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ABSTRACT
A large number of web pages contain data structured in the form
of “lists”. Many such lists can be further split into multi-column
tables, which can then be used in more semantically meaningful
tasks. However, harvesting relational tables from such lists can be
a challenging task. The lists are manually generated and hence
need not have well defined templates – they have inconsistent
delimiters (if any) and often have missing information.

We propose a novel technique for extracting tables from lists.
The technique is domain-independent and operates in a fully un-
supervised manner. We first use multiple sources of information
to split individual lines into multiple fields, and then compare
the splits across multiple lines to identify and fix incorrect splits
and bad alignments. In particular, we exploit a corpus of HTML
tables, also extracted from the Web, to identify likely fields and
good alignments. For each extracted table, we compute an ex-
traction score that reflects our confidence in the table’s quality.

We conducted an extensive experimental study using both real
web lists and lists derived from tables on the Web. The experi-
ments demonstrate the ability of our technique to extract tables
with high accuracy. In addition, we applied our technique on a
large sample of about 100,000 lists crawled from the Web. The
analysis of the extracted tables have led us to believe that there
are likely to be tens of millions of useful and query-able relational
tables extractable from lists on the Web.

1. INTRODUCTION
The World Wide Web is a large, but as yet under-utilized,

source of structured data. Consequently, managing struc-
tured data on the web has recently become the focus of
many research efforts (e.g. [1, 7, 11, 18, 19, 25]). Solutions
have been proposed to find, extract, and integrate struc-
tured data. Building web-scale structured-data stores and
exposing them offers many advantages, e.g., more sophis-
ticated querying of web data and performing table search
to bootstrap other data management tasks. In addition,
the analysis of large amounts of structured data on the Web
has enabled features such as schema auto-complete and syn-
onymy discovery [7].

In recent work, Cafarella et al. [7] have shown that HTML
tables are a particularly rich source of structured data. Their
results indicate that there are more than 150 million HTML
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tables containing relational data on the web. In this paper
we consider a complementary, and equally plentiful, source
of relational data – lists on the Web.

The key challenge concerning HTML lists is that there
is no clear notion of columns or cells, as is the case with
tables. Each line in the list is largely unstructured text.
Delimiters are typically very inconsistent, if at all existent,
and hence cannot be relied upon to split each line into the
correct fields. Moreover, information might be missing on
some lines and hence not all lines can be split into the same
number of fields.

For example, consider the cartoon listing in Figure 1.
Each cartoon has a serial number, the cartoon name, the
production company, and the production year. Some car-
toons are missing information, such as “6. Gertie The Di-
nasour”, where the production year is not specified. While
it might seem that the list is uniformly delimited, a closer
examination reveals several inconsistencies. First, a period
is used both to separate the serial number from the cartoon
name, and to terminate abbreviations (e.g., the production
company “Warner Bros.”). Second, while the delimiter be-
tween the production company and year is typically a single
slash (“/”), when abbreviations are used, the delimiter se-
quence is a period and a slash (“./”). Third, the slash also
appears in the name of one of the cartoons (“Duck Dodgers
in the 24 1/2th Century”). Finally, for cartoon “6. Gertie
The Dinosaur”, the slash delimiter is absent (along with the
production year). These inconsistencies, while fairly easy
for a human observer to detect, can be very confusing for
an automated system.

The above example also demonstrates that the problem of
segmenting lists is different from the traditional information
extraction problem of wrapper generation problem [1, 2, 9,
10, 11, 13, 14, 15, 17, 23, 24, 25]. The typical assumption in
wrapper generation is that web pages (or parts of web pages)
are automatically generated for each record in an underlying
table using an HTML template. Thus, the layout of each
record can be assumed to be consistent (with different data
fields being separated by HTML tags) and hence they can
be inferred from multiple examples.

This paper proposes a technique for extracting tables from
lists, ListExtract, that addresses the above challenges.
Given an input list, ListExtract searches for the best pos-
sible table that the list can be segmented into. ListEx-

tract is designed to be completely domain-independent
and hence apply to any list found on the Web.

The over-arching idea underlying ListExtract is that
finding the best table involves interleaving local decisions



Figure 1: List of the 50 Greatest Cartoons: An ex-
ample of Web lists that contain structured data that
can be extracted into relational tables.

within each line in the list and table-oriented decisions across
lines of the list. Within the lines, ListExtract uses some
typical signals such as the data types, syntax, and delim-
iters. ListExtract also uses two new sources: (1) a large-
scale language model (e.g., like in [6]) that records word
co-occurrence scores, and (2) a large corpus of automati-
cally extracted HTML tables [7]. The language model is
used to identify candidate phrases that should not be split
within a line, and the table corpus identifies phrases that
occur elsewhere in table cells.

When looking across lines of the list, ListExtract iden-
tifies splitting errors by considering the cohesion of values
across the column of the resulting table. Here too, the ta-
ble corpus is helpful because it identifies values that have
appeared in the same column in other tables. In addition,
when a splitting error is found by ListExtract, it realizes
that the error must affect a streak of values occurring to the
left or to the right of the value. As we describe, ListEx-

tract operates in several phases that interleave these two
types of decisions.

In summary, we make the following contributions:
1. We present a novel technique for extracting tables from

lists that is both domain-independent and is completely
unsupervised. These qualities are essential in making
the technique applicable on a web scale.

2. We describe how language models and a corpus of ta-
bles can be used to identify segments in lines that are
well suited to be cell-values in tables. We also show
how the table corpus is instrumental in aligning seg-
ments across different lines in a list.

3. We present the results of an extensive experimental
study based on real web lists, in addition to synthetic
lists derived from HTML tables. The experiments
demonstrate the effectiveness of our technique, and the
impact of its various components. We also show that
information extraction techniques cannot be applied
to our problem effectively.

4. We take a first step towards estimating the number
of high-quality tables that can be extracted from lists
on the Web. From a sample of 100,000 web pages
selected at random, we show that ListExtract can

extract between 1400 and 9700 tables with more than
one column from HTML lists, depending on the re-
quired quality threshold.

We note that to complete relational table extraction, we
also need to assign column headers to the columns of output
tables. However, in this paper, we only focus on the task
of splitting the list’s lines into the table’s columns. Finding
meaningful column headers is an area of future work, and
some of the techniques in [8, 22] can be directly applied.

The rest of the paper is organized as follows. Section 2
presents our problem formulation and an overview of our ap-
proach. Sections 3, 4, and 5 describe the three phases of our
algorithm – splitting, alignment, and refinement. Section 6
presents an experimental evaluation. Section 7 discusses re-
lated work and Section 8 concludes.

2. PROBLEM STATEMENT AND OVERVIEW
We begin by stating the problem we address and giving

an overview of our solution.

2.1 Terminology and problem statement
Consider a list L of n lines, where the ith line li consists

of mi words 〈wi1, wi2, . . . , wimi
〉. Our goal is to extract a

table T that contains n rows and some number of columns,
say k.

We refer to each line in the list (that becomes a row in the
table) as a record and each cell value as a field. Thus, the
ith record in T contains the k fields 〈fi1, fi2, ..., fik〉. The
field fij consists of mij successive words 〈wipij

, wi(pij+1),
..., wi(pij+mij−1)〉, where pij is the position of the first word
in fij . We use the term field candidate to refer to a sequence
of words that is being considered as a potential field.

In this work, we only consider records that are formed by
a non-overlapping and complete splitting of a line in the list,
i.e., each field is assumed to be disjoint and all words are
assigned to some field.

Given a list L, our goal is to extract a table T that is the
most likely representation of the underlying relational data.
It is important to note that there is not necessarily a single
right answer to the table extraction problem. Solutions may
differ on how many columns they identify and how they deal
with irregularities in the data. Ultimately, solution quality
is subjective.

2.2 Algorithm overview
Our ListExtract technique executes as a sequence of

operations over the input list (see Figure 2). The underly-
ing operations can be grouped into three main phases: an
independent splitting phase, an alignment phase, and a final
refinement phase. We use two scoring functions to decide
where to split individual records. We use a Field Qual-
ity Score, FQ(f), to measure the quality of an individual
field candidate f , and a Field-to-Field Consistency Score,
F2FC(f1, f2), to measure the likelihood of two field candi-
dates f1 and f2 being in the same column. Both the scores
take into consideration multiple sources of information.

Figure 3 shows the intermediate results of applying our
technique on the first 17 rows in the cartoons list in Figure 1.

Phase 1 (Splitting): Each line in the input list is split into
a multi-field record. The splitting is performed indepen-
dently hence the obtained records do not necessarily have
the same number of fields.



1 || What's Opera Doc || Warner Bros || 1957
2 || Duck Amuck || Warner Bros || 1953
3 || The Band Concert || Disney || 1935
4. Duck Dodgers in the 24 1/2th Century (Warner Bros || 1953
5 || One Froggy Evening || Warner Bros || 1956
6 || Gertie The Dinosaur || McCay
7 || Red Hot Riding Hood || MGM || 1943
8 || Porky In Wackyland || Warner Bros || 1938
9 || Gerald McBoing Boing || UPA || 1951
10 || King-Size Canary || MGM || 1947
11 || Three Little Pigs || Disney || 1933
12 || Rabbit of Seville || Warner Bros || 1950
13 || Steamboat Willie || Disney || 1928
14 || The Old Mill || Disney || 1937
15 || Bad Luck Blackie (MGM || 1949
16 || The Great Piggy Bank Robbery || Warner Bros || 1946
17 || Popeye the Sailor || Meets || Sinbad the Sailor || Fleischer || 1936

(a) After independent splitting phase

1 || What's Opera Doc || Warner Bros || 1957
2 || Duck Amuck || Warner Bros || 1953
3 || The Band Concert || Disney || 1935
4. Duck Dodgers in the 24 1/2th Century (Warner Bros || 1953
5 || One Froggy Evening || Warner Bros || 1956
6 || Gertie The Dinosaur || McCay
7 || Red Hot Riding Hood || MGM || 1943
8 || Porky In Wackyland || Warner Bros || 1938
9 || Gerald McBoing Boing || UPA || 1951
10 || King-Size Canary || MGM || 1947
11 || Three Little Pigs || Disney || 1933
12 || Rabbit of Seville || Warner Bros || 1950
13 || Steamboat Willie || Disney || 1928
14 || The Old Mill || Disney || 1937
15 || Bad Luck Blackie (MGM || 1949
16 || The Great Piggy Bank Robbery || Warner Bros || 1946
17. Popeye the Sailor Meets || Sinbad the Sailor || Fleischer || 1936

(b) After re-splitting records given the number of
columns

1  What's Opera Doc Warner Bros 1957
2  Duck Amuck Warner Bros 1953
3  The Band Concert Disney 1935

4. Duck Dodgers in the 24 1/2th Century (Warner Bros) 1953
5  One Froggy Evening Warner Bros 1956
6  Gertie The Dinosaur McCay
7  Red Hot Riding Hood MGM 1943
8  Porky In Wackyland Warner Bros 1938
9  Gerald McBoing Boing UPA 1951
10  King-Size Canary MGM 1947
11  Three Little Pigs Disney 1933
12  Rabbit of Seville  Warner Bros 1950
13  Steamboat Willie Disney 1928
14  The Old Mill Disney 1937
15  Bad Luck Blackie (MGM) 1949
16  The Great Piggy Bank Robbery  Warner Bros 1946

17. Popeye the Sailor Meets  Sinbad the Sailor Fleischer 1936

(c) After alignment phase (initial table TI)

1  What's Opera Doc Warner Bros 1957
2  Duck Amuck Warner Bros 1953
3  The Band Concert Disney 1935
4 Duck Dodgers in the 24 1/2th Century Warner Bros 1953
5  One Froggy Evening Warner Bros 1956
6  Gertie The Dinosaur McCay
7  Red Hot Riding Hood MGM 1943
8  Porky In Wackyland Warner Bros 1938
9  Gerald McBoing Boing UPA 1951
10  King-Size Canary MGM 1947
11  Three Little Pigs Disney 1933
12  Rabbit of Seville  Warner Bros 1950
13  Steamboat Willie Disney 1928
14  The Old Mill Disney 1937
15  Bad Luck Blackie MGM 1949
16  The Great Piggy Bank Robbery  Warner Bros 1946
17  Popeye the Sailor Meets Sinbad the Sailor (Fleischer) 1936

(d) After refinement phase (final table T )
Figure 3: Applying the ListExtract technique on the cartoons list in Figure 1.
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Figure 2: ListExtract proceeds as a sequence of
operations that can grouped into the independent
splitting, the alignment, and the refinement phases.

As shown in Figure 3(a), after the independent splitting
phase, 13 out of the 17 lines are correctly split into records
of four fields representing the sequence number, cartoon’s
name, production company, and production year. Line 6 is
also split correctly, though into a record of three fields only,
as it is missing the year information. However, lines 4, 15
and 17 (highlighted) were incorrectly split. Interestingly, the
cartoon’s name in line 17 had two very common substrings
(“Popeye the Sailor” and “Sindbad the Sailor”), which lead
the splitting algorithm to assign high scores to them, and
thus treat each of them as a separate field.

Phase 2 (Alignment): An initial candidate table (TI) is
constructed by first determining a single number of likely
columns in the output table. Records with too many fields
are re-merged and re-split to make sure that they fit into
the output table. Records with too few fields are expanded
by inserting fields with a null value. The fields are aligned
into columns so as to ensure consistency among fields in the
same column. Since the splitting decisions in the first phase
were made independently for each record, the TI can still
have some incorrect fields.

In our example, the number of columns in the output ta-

ble is set at four (the most common number of fields across
all records). Since record 17 has more than four fields, it is
merged and re-split to force it to have no more than four
fields. As shown in Figure 3(b), it re-splits into exactly four
fields. However, the split between the first and second fields
was inaccurate, again because the common sub-string “Sind-
bad the Sailor” is recognized as a separate field candidate.

In the initial table TI (Figure 3(c)), note that a null field
was correctly placed for the missing year in record 6. More-
over, the fields, which were correctly split in records 4 and
15, were also correctly positioned in TI . In particular, the
production year of record 4, and the serial number and
production year for record 15 were placed in their correct
columns.

Phase 3 (Refinement): The field assignments in TI are
analyzed to detect and fix those that are likely to be incor-
rect. This is done by marking fields that seem inconsistent
with other fields in the same column. We observe that bad
splitting decisions do not occur in isolation, but are likely to
affect one or more adjacent fields. Hence, we detect streaks,
i.e., sequence of fields in a single record, of such inconsistent
fields that are then merged together and re-split.

Unlike the independent splitting in the first phase, split-
ting a re-merged streak of fields during refinement takes into
account other fields occurring in the columns of TI spanned
by the streak. This enables us to identify higher-quality
fields which are consistent with their respective columns,
and hence ultimately generate a higher-quality table, T .

In our example, in the result of the refinement phase all
the highlighted cells in Figure 3(c) are correctly detected
as fields that are inconsistent with their columns, by virtue
of their low consistency scores with the other fields in their
columns. The corresponding streaks are merged and re-split.
This results in the correction of most of the fields, except
for the cartoon name and production company in record
17. This is again attributed to the high popularity of the
substring “Popeye the Sailor”, which was also a good match
for the cartoon name column.

We now look at each phase in detail.



3. INDEPENDENT SPLITTING PHASE
The first phase of ListExtract considers each line in a

list independently and splits it into a record with multiple
fields.

In order to measure the quality of a particular candidate
field (as a cell value), we use the field quality score (FQ) for
each candidate. We describe how we compute FQ shortly.
In principle, every subsequence of words in a line l is a field
candidate. For a line with m words, there are

`

m+1
2

´

possible
field candidates (the number of choices for the start and end
words of the sequence).

We considered three alternate methods to select the best
split for a line given the FQ scores of its candidate fields. Re-
call that we only consider splits that result in non-overlapping
fields that together include all the words in the line.

The first method determines the best split to be the one
that maximizes the sum of the FQ scores of the selected
fields, while the second method maximizes the average FQ

score. The third is a greedy method that at each step selects
the field candidate with the highest score, while eliminating
those that overlap with the selected field.

We found that maximizing the sum of FQ scores results
in aggressive splitting, i.e., each line is split into too many
fields. This is because increasing the number of fields typ-
ically leads to a larger sum. Maximizing the average FQ

score on the other hand avoids such aggressive splitting,
but is computationally expensive. While the sum can be
maximized using a standard O(m2) dynamic programming
segmentation algorithm [4], the average cannot be. Unlike
sum, the average is not a decomposable objective function –
in simple terms, “sum” can always be expressed as “sum of
sums”, while “average” cannot always be expressed as “av-
erage of averages”. Hence, an exhaustive search is necessary.

In the interest of efficiency, we instead use a greedy method
that does not result in aggressive splitting. Our greedy line
splitting algorithm, SplitLine, is outlined in Algorithm 1
below. We create Cf , a ranked list of all field candidates
sorted in descending order of their FQ scores. In each itera-
tion of the loop, the candidate with the highest score, ftop, is
removed from the ranked list and marked as selected (added
to the output set r). All candidates that overlap with ftop

are then removed from Cf to ensure that no two overlap-
ping fields are selected. This process terminates when Cf

becomes empty.

Algorithm 1 SplitLine(l: line)

1: r = {}
2: extract all subsequences from l as field candidates.
3: calculate FQ for each field candidate.
4: Cf = field candidates sorted in descending order of FQ.
5: while Cf is not empty do
6: remove ftop, the field candidate with the highest FQ in Cf .
7: add ftop to r.
8: remove field candidates overlapping with ftop from Cf .
9: end while

10: return r

Surprisingly, in our experiments we found that SplitLine
generally yielded better results even compared to the “av-
erage” method. While the results are not reported in Sec-
tion 6 for lack of space, we note that we compared SplitLine
against “average” implemented using exhaustive search and
found it to have an average f-measure improvement of .05
over our datasets. It is likely that SplitLine is more resilient
to incorrect field scores that might occur in practice. For ex-

ample, consider that a correct field candidate f was given a
low FQ score due to insufficient information, but there are
other high scoring non-overlapping field candidates in the
record. SplitLine will first pick the other candidates based
on better information thereby delaying the decision on f .
At a later stage, f could be the best remaining candidate
to fill the gap between previously selected fields. In effect,
SplitLine delays the selection of f until it gains enough
knowledge about its surrounding fields.

3.1 Field Quality Score
We now describe how we calculate the field-quality score,

FQ(f), for a given field candidate f . One of the important
aspects of ListExtract is that we compute these scores
based on multiple sources of information. In our discussion
below, we assume the candidate field, f , is composed of m

words, 〈wi, . . . , wi+m−1〉.
We obtain scores from three sources of information: type

support (denoted Sts(f)), language model support (Slms) and
table corpus support, (Stcs). We assign each information
source a weight, atss, alms, and atcs respectively, and com-
pute FQ(f) as their weighted combination:

FQ(f) = ats ×Sts(f)+alms ×Slms(f)+atcs ×Stcs(f) (1)

We now explain how each of the individual components
are computed.

Type Score (Sts): The type score reflects whether the
field candidate can be recognized as a member of a type
that commonly occurs in separate columns in tables. Our
implementation currently recognizes numeric values, date-
time values, currency values, URLs, emails, phone numbers,
and zip codes. Type recognition is performed by matching
f against regular expressions, which capture most of the
possible instances of the considered types. We set Sts(f) to
1 if the type of f is recognized and to 0 otherwise.

Language Model Score (Slms): A language model records
the probability of occurrences of sequences of words. The
probabilities are computed from the analysis of a large cor-
pus of documents in that language, e.g., web pages resulting
from a web-crawl. Specifically, if w1, . . . , wi is a sequence
of words, we use the language model to compute the condi-
tional probability of Pr(wi|w1, . . . , wi−1), i.e., the probabil-
ity that the word wi follows the sequence w1, . . . , wi−1.

Intuitively, we want the sequence of words within the cell
to have a high probability and the sequence of words that
span cells to have a low probability. We capture these intu-
itions with the internal cohesiveness score and the external
in-cohesiveness score:

• internal cohesiveness score, Sic, measures how likely a
sequence of words is a single cell value. Specifically, it
computes the average conditional probability of each
word given the words before it.

Sic(f) =

Pm−1
h=1 Pr(wi+h|wi, . . . , wi+h−1)

m − 1
(2)

• external in-cohesiveness score, Sei, computes the in-
verse of the average probability of the boundaries of
the field: Pr(wi|wi−1) (the probability that the first
word in f follows the last word in the earlier field), and
Pr(wi+h+1|wi+h), (the probability of the first word in
the next field following the last word in f).



Sei(f) =
2

Pr(wi|wi−1) + Pr(wi+h+1|wi+h)
(3)

The language model score is the weighted average of the
internal cohesiveness and external in-cohesiveness scores:

Slms(f) = aic × Sic(f) + aei × Sei(f) (4)

where aic and aei are in the range [0, 1] and aic + aei = 1.

Table Corpus Support Score (Stcs): The table corpus
support score reflects how well f is supported in a corpus
of Web tables [7]. Let tc support is the number of times f

occurs as a cell-value in the table corpus. We use a sim-
ple scheme, where we set Stcs to 1 if tc support is greater
than some threshold value min tc support, and 0 otherwise.
This simple scheme proved to perform quite well (as will be
discussed in Section 6).

Before calculating FQ and Slms we normalize and scale
the component scores Sts, Sic, Sei, and Stcs. In order to
bias the scores to prefer longer field candidates the scores are
scaled by the number of words in the sequence. In order to
ensure that all the scores are between 0 and 1, each score is
then divided by the maximum corresponding score achieved
across all field candidates in L.

To see the benefit in preferring longer candidates, consider
the two candidates: “Theodore Roosevelt” and “Theodore
Roosevelt, Jr.”. Although both candidates would be recog-
nized as likely fields, it is clear that the presence of “, Jr.”
immediately after “Theodore Roosevelt” makes the second
candidate the more likely one.

4. ALIGNMENT PHASE
The second phase in ListExtract is alignment. The

independently split records from the first phase are put to-
gether into an initial table that is then aligned.

Before a table can be assembled, we must address a crucial
problem: what are the number of columns in the resulting
tables? Since the lines were split independently, it is possible
the resulting records have different numbers of fields. We use
a simple majority voting scheme to determine the number
of columns – suppose the first phase split the row ri into ki

fields. We pick the ki that occurs the most number of times
in the list. Observe that we are in essence assuming that
a large number of the lines have in fact been split into the
correct number of fields. This is a reasonable assumption
provided the underlying relational tables that we are trying
to extract are not sparse (do not have many null fields). Our
experiments indicate that this is in fact the case.

Once the number k has been determined, records with ex-
actly k fields are trivially aligned. However, there might be
records with more than k fields and also those with fewer
than k fields. In Section 4.1, we describe how we address
longer records by re-splitting them with constraints on the
number of fields. In Section 4.2, we consider shorter records
and align them by inserting null fields that are appropriately
placed between the non-null fields. In Section 4.3, we de-
scribe how we finally assemble the initial table, and describe
how we maintain field summaries that make the alignment
process more efficient. Finally, in Section 4.4, we describe
the Field-to-Field Consistency score that we use during the
null-field insertion and alignment operations.

4.1 Aligning long records
We re-split the lines with more than k fields such that the

new records have at most k fields. The re-split is achieved
by the BoundedSplitLine algorithm, a modification of the
original SplitLine algorithm. In addition to the input line,
l, BoundedSplitLine takes an upper bound, kmax, for the
number of fields the output record r may contain.

The upper bound, kmax, is enforced as follows: before we
include the field candidate ftop into r, we first ensure that it
does not lead to a violation of the upper bound constraint.
For this, we calculate the minimum number of fields that
r will have if ftop was included in r, which we denote by
min fields(r, ftop). We calculate min fields(r, ftop) as the
sum of the number of fields already included in r (assuming
ftop were added) and the number of “gaps” remaining in r,
i.e., sequences of words in line l that are yet to be covered
by r or ftop. ftop is included in r only if min fields(r, ftop)
does not exceed kmax.

Algorithm 2 BoundedSplitLine(l: line , kmax: upper

bound)

1: r = {}
2: extract all subsequences from l as field candidates.
3: calculate FQ for each field candidate.
4: Cf = field candidates sorted in descending order of FQ.
5: while Cf is not empty do

6: remove ftop, the field candidate with the highest FQ in Cf .
7: estimate min fields(r, ftop), i.e., the minimum number of

fields if ftop were included in r.
8: if min fields(r, ftop) ≤ kmax then

9: add ftop to r.
10: remove field candidates overlapping with ftop from Cf .
11: end if

12: end while

13: return r.

4.2 Aligning short records
We now have lines with k or less fields. Note that the

re-splitting described above can, in theory, lead to a record
with fewer than k fields. We address the problem of missing
information by inserting null fields into short records. In
order to decide where to insert the nulls we need to identify
the location of the missing information.

Suppose that we already have a partial table that includes
records that have exactly k fields (and hence can be trivially
aligned). The best alignment for a short record r with the
partial table is one in which each non-null field aligns with
the column it is most similar to, and preserving the relative
ordering of the non-null fields.

We use an adapted version of the classic Needleman-Wunsch
dynamic programming algorithm, for sequence alignment [20]
to align short records against a partial table. Algorithm
AlignShortRecord describes the steps in aligning a record
r with k− fields 〈f1, . . . , fk− 〉 with a partial table T with
columns 〈c1, . . . , ck〉 (k > k−) .

As with a typical dynamic programming approach, we
define a recursive objective function for the cost of the best
possible alignment. The dynamic programming proceeds by
computing a k− × k cost matrix M . Suppose Fi represents
the sequence of first i fields in r i.e., 〈f1, . . . , fi〉, and Cj rep-
resents the sequence of first j columns in T , i.e., 〈c1, . . . , cj〉,
then M [i, j] represents the cost of the best alignment of the
fields in Fi with the columns in Cj . Let A[i, j] be the align-
ment corresponding to M [i, j]. Note that the cost of the



best possible complete alignment is M [k−, k] and the corre-
sponding alignment is A[k−, k].

We observe that A[i, j] can be constructed from the best
alignments the sub-sequences of Fi and Cj . In fact, A[i, j]
can be constructed recursively, by just considering three pos-
sibilities: (1) fi aligns with cj and rest of the alignment is
the same as A[i − 1, j − 1], (2) fi is un-matched and the
rest of the alignment is the same as A[i − 1, j], and (3) cj

is un-matched and the rest of the alignment is the same as
A[i, j − 1].

Step 10 in Algorithm 3 specifies the corresponding recur-
sive definition for M . Steps 2–7 address boundary condi-
tions. UnMatched(cj) is the cost assigned to not match-
ing column cj with any field, i.e., inserting a null field;
UnMatched(fi) is the cost assigned to not matching field fi

with any column, and Matched(fi, cj) is the cost assigned
to aligning the fi with the column cj .

Algorithm 3 AlignShortRecord(r: record with k− fields, T :

partial table with k columns)

1: M [0, 0] = 0
2: for i = 1 to k− do

3: M [i, 0] = M [i − 1, 0] + UnMatched(fi)
4: end for
5: for j = 1 to k do

6: M [0, j] = M [0, j − 1] + UnMatched(cj )
7: end for

8: for i = 1 to k− do
9: for j = 1 to k do

10: M [i, j] = max

0

@

M [i, j − 1] + UnMatched(cj),
M [i − 1, j] + UnMatched(fi),

M [i − 1, j − 1] + Matched(fi, cj)

1

A

11: end for

12: end for
13: return best alignment A[k−, k] by re-tracing the computation

of M [k−, k] back to M [0, 0].

Since every field in the record r must match a column
in the table, UnMatched(f) is set −∞. To obtain a simple
formulation, we would like to set UnMatched(c) to be a con-
stant C for all columns c. In such a case, all possible valid
alignments will have exactly k − k− un-matched columns,
and hence a fixed additional cost of (k − k−) × C. Thus
UnMatched(c) can be set to any fixed value. Of course,
a more sophisticated model might be possible where each
column is assigned a different cost for being un-matched.

The term Matched(f , c) measures how well the field f

aligns with other fields already in the column c, with a higher
value indicating a better match. We use the Field-to-Field
Consistency Score, F2FC, to estimate the quality of this
match. Specifically, if fc is a value that is already known to
be in the column c (from rows that have been aligned), then
F2FC(f, fc) estimates the consistency of f and fc being
in the same column. We discuss how we compute F2FC

shortly. We define F2FC(f, c) as follows, where fc
1 , . . . , fc

n

are the values already known to be in c:

Matched[f, c] = F2FC(f, c) =
1

n
×

n
X

i=1

F2FC(f, f
c
i ) (5)

Finally, to obtain the alignment A[k−, k], we trace the
decisions taken in computing M [k−, k]. The tracing process
is done in reverse, i.e., from M [k−, k] back to M [0, 0].

4.3 Constructing the initial table TI

Algorithm CreateTable summarizes how we compute
the initial aligned table TI . At a high-level we first split
the longer records. Then, we consider all the records in
descending order of the number of fields (ties broken by de-
scending average field scores FQ for the records). All the
records with k fields (and appear at the top of the sorted
order) are aligned trivially into TI . AlignShortRecord is
then invoked on each of the shorter records.

Our technique can be thought of as an iterative Multiple
Sequence Alignment (MSA) technique [3]. MSA is a well-
known hard problem, for which several approximate tech-
niques were proposed (see [12, 21] for surveys). Most such
techniques are designed for the alignment of biological se-
quences, where each sequence is treated symmetrically. In
our context however, we have a different level of confidence
for each record (manifested in its average FQ score and the
number of null fields). The iterative method allowed us to
align records with high confidence first. Then, such records
are used to align the ones with lower confidence and so on.

Observe that AlignShortRecord, as described in Sec-
tion 4.2 compares each field against all the fields in the par-
tial table TI . This can be a fairly expensive operation, espe-
cially in lists with many lines. Hence, in the interest of effi-
ciency, we maintain a table of field summaries for each of the
columns in TI . The field summary maintains representative
fields that have already been aligned with that column. The
configurable parameter max n reps determines the number
of representative values in a field summary. The Align-
ShortRecord method only considers the field summaries
(and not the entire TI) while computing Matched(f , c) in
Equation 5. Note that as additional records are aligned, the
field summaries are updated.

The algorithm UpdateFieldSummaries is omitted for
space considerations. Its main idea, however, is to select
the field representatives such that they are approximately
the most coherent set of values (measured by the average
pairwise F2FC scores) within a column. The rationale is
that correctly extracted fields in the same column are ex-
pected to exhibit a high level of coherency.

Algorithm 4 CreateTable(R: list of records)

1: for ri in R do

2: if number of fields in ri > k then
3: AlignLongRecord(ri, k)
4: end if

5: end for
6: TI = {}
7: SF = {}
8: sort R in descending order of the number of fields.
9: for ri in R do
10: if number of fields in ri < k then

11: ri = AlignShortRecord(ri, SF )
12: end if
13: add ri to TI .
14: SF = UpdateFieldSummaries(ri, SF )
15: end for

16: return TI

Note that field summaries are maintained independently
for each column. Thus, the field summaries for different
columns can include fields from different records in the table.

Continuing with the cartoons example, if max n reps =
3, then the field summaries for the four columns at the end
of the alignment phase (shown in Figure 3c) are as in Ta-
ble 1. As desired, our selection method managed to find
high-quality fields to serve as field summaries.



Table 1: Field summaries for the cartoons exam-
ple. The fields for each column can be drawn from
different lines in the list.

Column 1 Column 2 Column 3 Column 4
11 Steamboat Willie Disney 1943
10 Rabbit of Seville MGM 1935
15 Three Little Pigs Disney 1949

In Section 6 we consider the question of the size of the
field summaries, i.e., max n reps. We found that the best
value for real web lists in general was 3, but it can vary
across domains.

4.4 Field-to-field consistency score
The field-to-field consistency score, F2FC(f1, f2), mea-

sures the similarity between a pair of fields or of field candi-
dates f1 and f2. As, with the field quality score, it is com-
puted from multiple sources. In particular, the F2FC has
four components: type consistency Stc, table corpus consis-
tency Stcc, syntax consistency Ssc, and delimiter consistency
Sdc. The F2FC is a linear combination of these factors.

F2FC(f1, f2) = atc × Stc(f1, f2) + atcc × Stcc(f1, f2) +

asc × Ssc(f1, f2) + adc × Sdc(f1, f2) (6)

where atc, atcc, asc, and adc are the weights assigned to
each component. The weights are all in the range [0, 1] and
they all sum to 1. We now consider each component in turn.

Type Consistency Score (Stc): If the two fields f1 and
f2 have the same type, then Stc is set to 1. Otherwise, it is
set to 0. The types recognized are the same as those for the
type score (Stq) component of FQ.

Tables Corpus Consistency Score (Stcc): Fields f1 and
f2 are said to have high table corpus consistency if there
are many columns in the table corpus in which the both
f1 and f2 co-occur. For instance “Barack Obama” and
“Nicolas Sarkozy” can have a high Swc score, while “Barack
Obama” and “France” would have a very low score. For-
mally, Stcc(f1, f2) is calculated as the average of the two
conditional probabilities Pr(f1|f2) and Pr(f2|f1).

Syntax Consistency Score (Ssc): The syntax consis-
tency measures if two fields have the same “appearance”
(though they might not belong to the same recognized type
or occur in the same column in the table corpus).

To calculate Ssc(f1, f2), we first extract several numerical
features from the strings forming both f1 and f2. The fea-
tures we consider are: (1) number of letters, (2) percentage
of lower case letters, (3) percentage of upper case letters, (4)
percentage of digits, and (5) percentage of punctuation.

Consistency scores are computed separately by comparing
each of the above syntax features. Suppose v1 and v2 are the
values for a particular feature for fields f1 and f2, then the

corresponding feature consistency score is: 1 − |v1−v2|
max(v1,v2)

.

The feature consistency scores are all in the range [0, 1]. Ssc

is the average of all the individual feature consistency scores.

Delimiters Consistency Score (Sdc): Delimiters consis-
tency measures the similarity in the field delimiters. Sdc(f1, f2)
is set to 1 when the delimiters on both sides are identical
for f1 and f2; to 0.5 when they are match on one side only;
and to 0 otherwise.

Until now, we have not considered delimiters as being a
part of fields (or field candidates). We assume delimiters to

belong to the set of letters “ ,;:./\()<>&|#!?” and they are
used to separate sentences into words (fields are sequences of
words). A special class of delimiters are the different HTML
tags that are encountered while processing web pages.

For example, the two fields (with their leading and trailing
delimiters) <b>Barack Obama</b>, will have a higher value
for Sdc when compared with <b>Nicolas Sarkozy</b>, than
when compared with <i>France</i>.

5. REFINEMENT PHASE
So far, the only information being passed between lines

of the list is the number of likely fields that was used in
the BoundedSplitLine algorithm to prevent the excessive
splitting of some lines. However, our goal is to split an
entire list of lines that are supposedly related to each other.
In this section, we describe how we exploit the collective
nature of our splitting task to fix errors resulting from the
independent splitting.

Our algorithm is based on two observations. First, assum-
ing that the number of correctly split fields are many more
than incorrectly split ones, collective analysis of the records
enables us to detect incorrectly split fields: such fields will
align poorly with other fields in the initial table TI . Sec-
ond, incorrectly split fields do not occur in isolation within
a record. By definition, if a field was incorrectly split, then
one of its adjacent fields within the same record has to be
incorrectly split. Thus, incorrect splits occur in streaks.

5.1 Detecting inconsistent streaks
We can detect incorrectly split fields by identifying those

that are poorly aligned with their columns in TI . We call
such fields inconsistent, and we detect them using their
F2FC scores when compared to other fields in the same col-
umn. Rather than comparing each field with all the other
fields in its column, we re-use the field summaries computed
in the alignment phase. The field summaries are compact,
yet representative of their columns and hence enable the
efficient detection of inconsistent fields.

Specifically, for every field, fi, in column ci of TI , we calcu-
late its F2FC score against its corresponding field summary,
i.e., F2FC(fu, SFi), where SFi is the field summary for the
column ci (Equation 5). We sort the fields in descending
order of their consistency scores. We consider the fields in
the bottom Pinc% to be the ones that are likely to be in-
consistent. Pinc is a configurable parameter that reflects the
percentage of inconsistent fields in TI .

We consider all null fields to be inconsistent, i.e., they
have F2FC scores of zero. Thus they are candidates for
refinement. This is because the alignment phase might have
inserted nulls between two adjacent fields that were incor-
rectly split.

Having detected individual inconsistent fields, we group
them into streaks: a sequence of inconsistent fields within
a single record. We ignore streaks that only consist of null
fields. We also ignore streaks that only include a single field.
This is consistent with our observation that incorrect splits
do not occur in isolation. We denote a streak in record i that
spans from the field in column j1 to column j2 as F (i, j1, j2).

In our experiments, we found a Pinc value of 50% to work
well. Note that this does not mean that we refine the split-
ting decisions for half the fields in the table. A number of
streaks contain only nulls or have only one non-null field and
are hence ignored.



5.2 Correcting inconsistent fields
For every detected streak of inconsistent fields F (i, j1, j2),

we apply the following three operations in sequence: re-
merge, re-split, and re-align.

Re-Merge: All fields within F (i, j1, j2) are merged into
a single field.

Re-Split: The contents in the merged field are re-split us-
ing the BoundedSplitLine algorithm (Algorithm 2). The
parameter kmas is set as the number of columns spanned by
F (i, j1, j2), i.e., j2 − j1 + 1.

The splitting in this phase differs from the earlier splitting
operations in one significant way. We exploit the collective
nature of the splitting task by including an additional com-
ponent in the computation of the field quality scores (FQ).
The additional component, called the List Support Score Sls,
biases that field quality scores in the favor of field candidates
that are more consistent the columns spanned by the streak.
We describe it in Section 5.3 below.

Re-Align: The number of fields generated after the re-
splitting step may be smaller than the number of columns
spanned by F (i, j1, j2). Therefore, we re-align the fields with
their corresponding columns, placing nulls in the appropri-
ate positions within the re-split fields. Alignment is achieved
using the AlignShortRecord algorithm. We only consider
the re-split fields. Further, we do not need to maintain or re-
compute the field summaries, which can be simply re-used
from the alignment phase.

Finally, we note that the refinement phase can be run
repeatedly until the output table converges. In each invoca-
tion some of the incorrect splits might be fixed, eventually
leading to a stable split and alignment. However, our ex-
periments indicate that a single invocation of the refinement
phase typically suffices.

5.3 Field quality score - revisited
In order to exploit the collective nature of the splitting

task, we consider an additional component in the field qual-
ity score for this phase. The List Support Score, Sls(f),
of a field candidate f measures the consistency between f

and the fields extracted from other lines in TI .
Suppose f is a field candidate while re-splitting the streak

F (i, j1, j2). We compare the consistency of f against each
of the columns between j1 and j2. The field f is deemed
to have strong list support if it is consistent with any of
the columns between j1 and j2. As before, we use the field
summaries to estimate the consistencies.

Sls(f) =
j2

max
h=j1

F2FC(f, SFh)

Note that the list support score is only applicable in the
refinement phase because we have the initial table TI that
facilitates targeted consistency comparisons. Equation 1 for
FQ(f) is updated to include the list support score.

5.4 Table extraction score
Once a table T is extracted from the list L, we calculate its

Table Extraction Score, TE(T ), by computing the average
field quality score of all the fields in the computed table.

TE(T ) =
n

X

i=1

k
X

j=1

FQ(fij) (7)

Table 2: Statistics about the WLists and TDLists

data-sets.
WLists TDLists

Range Avg Stdev Range Avg Stdev
Rows [7,120] 52.16 26.18 [10,50] 22.15 12.21
Columns [2,10] 4.28 1.84 [2,7] 3.12 1.26
Words/Row [2,24] 7.54 2.87 [2,34] 6.76 4.29
%Nulls [0,18] 4.76 6.72 [0,43] 3.05 7.78

where fij is the field score of the jth field in the ith record.
Null fields are assigned a field score of zero.

When applying the extraction algorithm to a large collec-
tion of lists, the TE score becomes very useful in ranking the
extracted tables based on how well we think they were ex-
tracted. In fact, our experimental results show that our TE

is able to accurately reflect the relative extraction quality of
the lists into tables, and hence can be used by applications
that employ ListExtract.

6. EXPERIMENTS
We conducted an experimental study evaluating the per-

formance of ListExtract. The goal of the study was to
(1) understand in absolute terms the ability of our tech-
nique to correctly extract relational tables from lists, (2)
understand the contributions of the various constituents in
ListExtract, (3) compare ListExtract with information
extraction systems, and (4) estimate the potential for har-
vesting relational tables from the Web at large.

6.1 Experimental Setup
We start by describing the data sets we used in our study

and our general experimental setup.
Data Sets: We considered two distinct data sets: one con-
sisting of HTML lists from the Web, and the other consist-
ing of lists constructed from tables. In both cases, we only
consider English language lists.

Web Lists (WLists): This is a collection of 20 HTML lists
spanning 20 different domains, which we manually collected
from the Web. The lists span varied domains such as car-
toons, airlines, lawsuits, and Emmy Award winners. We
manually constructed tables from the list contents and used
those tables as ground truth.

Tables-Derived Lists (TDLists): This is a collection of 100
lists derived from 100 randomly selected HTML tables from
the Web. Note that these tables are not part of the web cor-
pus we use in our experiments. We derived lists from tables
by collapsing all the cells in a row into a single line (with
white-spaces separating the words). The original tables are
used as the ground truth in our evaluation. Table 2 provides
some statistics characterizing the two data sets.

Evaluation: We note that a direct comparison of the tables
extracted by ListExtract and the corresponding ground
truth can be tricky. In part, this is due to the fact that there
may be more than one acceptable solution. For example, the
data in a column, cg , in the ground truth could be present in
two columns c1 and c2 in the table output by ListExtract.
Similarly, we may see that about half of the cells in cg match
exactly those in c1, another half match exactly those in c2,
and a small number match neither.

We use the following rating method. First, we match the
columns of the generated table T and the ground truth Tg

based on the overlap between the values in their cells. We



then consider the pair of columns c (from T ) and cg (from
Tg) with the highest overlap. We declare the fields in c that
match exactly with those in cg (same row and same contents)
to have been extracted correctly. The two columns c and cg

are excluded from further analysis. Then, we consider the
pair with the second highest overlap, and so on, until either
the columns of T or Tg are exhausted. We note that this is a
rather conservative notion of correctness, and hence is likely
to under-estimate the true utility of the extracted tables.

Let T total and T total
g be the total number of cells in T and

Tg respectively, and let T correct be the number declared to
have been extracted correctly.

We estimate the precision (P ), recall (R), and f-measure
(F ), as below:

P =
T correct

T total
R =

T correct

T total
g

F =
2 × P × R

P + R

In the rest of this section we only report the f-measure. In
all our experiments, we observed that the number of columns
in T and Tg is typically identical and occasionally off by
only ±1. Thus, the values of precision and recall are very
close to each other. For this reason we found it sufficient to
report the f-measure in our experiments. We compute the
f-measure separately for each list, and report the average
f-measure over the entire data set.

Ranked Performance Curves: In the rest of the section
we present our results as follows. Recall that for every ex-
tracted table, T , we computed a score TE(T ) (Section 5.4).
First, we rank the tables extracted in descending order of
their TE scores. Then, we present performance curves in
which we report the average f-measure for the top X% of
the tables (X-axis), i.e., a point 〈x, y〉 on the curve indicates
that the top x% of the tables sorted by their TE scores have
an average f-measure of y. This analysis is interesting be-
cause it indicates that TE are in fact, closely related to the
actual table quality.

System Parameters: Unless otherwise specified, we ap-
ply the following strategy in all our experiments. FQ and
F2FC scores consider all their components (as described in
Sections 3.1 and 4.4). We assign equal weights to the dif-
ferent score components used in each case. The threshold
min tc support used in calculating the table corpus sup-
port score (Stcs) is set to 1. In the alignment phase, for
the WLists data set, we maintain field summaries with
max n reps as 3, while for the TDLists data set, we set
it to 6. Finally, in the refinement phase, the fraction of
fields considered inconsistent (Pinc) is set to 50%.

In general, the default values for the above parameters
were set by conducting sensitivity analysis experiments (mostly
reported in this section) to determine their best values.

Table Corpus: We use the table corpus [7] to compute the
table corpus support (in FQ) and the table corpus consis-
tency (F2FC). The corpus includes 154 million tables. We
excluded tables that were selected as part of the TDLists

data set.

Language Model: We used a language model that recorded
the number of occurrences of each word sequence in a crawl
of many million web pages [6].

Processing Time: For our datasets, the average processing
time per list was 8 secs. However, in the current study, we
focused primarily on quality, rather than timeliness. Note
that there are two application scenarios for list splitting. In
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Figure 4: Overall performance results for the WLists

and TDLists data sets.

the first, our goal is to perform large-scale information ex-
traction. This is an offline process and due to the lack of
dependencies between lists, it can be massively parallelized.
In the second, our goal is to offer an on-the-fly list splitting
web service. With some optimizations (e.g., better grouping
of calls to external resources; i.e., table corpus and language
model), we can achieve processing times of a couple of sec-
onds per list, which is acceptable for typical web properties.

6.2 Overall performance
Figure 4 shows the performance results for the WLists

and TDLists datasets. The f-measure for WLists ranges
from 0.90 to 0.65, while for TDLists it ranges from 0.95
to 0.75. Observe that for both the data sets, the f-measure
decreases as we consider more lists whose extractions have
poor TE scores. This indicates that TE is in fact a rea-
sonable measure of the quality of table extraction. Thus
the TE scores can serve as a useful signal for any appli-
cation that consumes tables automatically extracted from
lists: applications that need more precise extractions can
restrict themselves to only those with very high TE scores.

The poorly performing lists in the WLists data set are
the ones that have very inconsistent structure. For example,
in the list titled Complete list of Emmy Award winners the
lines do not have parallel sentence structure: some awards
are for performers, while others are for series; some mention
character names, while others do not; and, not all the lines
mention the network name. The better performance on the
TDLists data set is likely due to the fact that the underlying
data was always constructed from a relational table.

Looking at our technique’s performance from a different
perspective, we made this observation: about one third of
all columns in WLists and more than half of TDLists’
columns had over 90% of their fields correctly extracted.

6.3 Field quality score components
Figures 5(a) and 5(b) show the performance for differ-

ent configuration of FQ. Each configuration has a different
combination of the component scores in FQ. All configura-
tions include the list support score, Sls, since it is essential
in the refinement phase. T, LM, and WT respectively consider
only type support, language model support, and table cor-
pus support; All includes all the components. The configu-
ration All - T, All - LM, and All - WT consider all com-
ponents except the type, language model, and table corpus
support, respectively.

For both data sets, combining all components achieves the
highest f-measure. The most significant individual compo-
nent appears to be the table corpus support. WT outperforms
T and LM, while All - T and All - LM outperform All- WT.
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Figure 5: Effect of different configurations for the
Field Quality Score on (a) WLists and (b) TDLists.

This clearly demonstrates that looking up other tables on
the Web helps identify field candidates that are more likely
to be good cell-values.

Interestingly, the language model performs very poorly
when considered in isolation. However, All out-performs
All - LM by as much as 20%. A closer look suggests that
this is because the language model provides very sparse pos-
itive signals, i.e., for most field candidates it reports a low
score. However, when it does report a high signal, it is very
reliable positive signal and is able to complement type and
table corpus support effectively.

6.4 Field-to-field consistency components
Figures 6(a) and 6(b) show the performance for different

configuration of F2FC. Each configuration considers dif-
ferent components: only type consistency (TC), only table
corpus consistency (WC), only syntax consistency (SC), and
only delimiter consistency (DC). The other configurations are
defined in the same spirit as in Section 6.3.

As with FQ, we note that, in general, combining multi-
ple score components gives better results for both data sets.
However, we note that including the delimiters consistency
component sometimes leads to the degradation of the re-
sults. This is especially true in the TDLists data set. This
is likely due to the fact that while deriving the lists from the
table corpus, we uniformly insert white-spaces as delimiters
between adjacent fields. Hence, relying on the delimiters
turns out to be misleading.

6.5 Effect of refinement
Figures 7(a) and 7(b) compare the performance with and

without the refinement phase. For the WLists data set, the
improvement is quite significant and ranges from 10% to
20%. Interestingly, the improvements are more in the top
20% and top 40% extracted tables. This is probably because
in such cases a larger number of fields are correctly split and
hence, they are able to effectively aid in fixing errors.

On the other hand, the improvement for the TDLists is
not as significant. In fact, the improvement is never more
than 5%. This difference might again lie in the fact that
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(b) TDLists

Figure 6: Effect of different configurations for the
F2FC score on (a) WLists and (b) TDLists.

the lists are derived from tables and hence the separation
between fields are likely to be easier to detect even in the
independent splitting phase.
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Figure 7: Effect of the refinement phase on (a)
WLists and (b) TDLists.

6.6 Effect of field summaries
Figure 8 compares the performance of table extraction for

different values of max n reps, that parameter that deter-
mines the size of field summaries maintained for each column
(and used in the alignment and refinement phases).

For the WLists data set, smaller values of max n reps

(i.e. 1 and 2) result in lower f-measure values. However, as
we increase max n reps to 3 and above, we get a significant
improvement in the f-measure values. However, setting it to
values higher than 3 does not seem to significantly improve
the results. The results obtained for values 6 and 7 are
marginally better when considering the entire data set. The



0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100

Top percentage of extracted tables

F
-m

ea
su

re

max_n_reps=1 max_n_reps=2 max_n_reps=3
max_n_reps=4 max_n_reps=5 max_n_reps=6
max_n_reps=7

 
Figure 8: Effect of number of column representa-
tives on the WLists data set.

Table 3: Precision, recall, and f-measure for ListEx-

tract and RoadRunner when applied to WLists.
Precision Recall F-measure

ListExtract 0.64 0.63 0.63
RoadRunner 0.39 0.28 0.32

results are similar for the TDLists data set. The results
indicate that even small summaries suffice, thus making it
un-necessary to perform expensive exhaustive comparisons.

6.7 Comparison with RoadRunner
Wrapper generation systems have the goal of extracting

structured data from data on web pages. However, they typ-
ically assume that the data was created according to some
template and the goal of the system is to learn the tem-
plate. We now compare ListExtract to one such system,
RoadRunner [11], which is widely used in the research com-
munity, and show that ListExtract indeed offers superior
performance. We were not able to obtain implementations
of other wrapper generation systems [1, 9, 24].

RoadRunner makes three key assumptions: (A1) the tem-
plate consists of only HTML tags, (A2) the template is con-
sistent across all records, and (A3) data fields are separated
by template elements.

We applied RoadRunner only on the WLists data set. In
TDLists, the fields are separated by white-spaces, making
them unsuitable for processing. To enable RoadRunner to
learn templates, each list is presented as a set of web pages
(one per line in the list).

Table 3 shows the precision, recall, and f-measure achieved
by RoadRunner and ListExtract. As can be seen, Lis-

tExtract performs better. To understand RoadRunner’s
poor performance, consider the following: of the 20 lists, (1)
all fields are correctly extracted in the 3 lists that had rich
and consistent HTML tags; (2) no fields were extracted in 9
lists. Of those, in 5 lists there were no HTML tags, violat-
ing assumption A1 (e.g. cartoons in Figure 1), and in 4 lists
the tags were inconsistent, violating assumption A2 (some
lists emphasize certain fields by formatting them differently;
e.g. [16]); and (3) only a partial set of fields were extracted
in the remaining 8 lists because some of the fields were not
separated by HTML tags, violating assumption A3.

There are other wrapper generation systems (though not
publicly available for comparison) that do not make all of
the three assumptions. For instance, ExAlg [1] does not re-
strict the template elements to HTML tags, but still makes
assumptions A2 and A3. DEPTA [24] can tolerate some in-
consistencies across records as they are reconciled by means
of a partial tree alignment algorithm. However, assumptions
A1 and A3 still must hold for DEPTA to work properly.
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 Figure 9: Distribution of tables extracted when
thresholding at different values of TE score.
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 Figure 10: Distribution of the number of columns
across the extracted tables.

Thus, neither of them is likely to work well across all the
lists in our dataset.

6.8 Large-scale Table Extraction
To ascertain the potential for large-scale extraction of ta-

bles from lists on the Web, we invoked ListExtract on a
sample of about 100,000 English web-pages selected at ran-
dom from a web crawl of many million pages. We observed
that, on average, there was one list per web page, i.e., about
100,000 lists in our sample. We filtered away lists with too
few or too many lines (only those between 5 and 50 lines are
retained). We also filtered away lists with more than 100
letters on any line – such lists are more likely to be textual
descriptions and not relational in nature.

After filtering, we were left with about 32, 000 lists. When
ListExtract was invoked on this subset, we found that
in about 21, 000 lists the resulting table had only a single
column (and hence the data is not relational in nature). The
remaining 11, 000 extracted tables were sorted by their TE

scores. Based on our observation that TE scores offer a
reasonable measure of the quality of extraction, we believe
that tables with higher TE scores are more likely to be high-
quality relational tables.

Figure 9 shows the distribution of the number of tables
deemed to be relational by thresholding at different values
of TE scores, i.e., 〈x, y〉 indicates that there are y extracted
tables with TE greater than x. A conservative threshold of
0.6 results in 1428 tables, while a more aggressive threshold
of 0.45 results in 9700 tables. Figure 10 shows the distribu-
tion of the number columns in the extracted tables.

In summary, our results indicate that, even by conserva-
tive estimates, as many as 1.4% of lists on the Web can be
extracted into relational tables. Given that there is on av-
erage one list per web-page and billions of web-pages, there
are likely to be many tens of millions of tables extractable
from lists on the Web.

7. RELATED WORK
In principle, extracting tables from lists is an information



extraction task. The most closely related information ex-
traction problem is that of wrapper generation, where fields
are extracted from HTML documents [1, 2, 9, 10, 11, 13,
14, 15, 17, 23, 24, 25]. In most cases, wrappers are used
to encapsulate dynamically-generated pages, where a collec-
tion of such pages would all have a fixed template and some
varying data fields whose values are obtained from a back-
end database. The wrapper should be able to identify the
template, and hence extract the data fields from any new
pages having the same template.

Supervised learning approaches such as WEIN [14], Stalker [2],
Wrap [17], WL2 [10], [13], and [25], require a labeled set of
web pages from which a template can be inferred. Our meth-
ods are intended to apply at web scale and therefore creating
labeled training sets is infeasible.

Unsupervised approaches such as RoadRunner [11], Ex-
Alg [1], DEPTA [24], IEPAD [9], and DeLa [23] typically
rely on the repetitive patterns in the HTML tags across
multiple pages, or multiple records within the same page, to
detect the template. In [15], it is assumed that every de-
tected record in a web page is linked to a detail page. The
co-occurrence of terms in a record and in its detail page
is used to distinguish between terms in the template and
the varying record-specific terms. In all these approaches,
it is assumed that the pages are dynamically generated and
hence an underlying template exists.

Lists in static web pages, on the other hand, are not ex-
pected to be heavily structured using HTML tags. At best,
the list items may contain a few delimiters, and simple for-
matting tags. As already discussed, web lists are mostly
hand-crafted and hence have inconsistent (or no) format-
ting, tagging, or field separation.

Some systems do not assume that their input data is struc-
tured with HTML tags (e.g. [5, 19]). DataMold [5] uses
domain-specific vocabulary and training examples to learn
a Hidden Markov Model. The model can then be used in
extracting fields from documents in a specific domain (e.g.
publication lists, or mailing addresses). However, this ap-
proach requires human supervision.

The system in [19] extracts data fields from text “posts”,
such as those on Craigslist, another example of hand-crafted
content. The approach is unsupervised and does not depend
on HTML tags. A collection of reference sets is used to
recognize candidate fields. However, six reference sets are
used for six specific domains. Extending the approach to
each new domain involves constructing a new reference set.
On the other hand, ListExtract does not incur any per-
domain costs as it relies on a corpus of many million raw
HTML tables that span all conceivable domains.

8. CONCLUSIONS
In the quest to extract and leverage structured data on the

Web, we considered lists as a rich source of structured data.
We addressed the key technical challenge concerning lists –
splitting list entries into table rows. Our ListExtract is a
completely unsupervised method and does not assume any
domain knowledge. As such, it can be applied to lists on the
web at large. ListExtract uses multiple sources of infor-
mation to make splitting decisions within a line and across
lines of the list. We described a set of experiments that
validated the quality of tables that are created by ListEx-

tract, and suggested that a large number of high-quality
lists can be extracted from the Web.
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