
Predictable Performance for Unpredictable Workloads

P. Unterbrunner∗ G. Giannikis∗ G. Alonso∗ D. Fauser† D. Kossmann∗
∗Systems Group, Department of Computer Science, ETH Zurich, Switzerland

†Amadeus IT Group SA, France

ABSTRACT
This paper introduces Crescando: a scalable, distributed
relational table implementation designed to perform large
numbers of queries and updates with guaranteed access la-
tency and data freshness. To this end, Crescando leverages
a number of modern query processing techniques and hard-
ware trends. Specifically, Crescando is based on parallel,
collaborative scans in main memory and so-called “query-
data” joins known from data-stream processing. While the
proposed approach is not always optimal for a given work-
load, it provides latency and freshness guarantees for all
workloads. Thus, Crescando is particularly attractive if the
workload is unknown, changing, or involves many different
queries. This paper describes the design, algorithms, and
implementation of a Crescando storage node, and assesses
its performance on modern multi-core hardware.

1. INTRODUCTION
In the last decade, the requirements faced by database

applications have changed significantly. Most importantly,
databases must operate with predictable performance and
low administration cost. Furthermore, databases must be
able to handle diverse, evolving workloads as applications
are constantly extended with new functionality and new
data services are deployed, thereby adding new types of
queries to the workload in an unpredictable way. Most no-
tably, these new requirements have been expressed in the
context of platforms such as eBay, Amazon, Salesforce, etc.
Salesforce, for instance, allows users to customize their ap-
plication and define their own queries. Providing such a
platform involves highly diverse query workloads; yet, users
of the platform expect a constant response time.

Unfortunately, throughput and latency guarantees are dif-
ficult to make with traditional database systems. These sys-
tems are designed to achieve best performance for every in-
dividual query. To this end, they rely on sophisticated query
optimizers and skilled administrators for selecting the right
indexes and materialized views. Such complex systems are
expensive to maintain and do not exhibit predictable per-
formance for unpredictable, evolving workloads.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Query
Throughput

Query
Throughput

Update
Load

Query
Diversity

Traditional
Crescando

Traditional
Crescando

Figure 1: Crescando vs. Traditional Databases

As a solution to this problem, we present a novel relational
table implementation, Crescando, which offers significantly
higher predictability than traditional databases. Consider
Figure 1. It sketches two charts that compare the desired
behavior of Crescando to that of a traditional database. The
performance study in this paper includes an actual experi-
ment and chart (Fig. 11) of this kind.

If the update load is light, then a traditional database can
support high query throughput by offering just the right in-
dexes and materialized views to support the queries. Un-
fortunately, the query throughput drops quickly with an
increasing update load. Likewise, as shown in the second
chart of Figure 1, the query throughput decreases rapidly
with the number of different query types, as more and more
queries require full-table scans. The effects shown in Figure
1 compound, resulting in even lower throughput for work-
loads with high query diversity and concurrent updates.

Crescando tables are designed for exactly such workloads.
Crescando tables may be inferior to traditional solutions
for their sweet spot, but they exhibit good and, more im-
portantly, predictably good performance for all workloads.
Crescando achieves this by combining and extending a num-
ber of database techniques, some of which have been ex-
plored recently [18, 17, 25] for data warehousing:

1. Crescando is based on a scan-only architecture (i.e., no
indexes) in order to achieve predictable performance.

2. Crescando uses main-memory storage and data parti-
tioning to scale-up linearly on multi-core machines.

3. Crescando employs collaborative (shared) scans, in or-
der to overcome the memory-bandwidth bottleneck.

Crescando features a novel collaborative-scan algorithm,
called Clock Scan, to achieve both high query and update
throughput with predictable latency. The idea behind the
Clock Scan algorithm is to batch incoming queries, and
model query/update processing as a join between queries
and update statements on the one side, and the table on

the other side. For main-memory databases, index nested-
loop joins are particularly effective, because random access is
cheap. But rather than indexing the table, as done in tradi-
tional databases, Crescando indexes the queries, as proposed
for publish/subscribe systems [6, 9]. Crescando introduces
efficient join algorithms which support not only queries, but
also updates. We refer to the latter as an update-data join.

In summary, this paper makes the following contributions:

• a novel cooperative scan algorithm, Clock Scan;

• the first update-data join algorithm, Index Union Up-
date Join, which ensures predictable query throughput
and latency under a heavy, concurrent update load;

• an efficient recovery scheme for scan-based in-memory
query processing;

• a comprehensive performance evaluation of Crescando,
which integrates Clock Scan, Index Union Update Join,
and the new recovery scheme.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a real life use case that motivated this work and
derives quantified requirements from it. Section 3 presents
the architecture of Crescando. Section 4 gives details of the
Clock Scan algorithm. Section 5 presents query/update-
data join algorithms used by Clock Scan. Section 6 sum-
marizes the benefits of memory partitioning (segmentation).
Section 7 discusses transactional properties and Crescando’s
recovery scheme. Section 8 shows the results of an extensive
performance evaluation. Section 9 discusses related work.
Section 10 concludes the paper with a selection of avenues
for future work.

2. PROBLEM STATEMENT
This section presents the real-world application scenario

(airline reservation systems) that motivated the design of
Crescando. Furthermore, it specifies again the particular
data processing requirements that Crescando addresses.

2.1 Use Case
Amadeus is a world-leading service provider for manag-

ing travel-related bookings (flights, hotels, rental cars, etc.).
Its core service is the Global Distribution System (GDS), an
electronic marketplace that forms the backbone of the travel
industry. The world’s largest airline carriers and many thou-
sand travel agencies use the GDS to integrate their data.

The core database in the Amadeus GDS contains dozens
of millions of flight bookings. For historical and performance
reasons, the authoritative copy of each booking is stored in a
denormalized BLOB (binary large object) of a few kilobytes,
directly accessible through a unique key. For the bookings
that need to be kept on-line, this results in a single, flat fact
table of several hundred gigabytes in size. This BLOB table
currently sustains a workload of several hundred updates
and several thousand key-value look-ups per second.

Key-value access is sufficient for all transactional work-
loads faced by the system. However, it is ill-suited to answer
the increasing amount of real-time, decision-support queries
that select on non-key attributes, for example: “give the
number of first class passengers in a wheelchair, who depart
from Tokyo to a destination in the US tomorrow.” Queries
like this are increasingly common and feature stringent la-
tency constraints, because operational decisions are made
based on their results.

To support such queries, Amadeus maintains a growing
number of materialized relational views on the BLOB table,
some of which are updated in real-time through a propri-
etary event streaming architecture. The very existence of
these materialized views implies that there are few joins in
the workload. The vast majority of queries are of the form
SELECT <Attr1>, <Attr2> ... FROM <View> WHERE ..., with
occasional aggregation.

The largest existing view is a denormalization of flight
bookings: one record for every person on a plane. This is
the view used for the performance evaluation in this paper,
and we will refer to it as Ticket in this context. A Ticket
record is approximately 350 bytes in size (fixed), and con-
sists of 47 attributes, many of which are flags with high
selectivity (e.g., seat class, wheelchair, vegetarian). Since
one travel booking may be related to multiple persons and
flights, Ticket contains hundreds of millions of such records.

Ticket is updated a few hundred times per second, in real-
time. Update rates may be many times higher for brief pe-
riods, as bad weather or security incidents can cause large
bursts of passenger reaccomodation requests. The update
load is increasing at a lower rate than the query load, but is
already causing severe problems with regard to index main-
tenance in the current setup.

The view is used in a large number of data services: from
generating the passenger list of a single flight to analyzing
the customer profile of different airlines and markets (pairs
of <source, destination> airports). Since the system has
reached a level of complexity where adding views and in-
dexes is no longer feasible let alone economical, a growing
number of queries on Ticket do not match the primary index
on <flight number, departure date>.

As a result, more and more queries have to be answered
in batch (off-line) using full-table scans, with a dramatic
impact on performance during this period. Other queries
which do not match the index and do not allow for batch-
processing are simply not allowed. As a solution to all these
queries that do not warrant a view of their own, we propose
a single instance of Ticket based on Crescando.

2.2 Requirements
We quantify the requirements of the Amadeus use case as

follows:

Query Latency Any query must be answered within two
seconds.

Data Freshness Any update must be applied and made
visible within two seconds.

Query Diversity The system must support any query, re-
gardless of its selection predicates.

Update Load The average load is 1 update/GB*sec. Peak
load is 20 updates/GB*sec for up to 30 seconds.

Scalability The system must scale linearly with the read
workload by adding machines (scale-out) and CPU
cores to individual machines (scale-up).

Our design goal is to maximize query throughput per CPU
core under those constraints.

2.3 Other Use Cases
The Amadeus use case represents just one deployment

scenario for Crescando. As a general relational table imple-
mentation, it is equally possible to use Crescando for base
tables, or build hybrid systems that combine traditional in-

...

Aggregation
Layers

Storage
Layer

...

...

External Clients

Crescando

...

Figure 2: Distributed Architecture Overview

dexed tables with Crescando tables and perform joins and
complex aggregation on top of Crescando.

Many systems in real-time business intelligence and deci-
sion support face requirements similar to those of Amadeus.
We do not see Crescando as a replacement to all existing
database technology, but as a complement that widens the
range of requirements that can be met.

3. ARCHITECTURE AND FRAMEWORK
This section gives on overview of the architecture of Cres-

cando, a relational table implementation. Because main
memory is limited, a single machine might be unable to
store the entire table. So for scalability and availability,
we propose a distributed architecture based on horizontal
data partitioning and replication. This paper focuses on the
internals of a single, non-replicated storage node. Nonethe-
less, we give an outlook on the distributed architecture, also
because it provides a strong argument in favor of indexing
queries rather than data.

3.1 Distributed Architecture
Crescando horizontally partitions the table between repli-

cation groups, which consist of storage nodes, whose data is
accessed in read-one write-all (ROWA) fashion through op-
erations. The replication groups form the storage layer. An
operation is either a query (simple SQL-style SELECT state-
ment with optional scalar aggregation) or an update. In
this paper, we use the term update for any unnested, SQL-
style INSERT, UPDATE, or DELETE statement. We write UPDATE,
INSERT, or DELETE whenever we want to make a distinction.

One or more layers of aggregator nodes are responsible for
routing operations to replication groups, and merging (“ag-
gregating”) the results. Figure 2 visualizes the distributed
architecture. It is similar to that of the NDB storage engine
used by MySQL Cluster [19], to name just one example.

In traditional architectures, administrators tune perfor-
mance by providing special views or indexes on one storage
node but not on others, or by using entirely different tech-
nology for certain replicas (heterogeneous replication). In
Crescando, these tuning knobs do not exist. Replicas are
completely homogeneous.

Still, clustering queries based on their selection predicates
is beneficial to performance. For example, assume all queries
with a selection predicate on flight number go to replica
A, while all queries with a selection predicate on airport
go to replica B. Scale-up is potentially super -linear because
similar queries can be indexed and processed together very
efficiently, as shown in detail later in the paper (Section 5).

In Crescando, clustering decisions are made autonomi-

...

Split

Scan Thread

Scan Thread

Scan Thread

Scan Thread

Merge

Input Queue

(Operations)

Input Queue

(Operations)

Output Queue

(Result Tuples)

Output Queue

(Result Tuples)

Figure 3: Storage Node Architecture Overview

cally, at runtime. Query indexes are extremely short-lived,
so the query clustering can change at any time. In a tra-
ditional architecture, losing a special view or index has a
dramatic impact on at least part of the workload. In con-
trast to this, losing a replica in Crescando causes through-
put to decrease by roughly the same, predictable degree for
all queries. This enables predictable performance in high-
availability setups without additional data redundancy.

3.2 Storage Node Architecture
At the time of writing, we have fully implemented the

Crescando storage node, with the aggregation node being
under development. Figure 3 visualizes the storage node
architecture. Storage nodes expose two main functions: en-
queue an operation, and dequeue a result tuple. Rather
than enqueuing an operation and waiting for the result, the
users (i.e., aggregator nodes) are expected to concurrently
enqueue a large number of operations and to asynchronously
dequeue results. Each aggregator node in turn may serve
thousands of external clients.

Once inside a storage node, an operation is split and put
into the input queue of one or more scan threads. Each scan
thread is a kernel thread with hard processor affinity, which
continuously scans a horizontal partition of the data, stored
in a dedicated partition of memory we call a segment.

Scan threads periodically remove operations from their
input queue and activate them. At any given moment,
a scan thread may have multiple active operations. As a
scan thread executes its set of active operations against the
records under the scan cursor, it generates a stream of re-
sult tuples. Once an operation has completed a full scan of a
data partition, the scan thread puts a special end-of-stream
tuple on the output queue and deactivates the operation.

The architecture raises questions with regard to fairness
(“cheap” versus “expensive” queries) and resource utiliza-
tion (busy versus idle threads). For one thing, the fact that
every operation takes roughly the same time is a key fea-
ture and a strong type of fairness. For another thing, Cres-
cando relies on the law of big numbers. The more operations
share a scan cursor, the more they are representative of the
workload as a whole, thereby balancing the load across scan
threads. The algorithms introduced in this paper allow thou-
sands of operations to share a scan cursor.

At this point, Crescando uses the traditional N-ary Stor-
age Model (NSM), also known as row-storage. We are aware
of alternative storage models which may improve cache lo-
cality, namely Partition Attributes Across (PAX) and the
Domain Storage Model (DSM) [1]. These techniques are
complementary to our approach. Having that said, our ex-
perimental results show that memory bandwidth is not a
bottleneck in Crescando. The algorithms we introduce are
clearly CPU bound under load, making vertical partitioning
much less interesting than in traditional query processing.

Algorithm 1: Classic Scan Thread

Data: Segment seg
Data: OpQueue iq; // input query and update queue
Data: ResultQueue oq; // output queue
while true do

Op op← iq.get(); //activate a single operation
//scan the full segment, slot-wise
foreach Slot s ∈ seg do Execute(op, s, oq)
Put(oq, EndOfStream(op)); //deactivate the operation

Algorithm 2: Elevator Scan Thread

Data: Segment seg
Data: OpQueue iq; // input query and update queue
Data: OpQueue aq; // active query and update queue
Data: ResultQueue oq; // output queue
while true do

//scan the full segment, slot-wise
foreach Slot s ∈ seg do

//execute all active operations against the slot
foreach Op op ∈ aq do Execute(op, s, oq)
//deactivate all operations that finished a full scan
while Finished(Peek(aq)) do

Put(oq, EndOfStream(Get(aq)))

//activate all operations in the input queue
while ¬IsEmpty(iq) do Put(aq, Get(iq))

4. SCAN ALGORITHMS
A main contribution of this work is the development of

a new scan algorithm, Clock Scan, which models query/up-
date processing as a join between a set of queries/updates
and a table. This section introduces Clock Scan and com-
pares it to the state of the art, Classic and Elevator Scan.

All scan algorithms continuously scan the data in a sepa-
rate thread of control. Also, the algorithms operate on slots
of fixed-sized records. Extending Crescando to variable-
sized records or different record layouts would affect the al-
gorithms to some degree, but poses no conceptual problems,
since there are no auxiliary data structures (indexes), and
records can be arranged freely.

4.1 Classic Scan
In a straight-forward, Classic implementation of the split–

scan–merge pipeline (Fig. 3), each scan thread processes
one incoming operation at a time. This first, näıve variant
is shown in Algorithm 1.

The Execute function of an operation first checks whether
the slot is occupied. If it is not, and the operation is an
INSERT, a record is inserted into the slot (“first fit” policy).
If the slot is occupied, and the operation is not an INSERT, the
operation’s selection predicates are evaluated. If all predi-
cates are satisfied, the function either puts a result tuple
on the output queue (SELECT operation), or modifies the slot
(UPDATE, DELETE). After processing all records, Classic Scan
puts a special end-of-stream tuple on the output queue and
gets the next operation from the input queue.

The asymptotic runtime of Classic Scan is O(n ∗m) for n
operations over m slots. Obviously, it takes little advantage
of the computational resources of modern processors, as it
makes essentially no use of the cache.

4.2 Elevator Scan
A first improvement over Classic Scan is Elevator Scan.

Zukowski et. al. [25] and Raman et. al. [18] have previ-
ously investigated variants of Elevator Scan for read-only

Figure 4: Clock Scan Idea

workloads in disk-based and main-memory databases re-
spectively. Algorithm 2 shows our generalization of Elevator
Scan for mixed workloads.

Elevator Scan maintains a queue of active operations aq,
which are executed, in arrival order, against the slot under
the scan cursor before moving on to the next slot. Executing
operations strictly in arrival order guarantees a high degree
of consistency even if some operations are writes.

Algorithm 2 updates the active queue at every slot. All
active operations which have finished a full scan are deacti-
vated, and the input queue is flushed. Our concrete imple-
mentation does this only at chunk boundaries (equivalent to
pages in a disk-based database). Also, our implementation
splits the active queue into multiple queues of different type,
to avoid executing DELETEs on an empty slot, for example.

Elevator Scan is a so-called cooperative scan, in that it
lets multiple operations share the scan cursor to improve
cache locality and overcome the infamous memory wall [24,
4]. However, the asymptotic runtime of Elevator Scan is still
O(n ∗m) for n operations over m slots.

4.3 Clock Scan
Even though Elevator Scan greatly improves upon the

cache behavior of Classic Scan, this improvement is at most
a constant factor in runtime. In contrast, Clock Scan per-
forms query/update-data joins over sets of queries/updates
to allow asymptotic runtime improvements. In this sec-
tion, we are chiefly concerned with the scan algorithm itself.
Query/update-data joins are covered in detail in Section 5.

Figure 4 shows a high-level illustration of the algorithm
idea. Suppose we continuously run two circular scans over
the segment: one read scan, one write scan. Let us enforce
that the read cursor cannot pass the write cursor and vice
versa, i.e., the read cursor is always some delta less than
one cycle behind the write cursor. The write cursor executes
updates strictly in arrival order. It can be proven easily that
the read cursor will always see a consistent snapshot if the
algorithm only activates operations at record 0, regardless
of the order in which queries are executed.

Clock Scan, given in Algorithm 3, merges the two logical
cursors into a single physical cursor for higher cache local-
ity. At each iteration of the infinite loop, it first flushes the
input queues and creates join plans for the active queries
and updates (cf. Section 5.4). Then it performs the ac-
tual, chunk-wise scan of the segment, joining each chunk of
records with the set of queries and the set of updates.

The runtime complexity of Clock Scan is determined by
the joins. Clock Scan is correct if the join algorithms are
correct (cf. Section 5.1). In particular, update joins must

Algorithm 3: Clock Scan Thread

Data: MultiQueryOptimizer opt
Data: Segment seg
Data: OpQueue iqq, iuq; // input query and update queues
Data: ResultQueue oq; // output queue
while true do

//activate all updates in input update queue
UpdateSet us← ∅
while ¬IsEmpty(iuq) do Put(us, Get(iuq))
//activate all queries in input query queue
QuerySet qs← ∅
while ¬IsEmpty(iqq) do Put(qs, Get(iqq))
//do multi-query optimization
UpdatePlan up← PlanUpdates(opt, us)
QueryPlan qp← PlanQueries(opt, qs)
//scan the full segment, chunk-wise
foreach Chunk c ∈ seg do

Join(up, c, oq); //update-data join
Join(qp, c, oq); //query-data join

//deactivate all active operations
foreach Op op ∈ qs ∪ us do Put(oq, EndOfStream(op))

leave the data relation in the same state as executing the
set of updates in serialization (activation) order.

5. QUERY-DATA JOINS
Clock Scan allows asymptotically better performance than

Elevator Scan because it reorders and interleaves queries to
perform query/update-data joins. The term query-data join
has been coined by Chandrasekaran et al.[6] and is based
on the idea of interpreting a set of pending queries as a
relation of predicates. In this section, we first give a semi-
formalization of the idea, before introducing two concrete
join algorithms and a multi-query optimizer for planning
these joins.

5.1 Queries as a Relation
In the following introduction to query-data joins, we will

be concerned with a set of queries over a single data relation
R. We restrict ourselves to those queries whose selection
predicate can be expressed as a conjunction of predicates
of the form attrib op const, where attrib is an attribute of
the relation, op is a comparison operator, and const is a
constant value. An example is:

σAirportFrom=′JFK′,Birthday<′1.1.1940′(R)
Queries containing disjunctions can always be expressed

as a union of such queries, so this is not a limitation.
Now, let us consider a set of queries, each with a single

equality predicate of the form attrib = const, for exam-
ple age = 12. We can define a relation Q with heading
(qid, const), where qid is the unique query-id and const is
the constant to test equality with. The union of the results
of these queries is exactly the join Q 1attrib=const R.

One can extend this model in a straight-forward fashion
to range predicates of the form lb ≤ attrib ≤ ub where lb de-
notes the lower-bound constant, and ub denotes the upper-
bound constant. We define the relation Q as (qid, lb, ub)
and perform the band join Q 1lb≤attrib≤ub R. Note, that
1attrib=const is a special case of 1lb≤attrib≤ub where lb = ub,
so queries which test equality can participate in band joins.

If queries have other predicates, these can either be tested
on the result of the join, or become part of the join by ex-
tending Q and the join predicate. Queries which do not have
a predicate on a specific attribute attrib can be modeled as
having an unbounded range predicate on attrib.

Algorithm 4: Index Union Join

Input: Chunk c
Input: IndexSet is; // predicate indexes
Input: QuerySet qs; // unindexed queries
Input: ResultQueue oq; // output queue
foreach Record r ∈ c do

//probe the indexes for candidates
foreach Index i ∈ is do

QuerySet C ← Probe(i, r); //candidate queries
foreach Query q ∈ C do Execute(q, r, oq)

//execute unindexed queries
foreach Query q ∈ qs do Execute(q, r, oq)

Active
Queries

Unindexed
Queries

Predicate
Indexes

Figure 5: Data Structures for Index Union Join

The idea of query-data joins has to this point only been
investigated in the context of data stream processing and
publish-subscribe systems, where sharing work between a
set of continuous queries is a main topic of interest [9, 6].

In this paper, we introduce a new, related concept we
call update join. An update join interprets the selection
predicates of a sequence of updates as an ordered relation,
and leaves the data relation in the same state as executing
the set of updates serially, in order.

5.2 Index Union Join
In the course of our work, we have experimented with a

number of existing join algorithms, such as a partitioned
sort-merge band join [8] for large range predicates. Such
“state-heavy” join operators turned out to be only effec-
tive when all queries shared a single predicate attribute, in
which case one might as well index the data. Performance
degraded quickly for multi-attribute join predicates, as most
tuples in the query relation became infinite ranges.

A more flexible and general solution is to index predi-
cates, an idea inspired by publish-subscribe systems such
as Le Subscribe [9]. We have designed and implemented a
cache-conscious query-data join based on short-lived predi-
cate indexes: Index Union Join.

A predicate index maps a single attribute value to a set
of queries, as defined in section 5.1. For example, the three
queries q1 : age = 12, q2 : age = 27, and q3 : age = 27
could be indexed in a multi-hash map that returns {q2, q3}
when probed with a record with age = 27. Range predicates
such as 30 < age < 50 can be indexed in any spatial index
structure that supports stab queries.

Figure 5 visualizes the data structures of Index Union
Join. There exists exactly one access path to each query.
Either one of the query’s predicates is part of a predicate
index, or the query is part of the set of unindexed queries.
Since this constitutes a partitioning of the set of queries, fol-
lowing every access path (every index plus the set of unin-
dexed queries) with every record and unioning the result tu-
ples yields the same result relation as executing every query
against every record. Algorithm 4 follows straight from this

Algorithm 5: Index Union Update Join

Input: Chunk c
Input: IndexSet is; // predicate indexes
Input: UpdateSet us; // unindexed UPDATEs, DELETEs
Input: InsertQueue iq; // INSERTs
Input: ResultQueue oq; // output queue
foreach Slot s ∈ c do

Timestamp t← 0
while t <∞ do

if IsOccupied(s) then
//slot is occupied; perform updates
t← PerfUpdates(s, t, is, us)

else if ¬IsEmpty(iq) then
//slot not occupied, have insert; execute it
Insert i←Get(iq)
Execute(i, s)
t← i.timestamp + 1

else t←∞; //not occupied, no insert; next slot

observation. Note that putting all the results of executing
queries into a common output queue gives union semantics.

The worst-case runtime complexity of Index Union Join
(every record matches every index) is no better than execut-
ing every query against every record, as done by Classic Scan
and Elevator Scan. However, Index Union Join is faster for
any reasonably selective set of predicates, because probing
an index immediately takes all non-matching queries out of
consideration. Runtime is dominated by the cost of probing
the index, which is constant or logarithmic. This is anal-
ogous to the difference between a nested-loop join and an
index nested-loop join in traditional query processing. For
large sets of queries, the resulting speed-up is significant, as
shown in Section 8.

Different to the given pseudo-code, our optimized imple-
mentation vectorizes the index probing, i.e., it passes the
entire chunk to an index’ probe function instead of a single
record. This gives significantly higher data and instruction
cache locality. Also, the implementation uses a visitor pat-
tern to execute all matching queries inside the probe function
of the index instead of using a candidate query set C.

In terms of indexes, Crescando currently implements a
jagged array for attributes with small domain (e.g. gen-
der), a chained hash index with linear probing for equality
predicates, as well as a packed 1-dimensional R-Tree [11] for
range predicates. These simple index structures turned out
to have better performance than more complex structures
we experimented with, due to their high data and instruc-
tion cache locality.

5.3 Index Union Update Join
Under a heavy update load, one would like to use predi-

cate indexes also for updates. The problem is that updates
have to be executed in serialization order, which we will ex-
press as timestamps. What makes this hard to do efficiently
is the fact that a slot’s state may change after each update,
thereby changing the set of matching updates.

Index Union Update Join given in Algorithm 5 solves the
problem. It maintains a queue iq of (unindexable) INSERTs,
and a set of predicate indexes is, while us contains unin-
dexed UPDATEs and DELETEs. For simplicity, we assume that
each INSERT consists of exactly one record. The implemen-
tation of the algorithm does not have this restriction.

The function PerfUpdates is an extension of the Index
Union Join shown in the previous section. It collects a set

Function PerfUpdates(Slot s, Timestamp t, IndexSet
is, UpdateSet us): Timestamp

UpdateSet C ← us; //candidate set
UpdateSet M ← ∅; //match set
//probe indexes for additional candidates
foreach Index i ∈ is do C ← C ∪ Probe(i, s.record)
//find matches among candidates
foreach Update u ∈ C do

if Matches(u, s.record) then M ←M ∪ {u}
if M 6= ∅ then

//execute match with lowest timestamp
Update u← minu.timestamp{u ∈M}
if u.timestamp ≥ t then

Execute(u, s)
if IsDelete(u) then

return u.timestamp + 1 ; //slot empty; return

else
//slot updated; recurse
return PerfUpdates(s, u.timestamp + 1, is, us)

return ∞

M of all updates matching s.record. Then, it looks for the
update u ∈ M with the lowest timestamp greater or equal
to t (if any) and executes it. The variable t is initially 0 and
ensures updates are executed in timestamp order as follows.
If u was a DELETE, recursion ends (the slot is empty). Other-
wise, the function recurses for t = u.timestamp+1. This en-
sures that no update v where v.timestamp ≥ u.timestamp
will be executed on the updated record, even though v re-
mains in the indexes and may repeatedly appear in M as
the function recurses.

Index Union Update Join proceeds to the next slot when t
becomes ∞ (some value greater than any legal timestamp).
This happens if and only if the slot is occupied but no match-
ing update with a timestamp ≤ t exists, or the slot is empty
but no insert operations remain in iq. A formal proof of
correctness is not difficult but omitted for space reasons.

As for performance, we note that in the worst-case, there
are only UPDATEs to be joined, and each of those n UPDATEs
matches every record, every time PerfUpdates is called.
Since |M | ≤ n, the depth of the recursion is up to n and the
worst-case runtime complexity for m records is O(n2 ∗m).
In reality, of course, M will typically contain 0 or 1 updates,
so runtime is dominated by the cost of probing the indexes,
which is constant or logarithmic in n. In our optimized im-
plementation, the “recursion” is just an assignment to t and
a goto-statement. Also, the candidate set C is replaced by
a visitor pattern as with Index Union Join.

5.4 Multi-Query Optimization
The term multi-query optimization traditionally refers to

the practice of finding common sub-expressions among a set
of queries, with the goal of sharing and pipelining intermedi-
ate results (partial selections and joins) in a global (multi-)
query plan [22, 12]. Such an approach is useful for small
sets of long-running, complex queries.

In contrast to this, Crescando is designed for large sets of
short-running, simple queries. The optimization problem we
are interested in is finding a set of predicate indexes which
minimize the cost (runtime) of the join algorithms given pre-
viously. Also, when we talk about multi-query optimization
here, we really mean queries and updates, since they are
indexed in exactly the same way. In any case, the problem
is NP-hard, as the special case “find the minimum set of

Algorithm 7: Multi-Query-Optimizer

Data: Gain thresh; // minimum gain threshold
Input: OpSet os; // active queries/updates
Input: AttributeSet A; // indexable attributes in schema
Output: IndexSet is← ∅; // predicate indexes
QuerySet uos← os; //unindexed queries/updates
repeat

Attribute a← maxGain(a){a ∈ A}
Gain g ← Gain(a)
if g ≥ thresh then

Index idx← BuildIndex(a, uos)
is← is ∪ idx
uos← uos \ {q ∈ idx}
A← A \ {a}

until g < thresh

predicate indexes to cover all queries/updates” is already
an instance of minimum set covering.

Given the short lifetime of a query/update plan (about 1
second), finding an optimal solution is out of the question.
So instead, the optimizer uses a greedy algorithm we devel-
oped, shown in Algorithm 7. At each iteration, it builds an
index on the attribute that gives the highest gain, and then
takes all queries/updates that are covered by the index out
of consideration. The Gain function is defined as:

gain(Q, a) :=
X
q∈Q

1− selectivity(a, q)

It is based on the following idea. Touching a query/update
q is associated with a certain overhead (branching, accessing
attribute values etc.) one wants to avoid. The probability of
touching q after probing a predicate-index on a is q’s selec-
tivity with respect to a. If q does not have a predicate on a,
that probability is 1. The gain is then the expected number
of operations in Q that do not have to be touched given an
index on a. Obviously, maximizing this number minimizes
the number of operations expected to be touched. The em-
pirically obtained value thresh (currently 2.5) prevents the
optimizer from building more indexes than beneficial.

At this point, the optimizer does not weigh in the space
and CPU cost of alternative index types (e.g. hash ver-
sus tree, integer versus string). In combination with out-of-
order activation of queries, this forms a challenging multi-
dimensional optimization problem. More complex gain met-
rics and optimizer heuristics that take these variables into
account represent an interesting extension point of our work.

To compute the gain metric and pick a suitable set of
predicate indexes, the optimizer requires an estimate of the
selectivity of each predicate. Crescando keeps a small set of
statistics that can be efficiently maintained by just scanning
the data: number of records, number of null values for each
attribute, and number of distinct values for each attribute.

For computing these statistics, Crescando employs a sim-
ple yet effective technique know as linear or probabilistic
counting [10, 23]. The probabilistic counting algorithm is
implemented as a side-effect of a periodical statistics query,
which to the scan algorithm is just an unconditional query.

6. SEGMENTATION
As outlined in Section 3, Crescando partitions the phys-

ical memory into disjunct (non-overlapping) segments and
assigns them to dedicated processor cores. We refer to this
technique as segmentation. Each core runs a single scan
thread with hard affinity (threads do not migrate between

i-1,1i,0i-1,3 i-1,2

0

Main
Memory

Disk

1 2 3

i,1

Figure 6: Checkpointing Overview

processors). This shared-nothing architecture enables linear
scale-up because of the following key properties:

No Locking Because a scan thread is guaranteed to be the
only one updating records in its segment, execution
can proceed without any locks or latches.

Maximum Cache Coherency Distinct processor
caches never contain a copy of the same record, so they
are implicitly coherent in this performance-critical re-
spect. Records need not be written back to main mem-
ory until the scan cursor moves on, even if they are
modified.

Minimum NUMA Distance Because scan threads have
hard processor affinity, their respective memory seg-
ments are uniquely associated with a processor. This
is critical on NUMA (non-uniform memory access) ar-
chitectures such as AMD’s Opteron processors or In-
tel’s Nehalem architecture. Using segmentation, CPUs
never access each other’s local memory except for pass-
ing operations and operation results, giving maximum
memory bandwidth and minimum access latency where
it matters: predicate evaluation.

7. TRANSACTIONAL PROPERTIES
Transactions can be implemented in Crescando in almost

the same way as in any other database system. In particular,
atomicity and checking integrity constraints are orthogonal
to the design of Crescando. More care needs to be taken
with regard to durability and isolation.

For durability, Crescando uses a combination of write-
ahead logging and checkpointing. At any time, Crescando
maintains a checkpoint on disk in the form of a fuzzy snap-
shot, i.e., a set of timestamped snapshots of each memory
segment, which are obtained through unconditional snap-
shot queries. When executed against a record, snapshot
queries copy the record to a flip buffer which asynchronously
writes the records back to disk.

Consider Figure 6 for an illustration. By scheduling snap-
shot queries on segments in a round-robin fashion, n + 1
segments of disk space are sufficient to always have a check-
point of n segments of memory. The constant-size flip buffer
ensures that a slow disk does not block a snapshot query,
i.e., the scan thread executing that query.

After a crash, recovery proceeds in parallel for each seg-
ment. First, the snapshot segment is loaded from disk, then
the log is replayed. Currently, Crescando implements a log-
ical redo-log, which is extremely efficient, but also implies
an auto-commit model. An extension to full atomicity is
straight-forward, by adding a physical log and an undo-
phase to log replay, as known from ARIES [16].

As for the overhead of snapshot selects, our experiments
have shown that the access latency of the snapshotted seg-
ment increases exactly by the time it takes to perform a
memcpy of its contents. Under a heavy load, when scans take
a multiple of this time, this becomes negligible. Despite the
low overhead, logging and checkpointing by every node may
be overkill in a highly replicated setup (cf. Section 3.1), and
recovery is a strictly optional feature. For space reasons we
omit dedicated experiments on logging and recovery from
this paper. All the experiments in Section 8 were run with
logging turned off for easier interpretation and better com-
parability to existing technology.

With regard to isolation, the design of Crescando favors
optimistic and multi-version concurrency control. For in-
stance, snapshot isolation [3] can easily be implemented by
keeping old versions of updated records. Locking can also
be implemented, but since Crescando does not maintain any
indexes, it is difficult to implement range locks [15].

For the performance experiments reported in Section 8,
we used a simplified transaction model in which every query
runs in a separate transaction. For this transaction model,
Crescando implicitly supports write monotonicity and seri-
alizability. This simplified transaction model is sufficient for
the use case described in Section 2.

8. PERFORMANCE EVALUATION
The goal of our work is predictable performance for un-

predictable workloads. Crescando seeks to achieve this by
providing a high degree of robustness in latency to query di-
versity, query volume, and concurrent updates. Crescando is
also expected to scale linearly on modern multi-core hard-
ware. This section presents the results of a performance
evaluation which covers both these aspects (Part I), and
compares Crescando to a traditional main-memory data-
base, MySQL 5.1 and its Memory storage engine (Part II).

8.1 Implementation Notes
The main component of Crescando storage nodes is the

storage engine. Other components include networking and
configuration. We have implemented the storage engine as
a shared library for 64bit POSIX systems, written in highly
optimized C++ with a few lines of inline assembly. Similar
to other embedded and main-memory databases, a small
fraction of schema-dependent code is generated by a schema
compiler and loaded at runtime.

The engine offers a simple C interface with two main func-
tions: enqueue an operation, and dequeue a result. Once
inside the engine, its controller module is in charge of for-
warding the operation to one or more scan threads, and later
merging the results. The controller chooses where to forward
operations by means of a pluggable segmentation strategy.
In this paper, we present results for two simple strategies:
round-robin and hash partitioning.

Our implementation includes all the algorithms presented
in this paper. Clock Scan uses the multi-query optimizer and
query-data join algorithms described in Section 5. Each scan
runs in a dedicated kernel thread with hard processor affin-
ity. The engine makes sure that memory segments are local
to the corresponding scan thread by allocating all memory
through libnuma, a NUMA API for Linux [13]. To maximize
cache locality and minimize branching, the implementation
makes heavy use of function inlining, template metapro-
gramming, and uses vectorization and other low-level op-

Algorithm 8: Attribute Pick Algorithm

Input: N, D, s
Output: P
Z ← Zipf(s, N); //initialize Z as Zipf distribution
V ∼ B(N, 1/D); //get random V acc. to binomial dist. B
for v = 1 to V do

a ∼ Z ; //get random a according to Z
p← Z[a]; //get probability p of a according to Z
Z[a] ← 0 ; //remove a from Z
Z ← Z/(1− p) ; //re-normalize remaining Z
P ← P ∪ a ; //add a to result set P

timizations described by Boncz et al.[4, 5] and Ross[20, 21].

8.2 Test Platform
We conducted all experiments on a 16-way machine built

from 4 quad-core AMD Opteron 8354 (“Barcelona”) pro-
cessors with 32 GB of DDR2 667 RAM, for a cumulative
memory bandwidth of over 42 GB/sec. Each core had a 2.2
GHz clock frequency, 64 KB + 64 KB (data + instruction)
L1 cache, and 512 KB L2 cache. The machine was running
a 64-bit Linux SMP kernel, version 2.6.27.

8.3 Workload
We recreated the Ticket schema introduced in Section 2.1,

and ran all experiments on Amadeus’ live data. For the ex-
periments we generated two types of workload. The first was
a representative subset of the real-world queries and updates
of Amadeus with their relative frequencies. The second was
a synthetic workload with variable predicate attribute skew.

8.3.1 Amadeus Workload
At the time of writing, the average, real query against the

Ticket table has 8.5 distinct predicate attributes and fetches
27 of the 47 attributes in the schema. 99.5% of the queries
feature an equality predicate on <flight number, departure
date>. UPDATEs typically affect just a few records, and always
feature equality predicates on booking number. INSERTs and
DELETEs occur at about 1/10th the rate of UPDATEs. DELETEs
typically affect specific records just like UPDATEs.

8.3.2 Synthetic Workload
As motivated in the introduction, we were not as much in-

terested in the performance under the current, index-aware
workload, as in the performance under future, increasingly
diverse and unpredictable workloads; i.e., we were interested
in workloads where users ask any query they want, uninhib-
ited by knowledge of the table’s physical organization.

For this purpose, we created a synthetic workload as fol-
lows. We kept all the updates of the Amadeus workload
(their composition is very stable over time), and replaced
the real queries by a synthetic set of queries with a particu-
lar, skewed predicate attribute distribution. To create such
a skewed set of predicate attributes for a synthetic query,
we invoked Algorithm 8.

Executing the algorithm with N = 47 (total attributes in
schema), D = 9 (average predicates per query), and variable
shape parameter s yields the attribute frequencies given in
Figure 7. s is the characteristic exponent of the Zipf dis-
tribution used by Algorithm 8 to initialize the probability
function Z. The figure includes the attribute frequencies of
the current Amadeus workload for comparison. Notice that
the area under each synthetic curve is D = 9, as desired.
The area under Amadeus’ curve is roughly 8.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45

A
tt

ri
b
u
te

 F
re

q
u
en

cy

Attribute Rank

Amadeus
s = 4
s = 2
s = 1

s = 0.5
s = 0

Figure 7: Synthetic Workload Chart
N = 47, D = 0, Vary s

8.4 Results Part I: Robustness and Scalability
Unless otherwise indicated, all experiments were run on

15 GB of Ticket data, hash partitioned by flight number;
and using the Clock Scan algorithm. All data points were
averaged over 5 runs of at least 5 minutes each. By query
latency and update latency we will refer to the time from a
query/update being generated by the benchmark driver, to
the benchmark driver receiving the full result.

8.4.1 Multi-core Scale-up
In the first experiment, we were interested in the scalabil-

ity of Crescando on modern multi-core platforms. For this
purpose, we saturated the system with a read-only variant of
the Amadeus workload. We used round-robin partitioning,
which means that every scan thread had to process every
incoming query. The peak throughputs using Classic, Ele-
vator, and Clock Scan are shown in Figure 8. Classic Scan
scales from 0.2 queries/sec for 1 thread to 1.9 queries/sec
for 15 threads. In comparison, Elevator Scan scales from 0.8
queries/sec to 10.5 queries/sec. Elevator Scan scales better
because more computation is done at each record, making
the algorithm less memory-bound than Classic Scan.

Still, the throughput of Elevator Scan is minuscule in com-
parison with Clock Scan, which scales from 42.3 to 558.5
queries/sec. This is over two orders of magnitude higher
than the throughput of Classic Scan. What is more, the
linearity of the curve demonstrates that Clock Scan is CPU
bound on modern NUMA machines. The bump in through-
put between 9 and 10 threads is due to the fact that for 10
threads the segments have become small enough to be al-
located on the local NUMA node, giving maximum NUMA
locality as described in Section 6.

The high performance of Clock Scan compared to Eleva-
tor Scan is explained by a large fraction of queries being
filtered by a hash index on flight number. Such a scenario
is common in on-line query processing, where many queries
contain selective predicates on key attributes. Note also that
we limited the number of queries to share an Elevator Scan
cursor to 32, and to share a Clock Scan cursor to 512. This
gave a median query latency of around 1 second for both
algorithms, for a fair comparison.

8.4.2 Query Latency: Variable Query Load
In the second experiment, we investigated the robustness

of Crescando to bursts in query volume. For this purpose, an
increasing load of Amadeus queries was created as we were
measuring the 50th, 90th, and 99th percentile of query la-
tency. Figure 9a shows the results. Notice that the through-

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
u
er

y
 T

h
ro

u
g
h
p
u
t

in
 Q

u
er

ie
s/

se
c

Number of Scan Threads

Clock
Elevator
Classic

Figure 8: Multi-core Scale-up: Query Throughput
Amadeus Read-Only, RR Part., Vary Scan Threads

put numbers that Crescando sustains are higher than the
peak throughput of the previous experiment, because 99.5%
of the Amadeus queries match the hash partitioning.

As for latency, one can see that it is very much con-
stant up to about 200 queries/sec. We found that this is
the point where the working set of Clock Scan (indexes and
less-selective queries) exceed the L1 cache. Between 200 and
about 2,000 queries/sec, latency is logarithmic in the num-
ber of queries. Beyond 2,000 queries/sec, latency increases
sharply. We ran a number of micro-benchmarks and found
that 2,000 queries/sec is the point where the working set ex-
ceeds the L2 cache. At about 2500 queries/sec, the system
fails to sustain the load and input queues grow faster than
queries can be answered.

8.4.3 Query Latency: Variable Update Load
Next, we tested the robustness of Clock Scan to concur-

rent updates. We pushed a constant 1,000 Amadeus queries
per second into the system, and gradually increased the up-
date load to the point where the system could not sustain
it (2,300 updates/sec), while we were measuring the 50th,
90th, and 99th percentile of query latency.

As Figure 9b shows, query latency increases by about 35%
between 0 and 1,000 updates/sec. Beyond this point, la-
tency hardly grows further. Notice that query latency does
not increase sharply right before Crescando fails to sustain
the load (2,300 updates/sec). This is because Clock Scan
maintains separate input queues for queries and updates.

We conclude that Crescando is a very update-friendly sys-
tem, especially because the hash partitioning on flight num-
ber only helps with the query load. Updates do not have a
predicate on flight number, but on booking number.

8.4.4 Query Latency: Variable Query Diversity
Crescando is designed to answer any query at any time

with predictable latency and impact on the system. This
implies a certain robustness to variance in query predicates.
To put this property to the test, we measured the sensitivity
of throughput and latency to synthetic read-only workloads
with varying parameter s (cf. Figure 7).

To keep latency within reason for low values of s, we lim-
ited the number of queries to share a scan cursor to 512. The
resulting query latencies are shown in Figure 9c. Through-
put charts had to be omitted for space reasons. Our mea-
surements include 2,000 queries/sec for s = 2, over 300
queries/sec for s = 1, and around 50 queries/sec for s = 0.

Latency stays in the region required by our use case (cf.
Section 2.1) for s up to 1.5. Beyond this point, latency

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500

Q
u
er

y
 L

at
en

cy
 i

n
 m

se
c

Query Load in Queries/sec

99th Percentile
90th Percentile
50th Percentile

(a) Amadeus Read-Only, Hash Part.,
Vary Queries/sec

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500

Q
u
er

y
 L

at
en

cy
 i

n
 m

se
c

Update Load in Updates/sec

99th Percentile
90th Percentile
50th Percentile

(b) Amadeus Mixed, Hash Part.,
1,000 Qu./sec, Vary Upd./sec

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.5 1 1.5 2 2.5 3

Q
u
er

y
 L

at
en

cy
 i

n
 m

se
c

Synthetic Workload Parameter s

99th Percentile
90th Percentile
50th Percentile

(c) Synthetic Read-Only, Hash Part.,
Max Queries/sec, Vary s

Figure 9: Robustness to Variable Workload: Query Latency

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100

Q
u
er

y
 L

at
en

cy
 i

n
 m

se
c

Update Load in Updates/sec

Crescando Query 99th
Crescando Query 90th
Crescando Query 50th

MySQL Query 99th
MySQL Query 90th
MySQL Query 50th

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100

U
p
d
at

e
L

at
en

cy
 i

n
 m

se
c

Update Load in Updates/sec

Crescando Update 99th
Crescando Update 90th
Crescando Update 50th

MySQL Update 99th
MySQL Update 90th
MySQL Update 50th

(a) Amadeus Mixed, 100 Queries/sec,
Vary Updates/sec

 0

 2000

 4000

 6000

 8000

 10000

 1.25 1.5 1.75 2 2.25 2.5

Q
u
er

y
 L

at
en

cy
 i

n
 m

se
c

Synthetic Workload Parameter s

Crescando Query 99th
Crescando Query 90th
Crescando Query 50th

MySQL Query 99th
MySQL Query 90th
MySQL Query 50th

(b) Synthetic Read-Only,
100 Queries/sec, Vary s

Figure 10: Crescando vs MySQL: Query and Update Latency

increases quickly. To put things into perspective: s = 0 rep-
resents a uniform distribution of predicate attributes. The
workload changes radically between s = 1.5 and s = 0.5 as
Figure 7 indicates, so the latency increase is more the re-
sult of a “workload cliff” than a “performance cliff”. The
results of the experiment in Section 8.5.1 help to interpret
the quality of the results here, as it compares Crescando to
traditional solutions under increasing query diversity.

We conclude that performance is reasonable even for un-
reasonable workloads. Adding a new, minor use case and
respective queries to a Crescando installation should not vi-
olate latency requirements of existing use cases.

8.5 Results Part II: Crescando vs MySQL
To put the performance of Crescando into perspective,

we decided to compare it to a popular traditional solution:
MySQL 5.1 and its Memory table engine. Clearly, this is
not an apples-to-apples comparison. More important than
absolute numbers is the shape of the performance curves.
Other existing solutions may reach significantly better per-
formance for specific workloads; e.g., Vertica, MonetDB, or
SAP T-Rex for read-mostly workloads. These systems, how-
ever, are not applicable to the update-heavy workloads of
Amadeus and our evaluation.

Among main-memory databases, we believe the MySQL
Memory engine is a good representative for comparison,
as most main-memory databases are also based on lock-
ing. There are a few commercial main-memory databases
which feature optimistic concurrency control (SolidDB, IBM
ObjectGrid). However, optimistic concurrency control does
not avoid conflicts, particularly between full-table scans and

concurrent updates, leaving little reason to believe the re-
sults would be significantly better.

Read-write contention could be reduced by multi-version
concurrency control (MVCC) schemes, such as snapshot iso-
lation. Unfortunately, no main-memory based database sys-
tem features MVCC to the best of our knowledge. We
experimented with a commercial disk-based database sys-
tem which implements snapshot isolation. But even when
manually tuning this database for our specific workloads,
and even when the whole database fit into main memory,
the commercial system showed an order of magnitude lower
throughput than MySQL for read-only, index-hitting work-
loads. We found that disk-based databases pay a high price
for copying data around in main memory and decided that
this precluded a meaningful scientific comparison. Thus, we
do not show results for the commercial solution.

We configured MySQL as follows: an index on <flight
number, departure date>, plus an index on booking number
(these are the indexes used by Amadeus for their live sys-
tem); and logging disabled. We spawned 16 client threads,
of which 15 were pure readers and 1 was a pure writer. This
configuration gave maximum throughput. Additional in-
dexes or threads did not improve performance any further.

8.5.1 Query and Update Latency
In this experiment, we compared the ability of Crescando

and MySQL to comply with latency requirements under in-
creasing update load and query diversity. First, we mea-
sured query latency for a mixed Amadeus workload with
100 queries/sec and a variable update rate of 0 to 100 up-
dates/sec. The results are shown in Figure 10a.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 25 50 75 100

Q
u
er

y
 T

h
ro

u
g
h
p
u
t

in
 Q

u
er

ie
s/

se
c

Update Load in Updates/sec

Crescando
MySQL

(a) Amadeus Mixed, Max Qu./sec, Vary Upd./sec

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3

Q
u
er

y
 T

h
ro

u
g
h
p
u
t

in
 Q

u
er

ie
s/

se
c

Synthetic Workload Parameter s

Crescando
MySQL

(b) Synthetic Read-Only, Max Queries/sec, Vary s

Figure 11: Crescando vs MySQL: Query Throughput

For read-only workloads, query latencies of MySQL are
superior (1/13/117 ms for the 50th/90th/99th percentile re-
spectively). With a single update, latencies surge to 5,000/
13,600/15,800 ms for queries, and 7,800/24,800/31,550 ms
for updates. We analyzed the Amadeus workload and found
that only one out of 3,500 queries does not hit the indexes.
The few full-table scans caused by these queries suffice to
cause massive read-write contention and update queuing.
MySQL starves writers as long as there are queries coming
in, so the benchmark driver periodically has to stop pushing
queries into MySQL, which in turn causes arriving queries
to queue up. The resulting system behavior is one where
queries and updates are processed in batches.

Incidentally, the 16 seconds which are the 99th percentile
of query latency and half the 99th percentile of update la-
tency are roughly the time it takes MySQL to do a full-table
scan. The decreasing median for increasing update rates is
explained by convoy effects.

In comparison, the query latencies of Crescando follow a
near-constant curve, similar to Figure 9b. In all cases, query
and update latencies are below 2,150 ms.

Next, we injected a synthetic read-only load of a constant
100 queries/sec, and varied the shape parameter s between
2.5 and 1.25. Figure 10b shows the results. Latency for
MySQL is superior for s ≥ 1.5 but surges for s < 1.5. Note
that at s = 1.25, over 98% of the queries still hit the in-
dexes. Again, in comparison, Crescando’s performance de-
grades gracefully, following a curve similar to Figure 9c.

In summary, query and update latencies of Crescando are
significantly more robust to concurrent updates and query
diversity than those of MySQL. Performance of Crescando
is superior except for read-only workloads where all queries
hit the available indexes.

8.5.2 Query Throughput
For the final experiment, we return to the sketch shown

in the introduction, Figure 1. To verify the claims made,
we first measured the maximum query throughput of both
systems for a mixed Amadeus workload with variable update
load. Then, we measured the throughput for a synthetic
read-only workload of variable s.

As Figure 11 reveals, MySQL’s throughput comes close
to Crescando only for a read-only Amadeus workload. For
all synthetic workloads, or as soon as updates are added,
Crescando outperforms MySQL by one or more orders of
magnitude. MySQL’s low query throughput even for high
values of s is due to the synthetic workload containing a
higher fraction of range queries than the Amadeus work-

load. But more interesting than the absolute numbers are
the shapes of the curves. They match those of Figure 1.

Summing all up, we conclude that Crescando can guaran-
tee high throughput and low latency numbers with minimum
administration effort, even if the workload is fluctuating or
rapidly evolving. If necessary, throughput and latency goals
can be met by adding hardware alone, owing to Crescando’s
scalability.

9. RELATED WORK
Crescando builds on a number of ideas originating in the

data-warehousing, stream-processing, and distributed data-
base domains. These include cooperative scans, scan-only
query processing, query-data joins, and shared-nothing ar-
chitectures. Crescando adapts and extends these ideas to
achieve predictable performance for unpredictable workloads
in on-line query processing.

Cooperative scans originate in the data-warehousing do-
main and have been implemented for disk-based database
systems such as DB2 UDB [14] and MonetDB/X100 [25],
with the goal of sharing disk bandwidth and maximizing
buffer-pool utilization across queries. Recently, cooperative
scans in memory have attracted attention in the data ware-
housing domain, fueled by the advent of COTS multi-core
machines and scans’ inherent parallelizability. Raman et al.
[18] and their blink system have demonstrated that main-
memory scans can be made a reasonably efficient access path
with predictable, low (“constant”) latency.

A follow-up paper on blink by Qiao et al. [17] investigates
the optimization problem of sharing a scan cursor between
a subset of pending queries with GROUP BY clauses. In blink,
GROUP BYs are implemented through hashing (“agg-tables”),
which implies a certain working set associated with each
query, turning this into a bin-packing problem.

In contrast to blink, Crescando was designed for on-line
query processing, which means large numbers of non-grou-
ping, selective queries over live, concurrently updated data.
The resulting multi-query optimization problem is related to
but qualitatively different from the one addressed by blink
and disk-based systems. The reason is that the cost of scan-
based on-line query processing is dominated by predicate
evaluation. Optimizing the evaluation of single queries has
previously been studied by Ross [20, 21]. In this paper, we
extended the idea to sets of queries, and introduced cache-
conscious query/update-data join algorithms based on pred-
icate indexing: Index Union Join and Index Union Update
Join. The term “query-data join” originates in stream pro-
cessing. Chandrasekaran and Franklin [6] were the first to

explicitly model sets of query predicates as relations.
In Crescando, a multi-query optimizer decides which in-

dexes to build using greedy heuristics inspired by publish-
subscribe systems such as Le Subscribe [9]. In contrast to
data-streaming and publish-subscribe systems, Crescando
not only indexes query predicates, but also update and delete
predicates. The necessary selectivity estimates are obtained
through probabilistic counting as described by Flajolet and
Martin [10], and Whang et al. [23].

Finally, architecting single database instances as a shared-
nothing system has been studied using specialized hardware
during the era of parallel database systems, most notably
in the Gamma Project [7] and Prisma/DB [2]. Since the
number of cores and memory controllers, and thereby the
penalties for treating memory uniformly, are bound to in-
crease, we expect shared-nothing to become the dominant
architecture even for centralized databases. Given the inher-
ent parallelizability of scans and our experimental results,
we are convinced that our ideas can be scaled to large num-
bers of processors and machines by building on the wealth
of research on parallel and distributed database systems.

10. CONCLUSIONS AND FUTURE WORK
This paper presented Crescando, a scalable relational ta-

ble implementation designed to perform large numbers of
queries and updates with guaranteed access latency and data
freshness. At the core of Crescando is a new collaborative
scan algorithm called Clock Scan, which models query pro-
cessing as a join between queries and updates on the one
side and the data on the other side.

Crescando does not always outperform traditional data-
base techniques based on data indexes. The advantages of
Crescando are its scalability and its ability to give query
latency and data freshness guarantees for a wide range of
workloads. In particular, Crescando can sustain high query
and update rates, even if the types of queries and updates are
not known in advance. Crescando is currently evaluated in a
real-world application scenario (airline reservation systems)
and we believe there are many other use cases in the areas of
operational business intelligence and real-time warehousing.

The ultimate goal is to run Crescando in large clusters
with hundreds of machines in order to scale to arbitrary
data and query volume. To this end, we are currently im-
plementing the aggregators and replication groups of the
distributed architecture of Section 3.1. In addition, we are
continuing to push the limits of individual storage nodes by
investigating novel optimizer heuristics, scheduling policies,
and cache-aware data structures.

11. ACKNOWLEDGEMENTS
We would like to thank Jeremy Meyer, Peter J. Haas,

and the anonymous reviewers for their helpful comments on
earlier versions of this paper. This work has been funded in
part by the Amadeus IT Group SA, as part of the Enterprise
Computing Center of ETH Zurich (www.ecc.ethz.ch).

12. REFERENCES
[1] A. Ailamaki et. al. Weaving relations for cache

performance. In Proc. VLDB ’01, 2001.

[2] P. M. G. Apers et. al. Prisma/db: A parallel, main
memory relational dbms. IEEE TKDE, 4(6), 1992.

[3] H. Berenson et. al. A critique of ansi sql isolation
levels. In Proc. SIGMOD ’95, 1995.

[4] P. A. Boncz et. al. Database architecture optimized
for the new bottleneck: Memory access. In Proc.
VLDB ’99, 1999.

[5] P. A. Boncz et. al. Monetdb/x100: Hyper-pipelining
query execution. In Proc. CIDR ’05, 2005.

[6] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In Proc. VLDB ’02, 2002.

[7] D. J. Dewitt et. al. The gamma database machine
project. IEEE TKDE, 2(1), 1990.

[8] D. J. DeWitt et. al. An evaluation of non-equijoin
algorithms. In Proc. VLDB ’91, 1991.

[9] F. Fabret et. al. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In Proc. SIGMOD ’01, 2001.

[10] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[11] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. SIGMOD ’84, 1984.

[12] S. Harizopoulos et. al. Qpipe: A simultaneously
pipelined relational query engine. In Proc. SIGMOD
’05, 2005.

[13] A. Kleen. A numa api for linux. Novell Technical
Whitepaper, 2005. http://www.novell.com/-
resourcecenter/ext item.jsp?itemId=14444.

[14] C. Lang et. al. Increasing buffer-locality for multiple
relational table scans through grouping and throttling.
Proc. ICDE ’07, 2007.

[15] D. B. Lomet. Key range locking strategies for
improved concurrency. In Proc. VLDB ’93, 1993.

[16] C. Mohan et. al. Aries: A transaction recovery
method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM TODS,
17:94–162, 1992.

[17] L. Qiao et. al. Main-memory scan sharing for
multi-core cpus. Proc. VLDB ’08, 1(1), 2008.

[18] V. Raman et. al. Constant-time query processing. In
Proc. ICDE ’08, 2008.

[19] M. Ronström and L. Thalmann. Mysql cluster
architecture overview: High availability features of
mysql cluster. MySQL Technical Whitepaper, 2004.
http://www.techworld.com/whitepapers/index.cfm?-

whitepaperid=5663.

[20] K. A. Ross. Conjunctive selection conditions in main
memory. In Proc. PODS ’02, 2002.

[21] K. A. Ross. Selection conditions in main memory.
ACM TODS, 29(1), 2004.

[22] T. K. Sellis. Multiple-query optimization. ACM
TODS, 13(1):23–52, 1988.

[23] K.-Y. Whang et. al. A linear-time probabilistic
counting algorithm for database applications. ACM
TODS, 15(2):208–229, 1990.

[24] W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. ACM SIGARCH
Comput. Archit. News, 23(1):20–24, 1995.

[25] M. Zukowski et. al. Cooperative scans: Dynamic
bandwidth sharing in a dbms. In Proc. VLDB ’07,
2007.

