
1

Declarative Management in Microsoft SQL Server

Hongfei Guo Dan Jones Jennifer Beckmann Praveen Seshadri
Microsoft, One Microsoft Way, Redmond WA, USA

{hongfeig, dtjones, jennbeck, pravse}@microsoft.com

ABSTRACT

This paper describes the principles and practice of Declarative

Management — a new approach to the management of database

systems. The standard approach to database systems management

involves a brittle coupling of interactive operations and procedural

scripts. Such ad hoc approach results in incorrect administration,

which leads to increased management costs. In the Declarative

Management paradigm, a user specifies ―what‖ the desired state

is, and the system figures out ―how‖ to get there and stay there.

Declarative Management represents a fundamental step towards

the goal of a self-managing database system. It also has the poten-

tial to significantly lower both administrative error and cost. An

initial implementation of Declarative Management has been re-

leased with the Microsoft SQL Server 2008 database product, and

the paper covers the implementation design as well.

1. INTRODUCTION
Database systems manage and process data efficiently, reliably,

and at scale. For common database applications, many commer-

cially available database products provide the necessary features

at satisfactory performance. However the complexity and cost of

management of the database systems themselves has increasingly

become the primary differentiator among the different products.

The focus of this paper is a new approach to database systems

management that drastically lowers cost and complexity, while

retaining flexibility. In fact, this approach is a promising step

towards an eventual goal of self-management, which is particular-

ly important in the context of the accelerating shift towards cloud-

based server computing.

1.1 Problem Description
Database systems are managed by database administrators

(DBAs). Typically, DBAs use a combination of five broad ap-

proaches to system management:

 Graphical interactive management tools that allow the DBA

to browse metadata, examine configuration, and take opera-

tional actions.

 Operational command-line scripts that capture one or more

DBA actions.

 Automation of scheduled (often recurring) or event-driven

operational scripts for system maintenance.

 Monitoring via real-time and historical monitoring tools.

 Trouble-shooting diagnostics and tuning via ―advisors‖.

The current management technologies and tools are both DBA-

intensive as well as prone to DBA-error. These technologies are

severely limiting in today’s IT environments because of the in-

creasing number of database deployments (hundreds per DBA),

the complexity of the database systems (database systems are

among the most complex of server products), and the dynamic

changes that occur constantly and need to be reacted to (new data,

new applications, new management requirements). While hard-

ware costs have fallen, the relative cost of skilled DBA time and

attention has gone up steeply. With greater multi-tasking de-

manded of the DBA, the probability of human-error increases and

with it come significant costs (for example, if there is an error in

the recurrence schedule of a backup script, important data may not

be recoverable).

New technology is needed that drastically increases DBA prod-

uctivity and correctness, while still retaining and exposing the rich

management options and capabilities of the underlying database

system. The other important requirement is that the management

technology must be simple to understand and use. DBAs are typi-

cally not fans of complexity (for example, a hypothetical solution

that involved having the DBA write Prolog programs would fail

the real-world simplicity-test even if it theoretically solved the

problem). Indeed, simplicity and transparency are primary design

imperatives.

The other important observation is that we are not focused on

tasks of great complexity (for example, performing deep security

threat analysis on a database system). The objective is to increase

productivity and reduce errors for tasks that are, in isolation, quite

routine for the skilled DBA, yet have to be done repetitively and

interactively, and with the potential for error.

Finally, the next decade will see a significant shift towards

server computing ―in the cloud‖ [3]. One of the most viable and

currently popular approaches to cloud computing is to host exist-

ing software services (operating systems, databases, etc) on cloud-

hosted infrastructure [2]. In such an environment, machines and

software services are provisioned automatically and must be ma-

naged without human intervention. Managing database services in

such an environment also requires a change in approach — the

traditional DBA techniques clearly do not suffice.

1.2 Contribution
Declarative Management represents a uniquely database-inspired

approach to systems management — it applies the declarative

tradition of database query processing to management. Instead of

specifying a procedural script of administrative actions for each

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date ap-

pear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

2

task, the DBA specifies a desired outcome at an appropriate high

level of abstraction. This is the DBA’s declarative intent.

Since the intent is specified in terms of the outcome, and at a

higher level of abstraction than the implementation details of the

underlying system, management is less prone to human error. The

Declarative Management technology interprets the intent, applies

it in a scalable way to all systems being managed, and ensures that

the intent is continuously monitored and enforced.

Below are some intent examples that a DBA may want to en-

force. We refer to these examples throughout this paper:

Example 1: For all columns in all tables in the Payroll database, if
a column contains SSN, then the column needs to be
encrypted.

Example 2: For all databases more than 20MB in size, statistics
collection should be turned on.

Example 3: For all tables, views and stored procedures, their
names should be at least 5 characters long.

Example 4: For all HR databases, they should have a data loss
window of 15 minutes, and can be recovered within
1 business day.

Take Example 1 for instance (described in detail along with

core concepts in Section 3), a DBA mandates that all columns

with social security numbers (SSNs) should be encrypted. Under

the Declarative Management paradigm, the intent is captured by a

condition: [If Column.Type = ‘SSN’, then Encrypted = ‘true’].

This intent can be configured to apply to all or a subset of data-

base services in the IT environment, and, within each server, to all

or a subset of tables. Further, this intent can be configured to be

automatically checked periodically or whenever any schema

change occurs in the target databases. Having specified this intent,

the DBA no longer needs to manually and interactively manage

the system for this purpose — rather, the system is smart enough

to understand the desired intent, and to apply it automatically

across multiple tables in multiple databases.

We proposed a simple yet practical model for declarative man-

agement and designed a framework that supports this model. In

the Microsoft SQL Server 2008 commercial database system, we

implemented this framework and integrated it with the rest of the

product.

The integration itself poses practical challenges — DBAs are

typically unwilling to use a plethora of one-off management tools

for different problems — rather they want an integrated manage-

ment tool that includes a variety of related management solutions.

Furthermore, since SQL Server itself is not a new product, DBAs

adopting the new management technologies in SQL Server 2008

expect to leverage and extend many of the existing technologies

they have already learned and adopted. These pragmatic con-

straints of the commercial database market, associated with the

inherent technical hurdles of the problem space have made this

work particularly challenging.

The paper is organized as follows. Section 2 sets up the back-

ground and discuss related work. Section 3 presents our model for

declarative management. Section 4 describes the overall design,

architecture and implementation. Section 5 addresses policy au-

tomation. Finally, section 6 concludes the paper and points out

future directions.

2. BACKGROUND
Since the topic of database systems management has not received

as much academic attention as other aspects of database systems

(like transaction processing and query processing), this paper

provides some introductory background and problem description.

2.1 Total Cost of Ownership
It has been four decades since the invention of relational database

system, and today most commercial relational database systems

have an adequate feature set for the needs of most customer appli-

cations. Relational database systems are at natural stage of tech-

nology maturation. Cost, not feature set, has become a primary

deciding factor in the choice of one database system over another.

The cost of adoption of a database system is measured not just in

license cost, but also many other components such as hardware

cost, the developer time taken to build a new application (time to

solution) where the application is not purchased, and the cost of

managing the application and system over its entire lifecycle.

Total Cost of Ownership (TCO) is the aggregation of all these

costs. The hardware and software license costs have traditionally

been factored into database performance benchmarks (for exam-

ple: the various TPC benchmarks have price/performance metrics)

acknowledging the important role played by cost in technology

adoption. However, hardware and software costs, while very tang-

ible at initial adoption, are an increasingly small fraction of TCO

[23]. The dominant factor is becoming the aggregated cost of

management, for which we coin the phrase ―Total Cost of Admin-

istration‖ (TCA). Techniques and technologies to reduce TCA are

a relatively new but very commercially important area for re-

search and innovation.

This cost is partially the human cost of the database administra-

tor (DBA) who deploys and manages the applications and the

underlying database system. A DBA is an expensive employee

and a skilled one is difficult to hire and retain, and database sys-

tems have not yet provided the right technology to make them

productive and efficient. A more significant cost is due to lack of

management (because there are too many systems for the few

DBAs to manage) or due to human error by an over-worked DBA.

Large IT environments also see constant change — existing data-

base applications grow in data size and distribution, are moved to

new hardware, and are upgraded to new versions. New applica-

tions are often deployed. In this dynamic environment, the DBA is

often playing catch-up rather than guaranteeing management cor-

rectness and consistency as desired.

Three recent trends have exacerbated these problems: (a)

growth in system complexity, (b) increase in the number of data-

bases each DBA is expected to manage, (c) increase in the hetero-

geneity of the environment being managed (different geographic

locations, database system versions, applications, storage systems,

etc).

There has been some research over the last two decades on the

impact of human errors. Gray did early work on understanding

system faults [15][16] and estimated that administrator mistakes

account for 15% of system outages. Gray showed that highly

available systems can mask some administrator error with redun-

dancy or fault tolerance; however, Brown and Patterson [7] argue

that system dependability continues to be a huge factor in system

uptime because all mistakes cannot be prevented by high availa-

bility alone. DBA tasks and mistakes are categorized by Gil et al.

[14], and that work was extended by Vieira and Madeira [30] to

3

measuring the dependability of OLTP systems under faults by

employing a benchmark that injects errors into a workload.

2.2 Autonomous and Auto-Admin Databases
One approach that has been explored in prior work is to have an

opaque self-managed system (sometimes called ―autonomous‖).

In the case of some focused server technologies, there is a trend

towards self-managing appliances that have very few configura-

tion settings available to the user (for example, ―gizmo databases‖

[5][29]). While this is a viable approach for a specific server solu-

tion (for example, a print server), it isn’t suitable to general-

purpose database systems. Modern database systems are compre-

hensive application platforms. They offer users a veritable Swiss-

army-knife of data-centric technologies. There are multiple physi-

cal storage options, access paths, configuration settings, query

behaviors, recovery settings, etc. The same database system soft-

ware is expected to support a variety of different applications in

different resource environments with different performance re-

quirements. Each DBA expects to be able to control the behavior

of the database system in these different dimensions — flexibility

of management intent is essential.

Brown et al. [6] propose goal-oriented buffer management,

where users set workload response time goals and the system

automatically adjusts the buffer memory allocations to achieve

those goals. Such approach provides algorithms for declaratively

managing specific system aspects, and can be readily plugged in

the declarative management platform we describe.

There has been much work on auto-tuning, Chaudhuri and

Narasayya [9] provide a good survey. Some research simplifies

systems enough to enable automatic tuning [10][17][31]. And

some techniques have made it into commercial systems by aiding

DBAs with performance, such as index selection or physical parti-

tioning [1][8][26][27][28]. This work is strictly complementary to

Declarative Management. Auto-tuning advisors typically act as

advisors to human beings, and are focused on complex manage-

ment problems. Managing across a large number of servers isn’t

the primary focus of these efforts. In contrast, Declarative Man-

agement is focused on simpler daily management tasks, and the

desire to make these correct and scalable across many servers

being managed.

2.3 Systems Management Technologies
Since operator errors are so common in large system administra-

tion, there are a few approaches for helping administrators identi-

fy such errors before they are made on live production systems.

Oliveira et al. [24] survey DBA test environments and propose

validation techniques to help administrators identify errors before

they affect a production system. Galanis et al. [13] introduce

Oracle’s Database Replay which allows DBAs to identify poten-

tial errors by allowing them to run and record planned changes on

test system and then replay those changes on real production sys-

tem workload.

In the broader domain of operational systems management,

there are multiple products that provide monitoring and manage-

ment capability for data centers and IT environments. Commercial

monitoring application suites, such as OPNET Panorama [25], HP

Business Service Management (formerly known as the OpenView

suite) [18], Microsoft System Center [21], and IBM Tivoli [19],

help administrators monitor key health indicators and alert them

to unhealthy symptoms. That body of work is complementary to

our approach: The goal of those products is the health state of the

whole IT stack, not a particular layer. In contrast, our approach is

tailored for the database layer; hence it fully leverages the domain

knowledge and capacity of the database system.

In recent years, there has been a trend towards model-driven

management [11][22]. Management models capture the topology

of the environment and the metadata of the systems being ma-

naged. Management intent is specified against the model, and the

management infrastructure utilizes that intent to better monitor

and manage the systems. Recently, there have been efforts to

standardize the definition of management models as well as man-

agement intent, such as SML [4]. The work in this paper reflects

the same spirit as these initiatives, yet the fact that it is built on

and for a database system enables natural and deep integration of

declarative intent.

3. BASIC CONCEPTS OF DECLARATIVE

MANAGEMENT
There are six core concepts related to Declarative Management.

(a) Health conditions, (b) target binding, and (c) automation mod-

es are utilized to build the basic unit of intent — (d) a manage-

ment policy. All of these concepts utilize (e) management models,

which together with (f) facets, encapsulate domain knowledge of

the system to be managed.

In the rest of the section, we first describe management models,

which lay foundation for declarative management, followed by

health conditions, target bindings and automation mode. We will

then summarize policies based on that. Finally we will discuss the

more advanced concepts: facets and the OnChange – Impose au-

tomation mode.

3.1 Management Models
Management models are not a new concept, nor are they built

only for Declarative Management. All modern databases define

management models (typically represented via object models) as

an abstraction to build management tools. However, since they act

as a foundation for the concepts in this paper, we will describe

them briefly.

A management model represents the types of the management

entities in the system. For example, a relational database man-

agement model might define Table, View, Stored Procedure,

Trigger, etc. as types in its management model. Each of these

types in the model defines properties as well as relationships to

other types1. The individual properties and relationships have a

variety of attributes that indicate management behavior, for ex-

ample, some properties are changeable whereas some are read-

only.

Management targets are instantiations of management model

entities in a real system being managed. For example, a particular

table T1 is a management target of type Table. The values of

model properties and relationship constitute the complete observ-

able state of the management target, at least from the viewpoint of

system management.

It is important to explain the role of the management model in

the management software infrastructure. For the management

model to be usable, it needs to provide two core capabilities:

1 A complete management model also describes operations and their ef-

fects, but those details are unnecessary for the concepts in this paper.

4

 An instance of the model (a collection of management tar-

gets) can be populated from a database system being ma-

naged, reflecting the metadata and state of the system.

 Certain changes to the model (for example, a configuration

change) can be propagated faithfully to the database system

being managed. Properties that can be changed in this fa-

shion are attributed appropriately.

The model itself provides a ―logical‖ abstraction of the system

for the DBA to manage. The developers of the database system (in

our implementation, the SQL Server product engineers) provide

the model implementation. It is important for the system engineers

to define the model, rather than the DBA, because the develop-

ment of models is complex and requires deep knowledge of the

underlying system, and ideally there should be one reference

model. The model implementation can also hide differences be-

tween different major and minor versions of the same database

product (for example, between SQL Server 2000 and SQL Server

2005, there are significant differences in the representation of

metadata in the system catalogs, but this is handled transparently

by the management model).

One of the important tasks of a DBA is to be able to browse the

metadata of the system. Systems have grown large in the number

of artifacts being managed (tens of thousands of tables in an ap-

plication are not uncommon, and a DBA might own hundreds of

applications). Consequently, rich management model implementa-

tions also provide the ability to search and query the model.

3.2 Health Conditions
The DBAs interact with the database system by specifying their

management intent via a Health Condition. It is declarative in

nature and is a description of a healthy system. It specifies a Boo-

lean constraint over the state of the management target.

The semantics of Declarative Management are straightforward:

If the Boolean constraint is satisfied, the target is in conformance

with the Health Condition. If not, the state of the target needs to

be changed to bring it to conformance.

Consider the desire to ensure that automatic statistics collection

is turned on for a particular database, as in Example 2, a common

DBA task. This feature typically adds some overhead to normal

execution, but enables significantly better query optimization. In

some highly tuned database applications without ad hoc queries,

the extra overhead might be undesirable and without value. This is

one of a large number of available configuration settings exposed

by a modern database system. Every large-scale IT department

enforces standardization norms for the systems that they deploy.

Requiring automatic statistics collection is one such norm.

The management model defines a Database entity type with

many properties including one, AutoStatistics, which is either true

or false. The Health Condition is specified by the Boolean expres-

sion: Database.AutoStatistics = True. Since the model populates

values from the underlying system, Declarative Management

checks the Health Condition for conformance of a specific data-

base.

It is not so obvious that the same Health Condition can be used

to ―impose‖ the intent — i.e. change the database to conform to

the intent. In this simple example, it is easy to see that if a data-

base fails to conform to the Health Condition, it could be made to

conform by altering the AutoStatistics property to a value of

―true‖ and propagating the change from the model to the underly-

ing system via whatever syntax is used in the underlying system –

for example, for SQL Server 2008, this involves using the ―SET‖

command of the Transact-SQL language. The model implementa-

tion encapsulates the details of command syntax, and the DBA

does not need to be aware of it. We will discuss richer aspects of

imposing intent in a later subsection.

3.3 Target Binding
As described above, a DBA can pick individual health conditions

and check them against a specific management target. This is

simple but does not scale, either for DBA-driven checks, or for

automated checks. An important concept therefore is the binding

of a health condition to a set of targets. In keeping with declara-

tive design principles, the set of targets is defined by a query over

the management model.

In Example 2, the health condition should only be applied to all

databases that are larger than 20 MB in size. The target binding is

captured by a query expressed in pseudo-syntax as: Databases

[Size > 20MB]. Notice that this is simply a Boolean condition

acting as a filtering predicate over all databases being managed.

Indeed, the query expressive power needed for model queries is

only the ability to filter all instances of a particular type. Richer

query constructs (projection, aggregation, joins) are not essential

for basic management. In a later section, we will discuss the issue

of query richness and the advanced capabilities it enables.

An interesting aspect of this design is that there is no funda-

mental difference between Health Conditions and the filters used

in the target binding queries. For example, Databases [AutoStatis-

tics = True] could represent a set of target databases that have

auto statistics set to true, or a Health Condition specifying that a

healthy database as one that has auto statistics set to true.

The query-based approach to target binding is crucial for react-

ing to change, especially when declarative management intent is

applied via automation. Database systems are dynamic — in the

example above, a database that is tiny one day may grow in size

past 20MB or a new database might be deployed after the man-

agement intent is defined. By specifying a query-based target set,

the set of targets is chosen dynamically depending on the state of

the targets at the time of evaluation, rather than the state of targets

at the time of definition.

3.4 Automation Modes
If a system is to be self-managing, the application of management

intent needs to be automated. All mature database systems provide

management automation capabilities. Described simply, these

allow procedural tasks (scripts or programs) specified by the DBA

to be run when particular events occur. The events could be driven

by a recurring schedule or could be ad-hoc driven by changes in

the system being managed. Management automation tasks typical-

ly run as background activities without interfering with the actual

application workload of the database system.

Before we discuss automation modes for intent, we require a

brief description of metadata event support in database systems.

Database systems expose the notion of synchronous change events

– events that fire in the context of a transaction making a change.

Users of the SQL language are familiar with the concept of trig-

gers, which execute transactional logic when data is changed.

Likewise, advanced database systems support metadata triggers

that activate when metadata definitions change (for example, if a

table is renamed, or if a key is added). Advanced database sys-

5

tems also support a number of asynchronous events corresponding

to operational changes that may not be transactional (for example,

events raised when a database is restored, or when a new user

session connects).

Assuming this support for change eventing, there are three as-

pects of the automation mode for management intent:

 When is it evaluated? It could be on a recurring schedule, or

it could be when specific change events occur. In particular,

the events of interest are change events on management tar-

gets defined in the target set.

 In what execution context is it evaluated? There are therefore

two interesting execution contexts for management intent:

Synchronous (when the underlying system does provide such

events), or Asynchronous.

 What happens on failure to conform2? Interesting options on

failure are (a) Impose intent (described in Section 3.8), (b)

Rollback change, and (c) Other. In a practical system imple-

mentation, other options must exist, including logging failure

at different levels, sending notifications to system operators,

running procedural scripts, etc. However, they do not alter

the essential declarative concepts, and we will capture the en-

tire class by a single failure option in (c).

Not all combinations are sensible. A Rollback failure action

makes sense only for OnChange events with a synchronous con-

text (in all other cases, the transaction has committed before the

policy is executed, and while we could develop a whole model of

compensating actions to rollback committed transactions, this is

not compelling and violates the simplicity design imperative).

Conversely, for policies evaluated OnChange in Synchronous

execution context, most of the failure reactions in (c) are not ap-

plicable because typically such actions (for example, sending an

email to a system operator) are not supported within transaction
boundary. This leads to the grid of combinations below:

Event Model Execution Context Failure Reaction

OnSchedule Asynchronous Impose / Other

OnChange Asynchronous Impose / Other

OnChange Synchronous Rollback

OnChange Synchronous Impose

Extending Example 2, a DBA can specify that every 24 hours,

the Health Condition requiring automated statistics should be

checked against all databases whose size is larger than 20 MB.

Note that the schedule is also specified in a declarative fashion.

Instead of specifying a particular time to evaluate it (for example,

at 2 AM every night), it only specifies the recurrence duration.

This allows the very same intent to be applied to two different

systems, perhaps in two different time zones, and perhaps with

two different load schedules. The maintenance window for one

might be between 1 AM and 4 AM, and the maintenance window

2 Note that the presumption is that successful conformance means that the

system is healthy and there is not much else to do other than log this in-

formation for diagnostic purposes.

for the other might be between 10 PM and 2 AM. A declarative

schedule allows the choice to be made locally.

3.5 Policy
To summarize, management models define management entity

types. Health conditions define desired system state by expressing

Boolean conditions over the properties of a management entity

type. A target binding is a query that defines a set of management

targets.

A policy represents the discrete unit of declarative management

intent, including what to check (the health condition), when to

check (the automation mode) and where to check (the target bind-

ing).

3.6 Management Facet
It may be helpful to consider an analogy with programming lan-

guages, with the context that we are designing a ―declarative pro-

gramming‖ environment for DBAs to define management intent

―programs‖. In programming languages, type systems enable

polymorphism and abstraction via interfaces. By analogy, man-

agement models provide a type system for management intent,

and they enable polymorphism and abstraction via management

facets. As shown in Figure 1, system developers encapsulate sys-

tem complexity into facets, and DBAs define conditions at higher

level on top of facets.

A management facet is a group of (related) management model

properties that represent a ―facet‖ of management. Each of the

properties is attributed to indicate if it is read-only or if it is read-

write. Management entity types are default facets. In addition, in

the management model, ―abstract‖ facets can be defined as inter-

faces, which then can be chosen to be implemented be the entity

types. Health Conditions are authored against management facets.

Facets enable four different capabilities essential for lower

TCA: (a) simplification, (b) abstraction of system complexity, (c)

abstraction of change complexity, (d) polymorphism.

Figure 1: Facet Abstraction

3.6.1 Eliminating Unnecessary Complexity
Some management entity types have a large number of properties.

For example, there are over 50 configuration properties of a Data-

base type in SQL Server 2008, some of which define language

semantics, some of which define storage preferences, some of

which define performance hints, etc. When defining intent about

language semantics, the rest of the properties are confusing and

irrelevant. Organizing just those properties into a single facet

simplifies the definition of intent and reduces errors.

6

3.6.2 Abstracting System Complexity
In today’s commercial database systems, DBA’s management

intents are buried in the complex settings, making it impossible to

reason. Facets provide a mechanism to abstract the complexity,

allowing DBAs to specify the intents at higher level.

For example, one of the top routine maintenance tasks DBAs

spend most time on is the backup task. There are many aspects in

planning a backup strategy, recovery model, backup type, backup

frequency, backup verification, backup devices, backup retention,

and the list goes on. Often DBAs would setup a certain backup

strategy. However, when disaster happens, there is no guarantee

their system can recover satisfactorily.

Using facet mechanism, a data recoverability facet might ex-

pose properties in terms of recoverability goals and constraints,

for example: what is the data loss window? Whether point of fail-

ure recovery is needed? Whether point of time recovery is

needed? What is the acceptable down time? What is the optimiza-

tion goal (minimize backup space, minimize restoration, or mi-

nimize performance penalty, etc.). Now DBAs can specify their

intent along those dimensions, and the system will use heuristics

to generate the backup strategy and will be able to automatically

monitor it and verify it.

3.6.3 Abstracting Change Complexity
Upon policy violation, a desirable reaction is to change the system

to conform (for details and examples see Section 3.7). Facets not

only encapsulate the logic for property ―check‖, but also encapsu-

late the logic for ―change‖. For example, in order to allow remote

access to a SQL Server instance, there is a long list of steps [20].

With the facet mechanism, we expose a Boolean configuration

property ―AllowRemoteAccess‖ to DBA while hiding the tedious

steps inside of the facet implementation.

Further, characteristics of the properties w.r.t. change are also

captured in facets. Some facet properties are read-only, for exam-

ple, database size. Some properties are read/write, however, only

certain change is deterministic, for example, there is a determinis-

tic way to set SupportsANSI99Semantics True (see Section 3.7),

however, there is no deterministic way to set it False. Some prop-

erties can always be changed deterministically.

3.6.4 Polymorphic Management Intent
Multiple management entity types can support the same manage-

ment facet, enabling polymorphism, as shown in Figure 1. A di-

rect benefit is that DBAs can define one policy, and apply it to

multiple entity types. Naming convention is a typical usage. As in

Example 3, a company requires that the names of all tables, views

and stored procedures in the databases created by certain app con-

tain more than 5 characters, i.e., [length (Name) > 5]. To support

that, we can have a facet which contains the Name property, and

this facet is implemented by all target types that support name.

Now DBA only needs to define one policy with target binding

only to views, tables and stored procedures.

3.7 Imposing Conformance via a Policy
A policy can check conformance as well as impose conformance

— i.e. to change or configure the system to conform to the policy.

However as explained below, this is not always possible — it

depends on the policy, on the management model, and on the state

of the system.

Consider a Health Condition expressed against the properties of

a management facet on a target entity type. For an arbitrary Boo-

lean expression containing disjunctions or inequalities, there are

multiple ways of changing the property values so as to satisfy the

expression. Finding a combination of property values that satisfies

an arbitrary Boolean expression is also not a tractable problem. In

a management system, transparency and determinism are impor-

tant. We need to avoid non-deterministic outcomes. This requires

restrictions on the form of the Boolean expressions that can be

used to impose intent. Further, there are correlations between

behaviors of a complex system like SQL Server 2008. Changing

one property may have the unexpected effect of altering another

property because of interactions beyond the knowledge of the

management model (for example, a customer could implement

logic on the server that changes one configuration parameter

based on the value of another). These are the practical complexi-

ties of a real system, yet the value of imposing policy confor-

mance is significant enough that we need to find workable ap-

proaches to common-case scenarios.

The problem can be simplified by considering the Boolean ex-

pression in conjunctive form (subexpression1 AND subexpres-

sion2 AND ….) and considering it with the context of a specific

evaluation (against a specific system). If the expression evaluation

succeeds, there is no need to impose the policy – it is already in

conformance. If the expression evaluation fails, certain subexpres-

sions will fail, but not necessarily all of them. We follow the prin-

ciple of least surprise and only impose changes corresponding to

subexpressions that fail.

For the moment, let us consider a simple sub-expression of the

form: [Property1 = value] (this kind of expression is actually very

common in configuration management). If the management model

allows Property1 to be changed, then imposing the policy appears

simple — set Property1 to value and commit the changed model.

However, this does not necessarily always succeed, for the fol-

lowing reasons:

 There may be a validation failure while setting the property

value.

 The facet implementation may disallow setting certain val-

ues. This is particularly true for complex facets. For example,

a Boolean configuration property for language semantics

may be SupportsANSI99Semantics. In the underlying sys-

tem, there may be two different configuration parameters,

one to enable ANSINullSemantics and one to enable ANSI-

DefaultSemantics, both of which need to be enabled for the

composite configuration property to be true. In other words,

there is no deterministic way to make the expression false,

but there is one for making it true. There may be a runtime

error when trying to commit the changes.

 The changes may have side-effects that invalidate other sub-

expressions in the Boolean expression. The simplest case of

cause is if the same property is used directly in another sub-

expression, but in complex cases, there may be interactions

in the underlying system that could cause unanticipated cor-

relation between properties.

For all of these reasons, the process of imposing conformance

must have three distinct steps:

 The condition must be evaluated initially to identify subex-

pressions that fail.

 Changes to the model must be committed within a transac-

tion.

7

 After the change, in the context of the same transaction, the

condition should be reevaluated to ensure conformance, and

if not the transaction should be aborted reverting all change.

So far, we have only discussed imposing a condition. Since a

policy also specifies a target set, the semantics of imposing a poli-

cy is equivalent to imposing the condition on each of the targets in

the target set. Because of the possibility of failure though, a par-

ticular system implementation needs to decide on the atomicity

semantics of such a collective operation.

Figure 2: Basic Concepts

Figure 3: Example 1 Mapped to Basic Concepts

3.8 Summary
Figure 2 shows the relationship of the concepts. A policy is the

discrete unit of intent, defining a ―what‖ outcome. It combines a

health condition, a target binding and an automation mode. DBAs

interact with the database system by specifying policies. The sys-

tem is automatically managed and monitored accordingly.

The management model and facets encapsulate the domain

knowledge of the system to be managed (that is, ―how‖ to make it

so), raising the level of abstraction for DBAs. Figure 3 shows how

Example 1 mapped to the basic concepts.

Declarative management is a key to addressing the challenges

described in Section 2.1. Management models and facets encapsu-

late system complexity, allowing DBA to declare intent at higher

level. This leads to simplified DBA tasks hence fewer errors.

Once DBAs specify policies, the system can be monitored auto-

matically according to the policies. Some policies can be used to

prevent violating changes, reducing human error; others can be

used to detect violation automatically. Such automation capacity

enables DBAs to manage by exception, hence scale the number of

databases one DBA can manage. Further, polices can be specified

at a central location and pushed out to manage all servers. This

capacity allows management at scale as well as management of

heterogeneity in the environment.

4. DESIGN AND IMPLEMENTATION
This section describes the design principles, user interaction mod-

el and high level architecture, followed by implementation of the

concepts described in the previous section.

4.1 Overview and Principles
Microsoft SQL Server 2008 has an initial version of Declarative

Management under the name ―Policy-Based Management‖

(PBM). As mentioned in the introduction, it is non-trivial to intro-

duce a new management paradigm into a complex product with

(a) a large existing customer base and (b) existing management

practices. Our goal was to have positive impact on TCA with a

large number of existing customers, and this required us to em-

brace and extend existing familiar technologies wherever possible.

While Declarative Management can apply to all aspects of da-

tabase management, this initial implementation was scoped to

focus on schema management and configuration. The new capa-

bilities are exposed in two fundamentally different settings:

 Ad-hoc policy evaluation within a management tool (de-

scribed in this section).

 Automated policies (described in Section 5).

In order to round-out a commercial database product feature,

the declarative management capabilities were integrated in the

management tools and solutions. This includes designer tools to

author policies, serialization formats, libraries of pre-defined poli-

cies for easy customer adoption, etc. In the interest of brevity in

this paper, we ignore those important aspects of the product and

focus instead on the key technical underpinnings.

4.2 User Interaction Model
Figure 4 represent the user interaction model under the declarative

management paradigm. DBAs specify intent by authoring poli-

cies. They can then evaluate system health state ad-hoc, or auto-

mate the policies. Policy evaluation results are logged. System

Health report is generated based on the evaluation history. Once a

DBA specifies the automation of the policies, they manage the

system by exception. That is, DBAs only need to attend the sys-

tem when policy violation happens. DBAs can leverage the ad-

hoc evaluation for testing policies or for diagonosis purposes.

Figure 4: Declarative Management Paradigm

8

4.3 System Architecture
The system architecture of PBM is shown in Figure 5. Policies

and metadata are stored in a management database (called msdb)

(see Section 5). Outside of the SQL Server Engine, SMO (SQL

Management Objects) is an implementation of the management

model (see Section 4.4). The policy engine provides the core func-

tionality of PBM, policy evaluation. It interacts with SMO

through the facet interface. The policy engine uses a command

line interface implemented in Windows PowerShell.

The rest of the figure presents how policy automation is im-

plemented (see Section 5). OnSchedule is done through SQL

Agent Job services, which provides scheduled execution of jobs.

OnChange is implemented through the DDL eventing mechan-

isms of SQL Server, which provides a mechanism to react to en-

gine events. In order to evaluating policies in response to events,

the whole execution path (Policy Engine, facet and SMO) needs

to reside in SQLCLR. We chose to keep both code paths (inside

or outside of SQLCLR); because of security restrictions on what

can run inside SQLCLR. With the code path outside, we support

broader policies for OnSchedule mode.

Figure 5: System Architecture

4.4 Management Model Implementation
Each version of Microsoft SQL Server includes a management

model called SMO (SQL Server Management Objects) for rela-

tional database management entities like Tables, Views, Triggers,

etc. In its implementation, it is a CLR-based3 metadata object

model. Management entity types are captured as CLR type defini-

tions, with extra attributes to indicate specific management prop-

erties and relationships.

We extended SMO to function as the management model for

declarative management. In addition to the core model, its imple-

mentation satisfies the basic requirements described in Section

3.1:

 An instance of the model can be populated from a running

instance of SQL Server by issuing appropriate queries

against the system metadata tables, and assembling objects

from the data results. In effect, the model implementation ab-

stracts the implementation details of the metadata catalog

tables that maintain the necessary information on the server.

3 CLR: The Microsoft Common Language Runtime

 Allowed changes to a model instance can be propagated back

to the server by sending the appropriate

CREATE/ALTER/DELETE commands.
 Queries over the model are supported, and they return sets of

model entities. For example, the model can be queried for

Databases that are compressed. These query requests are

transparently translated to queries over the server metadata

catalogs, and the results from the server lead to the popula-

tion of model entities.

The detailed knowledge needed to translate between the model

representation and the database server is fully encapsulated within

the SMO implementation, and the application consuming SMO

does not need this knowledge.

SMO is the basis of the existing management tools in SQL

Server as well as the basis for the new Declarative Management

features. Management facets are also defined on the SMO entity

types. The detailed APIs used to expose facets are beyond the

scope of this paper and we refer the reader to the product docu-

mentation [20]. The relevant implementation detail is that all fa-

cets are discoverable through .NET reflection on the implementa-

tion, and that all facets have a common interface to retrieve and

change properties. This allows the DBA-facing management tools

to build generic declarative management capabilities that still

expose the full richness of the management model.

4.5 Client-Side Evaluation
The simplest form of declarative management is evaluation of a

specific Health Condition against a specific target. One of the

basic design decisions was whether to support client-side evalua-

tion or not. Without a client-side evaluation mechanism, all ex-

pression logic would need to be evaluated in the database server

— i.e. the Boolean expression in the Health Condition would need

to be translated (through the management model implementation)

into an equivalent SQL expression. This has obvious merits and

elegance. However, it has some practical limitations as well:

 It prevents all use cases in ―disconnected‖ environments —

for example, while SQL applications are being developed or

over exported metadata definitions.

 It disallows the use of management facets whose property

computations are complex. Remember that a management

facet can abstract a complex mapping between the facet

properties and the underlying server metadata. This mapping

may involve procedural logic that cannot be translated into

corresponding declarative SQL query constructs.

 It does not work for management models of anything other

than a database server — for example, to manage the confi-

guration of SQL Server product installation (configuration

properties stored in the operation system registry).

For these reasons, we decided to support client-side evaluation

of policies, optimizing the behavior when possible to leverage the

backend database server.

The basic requirement is to evaluate the property values of the

appropriate target facet (SMO serves this purpose), and also to

evaluate the Boolean expression specified by the Health Condi-

tion. This requires an expression evaluator that can run within the

client — while this is not a difficult task; however, one must en-

sure that the evaluation semantics on the client are identical to that

9

on the server. The reason for this semantic equivalence becomes

evident next.

A more interesting form is to evaluate a Health Condition that

also has an associated policy target binding. To continue with

Example 1, consider the policy that requires that SSN columns in

the Payroll application are encrypted. The Health Condition spe-

cifies a constraint on a facet of the Column entity type, and the

target binding query specifies that this is for columns of tables in

the Payroll database. There is a simple (but inefficient) mode of

evaluation which is to instantiate all Columns in the client-side

management model, filter out those that aren’t in the target bind-

ing, and then evaluate the Health Condition against the remainder.

Obviously, this violates basic principles of performant database

query processing — the fact that this is processing of metadata

doesn’t make the issue any less important. In fact, typical large

applications have several thousands of tables, each with several

columns. This simplistic evaluation model is very inefficient4.

4.6 Optimized Client-Side Evaluation
The first optimization is the concept of Pushing Target Bindings.

Put simply, this translates the target binding into a query that the

underlying server can evaluate and return only the data corres-

ponding to the policy targets (in this cases, columns of tables in

the Payroll database). Our implementation always pushes target

binding evaluation to the backend database server.

The second optimization is pushing Health Conditions. Recall

that the health condition is expressed in the positive, but the sys-

tem needs to alert DBAs to unhealthy targets. Thus, pushing

Health Conditions to the underlying server requires negating the

expression. As discussed in the previous section, this is not always

possible – it depends on the implementation of the management

facet over which the Health Condition is defined.

Although there are performance benefits to be gained in the

cases where the condition can be pushed down, we decided not to

enable this optimization in the released product. There are two

reasons for this decision.

The DBA does not (and should not need to) know the differ-

ence between a facet that has a simple mapping and a facet with a

complex mapping. Applying our principle of simplicity, we be-

lieve that unexplained variations in performance for a new tech-

nology are more unsettling than consistent performance, even if

that performance could sometimes be improved.

When previewing the capability with early adopters, a number

of DBAs also indicated that they wanted to see the results of suc-

cessful health condition evaluations as well the failures (in other

words, concerns over correctness of policy specification are more

important to them than concerns over performance during policy

evaluation). In order to validate that they did specify the target

binding correctly, they want to see the results of Health Condition

evaluation against all members of the target set. In some cases,

they justified this for reasons of auditing — they wanted to ensure

that the other targets were indeed in conformance and print out a

policy evaluation report as proof of conformance. Clearly, the

4 It should be observed though that this is actually how ―external‖ man-

agement systems build similar functionality. Since they know nothing

about the underlying system being managed, and do not leverage the
fact that it is a rich query processor, they pull all the metadata out of the

system instead of pushing the policy logic into the system.

performance optimization of Pushing Health Conditions violates

this requirement.

This is a classic example of a case where an obvious choice

from another domain does not necessarily apply to the manage-

ment domain. We started working with Declarative Management

building on a deep background in query processing. We were

certain that performance optimizations like this one would be

essential, yet we have learnt that simplicity, stability, and verifia-

bility are more important in practice.

4.7 Expressiveness of Health Conditions
In our initial implementation, we have limited the expressivity of

conditions to Boolean expressions over properties. The properties

are of certain known data types (integers, strings, Booleans) and

the standard relational and arithmetic operators are supported over

these types to enable basic expressions. Expressions can be com-

bined via AND, OR, NOT operators.

There are three obvious ways in which this expressive power is

not sufficient to fully capture the kinds of intent DBAs need to

express:

 Expressions over relationships are not expressible. For ex-

ample, the Tables in a model are related to the Views that use

them. A condition about Tables might be based on the Views

that use them (for example, Tables that are used by any View

owned by user X). In general, existential and universal quan-

tification over relationships needs to be supported.
 Aggregations over relationships are not expressible. For ex-

ample, Tables that are used by at least 3 Views.
 Expressions that need to utilize some detailed information

that is not abstracted by the management model but that is

actually available directly in the underlying system (for ex-

ample, a registry key setting, a data value in a table, etc).

With a large complex system like SQL Server 2008, there are

many such special-cases, and it would make no sense to cap-

ture them all in a management model.

In a subsequent version, we intend to extend the expression

language to support relationships with quantification and aggrega-

tion. However, the third limitation was crucial to address in the

initial version, and we addressed it by enabling an Execute

(―command‖) function that takes an arbitrary SQL command to be

run on the underlying server and returns a value. In fact, by pro-

viding this capability, it even allows quantification and aggrega-

tion over relationships to also be expressed via a SQL query ex-

pression. The problem with this approach of course is that the

declarative management system cannot reason about this logic. In

the long-term, declarative management requires that the system

understand and reason about management intent. Further, the

reliance on a back-end server to execute such expressions under-

mines some of the rationale for implementing client-side evalua-

tion capabilities (for example, the ―offline‖ use cases). This is

purely a short-term ―escape hatch‖ built as a pragmatic measure

associated with product delivery timeframes and usage.

4.8 Imposing a Policy
An earlier section described the complexities of imposing a health

condition on a management target. In our implementation, we

only attempt to impose conditions where the conjunction sub-

expressions that fail are of the form [Property = value] and the

Property is settable in the management model.

Imposing a policy involves the following steps:

10

 Identifying the targets defined by the target binding.

 Imposing the health condition on each of them.

We do not attempt to maintain atomicity across the entire oper-

ation — doing so could involve a long-running transaction that

has negative effects on the system. Instead, we complete the eval-

uation phase for all the targets, identify the subset of targets that

fail the evaluation and need to be changed, and then attempt to

change each in an independent atomic manner.

5. POLICY AUTOMATION
Mature database systems provide management automation capa-

bilities – in SQL Server 2008, the automation service is called

SQL Agent [20]. SQL Agent allows procedural tasks (scripts or

programs) specified by the DBA to be run when particular events

occur. The events could be driven by a recurring schedule or

could be ad-hoc driven by changes in the system being managed.

The task definitions as well as task execution histories are stored

in a management database (called msdb). The automation service

is reliable and scalable. There are built-in mechanisms to send

messages to operators. SQL Server DBAs are very familiar with

SQL Agent and have used versions of this capability for more

than a decade. Policy automation is built on top of this automation

infrastructure.

The same policy evaluation engine used for ad-hoc evaluation

is at the core of automated evaluation. It is activated via specific

change events, evaluates relevant policies that apply to the man-

agement target that has changed, and acts upon any violations as

governed by the automation modes described below:

 On-Schedule: Activated by SQL Agent scheduled events,

and logs any violations.

 On-Change – Log: Activated by asynchronous metadata

change events, and logs any violations.

 OnChange – Prevent: Activated by a synchronous metadata

changes, and on policy failure rolls back the metadata change

itself.

Each of these modes raises design and implementation issues

described next. The other possible automation modes described in

Section 3.4 were prioritized lower based on customer feedback

and scheduled for the next version of the product.

The automated policies themselves are persisted in the same au-

tomation database (msdb) as the rest of SQL Agent. Depending on

the automation mode, other artifacts like triggers or SQL Agent

tasks are created to implement the intent of the policies.

5.1 On-Schedule Evaluation
Scheduled policy evaluation is conceptually identical to client-

side evaluation, except that it is executed as a SQL Agent task.

We added a new task type to evaluate policies. We also had to

extend the SQL Agent persistence service to persist policies5.

The implementation of the new task type for policy evaluation

requires a significant fixed cost associated with launching a new

task – this is because of the need to launch a new process and load

a number of managed libraries. There is no fundamental concep-

tual problem in lowering this cost, but it was a practical constraint

5 We actually represent and persist Health Conditions as first-class entities

separate from the Policies that use them — this enables reuse of Health

Conditions, and important consideration that we discuss later

in the initial version because of various technologies involved that

could not be changed. Faced with this initial launch cost, there

would clearly be a performance problem if there were a large

number of scheduled policies. We addressed this problem by ob-

serving that in a practical system, there are relatively few unique

schedules, and many policies would be scheduled on the same

recurrence schedule. Consequently, we aggregate the policies that

need to be evaluated at the same time, and amortize the task initia-

lization costs across them.

It also became important to record the history of policy execu-

tion, since many customers want to use scheduled policy execu-

tion as a conformance audit mechanism.

An interesting security issue exists: under what security account

should scheduled policies execute? This is important because the

visibility of metadata is controlled by security permissions asso-

ciated with the user account. When executing a target binding

query, if some management entities are not visible to the user

account executing the policy, they will not be returned, not be

evaluated for conformance, and could therefore be presumed to be

healthy. This is also a problem if policies are being used for com-

pliance and auditing. Once again, in keeping with the principle of

simplicity and transparency, we ensure that all automated policy

evaluation happens in the context of a privileged user account that

has visibility to all metadata in the system. Conversely, this could

result in security vulnerability by exposing too much information.

We mitigate this concern by controlling who can create automa-

tion policies in the system. By limiting this to users in a specific

controlled administrative role, we balance the need for simplicity

with the need for security.

5.2 On-Change Evaluation
There are two kinds of on-change evaluation modes — one is

asynchronous and one is synchronous. The implementation of the

two modes is related, and so they are described together.

Obviously, not all policies can support an on-change evaluation

mode. Associated with every facet is a definition of an event that

should be raised to signal a change in properties of that facet.

With our example of requiring encryption for certain columns,

any schema definition change on columns should raise an appro-

priate event. If the underlying database system supports the neces-

sary event, then a policy on a facet can utilize on-change evalua-

tion modes. In the case of SQL Server 2008, most schema and

configuration changes on the database engine can raise events if

the appropriate event subscriptions have been defined. Some of

these are synchronous events (a.k.a. ―DDL triggers‖) and some of

these are asynchronous events. The events carry with them some

dynamic event data that includes the identity of the object actually

changing.

When an event occurs corresponding to a change, the event is

routed through multiplexing logic (a complex join) that attempts

to match it up against automation policies that might need to react

to the event. The logic has the following constraints:

 Only policies on the particular facet(s) corresponding to this

event are relevant.

 Only policies that are active (i.e. not disabled) are relevant
 Only policies whose target set includes the object that was

changed are relevant.

The last constraint has potentially drastic performance impacts.

Remember that the target set is a query definition, so effectively,

when an event occurs, we need to determine membership of the

11

affected object in one of many queries. This is the famous ―in-

verse-query‖ problem that has been well-studied in publish-

subscribe systems [12]. It is very inefficient to execute each query

to see if the particular object is a part of the query result. For a

system with any significant volume of such events, and for any

significant number of policies with target set queries, this has the

capacity to overwhelm the resources of the system. This can be

especially difficult to justify since none of the changed objects

might actually be members of any of the target sets.

For these pragmatic reasons, our product implementation re-

stricted the expressive power of queries that could be specified in

the target sets of policies that used on-change evaluation modes.

By requiring simple queries that could be easily indexed, we were

able to trade off expressive power for acceptable performance.

5.3 Policy History and System Health
The one-million-dollar question for the DBA is: what is the sys-

tem health with regard to the set of policies? In the management

model SMO (see Section 4.4) the basic relationship between enti-

ties is containment. For example, an instance contains databases, a

database contains tables, views and stored procedures, and a table

contains columns, keys and constraints. Such containment is visu-

alized in the management tool, SQL Server Management Studio

(SSMS), as shown in Figure 6. Naturally, the DBA would like to

know the aggregated health state, in particular, errors, for each

node in the hierarchy. Correspondingly, we define the aggregated

health state for any sub-tree as follows:

1) An internal node is in violation iff any of its descendents is

in violation.

2) A leaf node is in violation iff it violates any relevant policy.

The next step is to define ―relevant‖ policies. DBAs govern

their system using a set of automated policies. We say a policy is

relevant if and only if it is automated.

For any given policy, it may be evaluated more than once. All

policy evaluation history is recorded. Given any point of time, we

have enough information to calculate the policy health state up to

that point. DBA may need that information for analysis or report-

ing purposes, however, as part of their job responsibility, it is

crucial for them to know the latest health state of the system, so as

to take corresponding actions to correct the system. Figure 6

shows the health state of a server instance. As pointed by the ar-

row, in front of any object icon there is a scroll with a red cross

indicates that object is critical. This provides visual cue for DBA

to diagnose and correct the problem. Given the importance and

frequency of such query, we optimize our data structure and algo-

rithm to answer it efficiently.

First, we maintain a ―materialized view‖6, which we call the

health state table of the history table which only contains the latest

violations for the relevant policies. We call it the Health State

table. Compared to the history table, it is much smaller in size.

Secondly, we utilize the path information of the objects to do a

conceptual prefix search to calculate the health state. The Health

State table essentially contains objects that violate policies. The

question we need to answer is: given a node P, is there any entry

6 Because of the complexity of the maintenance rules, in our im-

plementation we have to maintain the table instead of relying on

the materialized view mechanism.

in the Health State table that is a descendent of P (inclusive)?

Each node in the tree can be uniquely identified by its path. A nice

property of the tree structure is the following: assume the path of

P is Ppath, then Ppath is the prefix for the path of any descendent of

P. Conceptually, we store the path for each node in the Health

State table and index it. Leveraging the prefix property, now the

query becomes: exists Q, that Ppath is a prefix for Qpath, which can

be answered efficiently with the index.

Figure 6: Object Hierarchy and Health State in Mgmt Tool

6. CONCLUSION AND FUTURE WORK
The current management technologies and tools are both DBA-

intensive as well as prone to DBA-error. The industry trends —

growth of system complexity, consolidation of data centers, in-

creased heterogeneity of environment being managed, sharp in-

crease of relative cost of skilled DBA and the increased relative

cost of human-error — cry out for new technology that drastically

increases DBA productivity and correctness. We proposed a novel

approach, declarative management, to answer this challenge. This

paper described the problem space, the basic concepts and an

implementation in SQL Server 2008.

This is a first yet foundational step towards reduce the total cost

of administration. Future extension includes:

 Developing a ―Total Cost of Administration benchmark‖ and

conducting case studies on how SQL Server customers bene-

fit from declarative management.

 Broadening to complete self-managing database systems.

 Application in a cloud-computing infrastructure.

 Applying the declarative management concepts to data-tier

applications. Build management model about applications

and manage them by policies.

 Developing intelligent facets that abstract the management

complexity of underlying system.

 Integrating tuning advisors into the eco system. For complex

scenarios, for example, performance problem, invoke advi-

sors for corrective action suggestions.

ACKNOWLEDGMENTS
Thanks to the SQL Server Manageability team and to Ciprian

Gerea, Grigory Pogulsky, and Sethu Srinivasan in particular for

significant contributions to the SQL Server 2008 implementation

of policy-based management.

12

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, "Automated

Selection of Materialized Views and Indexes in SQL

Databases," in Proceedings of the 26th International Conference

on Very Large Data Bases , Cairo, Egypt, 2000, pp. 496-505.

[2] Amazon Web Services. [Online]. http://aws.amazon.com/

[3] M. Armbrust et al., "Above the Clouds: A Berkeley View of

Cloud Computing," University of California at Berkeley,

Technical Report UCB/EECS-2009-28, 2009.

[4] J. Arwe and et al. (2007, March) Service Modeling Language.

[Online]. http://www.w3.org/Submission/sml

[5] P.A. Bernstein et al., "The Asilomar Report on Database

Research," SIGMOD Record, vol. 27, no. 4, pp. 74-80, 1998.

[6] K. Brown, M. Carey, and M. Livney, "Goal-Oriented Buffer

Management Revisited," in Proceedings of ACM SIGMOD

International Conference on Management of Data

(SIGMOD'96), Montreal, Canada, 1996, pp. 353-364.

[7] A. B. Brown and D. A. Patterson, "To Err is Human," in

Proceedings of the First Workshop on Evaluating and

Architecting System dependabilitY (EASY '01), Göteborg,

Sweden, 2001.

[8] S. Chaudhuri and V. Narasayya, "An Efficient, Cost-driven

Index Tuning Wizard for Microsoft SQL Server," in 23rd

International Conference on Very Large Data Bases, Athens,

Greece, 1997.

[9] S. Chaudhuri and V. Narasayya, "Self-Tuning Database

Systems: A Decade of Progress," in Proceedings of the 33rd

International Conference on Very Large Databases, Vienna,

Austria, 2007.

[10] S. Chaudhuri and G. Weikum, "Rethinking Database System

Architecture: Towards a Self-tuning RISC-style Database

System," in Proceedings of the 26th International Conference on

Very Large Data Bases, Cairo, Egypt, 2000, pp. 1-10.

[11] (2007) Dynamic Systems Initiative Overview White Paper.

[Online]. http://www.microsoft.com/business/dsi/dsiwp.mspx

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec,

"The many faces of publish/subscribe," ACM Computing

Surveys (CSUR), vol. 35, no. 2, pp. 114 - 131, June 2003.

[13] L. Galanis et al., "Oracle Database Replay," in Proceedings of

the 2008 ACM SIGMOD International Conference on

Management of Data, Vancouver, Canada, 2008, pp. 1159-1170.

[14] P. Gil et al., "Fault Representativeness," IST-2000-25425, 2002.

[15] J. Gray, "A Census of Tandem System Availability Between

1985 and 1990," IEEE Transactions on Reliability, vol. 39, pp.

409-418, 1990.

[16] J. Gray, "Why do Computers Stop and What Can Be Done

About It?," in Proceedings of 5th Symposium on Reliability in

Distributed Software and Database Systems, 1986.

[17] J. L. Hellerstein, "Automated Tuning Systems: Beyond

Decision Support," in Int. CMG Conference 1997, Orlando,

Florida, 1997, pp. 263-270.

[18] Hewlett Packard. Hewlett Packard Web site. [Online].

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_

content.jsp?zn=bto&cp=1-11-15_4000_100__

[19] IBM Corporation. IBM Corporation Web site. [Online].

http://www.ibm.com/software/tivoli

[20] Microsoft. (2009) Books Online. [Online].

http://msdn.microsoft.com/en-us/library/ms130214.aspx

[21] Microsoft Corporation. Microsoft Corporation Web site.

[Online]. http://www.microsoft.com/systemcenter

[22] Microsoft Oslo Modeling Platform. [Online].

http://www.microsoft.com/soa/products/oslo.aspx

[23] Microsoft. (2006, May) SQL Server and Oracle Total Cost

of Administration White Paper. [Online].

http://download.microsoft.com/download/a/4/7/a47b7b0e-

976d-4f49-b15d-f02ade638ebe/Alinean-TCAStudy.pdf

[24] F. Oliveira et al., "Understanding and Validating Database

System Administration," in USENIX Annual Technical

Conference, General Track, Boston, MA, 2006, pp. 213-228.

[25] Opnet. OPNET Corporation Web site. [Online].

http://www.opnet.com/solutions/application_performance/pa

norama.html

[26] Oracle. (2007, August) Oracle Database 11g Manageability

Overview White Paper. [Online].

http://www.oracle.com/technology/products/manageability/d

atabase/pdf/wp07/owp_manageability_11g.pdf

[27] J. Rao, C. Zhang, N. Megiddo, and G. Lohman, "Automating

physical database design in a parallel database," in

Proceedings of the 2002 ACM SIGMOD international

conference on Management of data , Madison, WI, 2002, pp.

558 - 569.

[28] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis,

"COLT: continuous on-line tuning," in Proceedings of the

2006 ACM SIGMOD international conference on

Management of data, Chicago, IL, 2006, pp. 793 - 795.

[29] M. Seltzer and M. Olson, "Challenges in Embedded

Database System Administration," in Proceedings of the

1999 USENIX Workshop on Embedded Systems, Cambridge,

MA, 1999.

[30] M. Vieria and H. Madeira, "A Dependability Benchmark for

OLTP Application Environments," in In Proceedings of the

29th International Conference on Very Large Data Bases,

Berlin, Germany, 2003, pp. 742-753.

[31] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback,

"Self-tuning Database Technology and Information

Services: from Wishful Thinking to Viable Engineering," in

28th International Conference on Very Large Data Bases,

Hong Kong, 2002, pp. 20-31.

http://aws.amazon.com/
http://www.w3.org/Submission/sml
http://www.microsoft.com/business/dsi/dsiwp.mspx
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15_4000_100__
http://www.ibm.com/software/tivoli
http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://www.microsoft.com/systemcenter
http://www.microsoft.com/soa/products/oslo.aspx
http://download.microsoft.com/download/a/4/7/a47b7b0e-976d-4f49-b15d-f02ade638ebe/Alinean-TCAStudy.pdf
http://download.microsoft.com/download/a/4/7/a47b7b0e-976d-4f49-b15d-f02ade638ebe/Alinean-TCAStudy.pdf
http://www.opnet.com/solutions/application_performance/panorama.html
http://www.opnet.com/solutions/application_performance/panorama.html
http://www.oracle.com/technology/products/manageability/database/pdf/wp07/owp_manageability_11g.pdf
http://www.oracle.com/technology/products/manageability/database/pdf/wp07/owp_manageability_11g.pdf

