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ABSTRACT
We study the termination problem of the chase algorithm, a central
tool in various database problems such as the constraint implica-
tion problem, Conjunctive Query optimization, rewriting queries
using views, data exchange, and data integration. The basic idea
of the chase is, given a database instance and a set of constraints as
input, to fix constraint violations in the database instance. It is well-
known that, for an arbitrary set of constraints, the chase does not
necessarily terminate (in general, it is even undecidable if it does
or not). Addressing this issue, we review the limitations of exist-
ing sufficient termination conditions for the chase and develop new
techniques that allow us to establish weaker sufficient conditions.
In particular, we introduce two novel termination conditions called
safetyandinductive restriction, and use them to define the so-called
T -hierarchyof termination conditions. We then study the interrela-
tions of our termination conditions with previous conditions and the
complexity of checking our conditions. This analysis leads to an al-
gorithm that checks membership in a level of theT -hierarchy and
accounts for the complexity of termination conditions. As another
contribution, we study the problem ofdata-dependentchase ter-
mination and present sufficient termination conditions w.r.t. fixed
instances. They might guarantee termination although the chase
does not terminate in the general case. As an application of our
techniques beyond those already mentioned, we transfer our results
into the field of query answering over knowledge bases where the
chase on the underlying database may not terminate, making exist-
ing algorithms applicable to broader classes of constraints.

1. INTRODUCTION
The chase procedure is a fundamental algorithm that has been

successfully applied in a variety of database applications [8, 13, 4,
12, 15, 21, 2, 1, 19]. Originally proposed to tackle the implication
problem for data dependencies [8, 4] and to optimize Conjunctive
Queries (CQs) under data dependencies [3, 13], it has become a
central tool in Semantic Query Optimization (SQO) [20, 1, 22]. For
instance, the chase can be used to enumerate minimal CQs under
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a set of dependencies [1], thus supporting the search for more effi-
cient query evaluation plans. Beyond SQO, the chase algorithm has
been applied in many other contexts, such as data exchange [21],
peer data exchange [2], data integration [15], query answering us-
ing views [12], and probabilistic databases [19].

The core idea of the chase algorithm is simple: given a set of
dependencies (also called constraints) over a database schema and
a fixed database instance as input, it fixes constraint violations in
the instance. As a minimal and intuitive scenario we consider a
database graph schema that provides a relationE(src, dst), which
stores directed edges from nodesrc to nodedst, and a node relation
S(n) containing nodes with some distinguished properties, which
are enforced by constraints. These constraints will vary from ex-
ample to example and we denote nodes inS asspecial nodesin
the following. We sketch the idea of the chase algorithm using
a single constraintα1 := ∀x(S(x) → ∃yE(x, y)), stating that
each special node has at least one outgoing edge. Now consider
the sample database instanceI := {S(n1), S(n2), E(n1, n2)}. It
is easy to see thatI does not satisfyα1, because it does not con-
tain an outgoing edge for special noden2. In its effort to fix the
constraint violations in the database instance, the chase procedure
would create the tuplet1 := E(n2, x1), wherex1 is a fresh null
value. The resulting database instanceI ′ := I ∪{t1} now satisfies
constraintα1, so the chase terminates and returnsI ′ as result.

One major problem with the chase algorithm, however, is that
it does not terminate in the general case. To give an idea of the
problem, let us sketch a scenario that induces a non-terminating
chase sequence. We replace the constraintα1 from before by con-
straintα2 := ∀x(S(x) → ∃yE(x, y), S(y)), which asserts that
each special node links to another special node. Now consider the
instanceI from before. Obviously,I does not satisfyα2, because
special noden2 has no outgoing edge. In response, the chase fixes
this constraints violation by adding the two tuplesE(n2, x1) and
S(x1) to I, wherex1 is a fresh null value. Constraintα2 is then
fixed w.r.t. valuen2, but now the special nodex1 introduced in the
last chase step violatesα2. In subsequent steps the chase would
addE(x1, x2), S(x2), E(x2, x3), S(x3), . . . , wherex2, x3, . . .
are fresh null values. Hence, when given instanceI and constraint
α2 as input, the chase procedure will never terminate.

As shown in [9], in general it is undecidable if the chase termi-
nates or not, even for a fixed instance. Still, addressing the issue of
non-terminating chase sequences, severalsufficientconditions for
the input constraints have been proposed that guarantee termination
on every database instance [21, 9, 22, 18]. The common idea is to
statically assert that there are no positions in the database schema
where fresh null values might be cyclically created in. The termpo-
sition refers to a position in a relational predicate, e.g.E(src, dst)
has two positions, namelysrc, denoted asE1, and dst, denoted



asE2. Likewise, we denote byS1 the only position in predicateS.
The non-terminating chase sequence discussed before, for instance,
cyclically creates fresh null values in positionsE1 andS1.

One well-known termination condition isweak acyclicity[21].
Roughly spoken, it implements a global study of the input con-
straints, to detect cyclically connected positions in the constraint
set that introduce some fresh null values. In [9], the latter condition
was generalized to a condition calledstratification, showing that it
suffices to assert weak acyclicity locally for subsets of constraints
that might cyclically cause to fire each other. It is important to
notice that the techniques introduced in [21, 9] take only the con-
straints into account and not the database instance. We therefore
call such termination conditionsdata-independent; their result is
either the guarantee that the chase with these constraints terminates
for everydatabase instance or that no predictions can be made.

This paper explores sufficient termination conditions beyond
stratification, which (by the best of our knowledge) is the most gen-
eral termination condition known so far. As one major contribution,
we study data-independent chase termination and present condi-
tions that generalize stratification. Complementary, we consider the
novel problem of data-dependent chase termination, where our goal
is to derive chase termination guarantees w.r.t. a fixed instance. In
the remainder of the Introduction we summarize the key concepts
and ideas of our analysis and survey the main results.

Data-independent chase termination.As discussed before, the
source of non-terminating chase sequences are fresh null values
that are cyclically created at runtime in some position(s). We de-
velop new techniques that allow us to statically approximate the set
of positions where null values are created in or copied to during
chase application and use them to develop a hierarchy of sufficient
termination conditions that are strictly more general than stratifica-
tion. Our termination conditions rely on the following ideas.

(1) Identification of harmless null values:Often constraints in-
troduce fresh null values in a certain position, but the (fixed) size of
the database instance implies an upper bound on the number of null
values that might be introduced in this position. Consider for ex-
ample the constraintα3 := ∀x, y(S(x), E(x, y) → ∃zE(z, x)),
which may create fresh null values in positionE1. Wheneverα3

is part of a constraint set that does not copy null values to or cre-
ate null values in positionS1, the number of fresh null values that
might be introduced in positionE1 byα3 is implicitly fixed by the
number of entries in relationS and constraintα3 cannot cause an
infinite cascading of fresh null values in this position.

(2) Supervision of the flow of null values:We statically ap-
proximate the set of positions where null values might be copied
to during chase application, by a sophisticated study of the in-
terrelations between the individual constraints. Again, we illus-
trate the idea by a small and simple example. Let us consider
the two constraintsβ1 := ∀x, y(S(x), E(x, y) → E(y, x)) and
β2 := ∀x, y(S(x), E(x, y) → ∃zE(y, z), E(z, x)), which assert
that each special node with an outgoing edge has cycles of length
2 and3, respectively. We observe that none of these constraints
inserts fresh null values into relationS, so the chase will terminate
as soon asβ1 andβ2 have been fixed for all special nodes with an
outgoing edge, i.e. after a finite number of steps. Somewhat surpris-
ingly, none of the existing conditions recognizes chase termination
for the above scenario. The reason is that they do not supervise
the flow of null values. Our approach exhibits such an analysis and
would guarantee chase termination for the two constraints above.

(3) Inductive decomposition of the constraint set:The constraint
set in the previous example is not dangerous, because no fresh null
values are created in positionS1. Let us, in addition toβ1 and
β2, consider the constraintβ3 := ∃x, yS(x), E(x, y), stating that

Figure 1: Chase termination conditions.

there is at least one special node with an outgoing edge. Clearly,β3

fires at most once, so the chase for the constraint set{β1, β2, β3}
will still terminate. However,β3 complicates the analysis because
it “infects” positionS1 in the sense that now null values may be cre-
ated in this position. We resolve such situations by an (inductive)
decomposition of the constraint set. When applied to the above ex-
ample, our approach would recognize thatβ3 is not cyclically con-
nected withβ1 andβ2, and decompose the constraint set into the
subsets{β1, β2} and{β3}, which then are inspected recursively.

Based upon the previous ideas we develop two novel sufficient
chase termination condition, calledsafetyandinductive restriction.
Figure 1 surveys our main results and relates them to the previ-
ous termination conditions weak acyclicity and stratification. All
classes in the figure guarantee chase termination in polynomial-
time data complexity and all inclusion relationships are strict. As
can be seen, safety generalizes weak acyclicity and is further gen-
eralized by inductive restriction. On top of inductively restricted
constraints we then define an (infinite) hierarchy of sufficient termi-
nation conditions, which we callT -hierarchy. To give an intuition,
for a fixed level in this hierarchy, sayT [k], the idea is to study the
flow and creation of fresh null values detailedly for chains of up
to k constraints that might cause to fire each other in sequence.

An algorithm. It can be checked in polynomial time if a con-
straint set is safe; in contrast, the recognition problem for induc-
tively restricted constraints and the classes in theT -hierarchy is
in CONP. We develop an efficient algorithm that accounts for the
increasing complexity of the recognition problem and can be used
to test membership of a constraint set in some fixed level of the
T -hierarchy. The underlying idea idea of our algorithm is to com-
bine the different sufficient termination conditions, to reduce the
complexity of checking for termination wherever possible.

Data-dependent chase termination.Whenever the input con-
straint set does not fall into some fixed level of theT -hierarchy,
no termination guarantees for the general case can be derived. Ar-
guably, reasonable applications should never risk non-termination,
so the chase cannot be safely applied toany instancein this
case. Tackling this situation, we study the novel problem ofdata-
dependent chase termination:given constraint setΣ and a fixed in-
stanceI, does the chase withΣ terminate onI? We argue that this
setting particularly makes sense in the context of Semantic Query
Optimization, where the query – interpreted as database instance –
is chased: typically, the query is small, so the “data” part can be an-
alyzed efficiently (as opposed to the case where the input is a large



database instance). We propose two complementary approaches:

1. Our first, static scheme relies on the observation that, if the
instance is fixed, we can ignore constraints in the constraint
set that will never fire when chasing the instance, i.e. if
general sufficient termination guarantees hold for those con-
straints that might fire. As a fundamental result, we show that
in general it is undecidable if a constraint will never fire on
a fixed instance. Still, we give asufficientcondition that al-
lows us to identify such constraints in many cases and derive
a sufficient data-dependent condition.

2. Whenever the static approach fails, our second, dynamic ap-
proach comes into play: we run the chase and track cyclically
created fresh null values in a so-called monitor graph. We
then fix the maximum depth of cycles in the monitor graph
and stop the chase when this limit is exceeded: in such a
case, no termination guarantees can be made. However, we
show that each fixed search depth implicitly defines a class
of constraint-instance pairs for which the chase terminates.
Intuitively, the search depth limit can be seen as a natural
condition that allows us to stop the chase when “dangerous”
situations arise. Under these considerations, our approach
adheres to situations that are likely to cause non-termination,
so it is preferable to blindly running the chase and aborting
after a fixed amount of time, or a fixed number of chase steps.
Applications might fix the search depth following a pay-as-
you-go principle. Ultimately, the combination of our static
and dynamic analysis constitutes a pragmatic workaround in
all scenarios where no general (i.e., data-independent) termi-
nation guarantees can be made.

Application. As a possible application of our techniques, we
review the problem of answering Conjunctive Queries over knowl-
edge bases in the presence of constraints, with a focus on scenarios
where the chase with the given constraint set does not necessarily
terminate. This problem was first considered in [13] and recently
generalized in [5, 6]. A key idea in [5] is an overestimation of the
set of positions in which null values might occur, using the concept
of so-called affected positions. In particular, affected positions are
used in [5] to define a class of constraints called weakly guarded
constraint sets, for which the query answering problem is decid-
able. Using our novel techniques, we refine the notion of affected
positions with the help of a so-called restriction system, which is
a central tool in our study of data-independent chase termination,
e.g. used to define the class of inductively restricted constraints and
theT -hierarchy. We show that restriction systems can be fruitfully
applied to generalize the class of weakly guarded constraints to a
class we call restrictedly guarded constraints, thus making the al-
gorithms in [5, 6] applicable to a larger class of constraints.

Structure. Section 2 presents the necessary background in
databases. Next, Section 3 provides our results on data-independent
chase termination. Its main results are the introduction of theT -
hierarchy and an algorithm to efficiently test membership of a con-
straint set in some level of theT -hierarchy. In Section 4 we then
motivate the novel problem of data-dependent chase termination.
As a possible application, Section 5 demonstrates the applicability
of our concepts and methods in the context of query answering on
knowledge bases where the chase may not terminate. We conclude
with some closing remarks in Section 6.

Additional remarks. This paper builds upon the ideas presented
in the Extended Abstract [17]. Other parts of this paper were infor-
mally published as technical reports [22, 18].

2. PRELIMINARIES
General mathematical notation. The natural numbersN do

not include0. Forn ∈ N, we denote by[n] the set{1, ..., n}. For
a setM , we denote by2M its powerset and by|M | its cardinal-
ity. Abusing notation we denote by|s| also the length of a logical
formula. Given a tuplet = (t1, . . . , tn) we define the tuple ob-
tained by projecting on positions1 ≤ i1 < · · · < im ≤ n as
pi1,...,im

(t) := (ti1 , . . . , tim
).

Databases.We fix three pairwise disjoint infinite sets: the set
of constants∆, the set oflabeled nulls∆null, and the set ofvari-
ablesV . Often we will denote a sequence of variables, constants or
labeled nulls bya if the length of this sequence is understood from
the context. Adatabase schemaR is a finite set of relational sym-
bols{R1, ..., Rn}. To every relational symbolR ∈ R we assign a
natural numberar(R) called itsarity. A database position is a pair
(R, i) whereR ∈ R andi ∈ [ar(R)], for short we writeRi, e.g. a
three-ary predicateS has three positionsS1, S2, S3. We say that
a variable, labeled null, or constantc appears e.g. in positionR1 if
there exists an atomR(c, ...). In the rest of the paper, we assume
the database schema and the set of constants and labeled nulls to
be fixed and therefore we will suppress them in our notations. A
database instanceI is a finite set ofR-atoms that contains only el-
ements from∆∪∆null in its positions. The domain ofI, dom(I),
is the set of elements from∆ ∪∆null that appear inI.

Conjunctive Queries. A Conjunctive Query (CQ) is an expres-
sion of the formans(x) ← ϕ(x, z), whereϕ is a conjunction of
relational atoms,x, z are sequences of variables and constants, and
it holds that every variable inx also occurs inϕ. If x is empty we
call the query boolean. The semantics of such a queryq on database
instanceI is defined asq(I) := { a ∈ ∆|x| | I |= ∃zϕ(a, z) }.

Constraints. Let x, y be sequences of variables. We consider
two types of database constraints:tuple generating dependencies
(TGDs) andequality generating dependencies(EGDs). A TGD is
a first-order sentenceα := ∀x(φ(x) → ∃yψ(x, y)) such that (a)
bothφ andψ are conjunctions of atomic formulas (possibly with
parameters from∆), (b) ψ is not empty, (c)φ is possibly empty,
(d) bothφ andψ do not contain equality atoms and (e) all vari-
ables fromx that occur inψ must also occur inφ. We denote by
pos(α) the set of positions inφ. An EGD is a first-order sentence
α := ∀x(φ(x) → xi = xj), wherexi, xj occur inφ andφ is
a non-empty conjunction of equality-freeR-atoms (possibly with
parameters from∆). We denote the set of positions inφ bypos(α).

From now on we will use the word constraint instead of saying
that a logical expression may be a TGD or an EGD. Satisfaction of
constraints by databases is defined in the standard first-order man-
ner and is therefore omitted here. We writeI |= α if a constraint
α is satisfied byI and I 6|= α otherwise. As a notational con-
venience, we will often omit the∀-quantifier and respective list of
universally quantified variables. For a set of TGDs and EGDsΣ we
setpos(Σ) :=

⋃
ξ∈Σ pos(ξ). We use the termbody(α) for a con-

straintα as the set of atoms in its premise; analogously we define
head(α). In caseα is a constraint anda is a sequence of labeled
nulls and constants, thenα(a) is the constraintα without universal
quantifiers but with parametersa. We will often abuse this notation
and say that a labeled null occurs inα(a), meaning that a labeled
null is the parameter for some universally quantified variable inα.

Homomorphisms.A homomorphism from a set of atomsA1 to
a set of atomsA2 is a mappingµ : ∆ ∪ V → ∆ ∪ ∆null such
that the following conditions hold: (i) ifc ∈ ∆, thenµ(c) = c and
(ii) if R(c1, ..., cn) ∈ A1, thenR(µ(c1), ..., µ(cn)) ∈ A2.

Chase. Let Σ be a set of TGDs and EGDs andI an instance,
represented as a set of atoms. We say that a TGD∀xϕ ∈ Σ is
applicable toI if there is a homomorphismµ from body(∀xϕ)



Schema:S(n),E(src, dst)
Constraint Set: Σ := {α}, where

α : If x2 is a special node and has some
predecessorx1, thenx1 has itself a predecessor:
S(x2),E(x1, x2)→ ∃y E(y, x1)

Figure 2: A sample constraint.

to I andµ cannot be extended to a homomorphismµ′ ⊇ µ from

head(∀xϕ) to I. In such a case the chase stepI
∀xϕ,µ(x)
−→ J is

defined as follows. We define a homomorphismν as follows: (a)ν
agrees withµ on all universally quantified variables inϕ, (b) for
every existentially quantified variabley in ∀xϕwe choose a ”fresh”
labeled nullny ∈ ∆null and defineν(y) := ny. We setJ to be
I∪ν(head(∀xϕ)). We say that an EGD∀xϕ ∈ Σ is applicable toI
if there is a homomorphismµ from body(∀xϕ) to I and it holds

thatµ(xi) 6= µ(xj). In such a case the chase stepI
∀xϕ,µ(x)
−→ J is

defined as follows. We setJ to be

• I except that all occurrences ofµ(xj) are substituted by
µ(xi) =: a, if µ(xj) is a labeled null,
• I except that all occurrences ofµ(xi) are substituted by
µ(xj) =: a, if µ(xi) is a labeled null,
• undefined, if bothµ(xj) andµ(xi) are constants. In this case

we say that the chase fails.

A chase sequence is an exhaustive application of applicable con-

straintsI0
ϕ0,a0−→ I1

ϕ1,a1−→ . . ., where we impose no strict order
what constraint must be applied in case several constraints apply.
If this sequence is finite, sayIr being its final element, the chase
terminates and its resultIΣ

0 is defined asIr. The length of this
chase sequence isr. Note that different orders of application of ap-
plicable constraints may lead to a different chase result. However,
as proven in [21], two different chase orders lead to homomorphi-
cally equivalent results, if these exist. Therefore, we writeIΣ for
the result of the chase on an instanceI under constraintsΣ. It has
been shown in [8, 4, 13] thatIΣ |= Σ. In case that a chase step
cannot be performed (e.g., because a homomorphism would have
to equate two constants) the chase result is undefined. If we have

an infinite chase sequenceI0
ϕ0,a0−→ I1

ϕ1,a1−→ . . ., we distinguish
two cases: (i) if the constraint set contains an EGD, then we also
say that the result is undefined; (ii) if the constraint set consists of
TGDs only thenIΣ :=

⋃
i≥0 Ii is the union of all intermediate

database instances during the application of the chase.

3. DATA-INDEPENDENT TERMINATION
In this section we discuss the sufficient data-independent chase

termination conditions presented in Figure 1. First, we will review
existing approaches and then introduce the novel class ofsafecon-
straints, which strictly generalizes weak acyclicity, but is differ-
ent from stratification. Building upon the definition of safety, we
then introduceinductively restrictedconstraints as a consequent ad-
vancement of our ideas. The latter class strictly subsumes all termi-
nation conditions known so far. Finally, we will define a hierarchy
of sufficient termination condition on top of inductively restricted
constraints, the so-calledT -hierarchy. Each levelT [k] in this hi-
erarchy is strictly contained in the next levelT [k + 1]. Our novel
sufficient termination conditions vastly extend the applicability of
the chase algorithm, as they guarantee chase termination for much
larger classes of constraints than previous conditions.

As a minimalistic motivating example for our study of novel
chase termination conditions let us consider the constraint setΣ
from Figure 2, which is settled in our graph database schema from
the Introduction. As we shall see later, the chase withΣ terminates
for every database instance. Still, none of the existing termination
conditions is able to recognize termination for this constraint set,
i.e. Σ is neither weakly acyclic nor stratified. With the techniques
and tools that we develop within this section, we will be able to
guarantee chase termination forΣ on every database instance.

3.1 Weak Acyclicity
The notion of weak acyclicity from [10, 21] is the starting

point for our discussion. Informally spoken, the key idea of weak
acyclicity is to statically estimate the flow of data between the
database positions during the execution of the chase. Weak acyclic-
ity asserts that no fresh values are created over and over again.

DEFINITION 1. (see [21]) The dependency graph dep(Σ) of a
set of constraintsΣ is the directed graph defined as follows. The
set of vertices is the set of positions that occur in some TGD inΣ.
There are two kinds of edges. Add them as follows: for every TGD
∀x(φ(x)→ ∃yψ(x, y)) ∈ Σ and for everyx in x that occurs inψ
and every occurrence ofx in φ in positionπ1

• for every occurrence ofx inψ in positionπ2, add an edgeπ1 →
π2 (if it does not already exist).
• for every existentially quantified variabley and for every oc-

currence ofy in a positionπ2, add aspecialedgeπ1
∗
→ π2 (if

it does not already exist).

A setΣ of TGDs and EGDs is calledweakly acycliciff dep(Σ) has
no cycles going through a special edge. 2

Intuitively, normal edges in the dependency graph track the flow
of data between the database positions and special edges cover the
case of newly introduced null values. If the dependency graph con-
tains no cycles through a special edge it cannot happen that fresh
null values are cyclically added to the database instance. It has been
shown in [21] that weak acyclicity can be decided in polynomial
time. We illustrate the definition of weak acyclicity by example.

EXAMPLE 1. We depict the dependency graph for the con-
straint setΣ := {α1, α2, α3} from Figure 7 in Figure 3. One can
observe thatΣ is not weakly acyclic, as witnessed by the self-loop
through special edgefly2 ∗

→ fly2. 2

3.2 Stratification
In [9], stratification was set on top of weak acyclicity. The main

idea behind stratification is to decompose the constraint set into in-
dependent subsets that are then separately tested for weak acyclic-
ity. More precisely, the decomposition splits the input constraint
set into subsets of constraints that may cyclically cause to fire each
other. The termination guarantee for the full constraint set follows
if weak acyclicity holds for each subset in the decomposition.

DEFINITION 2. (see [9]) Given two TGDs or EGDsα, β ∈ Σ
we defineα ≺ β iff there exists a relational database instanceI

anda, b such that (i)I 6|= α(a), (ii) I |= β(b), (iii) I
α,a
→ J , and

(iv) J 6|= β(b). 2

Intuitively, α ≺ β means that ifα fires it can causeβ to fire (in
the case thatβ could not fire before).

EXAMPLE 2. (see [9]) Let predicateE store the edge relation
of a graph and let the constraintα := E(x1, x2), E(x2, x1) →



Figure 3: Dependency graph forΣ from Figure 7.

∃y1, y2E(x1, y1), E(y1, y2), E(y2, x1) be given, stating that each
node having a cycle of length2 also has a cycle of length3. A
3-cycle can never be a2-cycle again, so it holds thatα 6≺ α. 2

DEFINITION 3. (see [9]) The chase graphG(Σ) = (Σ, E) of
a set of constraintsΣ contains a directed edge(α, β) between two
constraints iffα ≺ β. We call Σ stratified iff the constraints in
every cycle ofG(Σ) are weakly acyclic. 2

EXAMPLE 3. Consider the constraintα from Example 2. It
holds thatα 6≺ α, so{α} is stratified. As shown in [9], the de-
pendency graph of{α} contains a cycle through a special edge, so
{α} is not weakly acyclic. 2

It can be decided in coNP whether a set of constraints is strati-
fied. Like weak acyclicity, stratification guarantees the termination
of the chase in polynomial time data complexity (see [9]), i.e. the
set of constraints is fixed and the number of chase steps is polyno-
mial in the number of distinct values in the input database instance.
Stratification strictly generalizes weak acyclicity, thus (i) ifΣ is
weakly acyclic, then it is also stratified and (ii) there are constraint
sets that are stratified but not weakly acyclic (cf. Example 3).

3.3 Safety
The basic idea of our first new termination condition,safety, is

to estimate the set of positions where labeled nulls may be copied
to and (statically) analyze the data flow only between those posi-
tions. As a useful tool, we borrow the notion of so-calledaffected
positionsfrom [5], which is an overestimation of the positions in
which a null value that was introduced during the chase may occur.

DEFINITION 4. [5] Let Σ be a set of TGDs. The set of affected
positions aff(Σ) of Σ is defined inductively as follows. Letπ be a
position in the head of anα ∈ Σ.

• If an existentially quantified variable appears inπ, thenπ ∈
aff(Σ).
• If the same universally quantified variableX appears both in

positionπ and only in affected positions in the body ofα, then
π ∈ aff(Σ). 2

Although we borrow this definition from [5], our focus is dif-
ferent. We use affected positions to extend known classes of con-
straints for which the chase terminates, whereas [5] investigates
query answering in cases the chase may not terminate. Our work
neither subsumes [5] nor the other way around.

We motivate the safety termination condition using the single
constraintβ := R(x1, x2, x3), S(x2) → ∃yR(x2, y, x1). The
dependency graph of constraint set{β} is shown in Figure 4 (left).
As can be seen, there is a cycle going through a special edge, so the
set is not weakly acyclic. We next study the affected positions inβ:

Figure 4: Left: Dependency graph. Right: Corresponding
propagation graph (it has no edges).

EXAMPLE 4. Let us consider the constraint setΣ := {β}.
Clearly, positionR2 is affected because it contains an existentially
quantified variable.S1 is not affected becauseS is not modified
when chasing with the single constraintβ. Finally, we observe that
alsoR1 is not affected becausex2 occurs not only inR2 but also in
S1, which is not an affected position. We conclude that positionR2

is the only affected position in constraint setΣ. 2

We now argue that for constraintβ a cascading of fresh labeled
nulls cannot occur, i.e. no fresh labeled null can repeatedly cre-
ate new labeled nulls in positionR2 while copying itself to posi-
tionR1. The reason is thatβ cannot be violated with a fresh labeled
null inR2, i.e. ifR(a1, a2, a3) andS(a2) hold, but∃yR(a2, y, a1)
does not, thena2 is never a newly created labeled null. This is due
to the fact thata2 also occurs inS1, butS1 is not an affected po-
sition. Hence, the chase sequence always terminates. We will later
see that this is not a mere coincidence: the constraint is safe.

Like in the case of weak acyclicity, we define the safety condition
with the help of the absence of cycles containing special edges in
some graph, called propagation graph.

DEFINITION 5. Given a set of TGDsΣ, the propagation graph
prop(Σ) := (aff(Σ), E) is the directed graph defined as follows.
There are two kinds of edges inE. Add them as follows: for every
TGD∀x(φ(x)→ ∃yψ(x, y)) ∈ Σ and for everyx in x that occurs
in ψ and every occurrence ofx in φ in positionπ1

• if x occurs only in affected positions inφ then, for every occur-
rence ofx in ψ in positionπ2, add an edgeπ1 → π2 (if it does
not already exist).
• if x occurs only in affected positions inφ then, for every exis-

tentially quantified variabley and for every occurrence ofy in a
positionπ2, add aspecialedgeπ1

∗
→ π2 (if it does not already

exist). 2

As an improvement over weak acyclicity, in the propagation
graph we do not supervise the whole data flow but only the flow
of labeled nulls that might be introduced at runtime. Consequently,
the graph contains edges only for null values that stem exclusively
from affected positions. We now can easily define the safety con-
dition on top of the propagation graph.

DEFINITION 6. A setΣ of constraints is calledsafeiff prop(Σ)
has no cycles going through a special edge. 2

EXAMPLE 5. Consider the constraintβ from Example 4. Its
dependency graph is depicted in Figure 4 on the left side and its
propagation graph on the right side. The latter contains only the
affected positionR2 (and no edges). From Definitions 1 and 6 it
follows thatβ is safe, but not weakly acyclic. 2

The intuition of safety is that we forbid an unrestricted cascading
of null values, i.e. with the help of the propagation graph we impose



a partial order on the affected positions such that any newly intro-
duced null value can only be created in a position that has a higher
rank in that partial order in comparison to null values that may oc-
cur in the body of a TGD. To state this more precisely, assume
that a TGD of the form∀x(φ(x)→ ∃yψ(x, y)) is violated. Then,
I |= φ(a) andI 6|= ∃yψ(a, y)) must hold. The safety condition
ensures that any position in the body that contains a newly created
labeled null froma and occurs in the head of the TGD has a strictly
lower rank in our partial order than any position in which some
element fromy occurs. The main difference compared to weak
acyclicity is that, in safety, we look in a refined way (cf. affected
positions) on positions where labeled nulls can be propagated to.

It is easy to see that, if a constraint setΣ is safe, then every
subset ofΣ is safe, too. Furthermore, we note that, given a set of
constraints, it can be decided in polynomial time if it is safe or not.
In the following theorem we relate safety to the previous termina-
tion conditions weak acyclicity and stratification. In particular, the
theorem clarifies the observation from Example 5, where we could
observe that the propagation graph is a subgraph of the dependency
graph. This is not a mere coincidence:

THEOREM 1. LetΣ be a set of constraints.

• The graph prop(Σ) is a subgraph of dep(Σ).
• If Σ is weakly acyclic, then it is also safe.
• There is someΣ that is safe, but not stratified and vice versa.2

Proof Sketch. (a) The set of vertices from prop(Σ) is contained
in the set of vertices of dep(Σ). In order to add an edge to prop(Σ)
stronger prerequisites must be fulfilled than in the construction of
dep(Σ). Therefore prop(Σ) is a subgraph of dep(Σ). (b) If dep(Σ)
does not have a cycle through a special edge, then prop(Σ) cannot
have. (c) Letα := S(x2, x3), R(x1, x2, x3) → ∃yR(x2, y, x1)
andβ := R(x1, x2, x3) → S(x1, x3). It can be seen thatα ≺ β
andβ ≺ α. Together with the fact that{α, β} is not weakly acyclic
it follows that {α, β} is not stratified. However,{α, β} is safe.
Let γ := T (x1, x2), T (x2, x1)→ ∃ y1, y2 T (x1, y1), T (y1, y2),
T (y2, x1) (see [9]). It was argued in [9] that{γ} is stratified. How-
ever, it is not safe because bothT 1 andT 2 are affected. Therefore
we have that dep({γ}) = prop({γ}) and it was argued in [9] that
it is not weakly acyclic.2

Like stratification and weak acyclicity, safety guarantees the ter-
mination of the chase in polynomial time data complexity, i.e. the
set of constraints is fixed and the number of chase steps is polyno-
mial in the number of distinct values in the input database instance:

THEOREM 2. Let Σ be a fixed set of safe constraints. Then,
there exists a polynomialQ ∈ N[X] such that for any database
instanceI, the length of every chase sequence is bounded by
Q(|dom(I)|). 2

We omit the proof of the theorem for space limitations, referring
the interested reader to the technical report [16].

3.4 Inductive Restriction
In this section we generalize the method that lifts weak acyclic-

ity to stratification from [9] with the help of so-calledrestriction
systems. The chase graph from [9] will be a special case of such
a restriction system. With the help of restriction systems we then
define a new sufficient termination condition calledinductive re-
striction, whose main idea is to decompose a given constraint set
into smaller subsets (in a more refined way than stratification). We
then use the safety condition from before to check the termination
of every subset and, whenever all subsets are safe, the termination

for the full constraint set can be guaranteed. Ultimately, we show
that inductive restriction (like all the classes discussed before) guar-
antees chase termination in polynomial-time data complexity. This
section also lays the foundations for theT -hierarchy (cf. Figure 1),
which will be defined subsequently in Section 3.5. We motivate our
study with a constraint set that is neither safe nor stratified.

EXAMPLE 6. Let predicate E(x,y) store graph edges and predi-
cate S(x) store some nodes. The constraints setΣ = {α1, α2}with
α1 := S(x), E(x, y) → E(y, x) andα2 := S(x), E(x, y) →
∃zE(y, z), E(z, x) assert that all nodes in S have cycles of length
2 and3, respectively. It holds that aff(Σ) = {E1, E2} and it is easy
to verify thatΣ is neither safe nor stratified. In particular, it we
observe thatα1 ≺ α2 andα2 ≺ α1. 2

The first task in our formalization is a refinement of relation≺
from [9]. This refinement will helps us to detect if during the chase
null values might be copied to the head of some constraint. To
simplify the definition, we introduce the notion of null-pos:

DEFINITION 7. Let Σ be a set of constraints,I be a fixed
database instance andA ⊆ ∆null. Then, we define null-pos(A, I)
as{π ∈ pos(Σ) | a ∈ A, a occurs in positionπ in I}. 2

Informally spoken, null-pos(A, I) is the set of positions inI in
which the elements (i.e., labeled nulls) fromA occur. We are now
ready to define the refinement of relation≺:

DEFINITION 8. LetΣ be a set of constraints andP ⊆ pos(Σ).
For allα, β ∈ Σ, we defineα ≺P β iff there are tuplesa, b and a
database instanceI0 such that

• I0
α,a
→ I1

β,b
→ I2,

• there is n ∈ b ∩ ∆null in the head ofβ(b) such that
null-pos({n}, I0) ⊆ P , and
• I0 |= β(b). 2

The refinement of≺ forms the basis for the notion of a so-called
restriction system, which is a strict generalization of the chase
graph introduced in [9] and will serve as a central tool in our work.
The two definitions below formalize restriction systems.

DEFINITION 9. For any set of positionsP and a TGDα let
aff-cl(α, P ) be the set of positionsπ from the head ofα such that

• for every universally quantified variablex in π: x occurs in the
body ofα only in positions fromP or
• π contains an existentially quantified variable. 2

DEFINITION 10. A 2-restriction system1 is a pair(G′(Σ), f),
whereG′(Σ) := (Σ, E) is a directed graph andf : Σ → 2pos(Σ)

is a function such that

• forall TGDsα and forall(α, β) ∈ E: aff-cl(α, f(α)) ⊆ f(β),
• forall EGDsα and forall(α, β) ∈ E: f(α) ⊆ f(β), and
• forall α, β ∈ Σ: α ≺f(α) β =⇒ (α, β) ∈ E.

A 2-restriction system isminimal if it is obtained from
((Σ, ∅),{(α, ∅) | α ∈ Σ}) by a repeated application of the con-
straints from bullets one to three (until all constraints hold) s.t., in
case of the first and second bullet, the image off(β) is extended
only by those positions that are required to satisfy the condition.2

We illustrate this definition by two examples. The first one also
shows that restriction systems always exist.
1In [18, 17, 22] the notion of a2-restriction system was simply
called restriction system and was defined slightly different there.



part (Σ: Set of TDGs and EGDs,k: not equal to1) {
1: compute the strongly connected components (as

sets of constraints)C1, . . . , Cn of the minimal
k-restriction system ofΣ;

2: D ← ∅
3: if (n == 1) then
4: if (C1 6= Σ) then
5: returnpart (C1,k);
6: endif
7: return{Σ};
8: endif
6: for i=1 to n do
9: D ← D ∪ part (Ci,k);
10: endfor
11: returnD; }

Figure 5: Algorithm to compute subsets ofΣ.

EXAMPLE 7. Let Σ a set of constraints. Then,(G(Σ), f),
wheref(α) := pos({α}) for all α ∈ Σ is a2-restriction system
for constraint setΣ. 2

EXAMPLE 8. ConsiderΣ from Example 6. The minimal2-
restriction system forΣ is G’(Σ):=(Σ,{(α2,α1)}) with f(α1) :=
{E1,E2} and f(α2) := ∅; in particular,α1 6≺f(α1) α1, α1 6≺f(α1)

α2, α2 ≺f(α2) α1, andα2 6≺f(α2) α2 hold. 2

Restriction systems are useful tools to define new classes of con-
straints that guarantee chase termination. To give an example, one
can show that the chase with a constraint setΣ terminates for ev-
ery database instance if every strongly connected component of its
minimal2-restriction system is safe. We refer the interested reader
to [18] for details, where this class was formally introduced under
the namesafe restriction. Note that the constraint setΣ from Ex-
ample 6 falls into the class of safely restricted constraints, because
its minimal2-restriction system (given in Example 8) contains no
strongly connected component. In this work, we skip the formal
definition of safe restriction, but instead go one step further and de-
fine a termination condition calledinductive restriction, which fur-
ther generalizes safe restriction. The following example provides a
constraint set that is not safely restricted but, as we shall see later,
falls into the class of inductively restricted constraints.

EXAMPLE 9. We extend the constraint set from Example 8
to Σ′ := Σ ∪ {α3}, whereα3 := ∃x, yS(x), E(x, y). Then
G’(Σ′):=(Σ′,{(α1, α2),(α2,α1),(α3,α1),(α3,α2)}) with f(α1) =
f(α2) := {E1, E2, S1} and f(α3) := ∅ is the minimal2-restriction
system. It contains the strongly connected component{α1,α2}.
Note thatΣ′ is neither safe, nor stratified, nor safely restricted.
Hence, using the sufficient termination conditions discussed so far
no chase termination guarantees can be made forΣ′. 2

Intuitively, in the example above the constraintα3 “infects” po-
sition S1 in the 2-restriction system. Still, null values cannot be
repeatedly created inS1: α3 fires at most once, so it does not af-
fect chase termination. Our novel termination condition resolves
such situations by recursively computing the minimal2-restriction
systems of the strongly connected components. We formalize this
computation in Algorithm 1, calledpart(Σ, 2) and define the class
of inductively restricted constraint sets by help of this algorithm.

DEFINITION 11. LetΣ be a set of constraints. We callΣ in-
ductively restrictediff every Σ′ ∈ part(Σ, 2) is safe. 2

Compared to stratification, inductive restriction does not increase
the complexity of the recognition problem:

LEMMA 1. LetΣ be a set of constraints. The recognition prob-
lem for inductive restriction is in coNP. 2

Proof Sketch. We start with an additional claim: letP be a set
of positions andα, β constraints. Then, the mapping(P, α, β) 7→
α ≺P β? can be computed by an NP-algorithm. The proof of this
claim proceeds like the proof of Theorem 3 in [9]. It is enough
to consider candidate databases forI0 of size at most|α| + |β|,
i.e. unions of homomorphic images of the premises ofα andβ
s.t. null values occur only in positions fromP . Because of this
claim, the minimal2-restriction system of a set of constraints can
be computed by an NP-algorithm (only polynomially many steps
must be performed to reach the fixedpoint). Computingpart(Σ, 2)
can also be done in non-deterministic polynomial time. To prove
that Σ is not inductively restricted, guess someΣ′ ∈ part(Σ, 2)
and verify that it is not safe.2

We give an example for an inductively restricted constraint set,
which – as argued in Example 9 – is neither safe nor stratified.

EXAMPLE 10. Referring back to Example 9, we have seen that
the minimal restriction system ofΣ′ contains the only strongly
connected component{α1,α2}, which by Example 6 is not safe.
Therefore we compute the minimal restriction system of{α1,α2}
and see that it does not contain a cycle. This argumentation proves
thatpart(Σ′, 2) = ∅, so we conclude that constraint setΣ′ is in-
ductively restricted. 2

As depicted in Figure 1, the inductive restriction condition gen-
eralizes both safeness and stratification. The following proposition
formally states these results and shows that the respective inclusion
relationships are proper.

PROPOSITION 1. The following claims hold.

• If Σ is stratified, then it is also inductively restricted.
• If Σ is safe, then it is inductively restricted.
• There is someΣ that is inductively restricted, but neither safe

nor stratified. 2

Proof Sketch. We start with bullet one. It follows directly from
the definition that ifα ≺P β, thenα ≺ β. Therefore it holds that
everyΣ′ ∈ part(Σ, 2) is contained in some strongly connected
component of the chase graph ofΣ. As every such strongly con-
nected component is weakly acyclic, it is also safe. Consequently,
alsoΣ′ is safe. Bullet two follows from the fact that every subset
of a safe constraint set is safe. Finally, bullet three is proven by the
constraint set from Examples 9 and 10.2

The next theorem gives the main result concerning inductive re-
striction, showing that it guarantees chase termination in polyno-
mial time data complexity. We refer the interested reader to our
technical report [16] for a formal proof of this theorem.

THEOREM 3. LetΣ be a fixed set of inductively restricted con-
straints. Then, there exists a polynomialQ ∈ N[X] such that
for any database instanceI, the length of every chase sequence
is bounded byQ(|dom(I)|). 2

We conclude with the remark that our motivating constraint set
from Figure 2 is not inductively restricted: the constraintα can



cause itself to fire, so its minimal2-restriction system contains an
edge fromα to α, which forms a strongly connected component;
further,α is not safe. To show that the chase withα terminates, we
need weaker termination conditions than inductive restriction.

3.5 The T-Hierarchy
This section introduces theT -hierarchy, which is our main re-

sult regarding data-independent chase termination. Its lowest level,
T [2], corresponds to inductive restriction. Every level in the hier-
archy is decidable and contains all lower levels. As we shall see,
also the constraint from Figure 2 is a member of some level in this
hierarchy. In the course of this section we leave out some proofs
for space limitations, referring the interested reader to the technical
report [16]. We start by defining thek-ary relation≺k,P which is
a generalization of≺P . The definition naturally extends the≺P

relation to a fixed numberk of constraints.

DEFINITION 12. Letk ≥ 2, Σ a set of constraints andP ⊆
pos(Σ). For allα1, ..., αk ∈ Σ, we define≺k,P (α1, ..., αk) iff
there are tuplesa1, ..., ak and a database instanceI0 such that

• for all i ∈ [k] it holds thatIi−1
αi,ai→ Ii,

• there isn ∈ ak ∩ ∆null in the head ofαk(ak) such that
null-pos({n}, I0) ⊆ P ,
• I0 |= αk(ak), and
• for every i ∈ [k − 1] there isj ∈ [k]\[i] such thatJj−1 |=

αj(aj), whereJ0 := I0, Jl−1
αl,al→ Jl for j > l 6= i and

Ji := Ji−1. 2

Note that≺2,P corresponds exactly to≺P introduced in Defini-
tion 8. It can be shown that, for a fixed value ofk, membership in
this relation is decidable in NP:

PROPOSITION 2. Let k ≥ 2 be fixed. Then, there exists a
NP-algorithm that decides for every set of positionsP and every
α1, ..., αk ∈ Σ whether≺k,P (α1, ..., αk) holds. 2

The proof of this proposition proceeds like the proof that≺P is
decidable in NP time (cf. Lemma 1). We refer the interested reader
to [16] for more details. We next use the relation≺k,P to define
k-restriction systems, which naturally generalize the2-restriction
systems defined over relation≺P (cf. Definition 10).

DEFINITION 13. Letk ∈ N>1. A k-restriction systemG′
k(Σ)

is a pair(G′, f), whereG′ = (Σ, E) is a graph andf : Σ →

2pos(Σ) is a function such that

• forall TGDsα and forall(α, β) ∈ E: aff-cl(α, f(α)) ⊆ f(β),
• forall EGDsα and forall(α, β) ∈ E: f(α) ⊆ f(β), and
• forall α1, ..., αk ∈ Σ: ≺k,f(α1) (α1, ..., αk) then

(α1, α2), ..., (αk−1, αk) ∈ E.

A k-restriction system isminimal if it is obtained from
((Σ, ∅),{(α, ∅) | α ∈ Σ}) by a repeated application of the con-
straints from bullets one to three (until all constraints hold) such
that, in case of the first and second bullet, the image off(β) is
extended only by those positions that are required to satisfy the
condition. In case the third bullet is applied,E is extended. 2

Note that fork = 2 this definition corresponds exactly to the
definition of2-restriction systems used to define inductive restric-
tion. Like 2-restriction systems, minimalk-restriction systems are
unique and can be computed by a coNP-algorithm:

PROPOSITION 3. Letk ≥ 2 be fixed andΣ a set of constraints.
The minimalk-restriction system forΣ is unique and can be com-
puted by a NP-algorithm. 2

We are now in the position to define theT -hierarchy:

DEFINITION 14. Let k ≥ 2 and Σ be a set of constraints.
Then Σ ∈ T [k] iff there is k′ ∈ [k]\{1} such that for every
Σ′ ∈ part′(Σ, k′) it holds thatΣ′ is safe. 2

We callT [k] the k-th level of theT -hierarchy. As a corollary
from Proposition 3 we obtain that we can decide whether a set of
constraints is inT [k] by a coNP-algorithm. We next give an exam-
ple for constraints in theT -hierarchy.

EXAMPLE 11. We setΣk+1 := {αk+1}, whereαk+1 :=
S(xk+1), Rk(x1, ..., xk+1) → ∃yRk(y, x1, ..., xk). It holds that
≺k,∅ (α, ..., α) but not≺k+1,∅ (α, ..., α). So the minimal(k+1)-
restriction system does not contain any cycle, but the minimalk-
restriction system does. ThereforeΣk+1 ∈ T [k + 1]. On the other
hand, we observe that the constraint is not safe, so it is not con-
tained inT [k]. Also note that the constraint in Figure 2 exactly
corresponds toΣ2, so it is contained in levelT [3]. 2

The following proposition relates the levels of theT -hierarchy
to each other and inductive restriction.

PROPOSITION 4. Letk ≥ 2.

• Σ is inductively restricted iffΣ ∈ T [2]

• T [k] ⊆ T [k + 1].
• There is someΣ such thatΣ ∈ T [k + 1]\T [k]. 2

Proof Sketch. (a) To prove bullet one, note that both definitions
coincide exactly. (b) Bullet two follows by definition. (c) For
bullet three we refer back to Example 11.2

The next result is our main contribution concerning data-
independent chase termination. It states that, for a fixed value ofk,
membership inT [k] guarantees polynomial time data complexity
for the chase. Again, the technical proof can be found in [16].

THEOREM 4. Let k ≥ 2 andΣ ∈ T [k] be a fixed set of con-
straints. Then, there exists a polynomialQ ∈ N[X] such that
for any database instanceI, the length of every chase sequence
is bounded byQ(|dom(I)|). 2

3.6 An Algorithmic Approach
This section aims to develop an efficient algorithm to test mem-

bership inT [k]. We have seen before that the computation ofk-
restriction systems is costly because we need NP time to compute
the relation≺k,P . For this reason, we present an algorithm that
avoids the computation ofk-restriction systems where possible. It
relies on the idea that (the weaker condition) safety can be checked
in polynomial time (cf. Section 3.3). Before computing thek-
restriction system, we always check for safety and, whenever safety
holds, we conclude that the chase for the respective constraint set
terminates and omit thek-restriction system computation.

To give a simple example, consider the constraint from Exam-
ple 5, which has been shown to be safe, and assume we want to test
if it falls into some (fixed) levelk of theT -hierarchy. Computing
a k-restriction system is superfluous, because membership inT [k]
trivially follows from the satisfaction of the safety condition.

In general, the situation is, of course, not that simple. Con-
sider for instance the constraint setΣ′ from Example 9 ex-
tended by{α4, α5}, whereα4 := E(x1, x2) → T (x1, x2),
α5 := T (x1, x2) → T (x2, x1), and call the resulting con-
straint set Σ′′. Assume we want to show thatΣ′′ is in-
ductively restricted (i.e., inT [2]). It follows from Exam-
ple 6 that Σ′′ is not safe. In direct correspondence to Ex-
ample 9 it follows that the minimal2-restriction system for



sub(Σ: Set of TDGs and EGDs,k: not equal to1) {
1: if (Σ is safe) then
2: return true;
3: endif
4: compute the strongly connected components (as

sets of constraints)C1, . . . , Cn of the minimal
k-restriction system ofΣ;

5: if (n == 0) then
6: return true;
7: endif
8: if (n == 1) then
9: if (C1 6= Σ) then
10: returncheck(C1,k);
11: endif
12: return false;
13: endif
14: for i=1 to n do
15: if (not check(Ci,k)) then
16: return false;
17: endif
18: endfor
19: return true;}

check(Σ: Set of TDGs and EGDs,k: not equal to1) {
1: for i = k downto 2 do
2: if (sub(Σ, i)) then return true;
3: endfor
4: return false;}

Figure 6: Algorithm to decide membership inT [·].

Σ′′ is G’(Σ′′):=(Σ′′,{(α1, α2),(α2,α1),(α3,α1),(α3,α2),(α1,α4),
(α2,α4),(α4,α5),(α5,α5)}), where f(α1) = f(α2) := {E1,E2,S1},
f(α3) := ∅, f(α4) := {E1,E2} and f(α5) := {T1,T2}. This 2-
restriction system contains the strongly connected components
{α1,α2} and{α5}. For {α1,α2} we must compute its minimal
2-restriction system because it is not safe, but for{α5} we can
avoid this complexity because we know thatα5 is safe (indeed it is
a full TGD) and therefore the chase terminates. We implement the
scheme described above in algorithmcheck, provided in Figure 6.

PROPOSITION 5. Algorithm check terminates and correctly
decides membership in theT -hierarchy, i.e.check(Σ, k) returns
true if and only ifΣ ∈ T [k]. 2

Proof Sketch. The algorithm terminates because all recursive
calls are made on constraint sets with size smaller than the input
constraint set. What the algorithm does is trying to avoid the
computation ofk-restriction systems by testing for safeness. The
correctness follows from the proof of Theorem 4 because the only
property we need to show is that for allΣ′ ∈ part(Σ, k) the chase
terminates, which is ensured by the additional safety checks.2

4. DATA-DEPENDENT TERMINATION
So far, we discussed conditions that guarantee chase termination

for every database instance. In this section, we study the problem
of data-dependent termination, i.e. given a constraint setΣ and a
fixed instanceI, does the chase withΣ terminate onI? By the
best of our knowledge, this problem has not been studied before.
Therefore, we start our discussion with a motivating scenario. Let
us consider the travel agency database in Figure 7, where predi-
catehasAirport contains cities that have an airport andfly (rail )

Sample Schema: hasAirport(c id)
fly(c id1, c id2, dist)
rail(c id1, c id2, dist)

Constraint Set: Σ = {α1, α2, α3}, where

α1 :If there is a flight connection between two cities,
both of them have an airport:
fly(c1, c2, d)→ hasAirport(c1), hasAirport(c2)

α2 :Rail-connections are symmetrical:
rail(c1, c2, d)→ rail(c2, c1, d)

α3 :Each city that is reachable via plane has at
least one outgoing flight scheduled:
fly(c1, c2, d)→ ∃c3, d′fly(c2, c3, d′)

Figure 7: Sample database schema and constraints.

stores flight (rail) connections between cities, including their dis-
tancedist. In addition to the schema, constraintsα1-α3 have been
specified. For instance,α3 might have been added to assert that,
for each city reachable via plane, the schedule is integrated in the
local database. Now consider the CQq1 below.

q1: rf(x2)← rail(c1, x1, y1), fly(x1, x2, y2)

The query selects all cities that can be reached fromc1 through
rail-and-fly. Assume that, in the style of semantic query opti-
mization, we want to optimizeq1 under constraintsΣ using the
chase. We then interpret the body ofq1 as database instance
I := {rail(c1, x1, y1), fly(x1, x2, y2)}, wherec1 is a constant and
thexi, yi labeled nulls. We observe thatα3 does not hold onI,
since there is a flight to cityx2, but no outgoing flight fromx2.
Hence, the chase adds a new tuplet1 := fly(x2, x3, y3) to I,
wherex3, y3 are fresh labeled null values. In the resulting in-
stanceI ′ := I ∪ {t1}, α3 is again violated (this time forx3) and
in subsequent steps the chase addsfly(x3, x4, y4), fly(x4, x5, y5),
fly(x5, x6, y6), . . . . Obviously, it will never terminate.

Arguably, reasonable applications should never risk non-
termination. It is clear, though, that the existence of (even a sin-
gle) non-terminating chase sequences also means that no data-
independent termination condition holds. Hence, based on data-
independent conditions no query at all could be safely chased with
the constraint set from Figure 7 and the benefit of the chase algo-
rithm would be completely lost.2 Despite the fact that there is a
non-terminating chase sequence, however, there might be queries
for which the chase with the constraint set from Figure 7 termi-
nates. Tackling such situations, we propose to investigate data-
dependent chase termination, i.e. to study sufficient termination
guarantees for afixed instancewhen no general termination guaran-
tees apply. We illustrate the benefits of having such guarantees for
queryq2 below, which selects all citiesx2 that can be reached from
c1 via rail-and-fly and the same transport route leads back fromx2

to c1 (wherec1 is a constant and thexi, yi are variables).

q2: rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2),
fly(x2, x1, y2), rail(x1, c1, y1)

Query q2 violates onlyα1. It is easy to verify that the chase
terminates for this query and transformsq2 into q′2:
2Note that, principally, query optimization could also be done with
a bounded portion of the chase result, but in general we do not find
minimal rewritings of the input query in the style of [1]. Therefore,
it is desirable to guarantee chase termination.



q′2: rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2),
fly(x2, x1, y2), rail(x1, c1, y1),
hasAirport(x1), hasAirport(x2)

The resulting queryq′2 satisfies all constraints and is a so-called
universal plan[1]: intuitively, it incorporates all possible ways to
answer the query. As discussed in [1], the universal plan forms the
basis for finding smaller equivalent queries (under the respective
constraints), by choosing any subquery ofq′2 and testing if it can
be chased to a homomorphical copy ofq′2. Using this technique we
can easily show that the following two queries are equivalent toq2.

q′′2 : rffr(x2)← rail(c1, x1, y1), fly(x1, x2, y2),
fly(x2, x1, y2)

q′′′2 : rffr(x2)← hasAirport(x1), rail(c1, x1, y1),
fly(x1, x2, y2), fly(x2, x1, y2)

Instead ofq2 we thus could evaluateq′′2 or q′′′2 , which might
well be more performant: in bothq′′2 and q′′′2 the join with
rail(x1, c1, y1) has been eliminated; moreover, ifhasAirport is
duplicate-free, the additional join ofrail with hasAirportin q′′′2 may
serve as a filter that decreases the size of intermediate results and
speeds up query evaluation. This strategy is calledjoin introduction
in SQO (cf. [14]). Ultimately, the chase forq2 made it possible to
detectq′′2 andq′′′2 , so it would be desirable to have data-dependent
termination guarantees that allow us to chaseq2 (andq′′2 , q′′′2 ). We
will present such conditions in the remainder of this section.

4.1 Static Termination Guarantees
Our first approach to data-dependent chase termination is a static

one. It relies on the observation that the chase will always terminate
on instanceI if the subset of constraints that might fire when chas-
ing I with Σ is contained in some level of theT -hierarchy. We call
a constraintα ∈ Σ (I,Σ)-irrelevantif and only if there is no chase
sequence such thatα can eventually fire, i.e. no chase sequence of

the formI
α1,a1−→ · · ·

α,a
−→ . . . .

LEMMA 2. Let k ≥ 2 and Σ′ ⊆ Σ s.t. Σ \ Σ′ is a set of
(I,Σ)-irrelevant constraints. IfΣ′ ∈ T [k], then the chase withΣ
terminates for instanceI. 2

Proof Sketch. It holds thatΣ′ contains all constraints that may
fire during the execution of the chase starting withI andΣ. IΣ′

is
finite andIΣ′

= IΣ.2

Hence, the crucial point is to effectively compute the set of
(I,Σ)-irrelevant constraints. Unfortunately, it turns out that check-
ing (I,Σ)-irrelevance is an undecidable problem in general:

THEOREM 5. LetΣ be a set of constraints,α ∈ Σ a constraint,
andI an instance. It is undecidable ifα is (I,Σ)-irrelevant. 2

The proof of this theorem is given in the technical report [16].
This result prevents us from computing the minimal set of con-
straints that may fire when chasingI. Still, we can give sufficient
conditions that guarantee(I,Σ)-irrelevance for a constraint. For
this purpose, we use the chase graph.

PROPOSITION 6. Let I be an instance andΣ be a set of con-
straints. Further letαI := ∃x

∧
R(x′)∈I R(x′) where x :=

⋃
R(x′)∈I x

′. If the chase graphG(Σ∪{αI}) contains no directed
path fromαI to β ∈ Σ, thenβ is (I,Σ)-irrelevant. 2

Proof Sketch Assume thatβ is not (I,Σ)-irrelevant. Then,

there is a chase sequenceI
α1,a1−→ I1

α2,a2−→ · · ·
αr,ar−→ Ir

β,a
−→ . . . . If

αI ≺ β we are finished. Otherwise, there must be somenr ∈ [r]
such thatαnr

≺ β (otherwiseβ could not fire). IfαI ≺ αnr
we

are finished. Otherwise, there must be somenr−1 ∈ [nr − 1]
such thatαnr−1

≺ αnr
(otherwiseαnr

could not fire). After
some finite amount of iterations of this process we have that
αI ≺ αn1

≺ ... ≺ αnr
≺ β. Therefore, the chase graph contains

a directed path fromαI to β. 2

Proposition 6 together with Lemma 2 gives us a sufficient data-
dependent condition for chase termination, as illustrated in the fol-
lowing example.

EXAMPLE 12. Consider constraint setΣ from Figure 7 andq2
from the beginning of this section. We set

αI := ∃c1, x1, x2, y1, y2 rail(c1, x1, y1), fly(x1, x2, y2),
fly(x2, x1, y2), rail(x1, c1, y1)

and compute the chase graph

G(Σ ∪ {αI}) := (Σ ∪ {αI}, {(αI , α1), (α3, α3)}).

By Proposition 6,α2 andα3 are(I,Σ)-irrelevant. It holds that
Σ \ {α2, α3} = {α1} is inductively restricted, so we know from
Lemma 2 that the chase ofq2 with Σ terminates. Similar argumen-
tations hold forq′′2 andq′′′2 from the beginning of Section 4. 2

4.2 Monitoring Chase Execution
If the previous data-dependent termination condition does not

apply, we propose to monitor the chase run and abort if tuples are
created that may potentially lead to non-termination, an approach
that is dynamical by nature. We introduce a data structure called
monitor graph, which allows us to track the chase run.

DEFINITION 15. A monitor graph is a tuple (V,E), where
V ⊆ ∆null × 2pos(Σ) andE ⊆ V × Σ× 2pos(Σ) × V . 2

A node in a monitor graph is a tuple(n, π), wheren is a
null value andπ the set of positions in whichn was first cre-
ated (e.g. as null value with the help of some TGD). An edge
(n1, π1, ϕi,Π, n2, π2) between(n1, π1), (n2, π2) is labeled with
the constraintϕi that createdn2 and the set of positionsΠ from
the body ofϕi in which n1 occurred whenn2 was created. The
monitor graph is successively constructed while running the chase,
according to the following definition.

DEFINITION 16. The monitor graphGS := Gr w.r.t. S =

I0
ϕ0,a0−→ . . .

ϕr−1,ar−1

−→ Ir is a monitor graph that is inductively
defined as follows

• G0 = (∅, ∅) is the empty chase segment graph.
• If i < r andϕi is an EGD thenGi+1 := Gi.
• If i < r and ϕi is a TGD thenGi+1 is obtained from

Gi = (Ei, Vi) as follows. If the chase stepIi
ϕi,ai−→

Ii+1 does not introduce any new null values, thenGi+1 :=
Gi. Otherwise,Ei+1 is set as the union ofEi and all
pairs (n, π), where n is a newly introduced null value
and π the set of positions in whichn occurs. Vi+1 :=
Vi ∪ { (n1, π1, ϕi,Π, n2, π2) | (n1, π1) ∈ Ei, (n2, π2) ∈
Ei+1\Ei andΠ is the set of positions inbody(ϕi(ai)) where
n1 occurs}. 2



The size of the monitor graph is polynomial in the length of the
chase sequence plus the length of the constraints’ encoding. We
illustrate the definition of the chase graph by a small example.

EXAMPLE 13. Consider the constraintΣ3 = {α3}, where
α3 := S(x3), Rk(x1, x2, x3) → ∃yRk(y, x1, x2) from Ex-
ample 11. Assume we have an instance of the formI0 :=
{S(a1), S(a2), S(a3), E(a1, a2, a3)}. Then, the only chase se-
quence isI0 → I1 → I2 → I3, whereI1 = I0 ∪ {E(y1, a1, a2)},
I2 = I1 ∪ {E(y2, y1, a1)} I3 = I2 ∪ {E(y3, y2, y1}. As y1 is
not in relationS the chase terminates. The monitor graph contains

the path(y1, {E1})
α3,E1

−→ (y2, {E
1})

α3,E1

−→ (y3, {E
1}) plus an

additional edge(y1, {E1})
α3,E2

−→ (y3, {E
1}). 2

Our next task is to define a necessary criterion for non-
termination on top of the monitor graph. To this end, we introduce
the notion ofk-cyclicity.

DEFINITION 17. LetG = (V,E) be a monitor graph andk ∈
N. G is calledk-cyclic if and only if there are pairwise distinct
edgesv1, ..., vk ∈ E such that

• there is a path inE that sequentially containsv1 to vk and
• for all i ∈ [k − 1]: p2,3,4,6(vi) = p2,3,4,6(vi+1). 2

EXAMPLE 14. Consider the scenario from Example 13. Ac-
cording to the previous definition, the chase graph presented there
is 2-cyclic, but not3-cyclic. 2

We call a chase sequencek-cyclic if its monitor graph isk-cyclic.
A chase sequence may potentially be infinite if some finite prefix is
k-cyclic, for anyk ≥ 1:

LEMMA 3. Letk ∈ N. If there is some infinite chase sequence
S when chasingI0 with Σ, then there is some finite prefix ofS that
is k-cyclic. 2

To avoid non-termination, an application can fix a cycle-depth
k and stop the chase when this limit is exceeded. For every ter-
minating chase sequence there is ak such that the sequence is not
k-cyclic, so ifk is chosen large enough the chase will succeed. We
argue thatk-cyclicity is a natural condition that considers situa-
tions that may cause non-termination, so this approach is preferable
to blindly chasing the instance and stopping after a fixed amount
of chase steps. As justified by the following proposition, applica-
tions can choosek following a pay-as-you-go principle: for larger
k-values the chase succeeds in more cases.

PROPOSITION 7. Fork ∈ N there isΣk, Ik such that (a) both
Σk and the subset of constraints inΣk that are not(Ik,Σk)-
irrelevant are not inductively restricted; (b) every chase sequence
for Ik with Σk is (k − 1)-, but notk-cyclic. 2

5. AN APPLICATION
Answering Conjunctive Queries on knowledge bases has re-

cently gained attraction [5, 6]. Such knowledge bases typically
have a set of constraints associated, which imply additional tuples
that are not materialized in the knowledge base itself. An impor-
tant problem is query answering on the implied knowledge base.
If the chase with these constraints terminates, query answering can
be done by answering it on the chased knowledge. However, if no
termination guarantees for the chase can be made, more sophisti-
cated techniques for query answering are required. This problem
was first considered in [13] and then generalized in [5] and [6]. In

this section we leverage the methods developed in Section 3, show-
ing that they can be used to make the algorithms given in [5, 6]
applicable to broader classes of constraints.

In [5] the class of so-called weakly guarded TGDs was intro-
duced, which make query answering under constrained databases
decidable. We first review this notion. Later, we will generalize
weakly guarded TGDs with our methods.

DEFINITION 18. LetΣ be a set of TGDs. We callΣ weakly
guardedif for every α ∈ Σ there existsgα ∈ body(α) such that
for anyπ ∈ aff(Σ)∩ pos(α) and every variablexπ that occurs in
π it holds thatxπ occurs also ingα. 2

If Σ is weakly guarded, we abbreviate this byWGTGD(Σ). It
was first shown in [5] that ifWGTGD(Σ), then answering Con-
junctive Queries onIΣ is decidable for every database instanceI,
even thoughIΣ may be infinite. Although not stated explicitly, it
follows from the proof of Lemma 27 in [5] that the crucial property
for decidability of query answering of WGTGDs is that in every
chase step there is an atom in the body of the constraint under con-
sideration that contains all labeled nulls. We state this observation
more precisely in the following definition.

DEFINITION 19. LetS be a chase sequence starting with the
instanceI. S has the guarded null property if for every chase step

I ′
α,a
−→ I ′′ in S there is an atom inbody(α)(a) that contains every

element from(a ∩∆null)\dom(I) that occurs inhead(α)(a). 2

With this definition at hand we can generalize Lemma 27 in [5]
to the following version, which follows implicitly from the proof
of Lemma 27 in [5]. We denote bytw(IΣ) the treewidth ofIΣ. A
formal definition of treewidth is given in the technical report [16].

LEMMA 4. If all chase sequences w.r.t.Σ and I have the
guarded null property, thentw(IΣ) ≤ |dom(I)|+max{ ar(R) |
R ∈ R }. 2

Straightforwardly, we obtain the following theorem that is ob-
tained from a result in [7] and the observation that in case that all
chase sequences have the guarded null property, then ifIΣ ∧ Q
andIΣ ∧ ¬Q are satisfiable, they have models of finite treewidth
(becauseIΣ has such a model).

THEOREM 6. There is an algorithm that, for every set of TGDs
Σ, Conjunctive Queryq and database instanceI such that every
chase sequence has the guarded null property, correctly computes
q(IΣ). 2

Unfortunately, it is not known if it is decidable if all chase se-
quences have the guarded null property (givenΣ andI as input),
which justifies the research regarding sufficient syntactic restric-
tions on the constraint set such that all chase sequences with this
constraint have the guarded null property.

The notion of affected positions is a rough syntactic overestima-
tion on where labeled nulls may occur in a constraint body during
the execution of the chase. With the help of2-restriction systems,
we can improve this overestimation. The following definition states
that every TGDα must have an atom in its body that contains all
variables occurring inf(α), wheref is the function from the con-
straint set’s minimal restriction system (cf. Definition 10). Intu-
itively, f(α) defines the set of positions in which null values may
occur during the execution of the chase.

DEFINITION 20. LetΣ be a set of TGDs andG′(Σ) = (G′, f)
its minimal 2-restriction system. We callΣ restrictedly guarded



if for every α ∈ Σ there existsgα ∈ body(α) such that for any
π ∈ f(α) and every variablexπ that occurs inπ it holds thatxπ

occurs also ingα. 2

We call gα a restricted guard and writeRGTGD(Σ) to denote
that constraint setΣ is restrictedly guarded.

EXAMPLE 15. Consider the set of constraintsΣ :=
{α1, α2, α3}, whereα1 := R(x1, x2), S(x1, x2) → ∃yS(x2, y),
α2 := S(x1, x2), S(x3, x1) → R(x2, x1) and α3 :=
T (x1, x2) → ∃yS(y, x2). The set of affected positions is
aff(Σ) = {S1, S2, R1, R2} and thereforeα2 violates the
condition for weak guardedness because there is no atom that
containsx1, x2, x3. However, the constraint set is restrictedly
guarded. The minimal2-restriction system((Σ, E), f) contains
only an edgeE(α1, α2) (and no other edges) and we have that
f(α1) = f(α3) := ∅ andf(α2) := {S2}. The body ofα contains
the atomS(x1, x2) which serves as its restricted guard. 2

Next, we relate restricted guardedness to weak guardedness and
also show the crucial property that restricted guardedness ensures
the guarded null property.

LEMMA 5. LetΣ be a set of TGDs.

• WGTGD(Σ) impliesRGTGD(Σ).
• There is someΣ s.t. RGTGD(Σ), but notWGTGD(Σ).
• For every databaseI it holds that if RGTGD(Σ), then every

chase sequence withΣ andI has the guarded null property.2

Proof Sketch. Let (G′, f) be the minimal2-restriction system
for Σ. We can show by induction on the number of steps needed
to compute it that

⋃
α∈Σ f(α) ⊆ aff(Σ). This implies bullet one.

Bullet two is proven by Example 15. Bullet three follows from the
observation that if a constraintβ is violated during the execution of
the chase, sayJ 6|= β(a), then every(a∩∆null)\dom(I) appears
in some positiongi

β of some restricted guardgβ in the body of
β. From the construction of the minimal2-restriction system it
follows thatgi

β ∈ f(β).2

As our final result, Lemma 5 and Theorem 6 imply:

COROLLARY 1. There is an algorithm that, for every
RGTGD(Σ), Conjunctive Queryq, and database instanceI, cor-
rectly computesq(IΣ). 2

6. CONCLUSIONS
We studied the termination of the well-known chase algorithm.

By the best of our knowledge, this was the first study that – in
addition to the constraints – takes the specific instance (respec-
tively query) into account. As another major contribution, we gen-
eralized all sufficient data-independent termination conditions that
were known so far. Our results on chase termination directly carry
over to applications that rely on the chase, such as [8, 13, 4, 12, 15,
2, 21, 1, 19], and also to the so-called core-chase presented in [9].
As a sample application, we applied our novel concepts in the con-
text of [5], showing that they can be used to identify a larger set of
TGDs for which the methods in that paper apply.

There are some interesting open questions left. First, it is un-
known if the membership test forT [k], which has been shown
to be in CONP, is also coNP-complete. Second, it is left open if⋃

k≥2 T [k] is still decidable. Finally, it is an interesting question if
the positive results on core computation in data exchange settings
from [11] extend to theT -hierarchy.
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