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ABSTRACT 
The availability of huge system memory, even on standard 

servers, generated a lot of interest in main memory database 

engines. In data warehouse systems, highly compressed column-

oriented data structures are quite prominent.  In order to scale with 

the data volume and the system load, many of these systems are 

highly distributed with a shared-nothing approach. The 

fundamental principle of all systems is a full table scan over one 

or multiple compressed columns. Recent research proposed 

different techniques to speedup table scans like intelligent 

compression or using an additional hardware such as graphic 

cards or FPGAs. In this paper, we show that utilizing the 

embedded Vector Processing Units (VPUs) found in standard 

superscalar processors can speed up the performance of main-

memory full table scan by factors. This is achieved without 

changing the hardware architecture and thereby without additional 

power consumption. Moreover, as on-chip VPUs directly access 

the system’s RAM, no additional costly copy operations are 

needed for using the new SIMD-scan approach in standard main 

memory database engines. Therefore, we propose this scan 

approach to be used as the standard scan operator for compressed 

column-oriented main memory storage.  We then discuss how 

well our solution scales with the number of processor cores; 

consequently, to what degree it can be applied in multi-threaded 

environments. To verify the feasibility of our approach, we 

implemented the proposed techniques on a modern Intel multi-

core processor using Intel® Streaming SIMD Extensions1 (Intel® 

SSE). In addition, we integrated the new SIMD-scan approach 

into SAP® Netweaver® Business Warehouse Accelerator2. We 

conclude with describing the performance benefits of using our 

approach for processing and scanning compressed data using 

VPUs in column-oriented main memory database systems. 

1. I�TRODUCTIO� 
   Computer technology is continually developing, with abiding 

rapid improvement in processor architecture, disk storage, and 

main memory capacity. At the same time, the massive increase in 

data volumes has created a demand for high performance data 

management capabilities. This is reflected by the data-intensive 

query processing tasks like OLAP, data mining, and scientific 

data analysis. These tasks rely on powerful hardware resources 

and require optimized software solutions for processing the huge 

amount of data with high performance. 

   As the system memory gets larger and cheaper, database 

systems started therefore to evolve from disk-based to memory-

based operation (and storage). As a result, main memory is 

becoming a critical resource. As in disk-based database engines, 

data compression techniques are considered as one way to handle 

this new main memory bottleneck. 

    Previous research showed that the performance of relational 

disk-based database system can be increased by extending the 

storage manager, the query execution engine, and the query 

optimizer to handle compressed data [1].  

   In main memory column-store database systems like SAP® 

Netweaver® Business Warehouse Accelerator (BWA), relational 

tables are completely loaded into memory and are stored column-

wise. In order to save RAM and to improve access rates, the in-

memory data structures are highly compressed. This is achieved 

by using different variants of Light Weight Compression (LWC) 

techniques like run-length encoding or multiple version of fixed-

length encoding.  

   In SAP® Netweaver® BWA, the default compression 

mechanism is dictionary compression with bitwise encoding of 

columns. Here, all distinct values of a column are extracted, 

sorted, and inserted into a dictionary. The column itself keeps 

only references to the dictionary, where each reference value is 

stored using as many bits as needed for fixed-length encoding. 

   While most access functions work directly on compressed data 

by implicit decompression, operations like projection have to 

materialize the data, and therefore, explicitly decompress it. Here, 

high performance is achieved by making optimal use of the CPU 

local cache. This is accomplished by processing small data chunks 

in one execution step. Hence, data decompression is becoming a 

significant part of the query execution. 
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   In database engines similar to SAP® Netweaver® BWA, the 

central low-level access function is the main memory full table 

scan over highly compressed data (table columns). This operation 

requires lots of calculations and is CPU-intensive. The need for 

decompression increases the CPU-bound behavior, whereas a scan 

over uncompressed data is more memory-bus-bound.  

   With the arrival of multi-core processors, operating on 

compressed data is continuously becoming cheaper as CPU 

processing rates are increasing faster than data-access bandwidth 

rates [2]. As a result, more sophisticated compression algorithms 

are being used while full table scan operations are shifting from 

being IO-bound to CPU-bound. In addition, the data in the 

system’s memory is being compressed as much as possible. This 

created a new exciting research field focusing on optimizing table 

scan operations for multi-core processors using different 

parallelization techniques. However, even though multi-core 

processors offer rich Simultaneous Multi-Processing (SMP) 

experience, their fast Vector Processing Units (VPUs) have not 

been fully exploited to vectorize and streamline table scan 

operations. 

   In this paper, we introduce a novel SIMD approach for in-

memory fast table scan operations working on compressed table 

columns. We utilize the latest SIMD capabilities of each core in 

superscalar multi-core processors to efficiently decompress in-

memory table columns and search for a scan value with a 

considerably lower latency. With this approach, we extend the 

parallelization of table scan operations that has been limited to 

multithreading on the task and data level. 

   SIMD, firstly classified by Flynn [3][4], represents a vector 

processing model providing instruction level parallelism. SIMD 

forms an important extension to modern processors architectures 

and provides the ability for a single instruction stream to process 

multiple data streams simultaneously. Figure 1 shows the SIMD 

execution model. 

 

 

Figure 1. SIMD execution model: In (a) scalar mode: one 

operation produces one result. In (b) SIMD mode: one    

operation produces multiple results 

    

1.1 Contributions 
   Full table scans are the basic operations in main memory 

column-store database systems. They are heavily used in standard 

query execution as the system tries to avoid creating indexes in 

order to reduce memory consumption. 

   In this paper, we propose a new SIMD approach to execute the 

following in-memory table scan operations in a very short latency 

(as shown in Figure 2): 

− Vectorized Value Decompression: During a scan operation, 

column values might have to be explicitly decompressed in 

order to eventually continue the query execution in 

operations like projections. We introduce a fast SIMD 

decompression approach for the LWC Number Compression 

(LWC-NC) technique that is widely used in today’s DBMSs. 

Nevertheless, the approach is also feasible for other 

compression techniques. 

− Vectorized Predicate Handling: During typical table scan 

operation, simple predicates like equal-value or value-range 

search queries must be executed. We present a new concept 

and implementation of SIMD predicate search. Here, we 

adopt the concepts in our decompression approach to realize 

a vectorized value search process without the need to 

decompress the actual column values. 

   As full table scan is the basic function for many highly 

advanced data management operations (like aggregation) or 

complex predicates, our approach is feasible for nearly all kinds 

of database operations. For compressed data structures, which are 

common in in-memory databases, adding numbers together is 

negligible compared to decompression. As a result, we measure 

and show that effect in our experiments (i.e. decompression and 

full table scan). 
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Figure 2. Vectorized table scan operations 

 

   Besides, we show that vectorizing the scan operations to utilize 

the embedded VPUs achieves a significant performance gains and 

reduces the overall system-resources consumption. As well, 

additional power requirements and expensive data movements 

between the system’s main memory and external accelerators (like 

graphics cards, FPGAs, or other coprocessors) are avoided.  

   We also show that our approach scales well with the number of 

processor cores. This can be accomplished because our approach 

is completely thread-able and can be parallelized at the task and 

data level, and thus, it exploits the SMP environment offered by 

multi-core processors. 

   Paper Outline: The remainder of this paper is organized as 

follows: After discussing relevant background information in 

Section 2, we describe the system model in Section 3 and the 

main concepts of our approach in Section 4. This is followed by a 

detailed description of the implementation in Section 5. After that, 

we present our real-world evaluation results in Section 6. Finally 

we conclude the paper in Section 7. 



2. BACKGROU�D 
   In this section, we reference related work and its connection to 

ours. After that, we present background concepts related to this 

paper. We give an overview of the light-weight main memory 

database compression and then present a typical SIMD execution 

model of modern VPUs. 

 

2.1 Related Work 
   Database compression research focuses mainly on two aspects: 

First, compression algorithms and their integration into database 

systems. Second, compression performance aspects such as query 

response time speedup and disk-storage savings achieved.  The 

authors in [1] concentrated on studying the performance of 

database compression techniques, specifically Light-Weight 

Compression (LWC), and recommended their integration into 

relational database systems for increased performance.  

   Performance improvements and speedups achieved by utilizing 

data compression in query processing are outlined in [5]. There, 

the authors illustrated a novel idea of leaving the data compressed 

as long as possible and only decompressing it when utterly 

needed. Also, they showed how query processing algorithms can 

be extended to process compressed and decompressed data. This 

resulted in query processing speed up by a factor considerably 

larger than the compression ratio. 

   New versatile LWC compression variants that are specifically 

designed for optimized Instruction per Cycle (IPC) of modern 

CPUs are proposed in [6].  These new compression techniques 

target both LWC Number Compression (LWC-NC) and LWC 

Dictionary-based Compression (LWC-DC) and provide an 

improved compression ratio, RAM/CPU cache compression, and 

are superscalar friendly (i.e. no if-then-else constructs, loop 

pipelineable, and allow out-of-order execution).  

   Thread-level parallelism for database compression is discussed 

in [7]. In that paper, the authors discuss compression and 

bandwidth tradeoffs for database scan operations. They also 

explore the parallelization of the decompression task at the data 

level and showed that splitting compressed tuples into 

compression blocks for each thread is efficient. They also noticed 

that even though the processing of difference coded tuples within 

a block is serialized, there is inherently a good parallelism across 

blocks. 

   Reducing the current RAM-bound performance and optimizing 

table scan operations are addressed in [8] and [9]. In [8], the 

memory access serialization issue created by having many active 

threads that are pinned to separate processor cores is handled by 

sharing table scans by multiple queries. This is achieved by 

having a new data structure that keeps track of multiple 

aggregations in multiple queries and grouping as many queries as 

possible in each core’s local cache. Alternatively, a new layout 

and processing technique for efficient one-pass predicate 

evaluation is proposed in [9]. There, the authors propose a new 

way to evaluate predicates that is highly parallel compared to the 

column by column partial evaluation in pure column-store 

database systems. 

   Using SIMD technology to vectorize database processing has 

received a significant attention in the database community, in 

particular for the applicability of SIMD instructions for database 

workloads [10]. A study on the suitability of the Cell Broadband 

Engine for database processing was conducted in [11] by 

vectorizing all operations and eliminating performance-critical 

branches while being restricted to a small program code. 

However, the authors only discuss the applicability of vectorized 

database management (hashing, in specific).  

   No recent research, to our knowledge, has touched upon 

vectorizing LWC (de)compression techniques or table scan 

operations using SIMD technology on embedded VPUs. 

 

2.2 Light-Weight Database Compression 
   There are many LWC algorithms and techniques that can be 

used in database systems but a small number of them have proved 

high performance with respect to response time and overall query 

latency. Such algorithms are Numeric Compression (NC), String 

Compression (SC), and Dictionary-based Compression (DC), to 

name few.  

   In this paper, we focus on LWC compression for its high 

granularity and low-latency. In general, LWC is applicable to a 

whole file in the database (i.e. a relation of a partition of a 

relation), a page of a file, a tuple, or any field in the tuple.  The 

highest degree of granularity is field-level compression which 

means that every field in every tuple in the database can be 

compressed or decompressed without any dependency on (i.e. 

reading or updating of) fields in the same or other tuples. 

Additionally, LWC is very fast in terms of CPU-bound latency 

when compressed and decompressed. This is very important as 

most of the database operations are CPU-intensive (joins and 

aggregations, for instance) with small CPU time left for other 

operations. This can be explained by the continuing trend towards 

calculation-intensive systems (like business intelligence solutions) 

that lead to more CPU-bound scenarios. Practically, modern 

processors provide sufficient memory bandwidth to make even a 

simple search CPU-bound, if the data is only lightly compressed. 

   LWC-NC compression of integers is based on null suppression 

and encoding of the resulting length of the compressed integer 

[12]. For example, the integer value “3d” can be stored by storing 

only “11b” and ignoring the other thirty “0b” bits. 

   Formally, the storage of a contiguous unsigned integer array � 

with a maximum integer value of � can be achieved by using 

only � bits for each integer (Eq. 1). Also, using this concept leads 

to a compression ratio � of the array � as described in Eq. 2. 

Typically,  ���	
����� equals 32 bits but this value can change 

as the physical representation of integer data types may differ 

depending on the system architecture. 

� = ��
��
��               … �Eq. 1� 

� =
�

sizeof����
         … �Eq. 2� 

    

   For example, an array of 1024 unsigned integers would 

normally require 4 Kbytes (1024*32 bits). Supposing a maximum 

integer value of “511d”, then all integer values can be stored using 

only 9 bits with a total size of 1.125 Kbytes. By doing so, 2.875 

Kbytes are saved - 72% of the original storage size.  

   The previously described LWC-NC model represents a 

generalization of a set of different variants of LWC-NC 

compression techniques like Prefix Suppression and Frame of 

Reference compression.  



   In Prefix Suppression (PS) [5], the data is compressed by 

neglecting common prefixes in data values. Typically, this is done 

in the special case of zero prefixes for numeric data types. Thus, 

PS compression can be used for numeric data if actual values tend 

to be considerably smaller than the largest value of the type 

domain. 

   Frame of Reference (FoR) compression [13] keeps for each disk 

block the minimum ���" value for the numeric column ", and 

then stores all column values #[�] as �#[�] − ���'� in an integer 

of only (�
�2
��)*" − ���"+ 1�, bits. FoR compression is efficient 

for storing clustered data (dates in a database, for instance) as well 

as for compressing node pointers in B-tree indices.  

   FoR compression resembles PS if ���" = 0, though the 

difference is that PS is a variable-bitwidth encoding, while FoR 

encodes all values in a page with the same amount of bits. 

   In this paper, we propose a fast SIMD approach for modern 

superscalar CPUs to decompress LWC-DC data using the 

generalized model described earlier in Equation 1 and Equation 2. 

Our discussion targets compressing unsigned integers using a 

fixed-bitwidth encoding but can be easily extended to include 

different data types (signed or unsigned) and for both fixed and 

variable-bitwidth encoding. For example, variable-bitwidth 

encoding can be handled by intelligently packing and compressing 

each bitwidth-case in a separate memory block. Now, 

decompressing these blocks is achieved by running our approach 

against them, each as a fixed-bitwidth encoding. To clarify, if a 

set of database indexes is compressed using a mix of 4-bit, 8-bit, 

and 16-bit number encodings, then three compressed sets are 

generated each  having a fixed-bitwidth encoded values. These 

compressed sets can be seamlessly decompressed (in parallel) 

using the concepts we introduce in our approach. 

 

2.3 SIMD Execution Model 
   We assume a powerful and versatile implementation of SIMD 

that provides a rich set of integer and floating point instructions. 

These SIMD features increase the overall performance, execute 

one �-bit multi-operand operation in a single cycle (� = {32, 64, 

128 …}, 4 operands for 32-bit SIMD instruction in a 128-bit 

SIMD execution model, for instance), and hence improving the 

energy efficiency by doing more computations in less time.  

   Typically, there are four vectorization methods supported by 

modern compilers: inline assembly language, intrinsics, language 

class libraries, and finally automatic vectorization. Each method 

represents a tradeoff between controllability and usability, where 

automatic vectorization by the compiler being the most usable but 

with the least degree of control.  

   Conceptually, the SIMD instruction-set should provide 

sufficient options to efficiently perform the following operations 

for a set of input operands: 

─ Arithmetic Operations: Addition, Multiplication, etc.  

─ Logic Operations: ANDing, ORing, Shifting, etc. 

─ Compare Operations: String compare, Block compare, etc. 

─ Data Movement: Load/Store, String copy, Block copy, etc. 

─ Miscellaneous Operations: Data-type conversion, Shuffling, 

Concatenation, Cache-ability, etc.   

 

3. SYSTEM MODEL 
   For the sake of discussion, we assume a SIMD implementation 

that works on 128-bit registers, provides a signed/unsigned 

8/16/32/64/128-bit operand operations as discussed in Section 2, 

and is independent from the normal scalar execution core (i.e. 

they can execute in parallel). The discussion in this paper can be 

easily applied to SIMD implementation with different registers 

sizes. Figure 3a illustrates the SIMD register model. 

   We also assume that all integer data (either compressed or not) 

are stored in a byte-accessible memory using a contiguous address 

space. Typically, in 32-bit system architectures, each integer 

requires 32 bits to be stored. As a result, �-number of integers are 

stored in � 32-bit Double-Words (DW) starting at address )′ and 

ending at address )′ + �4 ∗ �� and occupying 32 ∗ � bits. In 64-

bit architectures, each 64-bit Quad-Word (QW) can hold two 32-

bit integers. In this paper, we assume 64-bit little-endian 

architecture with indexing starting at ) and increasing by one for 

each 64-bit. For example, the index �) + 4� points at the first bit 

of the fifth QW where 32.5 Bytes (4*64-bits) of the memory are 

skipped. Also, this allows us to access two 64-bit integers as one 

128-bit integer. Figure 3b shows the memory layout model. 

Figure 3. System model: (a) the SIMD register model, (b) the 

memory layout model 

 

4. CO�CEPTS 
   In this section, we discuss the concepts of our two main 

contributions. We use the system model described in Section 3 to 

illustrate these concepts. Also, we use the Light-Weight 

Compression – Number Compression (LWC-NC) as a default 

compression technique for an array of unsigned integers as 

outlined in Section 2.2. 

 

4.1 Vectorized Value Decompression  
   Here, we propose a novel SIMD approach that is optimized for 

fast in-memory decompression of LWC-NC compressed data. We 

also discuss advanced issues related to unaligned data access. In 

general, vectorized LWC-NC integer decompression into 32-bit 

equivalent can be divided into three main sequential steps: 16-



Byte Alignment, 4-Byte Alignment, and Bit Alignment to handle 

loading, copying (shuffling), and extracting (shifting) and storing 

the compressed values in sequence. All compression-bit cases 

follow the same steps but may have to be executed differently. We 

use 9-bit compression in our discussion as most of the �-bit 

compression cases follow the exact same discussion. Exceptions 

are noted out and are illustrated and visualized in figures. The 

general SIMD-Decompression Algorithm works as follows: 

 

set 2 to 0  
for � from 0 to �)*_��4	*/128 { 

    for 7 from 0 to 15 { 

       parallel_load 9: from ��;<[2 ∗ 16 + 7 ∗ �]  
       shuffle 9: to #: using �ℎ<��?	_�)�2��:@, … , �:BC�  

       parallel_shift #: by ��:@, … , �:D�  
       parallel_store #: in 
<;<[� ∗ 16 +  7 ∗ 8] 
       parallel_load 9E from ��;<[2 ∗ 16 + 7 ∗ � + �/2]         
       shuffle 9E to #E using �ℎ<��?	_�)�2��E@, … , �EBC� 

       parallel_shift cb by ��E@, … , �ED� 

       parallel_store cb  in 
<;<[� ∗ 16 +  7 ∗ 8 +  4]  
    } 

    increase 2 by � 
}  
 

Where � denotes the maximum number of bits as computed by 

Equation 1. The variable �)*_��4	* referes to the last index of 

the ��;< array where �)*_��4	* = ���	
����;<� if the array 

is 0-indexed. Also, this index is divided by 128 as we are 

processing 128 bits a time. The variables 9:, #:, 9E, and #E are 

vector variables holding four LWC-NC compressed integers. The 

shuffle masks �: and �E as well as the shift amounts �: and �E 

depend only on � but not on 7 and are therefore provided as 

constants to the algorithm. The following subsections discuss the 

details of the three steps that are required to realize the algorithm. 

 

4.1.1 16-Byte Alignment 
   In this step, 128 bits of compressed data are read from the 

memory at QW-aligned address ) and loaded in one 16-byte 

SIMD register FG. The number of copied compressed integers 

depends on how many bits are used to represent each (i.e. the 

compression bits). For example, if 9-bit compression is used, then 

FG would hold 14 compressed integer values. Note that the 15th 

value is partially copied, and hence, it can’t be decompressed 

using FG. This step is executed in one 128-bit SIMD load 

instruction. Figure 4 visualizes the 16-byte alignment (load) step. 

   In this figure, it should be noted that the next group of values to 

be loaded in the new FG are located at address )′ + 16 (i.e. at 

index ) + 2) where the first integer value is incomplete as it spans 

between two 64-bit memory QWs at indexes ) and ) + 1. One 

way to correctly load the data, starting at the 15th value, is to index 

the memory at address )′ + 15 with the first 6 bits being invalid 

(i.e. the last 6 bits of H13). However, this will result in an 

unaligned SIMD memory access which is very expensive to 

execute in some architectures. Advanced SIMD implementations 

offer the two SIMD memory access variants at the same cost (i.e. 

the same CPI). Another solution is to concatenate the two 

registers (i.e. the old  FG and the new FG) and then to shift the 

result, starting from the old  FG data, by the amount of bytes that 

keeps the first byte holding the 15th element at the beginning of 

the result register (15 bytes in Figure 4). Practically, this will 

result in one aligned 256-bit SIMD load instruction and one 256-

bit SIMD shift instruction. 

 

 

Figure 4. Loading 128-bit compressed block to a SIMD 

register (9-bit compression). 

 

   As we have assumed a 128-bit SIMD execution model, the 

concatenation has to done by hardware using one 128-bit SIMD 

register-concatenate instruction. Figure 5 illustrates this operation. 

 

 

Figure 5. Concatenating two SIMD registers for value 

alignment in one hardware instruction 

 

4.1.2 4-Byte Alignment 
   After having a 128-bit block of data in the SIMD register FG, 

four compressed integer values are copied to four separate 4-byte 

DWs in a new register F'. This is needed because four 

decompressed values need four 32-bit storage spaces. Also, this 

provides an efficient way to decompress the four values into their 

corresponding DWs and finally store them back as a single batch. 

   Typically, the SIMD instruction-set offers a selective copy 

(shuffle) instruction that allows copying a group of specific bytes 

(or words) from the source register to a specific bytes (or words) 

in the target register. This mapping is done using a copy �)�2. 

Figure 6 shows the copying step of the loaded data using a single 

128-bit SIMD shuffle instruction. 



Figure 6. Copying four 9-bit values to separate DWs 

  

   In Figure 6, MASK (�
<�#	_9M	, 4	�_9M	) = {(0,0), (1,1), 

(1,4), (2,5), (2,8), (3,9), (3,"), (4,�), (�	�
�, 	?�	)}. 

Additionally, only the values in  F' that are marked in black are 

valid. A careful inspection in the figure shows that not all values 

are aligned at the beginning of their corresponding DWs (unlike 

other cases; for example if 8-bit compression is used). Also, there 

are invalid bits trailing the actual values that have to be masked 

out (i.e. set to zero). These issues are handled by the next 

decompression step (the Bit-Alignment by value extraction and 

storing). 

   Another issue that might arise is that a single value might span 

across DWs, that is, the value is packed in more than 4 bytes 

in FG. Figure 7 gives an example for value-spanning issue with 

27-bit compression. 

 

 

Figure 7. Spanning-value issue with 27-bit compression 

 

   In this figure, the third value in  FG occupies the 7th byte till the 

11th byte (with the first 6 bits and the last 7 bits being invalid) 

while spanning across 5 bytes. This is an issue because there is no 

way to copy 5 bytes into one DW. One solution is to actually copy 

the values to separate DWs (while one of them spanning across its 

DW to the next) and then shift and combine the DWs in a way 

that each value is in exactly one DW. However, additional SIMD 

logic instructions are required. This is achieved in Figure 7 by 

using a MASK (�
<�#	_9M	, 4	�_9M	) = {(0,0), (1,1), (2,2), 

(3,3), (3,4), (4,5), (5,6), (6,7), (6,8), (7,9), (8,P), (9,Q), (P,"), 

(Q,�), (",R), (�,S)} and then shifting the upper QW to the right 

by one bit. As a result, additional overhead is expected to solve 

this issue that could cause non-linear speedup for the 

decompression routines (which is shown in the evaluation results).  

 

4.1.3 Bit Alignment 
   The goal of this step is to align each one of the four values in 

 F' at the first bit of their corresponding DWs and mask out the 

trailing invalid bits, thus decompressing them into four equivalent 

32-bit integers in the result register FT. This is also needed to 

have a direct way to store the values back in the memory in a 

single SIMD store instruction. 

   In order to do so, a 32-bit SIMD shift instruction, with four 

variable shift amounts, is needed to align the values at the same 

position in their corresponding DWs. After that, a 128-bit SIMD 

AND instruction with an appropriate mask operand is needed to 

finish the extraction by masking out the invalid bits (i.e. by setting 

them to zero). As a result, ideally two 128-bit SIMD instructions 

are needed. Figure 8 visualizes the extraction process. In this 

figure, all values are independently left-shifted so that they are all 

positioned at the beginning of their DWs. Finally, all invalid bits 

are cleared out. 

Figure 8. Extracting the four 9-bit values  

 

   As a result of the value extraction by aligning the values at the 

bit-level, a direct 128-bit SIMD store instruction is needed to store 

back the four decompressed 32-bit integers in a temporary 

memory location. These decompressed integers can now be used 

by the query execution engine to execute or continue its operation. 

Figure 9 depicts the storage step. 
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4.2 Vectorized Predicate Handling 
   Often, the query processing engine determines that only a 

specific value or value-range is needed to process a query as a part 

of the table scan operation. Normally, a search algorithm returns 

the indexes of the compressed values that fall in the search range. 

Alternatively, a bit-vector of the compressed values can be 

generated that maps the search result in a bitwise manner. For 

example, if the compressed data represents an array of ascending 

integers (indexes) starting from “0d” till “255d” and the search 

condition is the integer range of “1d” to “5d”, the resulting 256 bit-

vector would be “011111000…0b” and the index array would be 

“1d, 2d, 3d, 4d, 5d” for a 0-indexed array. 

   Rather than decompressing the whole data then start searching 

for the values, direct LWC-NC compressed comparison with a 

search condition (i.e. predicate) can be used instead. Here, bit 

alignment is not needed as the unaligned values (but still 4-byte 

aligned) could be directly compared to the search range through 

shifting the search values by the same amount. Figure 10 

illustrates how our SIMD approach can be adapted to search for a 

range of values ����, �)*� in LWC-NC compressed columns. 

 

 

Figure 10. Vectorized scan-value search with predicate 

 

   In this figure, the four 4-byte aligned values in  F' are compared 

to the ��� value in a single 32-bit SIMD compare instruction. 

The same process is executed for the �)* value and is combined 

with the previous comparison result (by a single 128-bit SIMD 

AND instruction). Thus, the result register will hold four search 

results - each held in its corresponding DW. The DW is set to zero 

if the value was not found (i.e. HU didn’t fall in the range). This 

can be used to generate an index array or a bit-vector. It is worth 

mentioning that converting the scan result into a bit-vector can be 

vectorized. However, this is beyond the scope of this paper.  

   The general SIMD-Search Algorithm for a search interval of 

[���, �)*] works as follows: 

parallel_shift ����, ���, ���, ���� by ��:@, … , �:D�, store in ���: 

parallel_shift ����, ���, ���, ���� by ��E@, … , �ED�, store in ���E 

parallel_shift ��)*, �)*, �)*, �)*� by ��:@, … , �:D�, store in �)*: 

parallel_shift ��)*, �)*, �)*, �)*� by ��E@, … , �ED�, store in �)*E   

set 2 to 0  

for � from 0 to �)*_��4	*/128 { 

    for 7 from 0 to 15 { 

       parallel_load 9: from ��;<[2 ∗ 16 +  7 ∗ �]  
       shuffle 9: to #: using �ℎ<��?	_�)�2��:@, … , �:BC�  

       parallel_compare #: with ����:, �)*:�, store in : 

       convert : to 4-bit integer �:  

       parallel_load 9V from ��;<[2 ∗ 16 +  7 ∗ � + �/2]  
       shuffle 9E to #E using �ℎ<��?	_�)�2��E@, … , �EBC�  

       parallel_compare #V with ����E, �)*V�, store in V 

       convert V to 4-bit integer �E        

       store ��: ≪ 4� + �E in 
<;<[� ∗ 16 + 7]  
    } 

    increase 2 by �  
} 

 

Where � denotes the maximum number of bits as computed by 

Equation 1. The variables ���), ���E, �)*:, �)*E, 9:, #:, 9V, 

and #E are vector variables holding four integers. Note that the 

scan results, which could be transformed into a more efficient 

form (like a bit-vector), are stored in the 
<;< array. 

 

5. IMPLEME�TATIO� 
   Many implementations of SIMD exist in the market like Intel® 

SSE [14] and AMD® 3DNow! [15]. We chose Intel’s SSE 

implementation (SSSE3 and SSE4.1) as it provides most of the 

needed SIMD features that we have discussed in Section 2 and 

Section 4. In this implementation, 128-bit SIMD registers are used 

and aligned memory access is assumed. We used the SIMD 

intrinsic programming method for an optimized implementation 

by following the guidelines discussed in [16]. Also, as SSE uses 

128-bit execution environment, the implementation is a direct 

reflection of the discussed concepts in Section 4. 

   The 16-byte alignment (i.e. loading) step discussed in Section 

4.1.1 is implemented by a single 128-bit SIMD load instruction. 

To optimize the execution, we used memory pre-fetching to fetch 

a set of compressed 128-bit block in advance, thus, further 

improving the local cache performance. Unaligned memory 

access is avoided in architectures that force access penalties (i.e. 

pipeline stalls) by using a 128-bit SIMD concatenate/shift 

instruction that implements the solution provided in Section 4.1.1. 

This SIMD instruction performs both concatenation and shifting 

in the same hardware instruction and produces a 128-bit result. It 

should be noted that new Intel architectures such as the one used 

in Intel® Xeon® Processor 5500 series, provide fast unaligned 

SIMD data access (same as aligned access) which is practically 

preferred as it simplifies the next decompression step. 

   4-byte alignment by selectively copying the values to separate 

DWs as discussed in Section 4.1.2 is implemented by a single 

8/16-bit SIMD shuffle instruction with an appropriate shuffle 

mask. The spanning-value solution is also implemented using the 

same concept discussed in Section 4.1.2, by using one 8-bit SIMD 

shuffle instruction and four 32/64/128-bit SIMD logic 

instructions. Another optimized implementation uses 8/16-bit 

SIMD shift instructions and 128-bit SIMD blend instructions to 

achieve the same solution in much less latency. 



   For the bit alignment (i.e. extracting and storing) step discussed 

in Section 4.1.3, we realized the independent 32-bit SIMD shift 

operation (i.e. four different shift amounts for each DW) by using 

32-bit SIMD integer multiplication. The idea is that multiplying a 

value by “2d” results in 1-bit shift to the left. So to shift left an 

operand by �-bit, the second operand (multiplicand) has to be 2X.  

After shifting all values so that they have the same number of 

preceding (invalid) bits �, a single 32-bit SIMD shift instruction 

is used to shift all DWs by � so that all values are align at the 

beginning. Hence, this implementation realizes an independent 

shift (to the right) by only two SIMD instructions. After that, the 

invalid bits are masked out by using a single 128-bit SIMD AND 

instruction with an appropriate mask operand. Finally, the 

decompressed values are stored back in the memory by using a 

single 128-bit SIMD store instruction. 

   It should be noted that our implementation has many other 

alternatives for bit alignment. Each alternative has its own 

speedup advantage but is applicable to specific compression-bit 

case. Integer multiplication is the mostly used implementation and 

delivers near-best speedup. If only two distinct shift amounts are 

required, like in 4-bit and 6-bit compression cases, it is beneficial 

to use a shift instruction and a blend instruction to realize the 

same concept. With this technique, more care is needed in the 

proceeding 8/16-bit SIMD shuffle instruction to arrange the 

values in the correct order. It is also worth noting that a 128-bit 

SIMD compare instruction with a bit mask can be used for 1-bit 

compression to spread the value of a bit to all bits in the same byte 

(i.e. extend the bit to the byte level). Hence, a single comparison 

can therefore be used to expand the values. We have also 

evaluated other implementations using division, addition, shuffle, 

and logic SIMD instructions to realize the same concept and work 

on 2, 4, 8, and even 16 compressed values at a time. However, 

these implementations are slower and we list them only for the 

sake of completeness. Also, not all SIMD architectures support all 

of the assumed instructions so that they need to be implemented 

differently. The alternatives that turned out to be the fastest are the 

ones that we have described in detail here and in Section 2. 

   For table scan search with predicated discussed in Section 4.2, 

we used two 8/16/32-bit SIMD integer compare instructions to 

build up the search result. One additional 128-bit SIMD AND 

instruction is used to format the search result as all 1s or 0s to 

simplify the index or bit-vector generation. Using the 128-bit 

SIMD move/mask instruction, the SIMD result can be converted 

efficiently to a scalar mask �, which can be written to a bitvector. 

Alternatively, the scalar result can be used to generate the indexes 

of the search results. This can be implemented efficiently by 

maintaining a SIMD register with the current indexes and using 

8/16/32-bit SIMD shuffle instructions for storing the result. In this 

case, the scalar mask � can be used as an index for a look-up 

table holding possible shuffle masks. 

   We integrated our approach into SAP® Netweaver® Business 

Warehouse Accelerator (BWA) [17]. SAP® Netweaver® BWA is 

an appliance-like solution co-developed by SAP and Intel. The 

software indexes selected information to create a highly 

compressed index structure that loads to the memory whenever 

users request the data. The accelerator uses high-performance 

aggregation techniques to process queries entirely in memory, and 

then delivers results back to the SAP® Netweaver® BW for 

output to users. 

   

6. EXPERIME�TS 
   For our evaluation, the SAP® Netweaver® BWA engine was 

modified in a way that either the standard or the vectorized table 

scan method can be used. In order to present realistic results, we 

did deep (production like) integration on the engine level without 

the need for further data copies or data transformations during 

query runtime. Furthermore, the engine implements two versions 

of the full table scan; the first method only decompresses the table 

column, while the second method integrates search predicate 

handling into the scan without unpacking the data in advance. For 

both versions we implemented a SSE version based on our 

approach. 

  We implemented the evaluation experiments on a single server 

equipped with two Intel® Xeon® Processors X5560 (2.8GHz), 

each having four processing cores and 8MB last level cache. The 

server was equipped with 24GB of RAM and the operating system 

was SuSE* Linux* Enterprise Edition 10, Service Pack 2. 

   For each compression-bit case (determined by Equation 1), 1B-

records were decompressed 10 times for each implementation and 

the running time was recorded. The performance of the 

decompression routine is mostly data-independent and varies only 

with the used compression-bit case. 

   Figure 11 depicts the median query time for each bit case using 

different implementations of the decompression routine. There, it 

clearly seen that the existing table scan method is already 

optimized for performance by minimizing the cache miss rate and 

massively unrolling the code loops, which allows the pre-

computation of shift arguments and masks. As a reference point, 

we also included the results for a variant without loop-unrolling 

that shows a significantly higher latency.  

 

 Figure 11: Time to decompress 1B integers 

    

   Also in Figure 11, it should be noted that the performance gain 

is significant as we test against a fully optimized system 

implementation (over years). In this implementation, the high 

performance of the full table scan is considered to be one of the 

main values of the system. We achieve performance 

improvements on top of that using our prototype implementation, 

which demonstrates that our approach is indeed promising. 

   The speedup of the SIMD implementation for the value 

decompression, against the highly optimized scalar version, is 
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shown in Figure 12. The performance improvement is generally 

higher for the bit cases up to 8 bits, where 8 values can be 

processed in parallel in one SSE register. There, the average 

speedup factor is 1.58 over all bit cases.  

 

 

Figure 12. Speedup for decompression by vectorization 

 

      The speedup of the SIMD implementation for searching a 

value (full-table scan) in 1B records is shown in Figure 13. The 

experimental test-set for bit case � consists of the natural numbers 

modulo 2XYB. Again, the measurements were performed 10 times 

on a test program executing the search routine as described in 

Section 4.2, and the median of the 10 runs was used for 

computing the speedup. For the lower bit-compression cases, the 

search result is very large for a single search-value (e.g. if 2 bits 

are used, a quarter of our test data set is returned). For bit cases 27 

onwards, special care is needed to handle compressed values that 

span across 5 Bytes as shown in Figure 7.  As a result, this 

reduces the performance advantage to the extent that for bit case 

31, the vectorized implementation was slower than the scalar 

version. However, the average speedup factor of a full-table scan 

is still 2.16. In practice, the SIMD implementation is only used in 

bit cases where it is faster than its scalar counterpart, which is the 

dominant scenario. 

 

 

Figure 13. Speedup of full-table scan by vectorization 

   If the result of a full table scan is returned as a bit-vector, the 

running time is independent of the number of hits. However in 

case a list of indexes is returned, the running time increases for 

large results as storing the results cannot fully exploit the benefit 

of storing vector instructions. The best speedup is therefore 

achieved for very selective queries as graphed in Figure 14, which 

displays the Speedup vs.  Selectivity. Again 1B entries were 

processed 10 times and the median was recorded. Each point in 

the graph displays the average speed-up over all bit cases. The 

overall speedup average is 1.63. 

 

 

Figure 14. Speedup of full-table scan by selectivity 

    

   In real world scenarios, and according to our experience at SAP, 

the compression bits used to compact database columns are 

mainly in the range of 8 to 16 bits. Figure 15 shows the practical 

distribution of the compression bit cases against the running time 

contribution of the table scan routines for a typical customer 

scenario. Taking this distribution into account, the (weighted) 

speedup factor for a full-table scan is 2.45 over all bit cases.  

 

Figure 15: Running time distribution for customer workload 

 

   Finally, we executed the vectorized search in parallel on 

different processor cores to verify its scalability. Figure 16 shows 

that the vectorized search scales almost linearly up to eight cores 

that are installed on the evaluation system. The memory 

bandwidth leaves sufficient headroom for future processors with 
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more than four cores per socket. It should be noted that 

compressed data is very SIMD-unfriendly because it is completely 

unaligned and data elements do not even begin at byte boundaries. 

The core result of the paper is that even in this case, SIMD can 

result in significant speedups. 

 

 

Figure 16. Scalability of vectorized full table scan 

 

   It is worth mentioning that we did an evaluation using graphics 

card (a GPU port) and other vector processing enabled hardware 

accelerators. GPUs or other specialized hardware are currently 

limited by the PCIe throughput of about 4 GB/s and the typical 

customer workload which is too big to be stored on the graphics 

card local memory. As shown in Figure 16, we are processing 

13.1 GB/s (when executed in parallel), which therefore cannot be 

achieved on a GPU when the data transfer is taken into 

consideration. In contrast, we focus in this paper on demonstrating 

the concepts and principles needed to achieve a vectorized table 

scan using off-the- shelf CPUs. 

 

7. CO�CLUSIO� 
   Main memory column-store database systems rely on full table 

scan to avoid expensive indexing, and hence, reduce memory 

consumption. These operations operate on highly compressed data 

and are CPU-bound like never before. 

   In this paper, we proposed a SIMD approach to accelerate main 

memory table scan operations using on-chip vector processing 

units. Our solution targets database systems working on highly 

compressed in-memory columns and does not require any 

architectural changes. In the evaluation section, we proved that 

our solution efficiently vectorize the decompression and scan-

value search operations (full table scan) with high granularity. We 

showed that our approach considerably accelerate table scans and 

scales well with the number of cores. Consequently, it adds to and 

complements the already existing SMP optimization of table scan 

operations.  
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