
SIMD-Scan: Ultra Fast in-Memory Table Scan using on-
Chip Vector Processing Units

Thomas Willhalm
Nicolae Popovici

Intel GmbH

Dornacher Strasse 1
85622 Munich, Germany

thomas.willhalm@intel.com
nicolae.o.popovici@intel.com

Yazan Boshmaf

SAP AG

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
yazan.boshmaf@sap.com

Hasso Plattner
Alexander Zeier
Jan Schaffner

Hasso-Plattner-Institute
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

office-plattner@hpi.uni-potsdam.de
alexander.zeier@hpi.uni-potsdam.de
jan.schaffner@hpi.uni-potsdam.de

ABSTRACT
The availability of huge system memory, even on standard

servers, generated a lot of interest in main memory database

engines. In data warehouse systems, highly compressed column-

oriented data structures are quite prominent. In order to scale with

the data volume and the system load, many of these systems are

highly distributed with a shared-nothing approach. The

fundamental principle of all systems is a full table scan over one

or multiple compressed columns. Recent research proposed

different techniques to speedup table scans like intelligent

compression or using an additional hardware such as graphic

cards or FPGAs. In this paper, we show that utilizing the

embedded Vector Processing Units (VPUs) found in standard

superscalar processors can speed up the performance of main-

memory full table scan by factors. This is achieved without

changing the hardware architecture and thereby without additional

power consumption. Moreover, as on-chip VPUs directly access

the system’s RAM, no additional costly copy operations are

needed for using the new SIMD-scan approach in standard main

memory database engines. Therefore, we propose this scan

approach to be used as the standard scan operator for compressed

column-oriented main memory storage. We then discuss how

well our solution scales with the number of processor cores;

consequently, to what degree it can be applied in multi-threaded

environments. To verify the feasibility of our approach, we

implemented the proposed techniques on a modern Intel multi-

core processor using Intel® Streaming SIMD Extensions1 (Intel®

SSE). In addition, we integrated the new SIMD-scan approach

into SAP® Netweaver® Business Warehouse Accelerator2. We

conclude with describing the performance benefits of using our

approach for processing and scanning compressed data using

VPUs in column-oriented main memory database systems.

1. I�TRODUCTIO�
 Computer technology is continually developing, with abiding

rapid improvement in processor architecture, disk storage, and

main memory capacity. At the same time, the massive increase in

data volumes has created a demand for high performance data

management capabilities. This is reflected by the data-intensive

query processing tasks like OLAP, data mining, and scientific

data analysis. These tasks rely on powerful hardware resources

and require optimized software solutions for processing the huge

amount of data with high performance.

 As the system memory gets larger and cheaper, database

systems started therefore to evolve from disk-based to memory-

based operation (and storage). As a result, main memory is

becoming a critical resource. As in disk-based database engines,

data compression techniques are considered as one way to handle

this new main memory bottleneck.

 Previous research showed that the performance of relational

disk-based database system can be increased by extending the

storage manager, the query execution engine, and the query

optimizer to handle compressed data [1].

 In main memory column-store database systems like SAP®

Netweaver® Business Warehouse Accelerator (BWA), relational

tables are completely loaded into memory and are stored column-

wise. In order to save RAM and to improve access rates, the in-

memory data structures are highly compressed. This is achieved

by using different variants of Light Weight Compression (LWC)

techniques like run-length encoding or multiple version of fixed-

length encoding.

 In SAP® Netweaver® BWA, the default compression

mechanism is dictionary compression with bitwise encoding of

columns. Here, all distinct values of a column are extracted,

sorted, and inserted into a dictionary. The column itself keeps

only references to the dictionary, where each reference value is

stored using as many bits as needed for fixed-length encoding.

 While most access functions work directly on compressed data

by implicit decompression, operations like projection have to

materialize the data, and therefore, explicitly decompress it. Here,

high performance is achieved by making optimal use of the CPU

local cache. This is accomplished by processing small data chunks

in one execution step. Hence, data decompression is becoming a

significant part of the query execution.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

 In database engines similar to SAP® Netweaver® BWA, the

central low-level access function is the main memory full table

scan over highly compressed data (table columns). This operation

requires lots of calculations and is CPU-intensive. The need for

decompression increases the CPU-bound behavior, whereas a scan

over uncompressed data is more memory-bus-bound.

 With the arrival of multi-core processors, operating on

compressed data is continuously becoming cheaper as CPU

processing rates are increasing faster than data-access bandwidth

rates [2]. As a result, more sophisticated compression algorithms

are being used while full table scan operations are shifting from

being IO-bound to CPU-bound. In addition, the data in the

system’s memory is being compressed as much as possible. This

created a new exciting research field focusing on optimizing table

scan operations for multi-core processors using different

parallelization techniques. However, even though multi-core

processors offer rich Simultaneous Multi-Processing (SMP)

experience, their fast Vector Processing Units (VPUs) have not

been fully exploited to vectorize and streamline table scan

operations.

 In this paper, we introduce a novel SIMD approach for in-

memory fast table scan operations working on compressed table

columns. We utilize the latest SIMD capabilities of each core in

superscalar multi-core processors to efficiently decompress in-

memory table columns and search for a scan value with a

considerably lower latency. With this approach, we extend the

parallelization of table scan operations that has been limited to

multithreading on the task and data level.

 SIMD, firstly classified by Flynn [3][4], represents a vector

processing model providing instruction level parallelism. SIMD

forms an important extension to modern processors architectures

and provides the ability for a single instruction stream to process

multiple data streams simultaneously. Figure 1 shows the SIMD

execution model.

Figure 1. SIMD execution model: In (a) scalar mode: one

operation produces one result. In (b) SIMD mode: one

operation produces multiple results

1.1 Contributions
 Full table scans are the basic operations in main memory

column-store database systems. They are heavily used in standard

query execution as the system tries to avoid creating indexes in

order to reduce memory consumption.

 In this paper, we propose a new SIMD approach to execute the

following in-memory table scan operations in a very short latency

(as shown in Figure 2):

− Vectorized Value Decompression: During a scan operation,

column values might have to be explicitly decompressed in

order to eventually continue the query execution in

operations like projections. We introduce a fast SIMD

decompression approach for the LWC Number Compression

(LWC-NC) technique that is widely used in today’s DBMSs.

Nevertheless, the approach is also feasible for other

compression techniques.

− Vectorized Predicate Handling: During typical table scan

operation, simple predicates like equal-value or value-range

search queries must be executed. We present a new concept

and implementation of SIMD predicate search. Here, we

adopt the concepts in our decompression approach to realize

a vectorized value search process without the need to

decompress the actual column values.

 As full table scan is the basic function for many highly

advanced data management operations (like aggregation) or

complex predicates, our approach is feasible for nearly all kinds

of database operations. For compressed data structures, which are

common in in-memory databases, adding numbers together is

negligible compared to decompression. As a result, we measure

and show that effect in our experiments (i.e. decompression and

full table scan).

Project

|

Select

|

Scan

SIMD

Decompress

Cache

Column Buffer Manager

In-Memory DB

System, Engine, or

Cache

CPU

Query

Execution

Engine

Compressed

Page

RAM

SIMD

Search

Figure 2. Vectorized table scan operations

 Besides, we show that vectorizing the scan operations to utilize

the embedded VPUs achieves a significant performance gains and

reduces the overall system-resources consumption. As well,

additional power requirements and expensive data movements

between the system’s main memory and external accelerators (like

graphics cards, FPGAs, or other coprocessors) are avoided.

 We also show that our approach scales well with the number of

processor cores. This can be accomplished because our approach

is completely thread-able and can be parallelized at the task and

data level, and thus, it exploits the SMP environment offered by

multi-core processors.

 Paper Outline: The remainder of this paper is organized as

follows: After discussing relevant background information in

Section 2, we describe the system model in Section 3 and the

main concepts of our approach in Section 4. This is followed by a

detailed description of the implementation in Section 5. After that,

we present our real-world evaluation results in Section 6. Finally

we conclude the paper in Section 7.

2. BACKGROU�D
 In this section, we reference related work and its connection to

ours. After that, we present background concepts related to this

paper. We give an overview of the light-weight main memory

database compression and then present a typical SIMD execution

model of modern VPUs.

2.1 Related Work
 Database compression research focuses mainly on two aspects:

First, compression algorithms and their integration into database

systems. Second, compression performance aspects such as query

response time speedup and disk-storage savings achieved. The

authors in [1] concentrated on studying the performance of

database compression techniques, specifically Light-Weight

Compression (LWC), and recommended their integration into

relational database systems for increased performance.

 Performance improvements and speedups achieved by utilizing

data compression in query processing are outlined in [5]. There,

the authors illustrated a novel idea of leaving the data compressed

as long as possible and only decompressing it when utterly

needed. Also, they showed how query processing algorithms can

be extended to process compressed and decompressed data. This

resulted in query processing speed up by a factor considerably

larger than the compression ratio.

 New versatile LWC compression variants that are specifically

designed for optimized Instruction per Cycle (IPC) of modern

CPUs are proposed in [6]. These new compression techniques

target both LWC Number Compression (LWC-NC) and LWC

Dictionary-based Compression (LWC-DC) and provide an

improved compression ratio, RAM/CPU cache compression, and

are superscalar friendly (i.e. no if-then-else constructs, loop

pipelineable, and allow out-of-order execution).

 Thread-level parallelism for database compression is discussed

in [7]. In that paper, the authors discuss compression and

bandwidth tradeoffs for database scan operations. They also

explore the parallelization of the decompression task at the data

level and showed that splitting compressed tuples into

compression blocks for each thread is efficient. They also noticed

that even though the processing of difference coded tuples within

a block is serialized, there is inherently a good parallelism across

blocks.

 Reducing the current RAM-bound performance and optimizing

table scan operations are addressed in [8] and [9]. In [8], the

memory access serialization issue created by having many active

threads that are pinned to separate processor cores is handled by

sharing table scans by multiple queries. This is achieved by

having a new data structure that keeps track of multiple

aggregations in multiple queries and grouping as many queries as

possible in each core’s local cache. Alternatively, a new layout

and processing technique for efficient one-pass predicate

evaluation is proposed in [9]. There, the authors propose a new

way to evaluate predicates that is highly parallel compared to the

column by column partial evaluation in pure column-store

database systems.

 Using SIMD technology to vectorize database processing has

received a significant attention in the database community, in

particular for the applicability of SIMD instructions for database

workloads [10]. A study on the suitability of the Cell Broadband

Engine for database processing was conducted in [11] by

vectorizing all operations and eliminating performance-critical

branches while being restricted to a small program code.

However, the authors only discuss the applicability of vectorized

database management (hashing, in specific).

 No recent research, to our knowledge, has touched upon

vectorizing LWC (de)compression techniques or table scan

operations using SIMD technology on embedded VPUs.

2.2 Light-Weight Database Compression
 There are many LWC algorithms and techniques that can be

used in database systems but a small number of them have proved

high performance with respect to response time and overall query

latency. Such algorithms are Numeric Compression (NC), String

Compression (SC), and Dictionary-based Compression (DC), to

name few.

 In this paper, we focus on LWC compression for its high

granularity and low-latency. In general, LWC is applicable to a

whole file in the database (i.e. a relation of a partition of a

relation), a page of a file, a tuple, or any field in the tuple. The

highest degree of granularity is field-level compression which

means that every field in every tuple in the database can be

compressed or decompressed without any dependency on (i.e.

reading or updating of) fields in the same or other tuples.

Additionally, LWC is very fast in terms of CPU-bound latency

when compressed and decompressed. This is very important as

most of the database operations are CPU-intensive (joins and

aggregations, for instance) with small CPU time left for other

operations. This can be explained by the continuing trend towards

calculation-intensive systems (like business intelligence solutions)

that lead to more CPU-bound scenarios. Practically, modern

processors provide sufficient memory bandwidth to make even a

simple search CPU-bound, if the data is only lightly compressed.

 LWC-NC compression of integers is based on null suppression

and encoding of the resulting length of the compressed integer

[12]. For example, the integer value “3d” can be stored by storing

only “11b” and ignoring the other thirty “0b” bits.

 Formally, the storage of a contiguous unsigned integer array �

with a maximum integer value of � can be achieved by using

only � bits for each integer (Eq. 1). Also, using this concept leads

to a compression ratio � of the array � as described in Eq. 2.

Typically, ���	
����� equals 32 bits but this value can change

as the physical representation of integer data types may differ

depending on the system architecture.

� = ��
��
�� … �Eq. 1�

� =
�

sizeof����
 … �Eq. 2�

 For example, an array of 1024 unsigned integers would

normally require 4 Kbytes (1024*32 bits). Supposing a maximum

integer value of “511d”, then all integer values can be stored using

only 9 bits with a total size of 1.125 Kbytes. By doing so, 2.875

Kbytes are saved - 72% of the original storage size.

 The previously described LWC-NC model represents a

generalization of a set of different variants of LWC-NC

compression techniques like Prefix Suppression and Frame of

Reference compression.

 In Prefix Suppression (PS) [5], the data is compressed by

neglecting common prefixes in data values. Typically, this is done

in the special case of zero prefixes for numeric data types. Thus,

PS compression can be used for numeric data if actual values tend

to be considerably smaller than the largest value of the type

domain.

 Frame of Reference (FoR) compression [13] keeps for each disk

block the minimum ���" value for the numeric column ", and

then stores all column values #[�] as �#[�] − ���'� in an integer

of only (�
�2
��)*" − ���"+ 1�, bits. FoR compression is efficient

for storing clustered data (dates in a database, for instance) as well

as for compressing node pointers in B-tree indices.

 FoR compression resembles PS if ���" = 0, though the

difference is that PS is a variable-bitwidth encoding, while FoR

encodes all values in a page with the same amount of bits.

 In this paper, we propose a fast SIMD approach for modern

superscalar CPUs to decompress LWC-DC data using the

generalized model described earlier in Equation 1 and Equation 2.

Our discussion targets compressing unsigned integers using a

fixed-bitwidth encoding but can be easily extended to include

different data types (signed or unsigned) and for both fixed and

variable-bitwidth encoding. For example, variable-bitwidth

encoding can be handled by intelligently packing and compressing

each bitwidth-case in a separate memory block. Now,

decompressing these blocks is achieved by running our approach

against them, each as a fixed-bitwidth encoding. To clarify, if a

set of database indexes is compressed using a mix of 4-bit, 8-bit,

and 16-bit number encodings, then three compressed sets are

generated each having a fixed-bitwidth encoded values. These

compressed sets can be seamlessly decompressed (in parallel)

using the concepts we introduce in our approach.

2.3 SIMD Execution Model
 We assume a powerful and versatile implementation of SIMD

that provides a rich set of integer and floating point instructions.

These SIMD features increase the overall performance, execute

one �-bit multi-operand operation in a single cycle (� = {32, 64,

128 …}, 4 operands for 32-bit SIMD instruction in a 128-bit

SIMD execution model, for instance), and hence improving the

energy efficiency by doing more computations in less time.

 Typically, there are four vectorization methods supported by

modern compilers: inline assembly language, intrinsics, language

class libraries, and finally automatic vectorization. Each method

represents a tradeoff between controllability and usability, where

automatic vectorization by the compiler being the most usable but

with the least degree of control.

 Conceptually, the SIMD instruction-set should provide

sufficient options to efficiently perform the following operations

for a set of input operands:

─ Arithmetic Operations: Addition, Multiplication, etc.

─ Logic Operations: ANDing, ORing, Shifting, etc.

─ Compare Operations: String compare, Block compare, etc.

─ Data Movement: Load/Store, String copy, Block copy, etc.

─ Miscellaneous Operations: Data-type conversion, Shuffling,

Concatenation, Cache-ability, etc.

3. SYSTEM MODEL
 For the sake of discussion, we assume a SIMD implementation

that works on 128-bit registers, provides a signed/unsigned

8/16/32/64/128-bit operand operations as discussed in Section 2,

and is independent from the normal scalar execution core (i.e.

they can execute in parallel). The discussion in this paper can be

easily applied to SIMD implementation with different registers

sizes. Figure 3a illustrates the SIMD register model.

 We also assume that all integer data (either compressed or not)

are stored in a byte-accessible memory using a contiguous address

space. Typically, in 32-bit system architectures, each integer

requires 32 bits to be stored. As a result, �-number of integers are

stored in � 32-bit Double-Words (DW) starting at address)′ and

ending at address)′ + �4 ∗ �� and occupying 32 ∗ � bits. In 64-

bit architectures, each 64-bit Quad-Word (QW) can hold two 32-

bit integers. In this paper, we assume 64-bit little-endian

architecture with indexing starting at) and increasing by one for

each 64-bit. For example, the index �) + 4� points at the first bit

of the fifth QW where 32.5 Bytes (4*64-bits) of the memory are

skipped. Also, this allows us to access two 64-bit integers as one

128-bit integer. Figure 3b shows the memory layout model.

Figure 3. System model: (a) the SIMD register model, (b) the

memory layout model

4. CO�CEPTS
 In this section, we discuss the concepts of our two main

contributions. We use the system model described in Section 3 to

illustrate these concepts. Also, we use the Light-Weight

Compression – Number Compression (LWC-NC) as a default

compression technique for an array of unsigned integers as

outlined in Section 2.2.

4.1 Vectorized Value Decompression
 Here, we propose a novel SIMD approach that is optimized for

fast in-memory decompression of LWC-NC compressed data. We

also discuss advanced issues related to unaligned data access. In

general, vectorized LWC-NC integer decompression into 32-bit

equivalent can be divided into three main sequential steps: 16-

Byte Alignment, 4-Byte Alignment, and Bit Alignment to handle

loading, copying (shuffling), and extracting (shifting) and storing

the compressed values in sequence. All compression-bit cases

follow the same steps but may have to be executed differently. We

use 9-bit compression in our discussion as most of the �-bit

compression cases follow the exact same discussion. Exceptions

are noted out and are illustrated and visualized in figures. The

general SIMD-Decompression Algorithm works as follows:

set 2 to 0
for � from 0 to �)*_��4	*/128 {

 for 7 from 0 to 15 {

 parallel_load 9: from ��;<[2 ∗ 16 + 7 ∗ �]
 shuffle 9: to #: using �ℎ<��?	_�)�2��:@, … , �:BC�

 parallel_shift #: by ��:@, … , �:D�
 parallel_store #: in
<;<[� ∗ 16 + 7 ∗ 8]
 parallel_load 9E from ��;<[2 ∗ 16 + 7 ∗ � + �/2]
 shuffle 9E to #E using �ℎ<��?	_�)�2��E@, … , �EBC�

 parallel_shift cb by ��E@, … , �ED�

 parallel_store cb in
<;<[� ∗ 16 + 7 ∗ 8 + 4]
 }

 increase 2 by �
}

Where � denotes the maximum number of bits as computed by

Equation 1. The variable �)*_��4	* referes to the last index of

the ��;< array where �)*_��4	* = ���	
����;<� if the array

is 0-indexed. Also, this index is divided by 128 as we are

processing 128 bits a time. The variables 9:, #:, 9E, and #E are

vector variables holding four LWC-NC compressed integers. The

shuffle masks �: and �E as well as the shift amounts �: and �E

depend only on � but not on 7 and are therefore provided as

constants to the algorithm. The following subsections discuss the

details of the three steps that are required to realize the algorithm.

4.1.1 16-Byte Alignment
 In this step, 128 bits of compressed data are read from the

memory at QW-aligned address) and loaded in one 16-byte

SIMD register FG. The number of copied compressed integers

depends on how many bits are used to represent each (i.e. the

compression bits). For example, if 9-bit compression is used, then

FG would hold 14 compressed integer values. Note that the 15th

value is partially copied, and hence, it can’t be decompressed

using FG. This step is executed in one 128-bit SIMD load

instruction. Figure 4 visualizes the 16-byte alignment (load) step.

 In this figure, it should be noted that the next group of values to

be loaded in the new FG are located at address)′ + 16 (i.e. at

index) + 2) where the first integer value is incomplete as it spans

between two 64-bit memory QWs at indexes) and) + 1. One

way to correctly load the data, starting at the 15th value, is to index

the memory at address)′ + 15 with the first 6 bits being invalid

(i.e. the last 6 bits of H13). However, this will result in an

unaligned SIMD memory access which is very expensive to

execute in some architectures. Advanced SIMD implementations

offer the two SIMD memory access variants at the same cost (i.e.

the same CPI). Another solution is to concatenate the two

registers (i.e. the old FG and the new FG) and then to shift the

result, starting from the old FG data, by the amount of bytes that

keeps the first byte holding the 15th element at the beginning of

the result register (15 bytes in Figure 4). Practically, this will

result in one aligned 256-bit SIMD load instruction and one 256-

bit SIMD shift instruction.

Figure 4. Loading 128-bit compressed block to a SIMD

register (9-bit compression).

 As we have assumed a 128-bit SIMD execution model, the

concatenation has to done by hardware using one 128-bit SIMD

register-concatenate instruction. Figure 5 illustrates this operation.

Figure 5. Concatenating two SIMD registers for value

alignment in one hardware instruction

4.1.2 4-Byte Alignment
 After having a 128-bit block of data in the SIMD register FG,

four compressed integer values are copied to four separate 4-byte

DWs in a new register F'. This is needed because four

decompressed values need four 32-bit storage spaces. Also, this

provides an efficient way to decompress the four values into their

corresponding DWs and finally store them back as a single batch.

 Typically, the SIMD instruction-set offers a selective copy

(shuffle) instruction that allows copying a group of specific bytes

(or words) from the source register to a specific bytes (or words)

in the target register. This mapping is done using a copy �)�2.

Figure 6 shows the copying step of the loaded data using a single

128-bit SIMD shuffle instruction.

Figure 6. Copying four 9-bit values to separate DWs

 In Figure 6, MASK (�
<�#	_9M	, 4	�_9M) = {(0,0), (1,1),

(1,4), (2,5), (2,8), (3,9), (3,"), (4,�), (�	�
�, 	?�)}.

Additionally, only the values in F' that are marked in black are

valid. A careful inspection in the figure shows that not all values

are aligned at the beginning of their corresponding DWs (unlike

other cases; for example if 8-bit compression is used). Also, there

are invalid bits trailing the actual values that have to be masked

out (i.e. set to zero). These issues are handled by the next

decompression step (the Bit-Alignment by value extraction and

storing).

 Another issue that might arise is that a single value might span

across DWs, that is, the value is packed in more than 4 bytes

in FG. Figure 7 gives an example for value-spanning issue with

27-bit compression.

Figure 7. Spanning-value issue with 27-bit compression

 In this figure, the third value in FG occupies the 7th byte till the

11th byte (with the first 6 bits and the last 7 bits being invalid)

while spanning across 5 bytes. This is an issue because there is no

way to copy 5 bytes into one DW. One solution is to actually copy

the values to separate DWs (while one of them spanning across its

DW to the next) and then shift and combine the DWs in a way

that each value is in exactly one DW. However, additional SIMD

logic instructions are required. This is achieved in Figure 7 by

using a MASK (�
<�#	_9M	, 4	�_9M) = {(0,0), (1,1), (2,2),

(3,3), (3,4), (4,5), (5,6), (6,7), (6,8), (7,9), (8,P), (9,Q), (P,"),

(Q,�), (",R), (�,S)} and then shifting the upper QW to the right

by one bit. As a result, additional overhead is expected to solve

this issue that could cause non-linear speedup for the

decompression routines (which is shown in the evaluation results).

4.1.3 Bit Alignment
 The goal of this step is to align each one of the four values in

 F' at the first bit of their corresponding DWs and mask out the

trailing invalid bits, thus decompressing them into four equivalent

32-bit integers in the result register FT. This is also needed to

have a direct way to store the values back in the memory in a

single SIMD store instruction.

 In order to do so, a 32-bit SIMD shift instruction, with four

variable shift amounts, is needed to align the values at the same

position in their corresponding DWs. After that, a 128-bit SIMD

AND instruction with an appropriate mask operand is needed to

finish the extraction by masking out the invalid bits (i.e. by setting

them to zero). As a result, ideally two 128-bit SIMD instructions

are needed. Figure 8 visualizes the extraction process. In this

figure, all values are independently left-shifted so that they are all

positioned at the beginning of their DWs. Finally, all invalid bits

are cleared out.

Figure 8. Extracting the four 9-bit values

 As a result of the value extraction by aligning the values at the

bit-level, a direct 128-bit SIMD store instruction is needed to store

back the four decompressed 32-bit integers in a temporary

memory location. These decompressed integers can now be used

by the query execution engine to execute or continue its operation.

Figure 9 depicts the storage step.

127

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

Byte #

RE

7 6 5 4 3 2 1 0 Byte #

0

~~

64

MEM

v0

v0

b+1

b

b+n

v1 v2 v3

v1

v2v3

Storing

Figure 9. Storing the decompressed integer values

4.2 Vectorized Predicate Handling
 Often, the query processing engine determines that only a

specific value or value-range is needed to process a query as a part

of the table scan operation. Normally, a search algorithm returns

the indexes of the compressed values that fall in the search range.

Alternatively, a bit-vector of the compressed values can be

generated that maps the search result in a bitwise manner. For

example, if the compressed data represents an array of ascending

integers (indexes) starting from “0d” till “255d” and the search

condition is the integer range of “1d” to “5d”, the resulting 256 bit-

vector would be “011111000…0b” and the index array would be

“1d, 2d, 3d, 4d, 5d” for a 0-indexed array.

 Rather than decompressing the whole data then start searching

for the values, direct LWC-NC compressed comparison with a

search condition (i.e. predicate) can be used instead. Here, bit

alignment is not needed as the unaligned values (but still 4-byte

aligned) could be directly compared to the search range through

shifting the search values by the same amount. Figure 10

illustrates how our SIMD approach can be adapted to search for a

range of values ����, �)*� in LWC-NC compressed columns.

Figure 10. Vectorized scan-value search with predicate

 In this figure, the four 4-byte aligned values in F' are compared

to the ��� value in a single 32-bit SIMD compare instruction.

The same process is executed for the �)* value and is combined

with the previous comparison result (by a single 128-bit SIMD

AND instruction). Thus, the result register will hold four search

results - each held in its corresponding DW. The DW is set to zero

if the value was not found (i.e. HU didn’t fall in the range). This

can be used to generate an index array or a bit-vector. It is worth

mentioning that converting the scan result into a bit-vector can be

vectorized. However, this is beyond the scope of this paper.

 The general SIMD-Search Algorithm for a search interval of

[���, �)*] works as follows:

parallel_shift ����, ���, ���, ���� by ��:@, … , �:D�, store in ���:

parallel_shift ����, ���, ���, ���� by ��E@, … , �ED�, store in ���E

parallel_shift ��)*, �)*, �)*, �)*� by ��:@, … , �:D�, store in �)*:

parallel_shift ��)*, �)*, �)*, �)*� by ��E@, … , �ED�, store in �)*E

set 2 to 0

for � from 0 to �)*_��4	*/128 {

 for 7 from 0 to 15 {

 parallel_load 9: from ��;<[2 ∗ 16 + 7 ∗ �]
 shuffle 9: to #: using �ℎ<��?	_�)�2��:@, … , �:BC�

 parallel_compare #: with ����:, �)*:�, store in :

 convert : to 4-bit integer �:

 parallel_load 9V from ��;<[2 ∗ 16 + 7 ∗ � + �/2]
 shuffle 9E to #E using �ℎ<��?	_�)�2��E@, … , �EBC�

 parallel_compare #V with ����E, �)*V�, store in V

 convert V to 4-bit integer �E

 store ��: ≪ 4� + �E in
<;<[� ∗ 16 + 7]
 }

 increase 2 by �
}

Where � denotes the maximum number of bits as computed by

Equation 1. The variables ���), ���E, �)*:, �)*E, 9:, #:, 9V,

and #E are vector variables holding four integers. Note that the

scan results, which could be transformed into a more efficient

form (like a bit-vector), are stored in the
<;< array.

5. IMPLEME�TATIO�
 Many implementations of SIMD exist in the market like Intel®

SSE [14] and AMD® 3DNow! [15]. We chose Intel’s SSE

implementation (SSSE3 and SSE4.1) as it provides most of the

needed SIMD features that we have discussed in Section 2 and

Section 4. In this implementation, 128-bit SIMD registers are used

and aligned memory access is assumed. We used the SIMD

intrinsic programming method for an optimized implementation

by following the guidelines discussed in [16]. Also, as SSE uses

128-bit execution environment, the implementation is a direct

reflection of the discussed concepts in Section 4.

 The 16-byte alignment (i.e. loading) step discussed in Section

4.1.1 is implemented by a single 128-bit SIMD load instruction.

To optimize the execution, we used memory pre-fetching to fetch

a set of compressed 128-bit block in advance, thus, further

improving the local cache performance. Unaligned memory

access is avoided in architectures that force access penalties (i.e.

pipeline stalls) by using a 128-bit SIMD concatenate/shift

instruction that implements the solution provided in Section 4.1.1.

This SIMD instruction performs both concatenation and shifting

in the same hardware instruction and produces a 128-bit result. It

should be noted that new Intel architectures such as the one used

in Intel® Xeon® Processor 5500 series, provide fast unaligned

SIMD data access (same as aligned access) which is practically

preferred as it simplifies the next decompression step.

 4-byte alignment by selectively copying the values to separate

DWs as discussed in Section 4.1.2 is implemented by a single

8/16-bit SIMD shuffle instruction with an appropriate shuffle

mask. The spanning-value solution is also implemented using the

same concept discussed in Section 4.1.2, by using one 8-bit SIMD

shuffle instruction and four 32/64/128-bit SIMD logic

instructions. Another optimized implementation uses 8/16-bit

SIMD shift instructions and 128-bit SIMD blend instructions to

achieve the same solution in much less latency.

 For the bit alignment (i.e. extracting and storing) step discussed

in Section 4.1.3, we realized the independent 32-bit SIMD shift

operation (i.e. four different shift amounts for each DW) by using

32-bit SIMD integer multiplication. The idea is that multiplying a

value by “2d” results in 1-bit shift to the left. So to shift left an

operand by �-bit, the second operand (multiplicand) has to be 2X.

After shifting all values so that they have the same number of

preceding (invalid) bits �, a single 32-bit SIMD shift instruction

is used to shift all DWs by � so that all values are align at the

beginning. Hence, this implementation realizes an independent

shift (to the right) by only two SIMD instructions. After that, the

invalid bits are masked out by using a single 128-bit SIMD AND

instruction with an appropriate mask operand. Finally, the

decompressed values are stored back in the memory by using a

single 128-bit SIMD store instruction.

 It should be noted that our implementation has many other

alternatives for bit alignment. Each alternative has its own

speedup advantage but is applicable to specific compression-bit

case. Integer multiplication is the mostly used implementation and

delivers near-best speedup. If only two distinct shift amounts are

required, like in 4-bit and 6-bit compression cases, it is beneficial

to use a shift instruction and a blend instruction to realize the

same concept. With this technique, more care is needed in the

proceeding 8/16-bit SIMD shuffle instruction to arrange the

values in the correct order. It is also worth noting that a 128-bit

SIMD compare instruction with a bit mask can be used for 1-bit

compression to spread the value of a bit to all bits in the same byte

(i.e. extend the bit to the byte level). Hence, a single comparison

can therefore be used to expand the values. We have also

evaluated other implementations using division, addition, shuffle,

and logic SIMD instructions to realize the same concept and work

on 2, 4, 8, and even 16 compressed values at a time. However,

these implementations are slower and we list them only for the

sake of completeness. Also, not all SIMD architectures support all

of the assumed instructions so that they need to be implemented

differently. The alternatives that turned out to be the fastest are the

ones that we have described in detail here and in Section 2.

 For table scan search with predicated discussed in Section 4.2,

we used two 8/16/32-bit SIMD integer compare instructions to

build up the search result. One additional 128-bit SIMD AND

instruction is used to format the search result as all 1s or 0s to

simplify the index or bit-vector generation. Using the 128-bit

SIMD move/mask instruction, the SIMD result can be converted

efficiently to a scalar mask �, which can be written to a bitvector.

Alternatively, the scalar result can be used to generate the indexes

of the search results. This can be implemented efficiently by

maintaining a SIMD register with the current indexes and using

8/16/32-bit SIMD shuffle instructions for storing the result. In this

case, the scalar mask � can be used as an index for a look-up

table holding possible shuffle masks.

 We integrated our approach into SAP® Netweaver® Business

Warehouse Accelerator (BWA) [17]. SAP® Netweaver® BWA is

an appliance-like solution co-developed by SAP and Intel. The

software indexes selected information to create a highly

compressed index structure that loads to the memory whenever

users request the data. The accelerator uses high-performance

aggregation techniques to process queries entirely in memory, and

then delivers results back to the SAP® Netweaver® BW for

output to users.

6. EXPERIME�TS
 For our evaluation, the SAP® Netweaver® BWA engine was

modified in a way that either the standard or the vectorized table

scan method can be used. In order to present realistic results, we

did deep (production like) integration on the engine level without

the need for further data copies or data transformations during

query runtime. Furthermore, the engine implements two versions

of the full table scan; the first method only decompresses the table

column, while the second method integrates search predicate

handling into the scan without unpacking the data in advance. For

both versions we implemented a SSE version based on our

approach.

 We implemented the evaluation experiments on a single server

equipped with two Intel® Xeon® Processors X5560 (2.8GHz),

each having four processing cores and 8MB last level cache. The

server was equipped with 24GB of RAM and the operating system

was SuSE* Linux* Enterprise Edition 10, Service Pack 2.

 For each compression-bit case (determined by Equation 1), 1B-

records were decompressed 10 times for each implementation and

the running time was recorded. The performance of the

decompression routine is mostly data-independent and varies only

with the used compression-bit case.

 Figure 11 depicts the median query time for each bit case using

different implementations of the decompression routine. There, it

clearly seen that the existing table scan method is already

optimized for performance by minimizing the cache miss rate and

massively unrolling the code loops, which allows the pre-

computation of shift arguments and masks. As a reference point,

we also included the results for a variant without loop-unrolling

that shows a significantly higher latency.

 Figure 11: Time to decompress 1B integers

 Also in Figure 11, it should be noted that the performance gain

is significant as we test against a fully optimized system

implementation (over years). In this implementation, the high

performance of the full table scan is considered to be one of the

main values of the system. We achieve performance

improvements on top of that using our prototype implementation,

which demonstrates that our approach is indeed promising.

 The speedup of the SIMD implementation for the value

decompression, against the highly optimized scalar version, is

0

200

400

600

800

1000

1200

1400

1600

Q
u
e
ry
 t
im
e
 [
m
s
]

Compression-bit Case

unoptimized scalar optimized scalar vectorized

shown in Figure 12. The performance improvement is generally

higher for the bit cases up to 8 bits, where 8 values can be

processed in parallel in one SSE register. There, the average

speedup factor is 1.58 over all bit cases.

Figure 12. Speedup for decompression by vectorization

 The speedup of the SIMD implementation for searching a

value (full-table scan) in 1B records is shown in Figure 13. The

experimental test-set for bit case � consists of the natural numbers

modulo 2XYB. Again, the measurements were performed 10 times

on a test program executing the search routine as described in

Section 4.2, and the median of the 10 runs was used for

computing the speedup. For the lower bit-compression cases, the

search result is very large for a single search-value (e.g. if 2 bits

are used, a quarter of our test data set is returned). For bit cases 27

onwards, special care is needed to handle compressed values that

span across 5 Bytes as shown in Figure 7. As a result, this

reduces the performance advantage to the extent that for bit case

31, the vectorized implementation was slower than the scalar

version. However, the average speedup factor of a full-table scan

is still 2.16. In practice, the SIMD implementation is only used in

bit cases where it is faster than its scalar counterpart, which is the

dominant scenario.

Figure 13. Speedup of full-table scan by vectorization

 If the result of a full table scan is returned as a bit-vector, the

running time is independent of the number of hits. However in

case a list of indexes is returned, the running time increases for

large results as storing the results cannot fully exploit the benefit

of storing vector instructions. The best speedup is therefore

achieved for very selective queries as graphed in Figure 14, which

displays the Speedup vs. Selectivity. Again 1B entries were

processed 10 times and the median was recorded. Each point in

the graph displays the average speed-up over all bit cases. The

overall speedup average is 1.63.

Figure 14. Speedup of full-table scan by selectivity

 In real world scenarios, and according to our experience at SAP,

the compression bits used to compact database columns are

mainly in the range of 8 to 16 bits. Figure 15 shows the practical

distribution of the compression bit cases against the running time

contribution of the table scan routines for a typical customer

scenario. Taking this distribution into account, the (weighted)

speedup factor for a full-table scan is 2.45 over all bit cases.

Figure 15: Running time distribution for customer workload

 Finally, we executed the vectorized search in parallel on

different processor cores to verify its scalability. Figure 16 shows

that the vectorized search scales almost linearly up to eight cores

that are installed on the evaluation system. The memory

bandwidth leaves sufficient headroom for future processors with

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r

Compression-bit case

0.0

0.5

1.0

1.5

2.0

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r
c
o
d
e

Compression-bit Case

0.0

0.5

1.0

1.5

2.0

2.5

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r
C
o
d
e

Selectivity

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

C
o
n
tr
ib
u
ti
o
n
 t
o
 R
u
n
n
in
g
 T
im
e

Compression-bit Case

more than four cores per socket. It should be noted that

compressed data is very SIMD-unfriendly because it is completely

unaligned and data elements do not even begin at byte boundaries.

The core result of the paper is that even in this case, SIMD can

result in significant speedups.

Figure 16. Scalability of vectorized full table scan

 It is worth mentioning that we did an evaluation using graphics

card (a GPU port) and other vector processing enabled hardware

accelerators. GPUs or other specialized hardware are currently

limited by the PCIe throughput of about 4 GB/s and the typical

customer workload which is too big to be stored on the graphics

card local memory. As shown in Figure 16, we are processing

13.1 GB/s (when executed in parallel), which therefore cannot be

achieved on a GPU when the data transfer is taken into

consideration. In contrast, we focus in this paper on demonstrating

the concepts and principles needed to achieve a vectorized table

scan using off-the- shelf CPUs.

7. CO�CLUSIO�
 Main memory column-store database systems rely on full table

scan to avoid expensive indexing, and hence, reduce memory

consumption. These operations operate on highly compressed data

and are CPU-bound like never before.

 In this paper, we proposed a SIMD approach to accelerate main

memory table scan operations using on-chip vector processing

units. Our solution targets database systems working on highly

compressed in-memory columns and does not require any

architectural changes. In the evaluation section, we proved that

our solution efficiently vectorize the decompression and scan-

value search operations (full table scan) with high granularity. We

showed that our approach considerably accelerate table scans and

scales well with the number of cores. Consequently, it adds to and

complements the already existing SMP optimization of table scan

operations.

 Acknowledgement: We would like to thank Franz Färber,

Günter Radestock, Tobias Mindnich, and Christoph Weyerhäuser

from SAP AG for the fruitful discussion and the tremendous help

in integrating and testing the SIMD routines.

8. REFERE�CES
[1] Westmann, T., Kossmann D., Helmer, S., Moerkkotte, G.,

“The Implementation and Performance of Compressed

Databases,” in SIGMOD, vol. 29, no. 3, pp. 55-67, 2000

[2] Harizopoulos S., Liang V., Abadi D., Madden S.,

“Performance tradeoffs in read-optimized databases,” In

VLDB, pp. 487–498, 2006

[3] Flynn, M.J., "Very high-speed computing systems,"

Proceedings of the IEEE , vol.54, no.12, pp. 1901-1909,

1966

[4] Duncan, R., "A survey of parallel computer architectures,"

Computer , vol.23, no.2, pp.5-16, Feb 1990

[5] Graefe, G., Shapiro, L.D., “Data Compression and Database

Performance,” Applied Computing, pp. 22-27, 1991

[6] Zukowski M., Heman S., Nes N., Boncz P., "Super-Scalar

RAM-CPU Cache Compression," Data Engineering,

International Conference, vol. 0, no. 0, pp. 59, 2006.

[7] Holloway A., Raman V., Swart G., DeWitt D., “How to

Barter Bits for Chronons: Compression and Bandwidth Trade

Offs for Database Scans,” In SIGMOD, pp. 389-400, 2007

[8] Qiao, L., Raman, V., Reiss, F., Haas, P. J., and Lohman, G.

M., “Main-memory scan sharing for multi-core CPUs,” In

VLDB, pp. 610-621, 2008

[9] Johnson, R., Raman, V., Sidle, R., and Swart, G., “Row-wise

parallel predicate evaluation,” In VLDB, pp. 622-634, 2008

[10] Zhou J., Ross K.A., “Implementing database operations

using SIMD instructions,” In SIGMOD, 2002.

[11] Heman S., Nes N., Zukowski M., Boncz P., “Vectorized

Data Processing on the Cell Broadband Engine,” Data

Management on New Hardware, no. 4, 2007

[12] Roth M., Van Horn S., “Database compression,” In SIGMOD

Record, pp. 31-39, 1993

[13] Goldstein J., Ramakrishnan R., Shaft U., “Compressing

relations and indexes,” In ICDE, 1998

[14] Abel J., Balasubramanian, K., Bargeron M., Craver T.,

Phlipot M., “Applications Tuning for Streaming SIMD

Extensions,” Intel Technology Journal Q2, 1999

[15] Oberman S., Favor G., Weber F., “AMD 3DNow!

Technology: Architecture and Implementations,” IEEE

Micro, vol. 19, pp. 37-48, 1999

[16] Gerber R., Bik A., Smith K., Tian X., “The Software

Optimization Cookbook,” 2nd edition, Intel Press

[17] SAP AG, https://www.sdn.sap.com/irj/sdn/bia

1
 Intel and Xeon are trademarks or registered trademarks of Intel

Corporation or its subsidiaries in the United States or other

countries. Other names and brands may be claimed as the property

of others.

2 SAP and SAP Netweaver are registered trademarks of SAP AG

or its subsidiaries in Germany and several other countries. Other

names and brands may be claimed as the property of others.

2.4

4.2

7.2

13.1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 2 4 6 8 10

G
B
/s

Number of Threads

