU time for expansion processing. There are two 

reasons for this: 1) the overhead of online surface path 

computation is extremely high as shown in Proposition 1; and 2) 

the expansion area of SE-tree could be large. As shown in Figure 

4(a), the expansion area from the old result boundary to the new 

expansion boundary is a ring-shaped area. To overcome these two 

problems, in Section 5, we create a data structure called Surface 

Shortest Path Container to store partial results of pre-computation 

and build a novel index schema called Angular Surface Index 

(ASI) which overlays the fat and short SE-Tree with another thin 

and tall tree in order to enhance the query efficiency. 

5. SURFACE INDEX BASED ALGORITHM 
In this section, we introduce a novel spatial index structure called 

Angular Surface Index (ASI) and its corresponding ASI-Tree 

which is a thin and tall tree structure to replace the fat and short 

surface expansion tree. Please note, the thin and tall tree here 

refers to a well balanced tree with a small branching factor (e.g., 

kd-Tree, Quad Tree). Towards this end, in Sections 5.1 and 5.2, 

we first introduce the concepts of two data structures: Surface 

Shortest Path Container and Surface Equidistant Line 

respectively, and then in Section 5.3 we present ASI and ASI-Tree 

which are built on top of these two data structures. In Section 5.4, 

we explain how this index structure can both localize the search 

and speed up the shortest surface path computation. 

5.1 Surface Shortest Path Container 
The simplest way to address the first drawback of the naïve 

approach is to pre-compute a complete SE-Tree offline and to 

store its corresponding shortest paths from the source. This 

approach could greatly speed up the online query. The shortest 

path computation could be divided into the following two steps: 1) 

locate the data object using a spatial index and 2) retrieve the 

shortest path directly from disk. However, this approach suffers 

from the following drawbacks: 1) in the case where a data object 

lays on the face rather than a vertex, this approach cannot find the 

exact shortest path and the accurate distance; 2) given a surface 

with N vertices, the space complexity of storing all these shortest 

paths is O(N2) per site, which is prohibitive especially since N 

could be in the order of millions and 3) the search time is almost 

linear. Therefore, in order to obtain precise results for arbitrary 

object movements and reduce both the space complexity and 

search time, we instead store geometric objects called containers. 

The goal of using containers is to take advantage of partial results 

based on geometric property to speed up the online process.  

Algorithm 1: CskNN I (surface T, query q, int k) 
1. initialize min-heap H, stack result; 
2. initialize SE-Tree t rooted at q; 
3. result �Initial Processing (T, q, k); // Section 4.1 
4. calculate RB(q); 
5. if there is an update with RB(q), let the number of 

outgoing object points as m and the number of incoming 
object points as n; 

6.     if m ≤ n  
7.         update result;  
8.         shrink t and update RB(q); 
9.     else 
10.         clear H and result; 
11.         add the object points inside RB(q) to H 
12.         calculate EB(q); 
13.         expand t within EB(q);  
14.         for each object point p between RB(q) and EB(q) 
15.             retrieve the surface distance Ds(p, q); 
16.             add p to H; 
17.         while(result.size < k)  
18.              p’ �deheap H;  
19.              add p’ to result;  
20.         update RB(q); 
21. keep monitoring until termination condition 



5.1.1 Definition and Properties  
For road networks, the shortest path container is defined in [8]: 

Let G = (V, E), w: E→R be a weighted graph, a set of nodes C ⊆ 

V is called a container. A container C of an edge (u, v) is called 

consistent, if for all shortest paths from u to t that start with the 

edge (u, v), the target t is in C.  

The advantage of using the shortest path container is to minimize 

the search area of Dijkstra algorithm. Similarly, if we can group 

the shortest paths on surface based on where they start from, we 

can prune the search space dramatically and speed up the query 

process. However, this classification technique on road networks 

cannot directly apply to surface because these surface shortest 

paths hardly share common segments and most containers would 

end up with only one vertex, which reflects the characteristic of 

SE-Tree: short and fat. Consequently, we propose a new concept 

of Cover Set and redefine the concept of Shortest Path Container 

for surface, and then discuss their spatial properties.  

Definition 4 (Cover Set of an edge): Let T be a surface model 

with the vertex set V and a source point s. We call a set of vertices 

CS ⊆ V on T a cover set of an edge e if CS consists of all and 

only the target vertices whose shortest paths from s intersect with 

e. We denote this cover set as CS(e). 

 

Figure 6. Cover Set and Container 

The cover set of an edge defines a subset of vertices that can be 

reached by the shortest paths passing though that edge. To 

illustrate, we can use different colors to represent different cover 

sets of the edges opposite to the source point (Figure 6(b)). All the 

vertices of one cover set share the same color. Subsequently, the 

entire surface is divided into several disjoint regions. Figure 6(a) 

depicts this coloring. It is not surprising to find out that the 

vertices with the same color are close to each other. The following 

property determines its geometric boundary. 

Property 1: Given the cover set CS(e) of an edge e on a terrain T 

with a source point s, there must exist a geometric boundary b that 

encloses all and only the vertices of CS(e) and their shortest paths. 

The proof of Property 1 is straightforward and we omit the details 

here due to the space limit. Intuitively, as the shortest paths do not 

cross each other according to Observation 1, we can always find a 

polyline sp from the source s to a point p on the margin of T, 

which is immediately left to the leftmost shortest path to CS(e) 

and do not cross any shortest paths, hence sp constitutes the left 

part of the boundary b. Similarly, the right part of the boundary b, 

sq also exists and the polyline on the margin between p and q, (p, 

q) constitutes the end boundary part. In some rare cases where 

none of the shortest paths to CS(e) reaches the margin of T, we 

can choose p and q as the same point on the margin of T and the 

end boundary polyline (p, q) converges into one single point. 

As a result of Property 1, for each cover set, a contour outline can 

be drawn as its geometric boundary. Now we give the formal 

definition of a container. 

Definition 5 (Container of an edge): Let T be a surface model 

with the vertex set V and a source point s. A container of an edge 

e is defined as C = (CS, B), where CS denotes the cover set of e 

and B is the geometric boundary of CS that satisfies Property 1. 

We denote this container as C(e). 

Figure 6(b) depicts a container C(e) and all its shortest paths. 

Compared with the concept of container defined for road 

networks, the surface shortest path container is more rigorous 

since it does not include the vertices or paths of other containers. 

For each container, its boundary consists of: the left boundary line, 

the right boundary line and the end boundary line (which only 

exists if the left and right boundary lines do not converge). We 

will see how to draw this boundary in Section 5.1.2. Based on the 

boundaries, we can define the following relationships. 

Definition 6 (Intersection): Let C1 and C2 denote two containers 

on a terrain T, C1 intersect C2 when their boundaries intersect.  

Definition 7 (Contain): Let C1 and C2 denote two containers on a 

terrain T, C1 contains C2 when all the vertices of the cover set of 

C2 are also in the cover set of C1. 

Definition 8 (Adjacency): Let C1 and C2 denote two containers 

on a terrain T, C1 and C2 are adjacent when they share a common 

boundary line. 

Definition 8 is a little bit ambiguous since the boundary of a 

container is not unique because any curve separating two cover 

sets without crossing any shortest path can be viewed as a 

boundary line. Therefore, it is possible for two containers to be in 

fact adjacent without sharing any boundary line. However, we 

consider any two boundary lines as one as long as there is no 

vertex between these two.  

Property 2: Let C1(e1) and C2(e2) denote two containers on a 

terrain T with a source point s, where neither C1 contains C2 nor 

C2 contains C1. C1 and C2 do not intersect if and only if e1 and e2 

do not have any common shortest path from source s. 

Proof: (by contradiction) Assume that C1 and C2 have no 

intersection, and e1 and e2 share one shortest path sp from the 

source s. Thus, sp’s target point p must be included in both C1 and 

C2 according to the definition of container. In this case, since 

neither C1 contains C2 nor C2 contains C1, then C1 and C2 must 

intersect, which contradicts the assumption. □ 

Property 3: Let C1(e1) and C2(e2) denote two containers on a 

terrain T, C1 contains C2 if and only if all the shortest path from 

source s passing through e2 also pass through e1. 

Property 4: Let C1(e1) and C2(e2) denote two containers on a 

terrain T, C1 and C2 are adjacent if and only if e1 and e2 are 

connected by a common vertex v and do not have any common 

shortest path from source s except through v. 

(Proofs of Property 3 and 4 are similar to Proof of Property 2 and 

are hence omitted.) 



Next, we define the container for a group of adjacent edges. 

Definition 9 (Container of several adjacent edges): Let C1, 

C2, …, Cn denote n containers on a terrain T for n adjacent edges 

e1, e2, …, en. The container of these edges is defined as C = (CS, 

B) where CS is the union of all cover sets of C1, C2, …, Cn, and B 

is the geometric boundary of CS that satisfies Property 1. We 

denote this container as C(e1,e2, …, en). 

In fact, the left and right boundary lines of C(e1, e2 …en ) can be 

drawn by tracing the outermost boundary lines of the two side 

containers and its end boundary line is the union of the end 

boundary lines of all the participating containers. In addition, the 

three operations (Intersection, Contain and Adjacency) for this 

type of container can be defined exactly the same as in Definitions 

6, 7, 8 and Properties 2, 3 and 4 still hold. Similarly, the container 

of any arbitrary polyline on surface can be defined the same as 

Definitions 5 and 9 and all the above properties hold. 

5.1.2 Creating Surface Shortest Path Container  
In this section, we propose an algorithm to create a surface 

shortest path container.  

 

Figure 7. To trace left boundary line of a container 

 

Figure 8. The algorithm to trace the left boundary line 

First of all, we sort shortest paths counter-clockwise where the 

target vertex of each path inherits the same sequence number as its 

shortest path. Figure 8 depicts the algorithm to trace the left 

boundary line of a container. Initially, the left boundary line is the 

container’s leftmost shortest path sp1 (assuming the source point s 

is on the right) as depicted in Figure 7. Once this path reaches its 

target vertex vt and ends, this algorithm takes another shortest 

path sp2 that intersects one of vt’s edges e and has the smallest 

(leftmost) sequence number after sp1. We denote p as the 

intersection point of e and sp2. In some very rare case, when none 

of vt’s edges intersects any other shortest path of this container, 

we expand edges from vt in a Dijkstra style until the intersection 

point p is found. After adding edge (vt, p), the left boundary line 

continues tracing sp2. This process continues until the boundary 

line finally reaches a vertex on the margin of the surface or all the 

paths has been traversed. Figure 9 provides the complete 

algorithm to create a shortest path container. Please note, in Line 

6, the end boundary can be NULL if left and right boundaries do 

not intersect the margin. The time complexity of Algorithm 3 is 

O(NlogN) due to the sort operation in Line 3. However, since the 

pre-computation of shortest paths takes O(N2), the overall time 

complexity is O(N2). 

 Figure 9. The algorithm to create a container 

5.2 Surface Equidistant Line 
As shortest path containers partition a surface towards the vertical 

(longitude) direction, Surface Equidistant Lines are designed to 

partition along the horizontal (latitude) direction. 

In cartography, a contour line which consists of points of equal 

elevation could be used to group the elevation information on a 

terrain. With the similar purpose, we can draw lines with equal 

surface distance to a fixed point.  

Definition 10 (Surface Equidistant Line): Let T be a surface 

model with a source s. Given a distance value d, a surface 

equidistant line is defined as l(s, d) = {p: p ∈ T and DS (s, p) = d}. 

For a given source point, several surface equidistant lines with 

different distance values divide the surface into disjoint rings. 

These lines are sorted by their increasing distance value to the 

source point and this order is termed as levels (e.g., the one with 

smallest distance is call 1st level surface equidistant line). These 

surface equidistant lines are represented as polylines on a surface 

model (see Figure 10(a)). 

Property 5: Let l1 and l2 denote two adjacent polylines of a single 

equidistant line on a terrain T, there does not exist any shortest 

path from the source s that intersects both l1 and l2 unless at their 

common vertex v.  

Proof: (by contradiction) Assume there is a shortest path sp, 

which intersects both l1 and l2 at p1 and p2, respectively. Without 

loss of generality, we assume that sp intersects l1 first, so the 

length of the shortest path to p2, is |(s, p2)| = |(s, p1)| + |(p1, p2)|. 

Since |(p1, p2)| > 0, it contradicts the definition of surface 

equidistant line that |(s, p2)| = |(s, p1)|. □ 

Combined with Property 4, we have the following corollary. 

Corollary 1: Let l1, l2 denote two adjacent polylines of a surface 

equidistant line on a terrain T, then the two containers C1 (l1), C2 

(l2) are adjacent. 

5.3 Angular Surface Index 
Based on surface shortest path containers and surface equidistant 

lines, a terrain surface can be divided into the following regions: 

Algorithm 3: Create A Container (polyline l) 
1. initialize a container C; 
2. C.cover set � all the destination vertices of the shortest 

path intersecting l; 
3. sort the shortest paths intersecting l counter-clockwise, let 

sp be the leftmost path and sq be the rightmost path; 
4. C.lBoundary �Trace Left Boundary(sp);  
5. C.rBoundary � Trace Right Boundary(sq); 
6. C.eBoundary � part of the margin of the surface that 

intersects its C.lBoundary and C.rBoundary; 
7. return C; 

Algorithm 2: Trace Left Boundary (path sp) 
1. initialize a stack B; 
2. add sp to B; 
3. let v be the destination vertex of sp; 
4. while v is not on the margin of the surface 
5.     find the leftmost shortest path sp2 (but right to sp) that   

intersects v’s edges with an intersection p; 
6.     if (sp2 is NULL) break;   
7.     add edge (v, p) to B; 
8.     add the path of sp2 starting from p to B; 
9.     v � destination vertex of sp2; 
10.     sp � sp2; 
11. return B; 



First, the surface is partitioned into m containers according to the 

m opposite edges of the source point. The opposite edges of a 

point p are all the edges of the triangles that have p as a vertex, 

but these edges do not share a vertex at p (see Figure 6(b)). For 

real world terrain models, m is usually smaller than 8. We call 

these containers Primary Containers or 1st Level Containers. 

Second, inside each primary container, the region is partitioned by 

different surface equidistant lines. Next, in order to make 

partitions of equal size, we further continue partitioning according 

to each partition’s proximity to the source point: each partition at 

level n will result in the number of bf partitions at level n+1.To 

simplify our implementation, we fixed the branching factor bf  at 2 

as depicted in Figure 10(a). We will further study the impact of bf 

in our future work. For illustration purpose, a planar abstraction 

of ASI is depicted in Figure 10(b). Since each partition has an 

angular shape, this index structure is called Angular Surface 

Index (ASI) and each partition is called a surface chunk. 

From the perspective of containers, ASI can also be viewed as a 

hierarchy of containers based on the “containing” relationship. 

Every surface equidistant polyline of each surface chunk is used 

to create a container. Inside one container, because the shortest 

paths that pass through one equidistant polyline l1 at level n+1 

must pass through another equidistant polyline l2 at level n, as a 

result of Property 3, the container of l1, C1(l1) must be contained 

by the container of l2, C2(l2) and we say C1 is a child of C2. With 

ASI, each container has two children. According to Corollary 1, 

these two children are adjacent. Therefore, a tree is built for ASI 

construction, called Angular Surface Index Tree (ASI-Tree). 

Figure 10(c) depicts an ASI-Tree. With this ASI-Tree, each node 

represents a container. The root node is the source point which 

could be viewed as a super container that contains the entire 

surface. Except for the root node, all intermediate nodes have a 

fan-out of two. Besides pointers to its children, each intermediate 

node also stores pointers to two polylines: one polyline that 

separates its own chunk from its children, termed chunk separator 

and another polyline that separates its two children, termed child 

separator. The root usually has more than one child separators. 

To facilitate shortest path computation, each node also stores the 

image sources (defined in [1]) for the vertices in the chunk. An 

image source for a point p is the image of the source that is 

coplanar with the face containing p for a given unfolding and is an 

intermediate result while running Chen-Han algorithm. However, 

since many faces can be reached by one unfolding, the total 

number of image sources are much less than the number of faces 

(or vertices) inside this chunk. We refer readers to [1] for details. 

Unlike R-Tree [12] whose node size can be chosen to be equal to 

(or a multiple of) disk page size, ASI-Tree has a fixed node size, 

thus is stored on disk the same way as other external data 

structures with fixed node size such as Quadtree or K-D tree [13].  

Compared with SE-Tree, ASI-Tree has the following advantages: 

1. Storage: ASI-Tree has M nodes while SE-Tree has N nodes. 

(N is the terrain size while M is the total number of chunks). 

2. Regularity: ASI-Tree is almost balanced while SE-Tree is 

very irregular and surface dependent.  

3. Efficiency: ASI-Tree has a small fan-out for each node and 

the search time is logarithmic while SE-Tree is usually fat 

and short and the search time is almost linear. 

 

Figure 10. ASI and ASI-Tree 

Please note, the ASI-tree for the entire terrain is usually not fully 

balanced as the query point is not always at the center of the 

terrain or in the special case where the query point is placed near a 

steep terrain surface, causing some containers not covering any 

vertex on the margin. Fortunately, this "unbalance" has little 

impact on our problem. This is because, kNN queries typically 

concern about the nearby objects and usually can be answered 

before reaching the leaf nodes of the ASI tree (the margin of the 

surface). Hence, for the majority of cases, the part of the ASI tree 

that will be visited is balanced and the search time is logarithmic. 

 

Figure 11. The algorithm to create all containers 

 

Figure 12. The algorithm for ASI construction 

Algorithm 5: ASI  Construction (surface T, source s, int n) 
1. initialize an ASI-Tree root at s; 
2. for each edge ei opposite to s  
3.     primary container PC(ei) � Create A Container(ei);  
4.     root.child[i] � PC(ei) 
5. create n equidistant lines, next, sort them by levels; 
6. for each PC(ei) 
7.     polyline l � first equidistant polyline inside PC(ei); 
8.     divide l into two equal length polylines l1 and l2; 
9.     PC(ei)’s left child � Create All Containers(l1); 
10.     PC(ei)’s right child � Create All Containers(l2); 
11. return root; 

Algorithm 4: Create All Containers (polyline l) 
1. container C � Create A Container(l); // Algorithm 3 
2. if C does not contain any equidistant line // a leaf node 
3.     return C; 
4. else 
5.    polyline l’ � the lowest level equidistant polyline in C;    
6.    divide l’ into two equal length polylines l1 and l2; 
7.    C’s left child � Create All Containers(l1); 
8.    C’s right child � Create All Containers(l2); 
9.    return C; 



Figure 12 provides a recursive algorithm to construct an ASI-Tree. 

In Algorithm 5, n indicates the total number of equidistant lines. 

If the equidistant lines are selected at the constant distance 

interval, the total number of chunks will be exponential with the 

terrain size, which is prohibitive. Therefore, the equidistant lines 

should be selected at the distance multiplied by 2n/2, making the 

number of chunks linear with the terrain size. In experiments, n is 

selected automatically by a parameter called Container Density DC 

that n = log (NDC) where N is the terrain size. 

 

Figure 13. The algorithm for shortest path computation  

Figure 13 sketches an algorithm to use the ASI-Tree to locate 

which chunk a data object falls in and compute its surface 

distance. In Line 4, upon identifying which chunk the object p 

falls in, its surface shortest distance is then computed based on the 

image sources stored for this chunk. According to the definition, 

the image source s’ is coplanar with the face p locates, its surface 

distance can be computed immediately as the Euclidean distance 

between s’ and p. In order to address kNN only, this process is 

enough. For cases where we also need the actual path, we need to 

unfold this chunk and all its ancestors. We apply a variation of 

Chen-Han algorithm where the image source is known in advance: 

first, connect the image source s’ and p to form a straight line s’p, 

then start unfolding from p and always choose the face that 

overlaps with the line s’p. Apparently, this variation runs linearly 

with the number of vertices in the unfolding area.  

The time complexity of Algorithm 6 is O(Nlog(M)/M) because the 

algorithm needs O(Nlog(M)/M) time to locate p and O((N/M)) 

time to find the image source and compute its surface distance. If 

an exact surface path is desired, the unfolding process costs 

O(Nlog(M)/M) but the overall complexity remains the same. 

ASI can also be indexed by SIR-Tree proposed in [4]. For each 

surface chunk, a representative point can be selected for the R tree 

index. Correspondingly, each leaf node records a pointer to the 

vertex list of each chunk. However, this R-tree based approach 

does not take advantage of the hierarchical spatial containing 

relationship of containers and results in a larger search area. 

5.4 CskNN Query Processing 
In this section, we present our algorithm to process CskNN 

queries using ASI-Tree and explain why this algorithm will 

reduce the search area compared with the naïve approach. The 

core of our CskNN query processing is the same as discussed for 

the naïve approach in Section 4.1 and 4.2. The main difference is 

that we utilize ASI-Tree to localize the search area for candidates 

and reduce the complexity of surface shortest path computation. 

 

Figure 14. the algorithm for initial query processing 

Figure 14 depicts the initial result computation phase. Similar to 

the naïve approach, Algorithm 7 shares the same filter and 

refinement framework as in Section 4.1. However, it has the 

following differences. First, in Line 4, during the first filtering 

step, the actual surface distances to candidates are computed using 

ASI-Tree rather than the network distances. This not only results 

in a smaller search area, but more importantly, makes the 

complexity of this process (O(Nlog(M)/M)) even less than that of 

the Dijkstra algorithm (O((Nlog(N))) if we consider the mesh as a 

network. Second, in Line 8, a second filtering step is employed 

which takes advantage of the property of surface equidistance 

lines, thus the size of the candidate set is reduced even further. 

 

Figure 15. The surface index based algorithm for CskNN 

Algorithm 6: Compute DS (surface T, ASI-tree r, point p) 
1. container node � r; 
2. while (node != NULL) 
3.     if p is on the upper region of node.chunk separator 

    // this chunk contains point p 
4.         search the image source s’ for p and compute  

DE(s’, p);  
5.         return DE(s’, p); 
6.     else  
7.         find number m that p is between node’s mth child  

separator and node’s m+1th child separator 
8.         node � node’s mth child; 

Algorithm 8: CskNN II (surface T, ASI-tree r, query q, int k) 
1. initialize min-heap H, stack result, candidate set Q, Q2 
2. result �Initial Processing (T, r, q, k) and calculate 

RB(q); // Algorithm 7 
3. if there is an update with RB(q), let the number of 

outgoing object points as m and the number of incoming 
object points as n; 

4.     if m ≤ n  
5.         update result;  
6.         update RB(q); 
7.     else 
8.        clear H and result; 
9.        Q �apply filter1 (T, r, q, k); 
10.        Q2 �apply filter2 (T, r, q, k); 
11.        add the object points inside Q2 to H 
12.        Q � Q – Q2; 
13.        for each object point p in Q 
14.             compute DS (T, r, p) ;  // Algorithm 6 
15.             add p to H; 
16.        while(result.size < k) 
17.             p’ �deheap H; 
18.             add p’to result; 
19.         update RB(q); 
20. keep monitoring until termination condition; 

Algorithm 7: Initial Processing (surface T, ASI-Tree r, query 
q, int k) 
1. initialize min-heap H, stack result, candidate set Q, Q2 
2. Q � kNN(q);      // 2D k-NN query in Euclidean Space 
3. for each object point p in Q 
4.     Compute DS (T, r, p) ;  // Algorithm 6 
5.     add p to H; 
6. Dmax � maximum surface distance of objects in Q; 
7. Q � Range(q, Dmax); // range query in Euclidean space 
8. find number m that there are k1 (≤ k)objects inside the mth 

surface equidistance line and k2 (> k) objects within the 
(m+1)th surface equidistance line; then insert the objects 
within the (m+1)th surface equidistance line into Q2 

9. Q � Q ∩ Q2 
10. for each point object p in Q but not in H 
11.     Compute DS (T, r, p) ;  // Algorithm 6 
12.     add p to H; 
13. while(result.size < k)  
14.    p’ �deheap H;  
15.   add p’ to result;  
16. return result; 



In the continuously monitoring phase as depicted in Figure 15, a 

result boundary is used to check when an update is issued as in 

Section 4.2. In Algorithm 8, the first filter (upper bound) is 

applied in Line 9, which is exactly the same as Lines 2-9 in 

Algorithm 7. The second filter (lower bound) is applied in Line 10, 

which is similar to Line 8 in Algorithm 7, but only inserts the 

objects within the mth surface equidistance line into Q2. Therefore, 

the candidate set for kth NN is the difference set of the first 

filtering result set and the second filtering result set (Line 12). 

Consequently, the search area is the union of the chunks of all the 

objects in this candidate set, which is much smaller than the 

search area of the naïve approach (the area between the old result 

boundary and the new expansion boundary).  

Example 2: Figure 16 shows the comparison between the two 

proposed approaches. In this example to monitor 3NN, we assume 

that only p3 is moving. We can see that the ASI-based approach 

reduces the search area remarkably by a more powerful filter (e.g., 

p5 is filtered out from candidates) and localizing the search only 

inside the chunks of the candidates (e.g., p3’ and p4).   

 

Figure 16. In comparison of two approaches, the search areas 

are shaded in green (dark grey in black white printing). 

Proposition 2: Let N be the size of the surface model T, m be the 

total number of objects and M be the total number of chunks, 

Algorithm 8’s time complexity is O(mNlog(M)/M + mlog(m)). 

Proof: The major time consuming steps are applying filter 1 (Line 

9) and the result updating (Line 5, 16-18). In applying filter 1, at 

most m times surface distance computation by using Algorithm 6 

are needed, which is O(Nlog(M)/M), while the result updating is 

the same as in Algorithm 1 which is mlog(m). Thus the total time 

complexity is O(mNlog(M)/M + mlog(m)). □   

6. PERFORMANCE EVALUATION 

6.1 Experimental Setup 
In our extensive experiments, both large scale real-world and 

synthetic datasets are used. The real-world surfaces are modeled 

by the 10-m USGS DEM data sets downloaded from [11] which 

are the same as the datasets used in previous studies in [2] and [4]: 

1) Bearhead (BH) area in WA, USA which covers an area around 

10.7km×14km and 2) Eagle Peak (EP) area in WY, USA with 

similar size as BH. In addition, in order to analyze how the land 

surface itself can affect the performance of our proposed method, 

we create five synthetic surface models with the same size 

(10km×10km) where we can vary roughness RA as a parameter. 

The roughness of a surface has different measures and we use the 

most common one: the standard deviation of the elevations away 

from the mean elevation of a scan line over the surface.  

For all experiments, we use a PC with Intel 6420 Dual CPU 

2.13G Hz and 3.50 GB RAM. The operating system is Windows 

XP SP2. To compute the exact surface distance, we use the most 

recent implementation of Chen-Han algorithm in [6], and all the 

algorithms are implemented in Microsoft Visual Studio 2005. In 

the implementation of Algorithm 6 (Figure 13), we choose the 

linear variation of Chen-Han algorithm; therefore, both the k 

nearest neighbors and shortest surface paths can be provided. 

6.2 System Parameters 
Parameters Default Range 

Number of NN k 10 2, 4, 6, 8,…, 20 

Object Distribution  Uniform Uniform, Gaussian 

Object Density DO 0.6% 0.2, 0.4, 0.6, 0.8, 1 (%) 

Object Agility a 10% 0, 5, 10, 15, 20 (%) 

Object Speed v 30 m/ts 10, 20, 30, 40, 50 (m/ts) 

Container Density DC 3% 1, 2, 3, 4, 5 (%) 

Surface Roughness RA 10% 6, 8, 10, 12, 14 (%) 

Table 1. System parameters 

For our experiments, we conduct 100 CskNN queries to evaluate 

the average performance of the system under different values of 

parameters listed in Table 1. Each query requires continuous 

monitoring for 50 timestamps. For each set of experiments, we 

only vary one parameter and fix the remaining to the default 

values. The performance is measured by the average query 

processing time and I/O cost per timestamp. The first 6 parameters 

are tested on both BH and EP while Surface Roughness RA is only 

tested on synthetic data sets. Initially, data objects follow either 

uniform distribution or Gaussian distribution (with mean at the 

center of the land surface and standard deviation of 10% of the 

maximum surface distance from the center) with varying densities 

from 0.2% to 1%. The object agility indicates the overall objects 

activeness, measured by the percentage of moving objects per 

timestamp while the object speed indicates each object’s 

activeness, measured by meters per timestamp. Please note, since 

objects can move arbitrarily and do not necessarily follow the 

surface shortest path, it is impossible to use the exact path to 

compute the speed of every object and hence the speed is 

measured by the displacement in Euclidean space per timestamp. 

Container density is defined as the ratio of the number of 

containers (or chunks) over the terrain size. This parameter can 

also be used to estimate the ASI tree’s size (in number of nodes). 

6.3 Performance Study 
Since this paper is the first to address the continuous kNN 

problem on surface, we compare the two approaches proposed in 

this paper as competitors.  

6.3.1 The Impact of k  
First, we compare the performance of two algorithms by varying 

the value of k from 2 to 20 on both BH and EP while using default 

settings (see Table 1) for all other parameters. Figure 17 shows 

the average query efficiency and number of I/O operations (as a 

function of the number of retrieved surface vertices). The result 

indicates that ASI based algorithm outperforms the naïve 



algorithm both in query efficiency and I/O operations. As the 

value of k increases, the response time of the naïve algorithm 

grows at a quadratic rate due to the invocation of Chen-Han 

algorithm while the response time of ASI-based algorithm 

increases at a linear rate. ASI-based algorithm outperforms the 

naïve algorithm by at least a factor of two for k > 4. ASI-based 

algorithm also yields a better performance in I/O by an average 

factor of two because the search is localized to avoid unnecessary 

access to surface vertices. 

 

Figure 17. Query Efficiency, I/O Cost vs. Value of k 

6.3.2 The Impact of Object Distribution and DO 
Next, we study the impact of initial object distribution. Figure 18 

shows the query processing time and I/O cost on BH and EP with 

objects which follow either uniform or Gaussian distributions. 

Clearly, ASI-based algorithm outperforms the naïve algorithm 

significantly in all cases. In addition, the difference between these 

two distributions is not noticeable. In our experiments, the ASI 

based algorithm has a slightly better performance for objects with 

Gaussian distribution than objects with uniform distribution.  

 

Figure 18. Query Efficiency, I/O Cost vs. Object Distribution 

Figure 19 depicts the performance of the two proposed algorithm 

by varying the object density from 0.2% to 1%. In general, with a 

fixed value of k, both query processing time and I/O cost decrease 

for both algorithms as DO increases. This is because a higher 

density usually results in a smaller search area, and the overhead 

for both algorithms is reduced. Furthermore, even at the highest 

density, ASI-based algorithm outperforms the naïve algorithm by 

a factor of five in query efficiency and a factor of two in I/O cost. 

 

Figure 19. Query Efficiency, I/O Cost vs. DO 

6.3.3 The Impact of a and v 
In the next set of experiments, we study how the object 

movements affect the performance. Two parameters are used to 

measure the movements, which are object agility a and object 

speed v. We first fix v to study the impact of a and then fix a to 

study the impact of v. All other parameters are fixed to the default 

settings (see Table 1). 

 

Figure 20. Query Efficiency vs. a & v 

Figure 20 (a) and (b) illustrate the impact of object agility. As the 

object agility grows, both algorithms’ query processing time 

increases slightly as well because the possibility to enlarge the 

search area is increased. However, as Figure 20 (c) and (d) 

illustrate, both algorithms are practically unaffected by object 

speed because the core of both algorithms only concern whether 



there are object updates rather than how far the objects move. 

Clearly, ASI-based algorithm has an obvious predominance over 

the naïve algorithm in all cases. The trends of I/O cost for both 

algorithms are the same as query response time and hence omitted. 

6.3.4 The Impact of DC  
Figure 21(a) depicts the impact of container density with respect 

to query efficiency. Only the performance of ASI based algorithm 

is evaluated as containers are not used in the naïve algorithm. We 

observe that the performance is enhanced as more containers are 

created for both BH and EP.  

 

Figure 21. Query Efficiency vs. DC & RA 

6.3.5 The Impact of RA 
In our final set of experiments, we vary the roughness RA over five 

synthetic surface models of the same size. Regardless of the value 

of RA, ASI-based algorithm keeps outperforming the naïve 

algorithm at a factor of five. In addition, as shown in Figure 

21(b), rougher terrains incur more query processing time. This is 

reasonable because the differences among three distance measures 

(i.e., Euclidean distance, Network distance and Surface distance) 

are usually amplified with rougher terrains, thus the filters in both 

Algorithm 1 and Algorithm 8 could probably generate a larger 

search area than smooth terrains. 

7. CONCLUSION AND FUTURE WORK 
In this paper, for the first time, we introduce the continuous 

monitoring kNN problem on surface and propose two algorithms: 

a naïve algorithm which is analogous to the same problem in road 

networks and a surface index (ASI) based algorithm. The 

experiment results show that the ASI-based algorithm outperforms 

the naïve algorithm under all circumstances by a factor of 2 to 10.  

Due to the complexity of dealing with land surfaces, in this paper 

we assume a simplified problem setting (pre-defined static query 

points) which in turn restricted our motivating real-world 

applications. However, our observations of the characteristics of 

shortest paths on land surfaces are fundamental and can be 

stepping stones for future research in this area addressing more 

complex settings and hence more real-world applications. Some 

extensions of CskNN problem with more complex settings are 

straightforward. For example, to relax the “pre-defined” query 

points to any arbitrary query point on surface, the ASI can be built 

for every vertex, pre-computing its surface distance to all other 

vertices. This combined ASI can answer arbitrary queries by 

disassociating the surface space from query points, very much like 

the work in recent literature (e.g., [9]) that utilizes this idea on the 

road network. Our future plan includes further studying these 

complex settings, where queries move arbitrarily. 
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