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ABSTRACT
Many entity extraction techniques leverage large reference
entity tables to identify entities in documents. Often, an
entity is referenced in document collections differently from
that in the reference entity tables. Therefore, we study the
problem of determining whether or not a substring “approx-
imately” matches with a reference entity. Similarity mea-
sures which exploit the correlation between candidate sub-
strings and reference entities across a large number of doc-
uments are known to be more robust than traditional stand
alone string-based similarity functions. However, such an
approach has significant efficiency challenges. In this paper,
we adopt a new architecture and propose new techniques
to address these efficiency challenges. We mine document
collections and expand a given reference entity table with
variations of each of its entities. Thus, the problem of ap-
proximately matching an input string against reference en-
tities reduces to that of exact match against the expanded
reference table, which can be implemented efficiently. In
an extensive experimental evaluation, we demonstrate the
accuracy and scalability of our techniques.

1. INTRODUCTION
Entity extraction is important for several applications and

hence received significant attention in the literature [13, 1,
18, 16]. A typical application is the product analytics and
reporting system which periodically obtains many review ar-
ticles (e.g., feeds from review websites), identifies mentions
of reference product names in those articles, and analyzes
user sentiment of products. Such reports are very relevant
for comparison shopping web sites which provide consumers
with reviews, consumer sentiment and offers for each prod-
uct. Typically, these systems maintain a reference list of
products (e.g., products from certain manufacturers or cat-
egories), and require effective and efficient identification of
mentions of reference product names in the review articles.

Another application is to identify entities in queries sub-
mitted to search engines. If the search engine identifies the
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entity and matches it with that in the reference table, then
richer information about the entity can be directly surfaced
“in-line” to the user’s query.

Both the above applications exploit the existence of ex-
tensive reference entity databases. The core entity matching
task they rely upon is to efficiently check whether or not
a candidate substring (a substring from a review article, or
a search query) matches an entity member in a reference
table.

In many realistic scenarios, say for extracting product
names, expecting that a substring in a review article matches
exactly with an entry in a reference table is very limiting.
For example, consider the set of product entities in Table 1.
In many documents, users may just refer to e1 by writing
“Canon XTI” and to e3 by writing “Vaio F150”. Insisting
that substrings in review articles match exactly with entity
names in the reference table may likely cause these product
mentions to be missed. Therefore, it is important to con-
sider approximate matches between candidate strings and
entity names in a reference table [13, 9].

ID Entity Name
e1 Canon EOS Digital Rebel XTI SLR Camera
e2 Lenovo ThinkPad X61 Notebook
e3 Sony Vaio F150 Laptop

Table 1: Example Entities

Many previous approaches for enabling approximate match
rely on string similarity functions which measure similarity
by considering the information only from the input candi-
date string and the target entity string that it could match
with.1 For example, the (unweighted) Jaccard similarity
function comparing a candidate string “Canon XTI” and
the entity name of e1 “Canon EOS Digital Rebel XTI SLR
Camera” would observe that two out of seven distinct tokens
(using a typical white space delimited tokenizer) are com-
mon between the two strings and thus measures similarity
to be quite low at 2

7
. However, from the common knowl-

edge, we all know that “Canon XTI” does indeed refer to
e1. This is because “Canon XTI” is strongly correlated to
other tokens in e1. The string similarity does not capture
such correlation between tokens.

In order to overcome the above limitation, many tech-
niques (such as those based on co-occurrence or associa-

1These similarity functions also use token weights, say IDF
weights, which may in turn depend on token frequencies in
a corpus or a reference table.



tion) in natural language processing measure the correlation,
say mutual information, between a variation and an entity
across a large collection of documents [21, 20, 14]. For in-
stance, many documents which contain the tokens “Canon
XTI” also mention the remaining tokens in e1. This pro-
vides a strong evidence that “Canon XTI” matches with
e1. However, computing the correlation measure between
a document substring and an entity in the reference table
requires us to scan the entire corpus. Therefore, it is not at
all feasible to measure correlation at the time of matching
document substrings with entities.

In this paper, we therefore adopt an alternative approach
to identify variations of entities in reference tables [12]. We
develop techniques to mine variations from the document
collections (e.g., a large collection of Wikipedia pages or web
corpus). This allows us to expand a given reference entity
table with variations of each of the entities in the reference
table. Thus, the problem of approximately matching an in-
put string against reference entities reduces to that of exact
match against the expanded reference table, which can be
implemented efficiently [2]. Observe that the identified vari-
ations can also be used for approximately matching records
in the context of data cleaning [6].

For an entity e, we focus on identifying variations which
consist of a subset of the tokens in e. There are two key
justifications for focusing on this subclass [12]. First, the
reference entity tables are provided by authoritative sources;
hence, each entity name contains not only the most impor-
tant tokens required to identify an entity exactly but may
also contain redundant tokens which are not required for
identifying the entity. Therefore, it is sufficient to isolate
the identifying subset of tokens for each entity as a variation.
Second, in the entity extraction application, documents are
mainly drawn from the web such as blogs, forums, reviews,
search queries, where it is often observed that users like to
represent a long entity name by a subset of tokens (e.g., 1-3
keywords). In this paper, we call the set of tokens of an
entity e, which refers to e, as an identifying token set (or,
IDTokenSet) of e.

For our approach, it is natural to ask two questions. First,
by expanding the reference table with variations, are we
likely to add a large number of IDTokenSets? This question
has significance to the scalability of exact match against the
expanded reference table. Secondly, how do we efficiently
generate these variations? For the first question, we observe
that although the number of token subsets of entities is large,
the number of variations that appear contiguously in some
documents is fairly small. For instance, the average number
of IDTokenSets over 70TB of web pages per product entity
is less than 3. Therefore, matching against the expanded
reference table is going to be very efficient.

For the second question, we propose an architecture which
scales to a very large number of documents and reference en-
tities. Our architecture consists of three phases as shown in
Figure 1. The first candidate IDTokenSets generation phase
identifies (τ, e) pairs, where τ is a candidate IDTokenSet
and e is an entity. The second per-doc score computation
phase measures the correlation between τ and the entity e
it might identify across each document containing τ . The
third score aggregation and thresholding phase aggregates
the correlation between τ and e across all documents. Fi-
nally, we output all candidates whose aggregated correlation
w.r.t. their target entities is higher than a given threshold.
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Figure 1: Architectural Overview

The candidate IDTokenSets generation phase is the most
computationally challenging problem. It essentially involves
a Subsequence-Subset Join problem, where the goal is to
identify all sub-strings in documents whose token sets are
a subset of some entity in the reference table. Adaptations
of current approaches for addressing this problem are pro-
hibitively expensive because of the following reasons. First,
checking whether or not the token set of a document sub-
string is a subset of an entity (denoted subset-check) in a
large reference entity set typically is not cheap [10]. Second,
there are a large number of documents, and each substring in
a document is a possible candidate for IDTokenSets. There-
fore, a straight-forward approach would perform a huge num-
ber of subset checks, and hence will not be efficient.

In this paper, we develop efficient techniques to solve the
Subsequence-Subset Join problem. Our main insight is to
“efficiently and effectively shrink” documents by identify-
ing relevant substrings in each document so that we are
now only required to process small documents to identify
candidate IDTokenSets. Our main idea here is to develop
a compact in-memory filter and a very efficient algorithm
leveraging this filter to quickly and accurately (with no false
negatives) prune out a large number of document substrings.
While processing the surviving shrinked documents, we ob-
serve that many token sets occur commonly across multi-
ple document substrings. We develop an optimal algorithm
which exploits this commonality across the entire document
collection to reduce (by orders of magnitude) the number of
subset checks. Thus, we are able to process a large collection
of documents to efficiently identify candidate IDTokenSets.
In the score computation and aggregation phases, we adapt
existing techniques. As illustrated by our experiments in
Section 5, our techniques result in significant improvements
(by orders of magnitude) over baseline techniques.

We also demonstrate that our architecture and techniques
can be easily extended to a map-reduce infrastructure [15].
These extensions enable us to handle very large document
collections such as a snapshot of the web. In fact, many
of our experiments (reported in Section 5) are performed
over a large subset (of size 70TB) of web documents in a
map-reduce infrastructure [8].

The remainder of the paper is organized as follows. In Sec-
tion 2, we define the IDTokenSets problem. In Section 3, we
describe our techniques for solving the subsequence-subset
join problem, and in Section 4, we discuss the complete
architecture for solving the IDTokenSet problem. In Sec-
tion 5, we present a thorough experimental evaluation. In
Section 6, we discuss related work. We conclude in Section 7.



2. PROBLEM DEFINITION
We first define the notation used in the paper, and then

formalize the problem of detecting IDTokenSets. We then
outline the architecture to generate IDTokenSets.

Let E denote the set of entities in a reference table. For
each e ∈ E , let Tok(e) denote the set of tokens in e. For
simplicity, we loosely use e to denote Tok(e). We say that an
entity e contains a token set τ if τ ⊆ Tok(e). The frequency
of a token set τ with respect to E is the number of entities
in E which contain τ . We use the notation τe to denote a
subset of tokens of e. That is, τe ⊆ e.

Intuitively, if a subset τe identifies e, then (i) τ almost
uniquely identifies e in E and (ii) a large fraction, say θ,
of documents mentioning τe should contain the remaining
tokens in e− τe.

In the ideal case if τe identifies e in E , then e is the only
entity which contains τe. Otherwise, it may be ambiguous as
to which entity in E it refers to. However, typical reference
sets may contain a very “close” set of entities. For exam-
ple, product reference tables often contain many different
entities such as “apple ipod nano”, “apple ipod nano pink”,
“apple ipod nano black”, etc. In these cases, an application
might want to recognize “ipod nano” as an IDTokenSet for
“apple ipod nano”. To enable such applications, we relax
the constraint that only e contain τe to allow a few entities
in E containing τe. Informally, a token subset is a discrimi-
nating token set (i.e., DisTokenSet) of an entity with respect
to E if it is contained by very few entities in E .

Definition 1. (DisTokenSet) Given a non-negative in-
teger K, we say that τe is a K-DisTokenSet of e ∈ E if τe’s
frequency with respect to E is at most K, and τe is not a
member of a set of given stop token sets. Since K is al-
ways implicit, we loosely use DisTokenSet to denote a K-
DisTokenSet.

Consider the correlation between τe and e in documents.
In the ideal case if τe identifies e, a large fraction of docu-
ments mention tokens in e − τe next to the mention of τe.
However, requiring adjacent mentions may be too constrain-
ing. Hence, we relax this notion in two ways. First, we want
to parameterize the context window size p within which we
expect to observe all tokens in e − τe. Second, it may be
good enough to find a significant fraction of tokens in e− τe

within a small window of the mention. We first define the
notion of a document mentioning a token subset, and that
of context window. The similar notions are also defined in
[12]. The difference between this paper and [12] is discussed
in Section 7.

Definition 2. Let d be a document and τe be a set of
tokens. We say that d mentions τe if there exists a sub-
string s of d such that Tok(s) = τe.

Definition 3. (p-window context) Let M = {m} be a
set of mentions of τe in a document d = t1, . . . , tn. For each
mention m, let c(m, p) be the sequence of tokens by including
(at most) p tokens before and after m. The p-window context
of τe in d is C(τe, d, p) =

⋃
m∈M c(m, p).

Example 1. The documents d2 and d3 in Table 2 men-
tion the subset {ThinkPad, X61}. The 1-window context of
“Thinkpad” in document d2 of Table 2 is {Lenovo, ThinkPad,
X61} and that of “Lenovo” is {Lenovo, ThinkPad}.

ID Document
d1 Lenovo ThinkPad X Series...X61 Specs...
d2 Lenovo ThinkPad X61 is...business notebook...
d3 Lenovo ThinkPad X61 notebook review...

Table 2: A set of documents

We now define the stricter notion of evidence g1 of a doc-
ument referring to an entity e, where all tokens in e− τe are
required to be present in the p-window context of τe.

g1(τe, e, d) =

{
1 if e ⊆ C(τe, d, p)
0 otherwise

(1)

We now define the relaxed notion of evidence g2 of a doc-
ument referring to an entity e, which is quantified by the
fraction of tokens in e− τe that are present in the p-window
context of τe.

g2(τe, e, d) =

∑
t∈C(τe,d,p)∩e w(t)∑

t∈e w(t)
(2)

where w(t) is the weight (e.g., IDF weight) of the token t.
We are now ready to define the aggregated correlation be-

tween τe and e with respect to a document set D. Informally,
the aggregated correlation is the aggregated evidence that
τe refers to e from all documents mentioning τe.

Definition 4. (Correlation) Given e, τe, a set of doc-
uments D, we define the aggregated correlation corr(τe, e,D)
as follows.

corr(τe, e,D) =

∑
d∈D,d mentions τe

g(τe, e, d)

|{d|d ∈ D, d mentions τe}|

Example 2. In Table 2, each document completely con-
tains {X61}. In order to validate whether τe2 = {X61}
is an IDTokenSet of e2, we compute g1(τe2 , e2, d1) = 0,
g1(τe2 , e2, d2) = 1, g1(τe2 , e2, d3) = 1. Thus, corr(τe2 , e2,D) =
2
3

= 0.667. Assume the token weights2 are Lenovo(8.4),
ThinkPad(9.8), X61(8.3) and Notebook(6.8). Using g2, we
have corr(τe2 , e2,D) = 2.708

3
= 0.903.

Observe that several measures, notably that of mutual
information, have been considered for quantifying similar-
ity between words across documents [20, 14]. We adopt
the above measures (g1 and g2) instead of the popular mu-
tual information measure because our scenario is inherently
“asymmetric” (i.e., τe is a subset of e). A detailed discussion
can be found in Section 6.

The goal of the IDTokenSets problem is to generate all
IDTokenSets of all entities in a reference set with respect to
a document collection D.

Definition 5. (IDTokenSets Problem) Given a ref-
erence entity set E, a set of documents D, a non-negative
integer K, and the correlation threshold θ, the IDTokenSets
problem is to identify the set SE of all IDTokenSets such that
for each τe ∈ SE , τe is a K-DisTokenSet of e with respect to
E and corr(τe, e,D) ≥ θ.

2These are IDF weights computed from a collection of 70TB
web documents



2.1 Architecture
We outline the complete architecture to generate IDTo-

kenSets. As shown in Figure 1, our architecture consists
of three phases. The first candidate IDTokenSet genera-
tion (CIG) phase generates the (candidate IDTokenSet, en-
tityID) pairs. Specifically, a candidate IDTokenSet is a sub-
string of some documents, and also a DisTokenSet of the
entity. The second per-document score computation (PSC)
phase computes the per-document correlation (using either
g1 or g2) between each candidate IDTokenSet and the entity
it may identify for each of the documents. The third score
aggregation and thresholding (SAT) phase aggregates these
scores, and outputs the candidate IDTokenSets whose score
is above the given threshold. We summarize each phase and
its output format in Table 3.

Phases Output Format
CIG (candidate IDTokenSet, entityID)
PSC (candidate IDTokenSet, entityID, docID, score)
SAT (IDTokenSet, entityID, score)

Table 3: Three Phases to Compute IDTokenSets

3. SUBSEQUENCE-SUBSET JOIN
As we discussed in Section 1, the most challenging phase

in our architecture is the first phase of generating (candidate
IDTokenSet, entity) pairs. It is essentially a Subsequence-
Subset Join problem. In this section, we discuss our solu-
tions for this problem. The complete procedure for generat-
ing IDTokenSets will be discussed in the next section.

3.1 The Baseline Solutions
We first discuss the limitations of baseline solutions be-

fore describing our techniques. The baseline solution to the
Subsequence-Subset Join problem consists of two operations:
substring extraction and subset check. The former extracts
substrings documents, and the latter checks whether or not
the extracted substring is a DisTokenSet of some entities.

Substring extraction: Suppose the maximum entity length
(i.e., the number of tokens) in the reference table is S. Given
a document d, all substrings with length up to S are possible
candidates to be subsets of some reference entities. There-
fore, there will be roughly |d| × S (without considering the
boundary effect) substrings to be subset-checked.

Subset check: We now describe two baseline techniques to
subset-check each document substring. The first approach
is to pre-compute all DisTokenSets of reference entities, and
index (DisTokenSet, entity) pairs. Given a substring, we
check whether it is in the index. This technique would en-
able us to perform subset checks efficiently. However, the
number of DisTokenSets can be extremely large and the
amount of main memory required to keep them all is exces-
sive. Therefore, we have to keep all DisTokenSets on disk.
This approach will make |d|×S disk accesses per document,
and is clearly not efficient.

An alternative approach is to build an inverted index over
the reference entities, by constructing a sorted list of entity
identifiers (called idlists) for each distinct token, and then
to identify whether or not a document substring matches
with a DisTokenSet, by intersecting idlists [10]. In this ap-
proach, the number of disk accesses will be reduced to |d|.

However, this approach would require intersection of idlists
for all tokens in each document substring. Since the number
of substring is very large, this approach is also inefficient.

3.2 Overview of Our Solution
We exploit two observations. First, we propose to very

efficiently filter irrelevant document substrings. Second, we
batch subset-checks. Here, we give an overview of our tech-
niques. The detailed techniques are discussed in the remain-
der of this section.

Filtering document substrings: The straight-forward
substring extraction would generate |d| × S candidate sub-
strings. Note that many such document substrings are not
DisTokenSets, or even not subsets of some reference enti-
ties. Therefore, it is important to quickly prune substrings
which cannot be a DisTokenSet. In order to achieve this,
we propose an efficient in-memory filtering structure and
an algorithm based on the notion of core token sets. The
properties of our filtering mechanism are as follows.

1. Linear Time Document Processing: We often have
to process millions of documents to identify DisTo-
kenSets. One observation from our experiments (Ta-
ble 7) is that efficient document processing is critical,
because even with our optimizations, it constitutes a
significant portion of the overall time for identifying
IDTokenSets. The computational complexity of our
filter is C · |d| in processing a document d, where C is
a small positive constant;

2. High Selectivity: The cost of subset-check (e.g., the
number of disk accesses) is proportional to the number
of document substrings surviving the filter. Therefore,
we aim to significantly reduce the number, as well as
their length, of surviving document substrings;

3. Compactness: Our filter is compact and resides in
main memory.

Batching subset checks: We exploit the following charac-
teristics to develop an “optimal” subset-checking algorithm.

1. Candidate substrings across documents contain many
common token sets; thus, checking these common to-
ken sets once across all documents results in signifi-
cant savings. For example, a token set “canon XTI”
may occur across many substrings; because we sep-
arate the substring extraction from subset-check, we
perform subset-check of a token set once across all of
these candidate substrings;

2. We also “order” the subset-checks for each of these
token sets so that we can reuse partial computation
across different token sets. For example, if “canon
XTI” and “canon XTI digital” are both valid token
sets in hit sequences we may use the result of “canon
XTI” for “canon XTI digital”, provided we perform the
subset-check in the right order;

3. Since we cache the intermediate results, we need to
discard results that are not required for future subset-
checks. We determine this efficiently.

We leverage the suffix tree data structure to optimize the
order. Our algorithm is optimal in that for any distinct
token set, we perform the subset-check exactly once.



3.3 Filtering Document Substrings
To distinguish surviving document substrings from those

pruned by the filter, we introduce the notion of a hit se-
quence. A document substring is a hit sequence if it contains
one or more contiguous token sets which are DisTokenSets.
By identifying hit sequences, document substrings which do
not contain any hit sequences can be pruned. Note all sub-
strings which encompass the DisTokenSet are valid hit se-
quences. However, shorter hit sequences are desirable since
the cost of the subset-check is directly proportional to the
number of substrings of a hit sequence. Therefore, our goal
is to efficiently generate hit sequences whose lengths are as
small as possible. In the rest of this subsection, we first de-
fine the filter structure, and then show how to use the filter
to efficiently identify hit sequences.

3.3.1 CT Filter
The naive approach is to directly compare each document

substring with a DisTokenSet. However, this approach raises
two issues. (i) There may be too many DisTokenSets to be
kept in memory. (ii) We need to look up all substrings with
length up to the number of tokens in the largest DisTo-
kenSet. As we show in Section 5, this look up cost is not
trivial. On the other hand, we observe that many DisTo-
kenSets such as “canon eos rebel xti digital camera” could
be fairly long. While their subsets such as “rebel xti” are
short and selective enough to generate hit sequences. To
distinguish such short selective subsets from DisTokenSet,
we define the Core Token Sets as follows.

Definition 6. (Core Token Sets) Let E be the set of
reference entities, f(τ) the frequency of a token set τ w.r.t.
E, L a positive integer, and K′ a positive integer. Let K be
the constant which determines whether or not a token set is
a K-discriminating token set.

1. If K′ ≥ K, a token set τ is a core token set if (i)
|τ | = L or f(τ) ≤ K′; and (ii) there exists at least one
subset3 τ ′ ⊂ τ , such that |τ ′| = |τ |−1 and f(τ ′) > K′.
Let CK′ be the set of such core token sets.

2. If K′ < K, then the set of core token sets is CK∪{τ |τ ⊂
τ ′ ∈ CK and f(τ) ≤ K}.

Example 3. Figure 2 demonstrates core token sets of an
entity “sony viao F150 laptop”, by setting K′ = 5 and L =
2. The numbers at the right of the subsets are frequency.
Subsets in bold font are core token sets.

Intuitively, the core token sets are a collection of “fron-
tier” token sets whose subsets are small (contain less than
L tokens) and frequent (occur in more than K′ entities).
Also, a token set τ is not a core token set if all of its imme-
diate subsets (with one less token, i.e., with |τ | − 1 tokens)
are core token sets (Condition 1.(ii) in Definition 6). This
property is important for linear time document processing.
Specifically, given any DisTokenSet, if we progressively re-
move one arbitrary token at a time, we will obtain a core
token set. Therefore, any DisTokenSet, no matter how the
tokens are ordered, can be broken down into a contiguous
sequence (possibly overlapping) of core token sets. For in-
stance, a DisTokenSet “vaio sony F150” can be broken into

3We assume |φ| = 0, and f(φ) = |E|

two core token sets “vaio sony” and “sony F150”. This prop-
erty enables efficient generation of hit sequences because we
only need to check consecutive token sets, with size up to
L, in the documents. Therefore, the complexity of process-
ing a document to generate hit sequences is linear in the
number of tokens in the document. Therefore, the lookup
complexity is L|d|, for a document d.

The core token sets are defined with respect to two con-
straints (Condition 1.(i) in Definition 6): (i) the maximum
number of tokens in a core token set L, or (ii) the maximum
frequency of a core token set K′. L controls the compactness
of the set of core token sets, and K′ controls the selectivity
of the set of core token sets. Because the distribution of
tokens among reference entities and that among documents
are often very similar, low frequency token sets enable us to
effectively prune document substrings.

Observe that the core token sets are different from the set
of minimal DisTokenSets, where a DisTokenSet τ is minimal
if none of its subsets is also a DisTokenSet. If we use minimal
DisTokenSets, the algorithm for processing a document now
becomes significantly more expensive. Suppose the minimal
DisTokenSets are {vaio, F150} and {F150, laptop}. A doc-
ument subsequence “vaio sony F150” is broken into “vaio
sony” and “sony F150”, and none of which matches with
a minimal DisTokenSet. In fact, in order to identify “vaio
sony F150” as a valid hit sequence, the algorithm needs to
look up combinations of tokens which are not contiguous.
Suppose the maximal length of entities is S, keeping min-
imal discriminative token sets requires 2S |d| lookups for a
document d.

Procedure for Identifying Core Token Sets: The core
token sets can be efficiently identified as follows. Observe
that for each entity, all its token subsets constitute a lattice.
Therefore, we make a depth-first traversal on this lattice
structure from the bottom root node φ. At any subset τ , if
|τ | = L or f(τ) ≤ K′, we identify τ as a core token set and
traverse back. f(τ) can be pre-computed using one of the
frequent item-set mining algorithms [17].

CT Filter : Let C be the set of all core token sets. We define
I = {τ |τ ⊂ τ ′ ∈ C} − C. That is, I contains all “internal
token sets”. We design a CT Filter which consists of two
hash tables: one maintaining all subsets in C, and the other
maintaining all subsets in I. In general, the size of I is
smaller than that of C since C is the boundary closure of I.

Given a token set τ the CT Filter returns one of three
values: internal (I), core (C), missing (M). If τ matches an
internal token set in I, the CT Filter returns the value I; if
τ matches a core token set in C, the CT Filter returns the
value C. Otherwise, the filter returns the value M , indicat-
ing that τ is missing in C ∪ I.

3.3.2 Generating Hit Sequences for a Document
As shown above, the hit sequences can be consecutively

split into core token sets. As the maximal size of core token
sets is L, a brute-force solution is to perform up to L lookups
against the CT Filter at each document token. Observe
that if a token set has status M, then all its supersets must
have status M. We can leverage this property to reduce the
number of lookups against the CT Filter.

We iterate over an input document. In the first iteration,
we check subsequences with one token. In each subsequent
iteration we increment the token set size by one. We lookup
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the token sets corresponding to a contiguous document sub-
sequence against the CT Filter and mark them with status
C, I, M returned by CT Filter. Whenever all token sets cor-
responding to contiguous subsequences are either marked
with M or C, we stop. All contiguous token sets marked
with C form a hit sequence.

Algorithm 1 Hit Sequence Generation

Input: A document d, CT Filter F

1: Create an array s, such that |s| = |d|;
2: Let si = [Lookup(F, di,1), 1];//return I, C or M
3: for j = 2 to L
4: for i = 1 to |d| − j + 1
5: if (si = I and si+1 6= M)
6: si = [Lookup(F, di,j), j];
7: else if (si = C and si+1 = I);
8: si = [Lookup(F, di,j), j];
9: else if (si = I and si+1 = M)
10: si = [M, j];
11:return

LookUp(F, token set)
//F maintains two hash tables I and C
10: if (I.ContainsKey(token set) = true) return I;
11: if (C.ContainsKey(token set) = true) return C;
12: return M ;

The pseudo code is shown in Algorithm 1. Given a docu-
ment d, we first tokenize d to a sequence of tokens. Let di

be the ith token of d. Let di,j denote the contiguous token
set {di, di+1, . . . , di+j−1}. We maintain an array s of [status,
iteration number] pairs of length |d| to record the status of
contiguous token sets in d. For example, if si = [C, j], then
the token set di,j matches a core token set, and if si = [I, j],
di,j matches an internal token set.

For clarity of exposition in the following description, we
ignore the special cases arising at the boundaries of d. The
algorithm iterates over the token sequence of d at most L
times. In the first iteration, we lookup all individual tokens
di (the same as di,1) against the CT Filter. We initialize the
array s with si = [X, 1] where X is the value returned by
the CT Filter. In the jth iteration (where j > 1), we lookup
the token sets di,j against the CT Filter if the status values
(si, si+1) are marked with any of the following three status
value combinations: (C, I), (I, C), or (I, I). We record the
values returned by CT Filter in s: si = [X, j], where X is
the value returned by looking up di,j against the CT Filter.

We stop when (i) none of the contiguous token set pairs
is marked with pairs (C, I), (I, C), or (I, I), or (ii) if the

number of iterations has reached L. This is because all
core token sets contain at most L tokens. The complex-
ity is O(L|d|), but we anticipate that in each subsequent
iteration, the number of subsequences processed decreases
significantly. We then extract contiguous tokens marked C
as hit sequences. An example of hit sequence generation is
shown in Example 4. Lemma 1 claims the correctness of the
algorithm.

Example 4. Suppose the input document is “Problems
with Sony vaio F150 PC Notebook”. We first lookup all in-
dividual tokens against the CT Filter. The lookup results are
shown on the row with Len = 1 (Figure 3). We identify that
“sony” and “notebook” have status [I, 1]. Since “notebook”
is at the end of the document, we do not further look it up
against the CT Filter. In the second scan, we lookup the
token set {sony, vaio}, and the CT Filter returns [C, 2]. At
this stage, none of the status values is I, and the algorithm
halts. Further, it finds three consecutive [C, j]s, and returns
“sony vaio F150” as a hit sequence. Observe that all status
in bold font are returned by filter lookup.

Lemma 1. (Correctness) Given a document d, Algo-
rithm 1 generates all hit-sequences that may contain dis-
criminative token sets and performs at most O(L|d|) lookups
against the CT Filter.

3.4 Batching Subset Checks
After hit sequences are generated from documents, we

want to identify contiguous token sets from a hit sequence
that can be a DisTokenSet of some reference entity. The out-
put consists of (candidate IDTokenSet, entityID) tuples. As
discussed in Section 3.2, the goal is to share computation
across all hit sequences. In the following, we first discuss
how to perform subset-check for a single token set, and then
present techniques for batched subset-check.

3.4.1 CT Index
Consider a hit sequence “sony vaio F150”. We need to

consider contiguous token subsets {“sony”, “vaio”, “F150”,
“sony vaio”, “vaio F150”, “sony vaio F150”}, and check
whether or not each of these is a DisTokenSet of a refer-
ence entity, and also determine the entity identifiers which
a DisTokenSet may identify. A popular technique we adapt
for this task builds an inverted index over all reference en-
tities (Section 3.1). For example, if the idlist for the token
“sony” is {1, 5, 10} and that for “vaio” is {1} then the in-
tersection of these two lists contains the identifier 1, which
contains both tokens.

We generalize this approach to exploit the core token sets
from the CT Filter and build a CT Index. We maintain
idlists for each core token set in the CT Index. Those idlists



are usually much smaller than those for individual tokens.
Recall that each hit sequence is a contiguous sequence of
core token sets. For a single hit sequence, we process it by
intersecting the idlists of core token sets.

3.4.2 Suffix Tree based Scheduling
Although the sizes of idlists from the CT Index are much

smaller than those in the standard inverted index, merg-
ing idlists repeatedly can still be very expensive. We now
describe our algorithm which minimizes the idlist intersec-
tions. We order the intersections of idlists of core token sets
so that they can be reused across hit sequences. Our main
idea is to build a suffix tree over all hit sequences (Example
5). Note that in our implementation, a hit sequence is ac-
tually a contiguous set of core token sets. For simplicity, we
demonstrate it using tokens.

Example 5. Figure 4 shows a suffix tree built upon a hit
sequence “sony vaio F150”. Each node maps to a subse-
quence. For instance, n2 maps to a subsequence “sony vaio”.
All non-root nodes n have a suffix link (dashed link) to an-
other node, which corresponds to the largest suffix subse-
quence of n. We maintain in each node an intersected idlist
corresponding to the related subsequence.���� �� ���� ��sony

vaio

F150

vaio

F150

F150

Idlist for 

“sony vaio”

Suffix link

Figure 4: Example Suffix Tree

The algorithm for performing idlist intersections traverses
the suffix tree, and computes the idlist for each node. Ob-
serve that each node in the suffix tree corresponds to a
distinct subsequence among all hit sequences. The suffix
tree guarantees that the inverted idlists of all distinct sub-
sequences of input hit sequences will be computed exactly
once. If required, the idlists in the nodes would be reused
thus avoiding any redundant intersections. We also identify
and exploit two optimization opportunities: (i) In order to
efficiently compute the intersected idlist for a node, we lever-
age the suffix links. Specifically, to compute the idlist for a
node n, we will intersect the idlists from np, n’s parent node,
and ns, n’s suffix node (the node pointed by n’s suffix link).
Note the procedure is recursive such that if the idlist on ei-
ther np or ns has not been computed yet, we will recursively
check their parent node and suffix node. (ii) If an idlist will
not be used for intersection in the future, we will delete the
idlist from the memory, and thus save the space for future
usage. An example scheduling of idlist intersection is shown
below.

Example 6. In Figure 4, suppose we start with the node
n1. The algorithm first retrieves idlist of “sony” from CT
Index. We then traverse to node n2. n2’s parent node is n1,
whose idlist has been computed. n2’s suffix node is n4, whose
idlist has not been computed. The algorithm thus processes
n4 first, and retrieves idlist for “vaio” from CT Index. Now

both n2 and n4 are ready, and the algorithm computes the
idlist for n2 by intersecting the idlists from n2 and n4. Now
n1 is neither a parent node nor a suffix node for any remain-
ing nodes. We release n1 as well as its idlist from memory
since n1 will not be referenced in the future. The algorithm
continues its traversal to n3, and so on. At any stage, we
output a subsequence as a valid candidate IDTokenSet if the
length of its idlist is no larger than K.

Algorithm 2 Candidate IDTokenSet Generation

Input: A set of hit sequence: H, CT Index : IND

1: Build a suffix tree for all h ∈ H;
2: Initialize a stack Stack = φ;
3: while (the node traversal not complete)
4: if (Stack = φ)
5: Stack.push(n= next node in the traversal);
6: else
7: n = Stack.pop();
8: if (np’s idlist has not been not computed);
9: Stack.push(np);
10: else if (ns’s idlist has not been not computed);
11: Stack.push(ns);
12: else;
13: Compute idlist for n, pop n from Stack;
14: Output n as IDTokenSet if |n’s idlist| ≤ K;
15: Delete np if it is not referenced in future;
16: Delete ns if it is not referenced in future;
17: return

Note that each idlist of a core token set is retrieved from
disk at most once. For each node n (i.e., a subsequence from
hit sequences), the idlist of n is computed only once. Fur-
thermore, it is computed from the two largest subsequences
of n. We formalize this observation in the following lemma.

Lemma 2. Algorithm 2 accesses the idlist of each core
token set at most once, and it also computes the intersected
idlist for all relevant subsequences at most once. Hence, it
is optimal.

If there is an excessive number of hit sequences, we adopt a
partitioning approach, which divides documents into chunks.
We discuss the details in Section 4.3.

4. THE COMPLETE ARCHITECTURE
We now discuss the complete algorithm. We first describe

the second and the third phases, and then discuss various
extensions such as how to handle large intermediate results,
and other alternative implementations.

4.1 Per-Document Score Computation
The input to this phase consists of (candidate IDTokenSet,

entityID) tuples, and our goal is to generate the (candidate
IDTokenSet, entityID, docID, score) tuples. Note that we
use either g1 or g2 to generate the score values, both of which
require access to the document text and the entity strings.
Therefore, we scan documents again.

We maintain two hash tables in memory. First, we in-
sert all candidate IDTokenSets and their corresponding en-
tityIDs in a hash table H1 (or, a TRIE structure [3]) to



enable efficient lookup. Second, we build a hash table H2

mapping entity identifiers to entity strings. We now scan the
document set again. For each document, we check whether
each substring matches with a candidate IDTokenSet using
H1. If it does, we retrieve the corresponding entities from
H2, and compute the correlation score (g1 or g2) for (candi-
date IDTokenSet, entityID).

We believe that both H1 and H2 fit in memory. We ob-
serve that although the total number of DisTokenSets is
larger, the number of distinct candidate IDTokenSets (i.e.,
DisTokenSets which appear contiguously in some documents)
is often limited. In our experiments, we observe that the
number of distinct candidate IDTokenSets for over 70TB
of web documents is no more than 5 times the number of
entities. Therefore, for most practical scenarios, H1 fitting
in memory is not an issue. However, in case there is an
excessive number of candidate IDTokenSets, we adopt the
partitioning approach (See Section 4.3). In the scenarios
where the number of entities is so large that we cannot put
H2 in memory, we partition the entities into groups and
repeat the procedure for each group.

4.2 Score Aggregation and Thresholding
The input to this phase is the set of (candidate IDTo-

kenSet, entityID, docID, score) tuples. The output is the set
of (IDTokenSet, entityID) whose aggregated score is greater
than a threshold. This is equivalent to grouping the input
by (candidate IDTokenSet, entityID) and aggregating the
scores within each group. Therefore, we apply standard ag-
gregation techniques (sort grouping). Given the threshold,
if an IDTokenSet maps to multiple entities, we choose the
entity with the highest score (motivated by the “ipod nano”
example in Section 2).

4.3 Handling Large Intermediate Results
Here we discuss a document partition framework to han-

dle really large intermediate results (i.e., hit sequences or
candidate IDTokenSets). The intuition is that the large in-
termediate results are generated from large collection of doc-
uments. If we can partition the entire document collection
into smaller subsets, and process each smaller subset sepa-
rately, the size of the intermediate results can be controlled.
We adopt an implicit partitioning scheme to avoid scanning
the entire document collection and writing smaller subsets
into different files.������ ����������� ������ �
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�� �����
��� ���
������
������� ���������������� ��� �� �

Figure 5: Document Partition

We further divide the first CIG phase into CIG1 and
CIG2, corresponding to hit sequence generation (Section

3.3) and batched subset check (Section 3.4), respectively.
The partitioning scheme is illustrated in Figure 5, and it in-
volves CIG1, CIG2 and PSC. During the first document scan
in CIG1, we keep track of the number of hit sequences gen-
erated so far. As soon as the size of generated hit sequence
exceeds a threshold, the CIG2 phase generates candidate
IDTokenSets for these hit sequences, and outputs candidate
IDTokenSets to a file. The hit sequences are discarded. The
threshold can be configured so that the CIG2 can be per-
formed in memory. After we output candidate IDTokenSets
to the file, we insert an offset, which is the number of doc-
uments scanned so far, to the same file.

Intuitively, the offsets create implicit partitions among the
output of CIG2, and sync those partitions with the docu-
ment partitions. We assume the PSC phase scans the doc-
uments in the same order as that in CIG1. The PSC phase
basically conducts a merge join. It sequentially loads the
candidate IDTokenSets partitions from the output of CIG2,
and scans the corresponding document partitions identified
by the offsets. After the score computation on the current
partition is finished, it moves to the next partition.

4.4 Alternative Implementations
One DocScan Approach: We note that the CIG and PSC
phases can be combined together, so that we directly check
whether or not each contiguous token set of a hit sequence
is a DisTokenSet of some reference entity, and output (can-
didate IDTokenSet, entityID, docID, score) tuples. Since
this approach only scans documents once, we refer to it as
One DocScan approach. In our original architecture (Sec-
tion 2.1), we separate the two phases, and scan documents
twice. Thus, it is a Two DocScan approach.

The one DocScan implementation leverages the fact that
when the number of entities is not large, the CT Index can
be loaded into memory. In this case, we can run CIG on b
documents, where b is the batch size determined by the space
budget. We cache all b documents in the memory. After the
candidate IDTokenSets are generated, we run the PSC using
the cached documents. We then output the (candidate ID-
TokenSet, entityID, docID, score) tuples, discard the cached
documents, and read next b documents. The score aggrega-
tion and thresholding phase remains unchanged.

Observe that the one DocScan approach splits hit se-
quences into many small batches, and conducts subset-check
on each of them. Therefore, it may not be able to fully lever-
age the benefit of batched subset check. There is a trade-off
between the cost saved from another document scan and the
cost paid for multiple subset-check. In Section 5, we show
that there is a switching point between the one DocScan and
two DocScan approaches, as we vary the number of entities.

Map-Reduce Framework: We can also adopt our pro-
posed method in the map-reduce infrastructure [15]. Map-
reduce is a software framework that supports parallel com-
putations over large data sets on clusters of computers. This
framework consists of a “map” step and a “reduce” step. In
the map step, the master node chops the original problem
up into smaller sub-problems, and distributes those to mul-
tiple worker nodes. The worker node processes that smaller
problem, and passes the answer to the reduce step. In the
reduce step, the master node combines the answers to all the
sub-problems and gets the answer to the original problem.

Our techniques, either one DocScan or two DocScan, per-
fectly fit into the map-reduce framework. In the map step,



we chop the entire document set into smaller collections,
and run the first two phases (e.g., CIG and PSC) over each
small document collection on worker nodes. In the reduce
step, we aggregate (candidate IDTokenSet, entityID, docID,
score) tuples and run the SAT phase. Using the map-reduce
infrastructure, we are able to process large number of doc-
uments (multiple terabytes). Observe that the map step is
similar to the document partition framework discussed in
Section 4.3. The difference is that the map step does it in
parallel, while document partition does it sequentially.

5. PERFORMANCE STUDY
We use real data sets for the experiments. The reference

entity database is a collection of 1, 000, 000 product names
(e.g., consumer and electronics, bicycles, shoes, etc). The
number of tokens in the product names varies from 1 to
10, with 4.7 tokens on average. To examine the quality
of IDTokenSets, we generate IDTokenSets over 70TB web
documents, using a map-reduce infrastructure. Since we do
not have control over the number of machines assigned to
a job, we are not able to precisely measure the algorithm’s
performance over the map-reduce infrastructure. Therefore,
to study the computational performance of our proposed
algorithms, we also conduct experiments on a single PC with
1M Wikipedia pages.

Entity IDTokenSets
canon eos 1d mark ii canon mark ii eos 1d

canon mark ii eos
eos 1d mark ii
mark ii 1d
1d ii canon eos
1d ii canon

Table 4: Example IDTokenSets

We examine the quality of the IDTokenSets, as well as the
scalability of our proposed techniques. The major findings
of our study can be summarized as follows:

1. High quality IDTokenSets: the document-based
measure performs significantly better than a represen-
tative string-based similarity measure in determining
IDTokenSets. To begin with, we show some example
IDTokenSets generated by our framework in Table 4.

2. Scalable IDTokenSets generation: our algorithms
efficiently generate IDTokenSets from large collections
of entities and documents. Specifically:
(a) CT Filter and CT Index improve the baseline by
orders of magnitudes.
(b) Candidate IDTokenSet generation using suffix tree
is significantly faster than the baseline.
(c) Two DocScan is scalable to a very large number of
entities.

5.1 Quality of IDTokenSets
We first describe the experimental setup, and then com-

pare the precision-recall with respect to different similarity
measures. We also examine the effect by using different win-
dow sizes in determining the context, and by allowing gaps
in extracting candidate IDTokenSets.

5.1.1 Experimental Setup
To examine the quality of the IDTokenSets, we compare

our proposed document-based measures with a representa-
tive string-based similarity measure, weighted Jaccard sim-
ilarity(In fact, many other string similarity measures, e.g.,
edit distance, can be rewritten by Jaccard similarity [9].).
It is defined as follows.

WJS(τe, e) =

∑
t∈τe∩e w(t)∑
t∈τe∪e w(t)

=

∑
t∈τe

w(t)∑
t∈e w(t)

where w(t) is the weight (e.g., IDF weight) of the token t.
The IDTokenSets are generated from a large collection of

web documents (70TB), and the computation is performed
on clusters of computers which support map-reduce frame-
work. The entire IDTokenSets computation takes around 5
hours. By default, we set p = ∞ in determining p-window
context (Definition 3).

To evaluate the quality of the generated IDTokenSets, we
configure the experiment as follows. We first extract 800
digital camera product names from our reference entity ta-
ble. We then extract 463 queries, which are all related to
digital cameras, from the web search query log. We ask do-
main experts to label the data using the following rule: a
query is mapped to a digital camera name if it mentions the
digital camera, which is in our list of 800 names; otherwise,
the query is considered NOMATCH. Some sample labeled
data is shown in Table 5. Note “cyber shot” is considered
NOMATCH because there are multiple sony cameras in the
cyber shot product line, and the phrase “cyber shot” does
not match with a unique digital camera. Among 463 queries,
there are 316 queries mapped to a digital camera name.

Query Matched Entity
nikon l18 reviews nikon coolpix l18

sony cyber shot w80 sony dsc w80
cyber shot NOMATCH

Table 5: Example Query and Entity Pairs.

5.1.2 Comparison with String Similarity
We denote Corr1 for the document-based measure with

g1 (Equation 1), Corr2 for the document-based measure
with g2 (Equation 2), and Jaccard for the string-based
weighted Jaccard Similarity. If a query contains a sub-
string that matches with an IDTokenSet, we predict the
corresponding entity as the match. For Jaccard, if a query
contains a substring that matches with an entity (string sim-
ilarity is higher than the threshold), we predict the corre-
sponding entity as the match. We vary the threshold from
0.5 to 0.9) for all three methods. The precision-recall curves
are plotted in Figure 6.

We observe that the document-based measures are signif-
icantly better than the string-based measure. Among two
variants of document-based measures, Corr1 has high pre-
cision and Corr2 has higher recall, for each given threshold.
This is because Corr1 is a stricter measure since it requires
all tokens (in the original entity) to be present in the docu-
ments, and Corr2 uses a relaxed formulation.

We note that these correlation and similarity measures
can feed into a machine learning model to potentially obtain
more accurate results.
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5.1.3 Effect of Window Size
Here we examine the effect of window size in the p-window

context (Definition 3). We vary the value of p from 5, 10 to
∞. For p = ∞, we use the threshold 0.5 to 0.9, since it is a
relatively relaxed configuration. For p = 5 and p = 10, we
use the threshold 0.1 to 0.5. The precision-recall curve for
Corr1 is shown in Figure 7.

We observe that when we set a high threshold, p = ∞
has a higher recall than that of p = 5 and p = 10. When
we set a relatively low threshold, p = ∞ may generate more
false IDTokenSets, and its precision is lower than that of
p = 5 and p = 10. The method is not overly sensitive to the
window size, as we can see that the performance of p = 5
and p = 10 are very close.

5.1.4 Effect of Gapped Mentions
In this paper, we discuss techniques which require IDTo-

kenSets to be contiguous document substrings. One possible
extension is to allow gaps in the IDTokenSets when they are
mentioned in documents. For instance, if we set gap = 1
(i.e., allow one token insertion between any two consecutive
tokens in IDTokenSets), we will identify “dsc w80 sony” as
a candidate IDTokenSet form “dsc w80 from sony”.

We now report experiments based on adaptions of our
techniques to handle gapped mentions. By varying the gap
size from 0 to 2, the precision-recall curves of Corr1 are
shown in Figure 8. We observe that the precision-recall for
different gap sizes are very similar. This is because we com-
pute IDTokenSets across a large collection of documents.
An IDTokenSet may be mentioned with gap in some doc-
uments. but in a majority of documents, it is mentioned
contiguously. As a result, setting gap = 0 is still able to
identify it. Therefore, the gapped mention does not yield
additional benefit over the contiguous model (gap = 0).

5.2 Scalability
We now report the computational performance of our tech-

niques. We use 1M Wikipedia pages (average 499 tokens per
page) on a single PC with 2.4GHz Intel Core 2 Duo and 4GB
RAM. We use Microsoft SQL Server 2005 to store CT Index.

We first examine the computational cost of each phase
in our architecture, and then compare our approach with
baseline solutions. In Section 3.1, we describe two baseline
approaches. The first approach that enumerates all possible
DisTokenSets is clearly not scalable because the number of

DisTokenSets per entity is exponential in the number of to-
kens in the entity. It not only requires excessive space, but
also performs much more disk accesses (see Section 3.1 for
the detailed description). Therefore, we only compare with
the inverted index based approach [10]. Observe that in our
proposed framework, L = 1 is actually an improved version
of the inverted index approach because it is integrated with
substring filtering and batched subset-check. However, even
comparing with this improved approach, our method is two
orders of magnitude faster (Figure 9).

5.2.1 Overall Performance
We set K = 5 for DisTokenSet. In order to examine the

computational and space complexity of the CT Filter and
CT Index, we first vary K′ and L values on the 1M product
entities. The number of core token sets, the average length of
idlists per core token set and the execution time to compute
the core token sets are reported in Table 6.

K′ L Number Avg IDList Size Exec. Time (s)
10 4 7.9M 1.4 486.5
10 3 5.9M 1.5 371.2
10 2 2.2M 1.9 156.3
10 1 248K 19.1 6.8

Table 6: Core Token Set Generation

We observe that K′ = 10 and L = 2 achieves a good
trade-off between costs of hit sequence generation and can-
didate IDTokenSet generation in that L is not large, and
the average length of idlists is reasonably small. Therefore,
we set K′ = 10 and L = 2 in the following experiments.
In Section 5.2.2, we have a detailed comparison of different
parameter configurations. It takes 156 seconds to build the
CT Filter and the CT Index.

We first report performance of the two DocScan approach.
We fix the number of entities to be 1M , and vary the number
of documents from 1k to 1M . The execution time is shown
in Table 7. We observe that CIG1 (Section 4.3) and PSC
(Section 2.1) are the two most expensive phases since they
involve document scan. Although the CT Index resides on
the disk, CIG2 is still quite efficient. This is because we
use CT Filter to significantly reduce the hit sequences and
exploit suffix tree to share computation in subset-check. We
then fix the number of documents to be 1M , and vary the
number of entities from 1K to 1M . The results are shown



#Document 1K 10K 100K 1M
CIG1 23.7 101.2 733.7 5327.9
CIG2 5.2 32.1 124.1 351.4
PSC 13.1 63.1 545.2 3803.1
SAT 0.1 1.1 14.0 100.4
Total 42.1 197.5 1417.0 9582.8

Table 7: Execution Time w.r.t. #Document

#Entity 1K 10K 100K 1M
CIG1 678.4 977.9 2087.8 5327.9
CIG2 0.5 2.7 18.2 351.4
PSC 740.3 836.5 1017.8 3803.1
SAT 0.1 0.6 6.1 100.4
Total 1419.3 1817.7 3129.9 9582.8

Table 8: Execution Time w.r.t. #Entity

in Table 8. Overall, our method is scalable to very large
number of documents and entities.

5.2.2 Effect of Core Token Sets
We show the core token set is a key component to make

the entire computation very efficient. We vary L from 1
to 4. Recall that L = 1 is actually an improved version
of the traditional inverted index based approach. There-
fore, we denote InvertedIndex++ for L = 1. Figure 9 shows
the accumulated execution time of CIG1 and CIG2. Using
InvertedIndex++ over the 1M entity and 100 documents
generates 8, 237 hit sequences, and each of which has more
than 20 tokens on average. While using L = 2 (L = 4),
the same data set generates 711 (615) hit sequences, each
of which has 8.7 (8.5) tokens on average. Furthermore, the
idlists of InvertedIndex++ are much larger than the other
two alternatives. Overall, InvertedIndex++ is much slower.

Comparing with L = 2 and L = 4, L = 2 is slightly
faster on the CIG1 phase, but slightly slower on the CIG2
phase. We observe that although the worst case complexity
of CIG1 is proportional to L|d|, Algorithm 1 conducts much
less lookups since many token sets returns C (e.g., core) or
M (e.g., miss) status in early iterations (See Section 3.3.1).
We also observe that our proposed approach is not sensitive
to L when L ≥ 2.

5.2.3 Effect of Batched Subset Check
To demonstrate effectiveness of batched subset-check, we

compare it with a baseline approach that performs subset-
check per hit sequence, using progressive merge [10].

The results are reported in Figure 10. We observe that the
batched subset-check is very effective in sharing the compu-
tation across different hit sequences. It reduces the execu-
tion time by 2 orders of magnitudes. Without suffix tree
optimization, the computation time of CIG2 will be signifi-
cantly larger, and will be even larger than that of CIG1.

5.2.4 Two DocScan vs. One DocScan
In some scenarios where the reference entity list is small,

and the CT Index also fits in memory. In those cases, one
can combine CIG1, CIG2 and PSC into one phase, and the
documents are only scanned once.

In Figure 11, we show the execution time of both one
DocScan and two DocScan approaches, by fixing the number
of documents to be 1M . As expected, when the number of
entities is small, one DocScan approach is faster because
it saves another scan of documents. When the number of
entities reaches 1M , the two DocScan approach wins. This
is due to the limitation of the one DocScan approach: we
need to cache documents so that we can compute the scores
for candidate IDTokenSets on-the-fly. However, we are not
able to cache many hit sequences in CIG2. This impacts the
overall execution time. Figure 11 shows a clear trend that
the two DocScan approach will perform better than the one
DocScan approach beyond the 1M point.

6. RELATED WORK
As discussed earlier in Section 1, string similarity func-

tions have been used for identifying substrings from docu-
ments that approximately match with some dictionary en-
try (e.g., [9]), and for identifying pairs of matching records
(e.g., [10, 11]).

The idea of filtering document subsequences was explored
earlier. [9] considers the problem of identifying document
substrings whose string similarity with an entity is above a
given threshold. They derive signatures based on the thresh-
old and design filters based on signatures. In this paper, we
want to identify substrings of documents that are DisTo-
kenSets of some entities. There is no threshold over the
string similarity between the document substring and the
entity. Hence, the signature schemes do not apply.

In the context of data cleaning, techniques for leverag-
ing pairs of matching and non-matching records labeled ex-
plicitly by users have been developed to identify synonyms
which help improve the string similarity between input records
[7, 22]. These techniques primarily rely on “unaligned” to-
ken set pairs (i.e., token sets which are present in one record
but not its matching record) across example pairs. Hence,
these techniques cannot discover the important class of sub-
set synonyms (which contain a subset of tokens of the orig-
inal entity) we consider in this paper.

In this paper, we focus on the problem of matching doc-
ument substrings with entity names in a reference table. A
related but orthogonal task is to further analyze the doc-
ument substring and its document context using machine
learning and natural language parsing techniques in order
to (i) ensure that the document substring in the document
is actually a reference to the entity and not a generic phrase
in the language [13, 19], and to (ii) resolve ambiguity in en-
tity references if multiple individual entity instances share
the same name [5, 18].

Statistical approaches measuring co-occurrence (or associ-
ation) for detecting synonyms have been studied in natural
language literature [21]. Several measures, notably that of
mutual information, have been considered for quantifying
distributional similarity between words [20, 14]. As men-
tioned earlier, we adopt the measures (g1 and g2) instead of
the popular mutual information measure because our sce-
nario is inherently “asymmetric”. Our target is to identify
subset synonyms. Hence, the count of documents which con-
tain the candidate IDTokenSet is always higher than that
containing the original entity. Therefore, we adopt a mea-
sure which is derived from Jaccard containment. If required,
our approaches can be adapted to use mutual information.
As discussed earlier, measuring the distributional similarity
for a large number of entities across a large collection of
documents is expensive.

Domain-specific rule-based approaches have been proposed
for generating variations of named entities [4]. But, it is
quite hard to hand-craft the domain-specific rules for gener-
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Figure 9: Core Token Sets
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DocScan

ating synonyms. Therefore, it is hard to robustly and with a
high recall generalize this approach to a significant number
of domains. In contrast, we focus in this paper on the prob-
lem of efficiently identifying variations which have a high
correlation measure with any entity in the reference table.

Turney [23] introduced an unsupervised learning algorithm
that exploits a web search engine for recognizing synonyms.
In a similar vein relying on web search engines, we ex-
plored optimization techniques to minimize the number of
web search queries [12]. However, the web search based tech-
niques issue a very large number of web search queries, at
least one or often more than one per entity in the reference
table. These techniques are often limited by: (i) the number
of results returned by search engines, and (ii) the capacity
to issue a large number of web searches. Hence, they may
not scale to a large number of entities.

7. CONCLUSIONS
In this paper, we considered the problem of expanding

a reference table of entities with IDTokenSets obtained by
mining large document collections. We considered measures
for quantifying the correlation between a candidate IDTo-
kenSet and an entity over a set of documents, and devel-
oped very efficient techniques to identify IDTokenSets. We
demonstrated that our architecture and the techniques can
be implemented efficiently in a map-reduce infrastructure
thus gaining the ability to mine web-scale document collec-
tions. Using large real databases and document collections,
we demonstrated the efficiency and scalability of our tech-
niques for identifying IDTokenSets and the accuracy of the
results.
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