On Chase Termination Beyond Stratification

Michael Meier* Michael Schmidt- Georg Lausen

University of Freiburg
Institute for Computer Science
Georges-Kohler-Allee, Building 051
79110 Freiburg i. Br., Germany

{meierm, mschmidt, lausen}@informatik.uni-freiburg.de

ABSTRACT a set of dependencies [1], thus supporting the search for more effi-

We study the termination problem of the chase algorithm, a central gient querl)_/ %valuation plz?]ns. Beyond SQOr,]the ((:jhase algz]orithm has
tool in various database problems such as the constraint implica- eendapp 1€ Ihn many otder c.ontexts,. such as data exc ange (21,
tion problem, Conjunctive Query optimization, rewriting queries Peer data exchange [2], data integration [15], query answering us-

using views, data exchange, and data integration. The basic idedng VIEWS [12,]' and probabilistic datapase_s [1.9]' .

of the chase is, given a database instance and a set of constraints as | '€ Core idea of the chase algorithm is simple: given a set of
input, to fix constraint violations in the database instance. Itis well- e_pendenmes (al§o called cor?stram’gs)_over a datat_;ase_ sch_ema_and
known that, for an arbitrary set of constraints, the chase does not? f|>§ed database |nstqnge as |npgt, 't. flxes const'ralnt V|olat|pns n
necessarily terminate (in general, it is even undecidable if it does the instance. As a minimal and |_ntumve scenario we cor_15|der a
or not). Addressing this issue, we review the limitations of exist- databas_e graph schema that provides a relzii(sc, dsf, Wh'C.h

ing sufficient termination conditions for the chase and develop new stores dweqtgd edges ”Of_“ nateto n_oc_iedst_; and a node r_elatlon_
techniques that allow us to establish weaker sufficient conditions. 5(n) containing nodes with some distinguished properties, which

In particular, we introduce two novel termination conditions called 2'€ enforced by constraints. These constraints will vary from ex-
safetyandinductive restrictionand use them to define the so-called ample to 9xamp'e and we den_ote nodesSias special npdesn .
T-hierarchyof termination conditions. We then study the interrela- the.followmg. We sketch the idea of the chase algorlthm using
tions of our termination conditions with previous conditions and the Single constraint; := Vz(S(z) — 3yE(z,y)), stating that
complexity of checking our conditions. This analysis leads to an al- each special node ha_s at least one outgoing edge. Now consider
gorithm that checks membership in a level of thénierarchy and (e sample database instarlce= {S(n1), S(n2), E(n1,n2)}. It
accounts for the complexity of termination conditions. As another is easy to see that does not satisfyv, because it does not con-

contribution, we study the problem ofata-dependenthase ter- tain an .outg.oing edg.e for special noﬁg. In its effort to fix the
mination and present sufficient termination conditions w.r.t. fixed constraint violations in the database instance, the chase procedure

instances. They might guarantee termination although the chase'u!d create the tuple, := E(n, z1), wherex, is a fresh null

does not terminate in the general case. As an application of our Valué. The resulti}?g dﬁtabase ir)stamte:éu {tlh} now S‘"’I'tiSﬁeS
techniques beyond those already mentioned, we transfer our result§°n5tra'n@1’ SO tb? ¢ as_ehte:]mlnﬁtes anl re_trlf ai resuft. is th
into the field of query answering over knowledge bases where the . ON€ Major problem with the chase algorithm, however, is that

chase on the underlying database may not terminate, making existt does not terminate in the general case. To give an idea of the

ing algorithms applicable to broader classes of constraints. problem, let us sketch a scenario that induces a non-terminating
chase sequence. We replace the constrairftom before by con-

straintas := Vz(S(z) — JyFE(z,y),S(y)), which asserts that
1. INTRODUCTION each special node links to another special node. Now consider the
The chase procedure is a fundamental algorithm that has beeninstancel from before. Obviously/ does not satisfyv,, because
successfully applied in a variety of database applications [8, 13, 4, special node:, has no outgoing edge. In response, the chase fixes
12,15, 21, 2, 1, 19]. Originally proposed to tackle the implication this constraints violation by adding the two tuplB$n., ;) and
problem for data dependencies [8, 4] and to optimize Conjunctive S(z,) to I, wherez; is a fresh null value. Constraint; is then
Queries (CQs) under data dependencies [3, 13], it has become &ixed w.r.t. valuenz, but now the special node; introduced in the

central tool in Semantic Query Optimization (SQO) [20, 1, 22]. For |ast chase step violates,. In subsequent steps the chase would
instance, the chase can be used to enumerate minimal CQs UndeﬁddE(:pl, x2), S(x2), E(za,23), S(x3), ..., wherezy, 3, ...

*The work of this author was funded by Deutsche Forschungsge- '€ fresh null values. Hence, when given instahesd constraint
meinschaft grant GRK 806/03. az as input, the chase procedure will never terminate.

As shown in [9], in general it is undecidable if the chase termi-

nates or not, even for a fixed instance. Still, addressing the issue of
Permission to copy without fee all or part of this material mged provided non-terminating chase sequences, sewautilcientconditions for
that the copies are not made or distributed for direct commieadiantage, the input constraints have been proposed that guarantee termination
the VLDB copyright notice and the title of the publicatiortéits date appear, on every database instance [21, 9, 22, 18]. The common idea is to
and notice is given that copying is by permission of the VerygeaData giatically assert that there are no positions in the database schema
Base Endoyvment. To copy qtherW|se, or to republ_lsh_, to postenvers h fresh null val iahtb licall tedin. Th
or to redistribute to lists, requires a fee and/or speciahjgsion from the W _ere resh nullva u_e_s m_lg e CYC ically crga edin. The teom
publisher, ACM. sitionrefers to a position in a relational predicate, éifsrc, dst)
VLDB ‘09, August 24-28, 2009, Lyon, France has two positions, namelgrc, denoted ast', anddst, denoted
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/G®/0

asE?. Likewise, we denote bg' the only position in predicat§.

The non-terminating chase sequence discussed before, for instance :

cyclically creates fresh null values in positioRS andS*.

One well-known termination condition iseak acyclicity[21].
Roughly spoken, it implements a global study of the input con-
straints, to detect cyclically connected positions in the constraint
set that introduce some fresh null values. In [9], the latter condition
was generalized to a condition callstlatification showing that it
suffices to assert weak acyclicity locally for subsets of constraints
that might cyclically cause to fire each other. It is important to
notice that the techniques introduced in [21, 9] take only the con-

straints into account and not the database instance. We therefore

call such termination conditiondata-independenttheir result is

either the guarantee that the chase with these constraints terminates

for everydatabase instance or that no predictions can be made.
This paper explores sufficient termination conditions beyond

stratification, which (by the best of our knowledge) is the most gen-

eral termination condition known so far. As one major contribution,

inductively restricted

Figure 1: Chase termination conditions.

we study data-independent chase termination and present condi-
tions that generalize stratification. Complementary, we consider the
novel problem of data-dependent chase termination, where our goal
is to derive chase termination guarantees w.r.t. a fixed instance. In
the remainder of the Introduction we summarize the key concepts

there is at least one special node with an outgoing edge. Clgarly,
fires at most once, so the chase for the constrain{8et52, 33}

and ideas of our analysis and survey the main results.
Data-independent chase terminationAs discussed before, the

source of non-terminating chase sequences are fresh null value

that are cyclically created at runtime in some position(s). We de-

velop new techniques that allow us to statically approximate the set

of positions where null values are created in or copied to during

chase application and use them to develop a hierarchy of sufficient

termination conditions that are strictly more general than stratifica-
tion. Our termination conditions rely on the following ideas.

(1) Identification of harmless null value©ften constraints in-
troduce fresh null values in a certain position, but the (fixed) size of

the database instance implies an upper bound on the number of nulﬁ

values that might be introduced in this position. Consider for ex-
ample the constraints := Vz,y(S(z), E(z,y) — 3zE(z,x)),
which may create fresh null values in positiéH. Wheneveras

is part of a constraint set that does not copy null values to or cre-
ate null values in positios*, the number of fresh null values that
might be introduced in positioR* by a3 is implicitly fixed by the
number of entries in relatiof and constraintvs cannot cause an
infinite cascading of fresh null values in this position.

(2) Supervision of the flow of null valuedle statically ap-
proximate the set of positions where null values might be copied
to during chase application, by a sophisticated study of the in-
terrelations between the individual constraints. Again, we illus-

trate the idea by a small and simple example. Let us consider

the two constraintg; := Vz,y(S(z), E(z,y) — E(y,z)) and
B2 = Vz,y(S(z), E(z,y) — 32E(y, 2z), E(z,z)), which assert

that each special node with an outgoing edge has cycles of length
2 and 3, respectively. We observe that none of these constraints

inserts fresh null values into relatig) so the chase will terminate
as soon agh andj; have been fixed for all special nodes with an

outgoing edge, i.e. after a finite number of steps. Somewhat surpris-

ingly, none of the existing conditions recognizes chase termination

for the above scenario. The reason is that they do not supervise
the flow of null values. Our approach exhibits such an analysis and

would guarantee chase termination for the two constraints above.
(3) Inductive decomposition of the constraint SEtie constraint

set in the previous example is not dangerous, because no fresh nul

values are created in positic!. Let us, in addition tg3; and
(32, consider the constraifls := 3z, yS(x), E(z,y), stating that

S

will still terminate. However3s complicates the analysis because

it “infects” positionS* in the sense that now null values may be cre-
ated in this position. We resolve such situations by an (inductive)
decomposition of the constraint set. When applied to the above ex-
ample, our approach would recognize tBatis not cyclically con-
nected with3; and 32, and decompose the constraint set into the
subsetd 31, B2} and{3s}, which then are inspected recursively.

Based upon the previous ideas we develop two novel sufficient
chase termination condition, callsdfetyandinductive restriction
Figure 1 surveys our main results and relates them to the previ-
ous termination conditions weak acyclicity and stratification. All
lasses in the figure guarantee chase termination in polynomial-
me data complexity and all inclusion relationships are strict. As
can be seen, safety generalizes weak acyclicity and is further gen-
eralized by inductive restriction. On top of inductively restricted
constraints we then define an (infinite) hierarchy of sufficient termi-
nation conditions, which we call-hierarchy. To give an intuition,
for a fixed level in this hierarchy, sa@¥[k], the idea is to study the
flow and creation of fresh null values detailedly for chains of up
to k constraints that might cause to fire each other in sequence.

An algorithm. It can be checked in polynomial time if a con-
straint set is safe; in contrast, the recognition problem for induc-
tively restricted constraints and the classes inThhierarchy is
in coNP. We develop an efficient algorithm that accounts for the
increasing complexity of the recognition problem and can be used
to test membership of a constraint set in some fixed level of the
T-hierarchy. The underlying idea idea of our algorithm is to com-
bine the different sufficient termination conditions, to reduce the
complexity of checking for termination wherever possible.

Data-dependent chase termination.Whenever the input con-
straint set does not fall into some fixed level of tRehierarchy,
no termination guarantees for the general case can be derived. Ar-
guably, reasonable applications should never risk non-termination,
so the chase cannot be safely appliedatyy instancein this
case. Tackling this situation, we study the novel problerdaif-
dependent chase terminatiogiven constraint set. and a fixed in-
stancel, does the chase with terminate on/? We argue that this

etting particularly makes sense in the context of Semantic Query

ptimization, where the query — interpreted as database instance —
is chased: typically, the query is small, so the “data” part can be an-
alyzed efficiently (as opposed to the case where the input is a large

database instance). We propose two complementary approaches: 2. PRELIMINARIES

General mathematical notation. The natural number® do
1. Our first, static scheme relies on the observation that, if the not include0. Forn € N, we denote byn] the set{1,...,n}. For
instance is fixed, we can ignore constraints in the constraint a setM, we denote by its powerset and by | its cardinal-
set that will never fire when chasing the instance, i.e. if ity. Abusing notation we denote Hy| also the length of a logical
general sufficient termination guarantees hold for those con- formula. Given a tuplé = (t1,...,t,) we define the tuple ob-
straints that might fire. As a fundamental result, we show that tained by projecting on positions < i; < -+ < iy < n as
in general it is undecidable if a constraint will never fire on p;, . ;.. (¢) := (tiy, ..., i,)-
a fixed instance. Still, we give sufficientcondition that al- Databases. We fix three pairwise disjoint infinite sets: the set
lows us to identify such constraints in many cases and derive of constants\, the set ofabeled nullsA,,.;;, and the set ofari-
a sufficient data-dependent condition. ablesV. Often we will denote a sequence of variables, constants or
labeled nulls bya if the length of this sequence is understood from
2. Whenever the static approach fails, our second, dynamic ap-the context. Adatabase schenf® is a finite set of relational sym-
proach comes into play: we run the chase and track cyclically bols{Ry, ..., R, }. To every relational symbdk € R we assign a
created fresh null values in a so-called monitor graph. We natural numbeer(R) called itsarity. A database position is a pair
then fix the maximum depth of cycles in the monitor graph (R, i) whereR € R andi € [ar(R)], for short we writeR’, e.g. a
and stop the chase when this limit is exceeded: in such a three-ary predicaté has three positions*, 5%, 3. We say that
case, no termination guarantees can be made. However, wea variable, labeled null, or constanappears e.g. in positioR" if
show that each fixed search depth implicitly defines a class there exists an atori(c, ...). In the rest of the paper, we assume
of constraint-instance pairs for which the chase terminates. the database schema and the set of constants and labeled nulls to
Intuitively, the search depth limit can be seen as a natural be fixed and therefore we will suppress them in our notations. A
condition that allows us to stop the chase when “dangerous” database instancéis a finite set ofR-atoms that contains only el-
situations arise. Under these considerations, our approachements fromA U A,,.,; in its positions. The domain df, dom(I),
adheres to situations that are likely to cause non-termination, is the set of elements frof U A,,,;; that appear if.
so it is preferable to blindly running the chase and aborting ~ Conjunctive Queries. A Conjunctive Query (CQ) is an expres-
after a fixed amount of time, or a fixed number of chase steps. sion of the formans(z) <« (T, z), wherey is a conjunction of
Applications might fix the search depth following a pay-as- relational atomsz, z are sequences of variables and constants, and
you-go principle. Ultimately, the combination of our static it holds that every variable il also occurs inp. If Z is empty we
and dynamic analysis constitutes a pragmatic workaround in call the query boolean. The semantics of such a qgerydatabase
all scenarios where no general (i.e., data-independent) termi- instancel is defined ag(I) := {a@ € A | I |= 3z¢(a, %) }.
nation guarantees can be made. Constraints. Let z,y be sequences of variables. We consider
two types of database constraintsple generating dependencies

Application. As a possible application of our techniques, we (TGDs) andequality generating dependenci@SGDs). A TGD is
review the problem of answering Conjunctive Queries over knowl- 2 first-order sentence := vz (¢(z) — Iy (7,7)) such that (a)
edge bases in the presence of constraints, with a focus on scenarioB0th ¢ ands> are conjunctions of atomic formulas (possibly with
where the chase with the given constraint set does not necessarilyparameters fron), (b) ¢ is not empty, (c)p is possibly empty,
terminate. This problem was first considered in [13] and recently (d) both¢ and¢ do not contain equality atoms and (e) all vari-
generalized in [5, 6]. A key idea in [5] is an overestimation of the ables fromz that occur iny) must also occur i. We denote by
set of positions in which null values might occur, using the concept Pos(a) the set of positions ig. An EGD is a first-order sentence
of so-called affected positions. In particular, affected positions are @ = VZ(¢(Z) — z; = z;), wherex;, z; occur in¢ and ¢ is
used in [5] to define a class of constraints called weakly guarded @& Non-empty conjunction of equality-frée-atoms (possibly with
constraint sets, for which the query answering problem is decid- Parameters fromh). We denote the set of positionsdrby pos().
able. Using our novel techniques, we refine the notion of affected ~From now on we will use the word constraint instead of saying
positions with the help of a so-called restriction system, which is that a logical expression may be a TGD or an EGD. Satisfaction of
a central tool in our study of data-independent chase termination, constraints by databases is defined in the standard first-order man-
e.g. used to define the class of inductively restricted constraints and"€r and is therefore omitted here. We writd= o if a constraint
the T-hierarchy. We show that restriction systems can be fruitfully ¢ is satisfied by andI [~ o otherwise. As a notational con-
applied to generalize the class of weakly guarded constraints to avenience, we will often omit the-quantifier and respective list of
class we call restrictedly guarded constraints, thus making the al- universally quantified variables. For a set of TGDs and EGe
gorithms in [5, 6] applicable to a larger class of constraints. setpos(X) := Ueeyx pos(§). We use the termiody(a) for a con-

Structure. Section 2 presents the necessary background in Strainta as the set of atoms in its premise; analogously we define
databases. Next, Section 3 provides our results on data-independenftead(c). In caseo is a constraint and is a sequence of labeled
chase termination. Its main results are the introduction offthe ~ Nulls and constants, then(@) is the constraint without universal
hierarchy and an algorithm to efficiently test membership of a con- quantifiers but with parametetis We will often abuse this notation
straint set in some level of thE-hierarchy. In Section 4 we then ~ and say that a labeled null occursdiia), meaning that a labeled
motivate the novel problem of data-dependent chase termination. Null is the parameter for some universally quantified variable.in
As a possible application, Section 5 demonstrates the applicability Homomorphisms. A homomorphism from a set of ator, to
of our concepts and methods in the context of query answering on@ Set of atomsd, is a mappingu : AUV — AU Ay, such
knowledge bases where the chase may not terminate. We concluddhat the following conditions hold: (i) if € A, theny(c) = cand
with some closing remarks in Section 6. (i) if R(c1,...,cn) € A1, thenR(u(cr), ..., u(cn)) € Az.

Additional remarks. This paper builds upon the ideas presented ~ Chase. Let 2 be a set of TGDs and EGDs ardan instance,
in the Extended Abstract [17]. Other parts of this paper were infor- epresented as a set of atoms. We say that a ¥@p € ¥ is
mally published as technical reports [22, 18]. applicable to! if there is a homomorphism from body(Vzy)

Schema:S(n), E(src, dst)
Constraint Set: ¥ := {a}, where

a : If 24 is a special node and has some
predecessar, thenz; has itself a predecessor:
S(x2), E(x1,22) — Jy E(y, z1)

Figure 2: A sample constraint.

to I andu cannot be extended to a homomorphigm2 1 from

head(¥Z) to I. In such a case the chase step 2™ J is

defined as follows. We define a homomorphigras follows: (ay
agrees withy, on all universally quantified variables ip, (b) for
every existentially quantified variablgin V¢ we choose a "fresh”
labeled nulln, € A, and define/(y) := n,. We setJ to be
IUv(head(VTy)). We say thatan EGBzy € X is applicable td

if there is @ homomorphism from body(VZy) to I and it holds

thatu(z;) # p(z;). In such a case the chase sfe\rf)fﬂ@ Jis

defined as follows. We setto be
e [except that all occurrences gf(x;) are substituted by
wu(z;) =: a, if u(z;) is alabeled null,
e | except that all occurrences @f(z;) are substituted by
w(z;) =: a, if p(z;) is a labeled null,

e undefined, if bothu(z;) andp(z;) are constants. In this case

we say that the chase fails.

A chase sequence is an exhaustive application of applicable con-

straintsl, “2%° 1 24

terminates and its resulf’ is defined asl,.. The length of this

chase sequencests Note that different orders of application of ap-

..., where we impose no strict order
what constraint must be applied in case several constraints apply.
If this sequence is finite, sal. being its final element, the chase

As a minimalistic motivating example for our study of novel
chase termination conditions let us consider the constrainEset
from Figure 2, which is settled in our graph database schema from
the Introduction. As we shall see later, the chase Witerminates
for every database instance. Still, none of the existing termination
conditions is able to recognize termination for this constraint set,
i.e. X is neither weakly acyclic nor stratified. With the techniques
and tools that we develop within this section, we will be able to
guarantee chase termination fdron every database instance.

3.1 Weak Acyclicity

The notion of weak acyclicity from [10, 21] is the starting
point for our discussion. Informally spoken, the key idea of weak
acyclicity is to statically estimate the flow of data between the
database positions during the execution of the chase. Weak acyclic-
ity asserts that no fresh values are created over and over again.

DEerINITION 1. (see [21]) The dependency graph @epof a
set of constraint& is the directed graph defined as follows. The
set of vertices is the set of positions that occur in some TGD.in
There are two kinds of edges. Add them as follows: for every TGD
vz (6(T) — Jyy(T,y)) € ¥ and for everyr in T that occurs inp
and every occurrence afin ¢ in positionm

o for every occurrence af in ¢ in positionr,, add an edge; —
w9 (if it does not already exist).

e for every existentially quantified variable and for every oc-
currence ofy in a positionr,, add aspecialedger; = o (if
it does not already exist).

A setX of TGDs and EGDs is callegreakly acyclidff dep(X) has
no cycles going through a special edge. m]

Intuitively, normal edges in the dependency graph track the flow
of data between the database positions and special edges cover the
case of newly introduced null values. If the dependency graph con-

plicable co.nstraints may lead to a different chase result. Howevgr, tains no cycles through a special edge it cannot happen that fresh
as proven in [21], two different chase orders lead to homomorphi- i values are cyclically added to the database instance. It has been

cally equivalent results, if these exist. Therefore, we Wiitefor
the result of the chase on an instardcender constraintX. It has

been shown in [8, 4, 13] that” = X. In case that a chase step

shown in [21] that weak acyclicity can be decided in polynomial
time. We illustrate the definition of weak acyclicity by example.

cannot be performed (e.g., because a homomorphism would have ExampLE 1. We depict the dependency graph for the con-
to equate two constants) the chase result is undefined. If we havestraint set> := {1, a2, a3} from Figure 7 in Figure 3. One can

p1,a1

an infinite chase sequendg ?2%° 1, 2% ... we distinguish

observe thak is not weakly acyclic, as witnessed by the self-loop

two cases: (i) if the constraint set contains an EGD, then we also through special edgy® = fly>. |

say that the result is undefined; (ii) if the constraint set consists of
TGDs only then™ := J,., I; is the union of all intermediate

database instances during the application of the chase.

3. DATA-INDEPENDENT TERMINATION

3.2 Stratification

In [9], stratification was set on top of weak acyclicity. The main
idea behind stratification is to decompose the constraint set into in-
dependent subsets that are then separately tested for weak acyclic-
ity. More precisely, the decomposition splits the input constraint

In this section we discuss the sufficient data-independent chaseset into subsets of constraints that may cyclically cause to fire each

termination conditions presented in Figure 1. First, we will review

existing approaches and then introduce the novel clasafeton-

straints, which strictly generalizes weak acyclicity, but is differ-
ent from stratification. Building upon the definition of safety, we
then introducénductively restrictedonstraints as a consequent ad-

other. The termination guarantee for the full constraint set follows
if weak acyclicity holds for each subset in the decomposition.

DEFINITION 2. (see [9]) Given two TGDs or EGDs, 3 € ©
we definea < g iff there exists a relational database instatdice

vancement of our ideas. The latter class strictly subsumes aIItermi-anda’g such that () (£ o(a), (i) T = B(b), (i) T ¢ 7 and
O

nation conditions known so far. Finally, we will define a hierarchy (iv) J B B(b)
of sufficient termination condition on top of inductively restricted

constraints, the so-call€f-hierarchy. Each level'[k] in this hi-
erarchy is strictly contained in the next levElk + 1]. Our novel

sufficient termination conditions vastly extend the applicability of

Intuitively, « < 8 means that ity fires it can causg to fire (in
the case that could not fire before).

the chase algorithm, as they guarantee chase termination for much EXAMPLE 2. (see [9]) Let predicat& store the edge relation

larger classes of constraints than previous conditions.

of a graph and let the constraiat := E(x1,22), E(x2,21) —

— fly1! rail’
hasAirport! .
T~ ﬂTy?O Iail£
¢

rail®”)

Figure 3: Dependency graph forX from Figure 7.

fly3

Fy1,y2F(z1,91), E(y1,y2), E(y2, 1) be given, stating that each
node having a cycle of length also has a cycle of length. A
3-cycle can never be zcycle again, so it holds that £ «. O

DEFINITION 3. (see [9]) The chase gragh(X) = (%, E) of
a set of constraints contains a directed edde, 3) between two
constraints iffa < 4. We call ¥ stratified iff the constraints in
every cycle ofG(X) are weakly acyclic. a

ExampLE 3. Consider the constraint from Example 2. It
holds thata: £ «, so{a} is stratified. As shown in [9], the de-
pendency graph ofa} contains a cycle through a special edge, so
{a} is not weakly acyclic. O

It can be decided in coNP whether a set of constraints is strati-
fied. Like weak acyclicity, stratification guarantees the termination
of the chase in polynomial time data complexity (see [9]), i.e. the

I

R® «— R s!
5

RZ

Figure 4: Left: Dependency graph. Right: Corresponding
propagation graph (it has no edges).

EXAMPLE 4. Let us consider the constraint set := {3}.
Clearly, positionR? is affected because it contains an existentially
quantified variable.S* is not affected becausg is not modified
when chasing with the single constraihtFinally, we observe that
alsoR* is not affected because occurs not only inkR? but also in
S1, which is not an affected position. We conclude that posifidn
is the only affected position in constraint st a

We now argue that for constraigta cascading of fresh labeled
nulls cannot occur, i.e. no fresh labeled null can repeatedly cre-
ate new labeled nulls in positioR? while copying itself to posi-
tion R*. The reason is that cannot be violated with a fresh labeled
nullin R?,i.e. if R(a1, az, as) andS(az) hold, but3y R(a2, y, a1)
does not, them: is never a newly created labeled null. This is due
to the fact thati, also occurs inS*, but S* is not an affected po-
sition. Hence, the chase sequence always terminates. We will later
see that this is not a mere coincidence: the constraint is safe.

Like in the case of weak acyclicity, we define the safety condition

set of constraints is fixed and the number of chase steps is polyno-With the help of the absence of cycles containing special edges in

mial in the number of distinct values in the input database instance.
Stratification strictly generalizes weak acyclicity, thus (ipifis
weakly acyclic, then it is also stratified and (ii) there are constraint
sets that are stratified but not weakly acyclic (cf. Example 3).

3.3 Safety

The basic idea of our first new termination conditisafety is
to estimate the set of positions where labeled nulls may be copied
to and (statically) analyze the data flow only between those posi-
tions. As a useful tool, we borrow the notion of so-calédfkcted
positionsfrom [5], which is an overestimation of the positions in
which a null value that was introduced during the chase may occur.

DEFINITION 4. [5] LetX be a set of TGDs. The set of affected
positions affX) of X is defined inductively as follows. Let be a
position in the head of an € X.

e If an existentially quantified variable appearszinthenn €
aff(x).

o If the same universally quantified variahlé appears both in
position7 and only in affected positions in the body @f then
€ aff(¥). O

Although we borrow this definition from [5], our focus is dif-
ferent. We use affected positions to extend known classes of con-
straints for which the chase terminates, whereas [5] investigates

some graph, called propagation graph.

DEFINITION 5. Given a set of TGDE, the propagation graph
prop(X) := (aff(X), F) is the directed graph defined as follows.
There are two kinds of edges . Add them as follows: for every
TGDVz(¢(Z) — Ty (Z,7)) € X and for everyr in T that occurs
in ¢ and every occurrence afin ¢ in positionmy

e if z occurs only in affected positions ifnthen, for every occur-
rence ofz in ¢ in positionr, add an edge; — w2 (if it does
not already exist).

e if x occurs only in affected positions imnthen, for every exis-
tentially quantified variablg and for every occurrence gfin a
positionrs, add aspecialedger; - m (if it does not already
exist). O

As an improvement over weak acyclicity, in the propagation
graph we do not supervise the whole data flow but only the flow
of labeled nulls that might be introduced at runtime. Consequently,
the graph contains edges only for null values that stem exclusively
from affected positions. We now can easily define the safety con-
dition on top of the propagation graph.

DEFINITION 6. A setX of constraints is calledafeiff prop(X)
has no cycles going through a special edge. m|

EXAMPLE 5. Consider the constrairit from Example 4. Its

query answering in cases the chase may not terminate. Our workgependency graph is depicted in Figure 4 on the left side and its

neither subsumes [5] nor the other way around.

We motivate the safety termination condition using the single
constraint3 := R(x1,z2,z3),S(z2) — JyR(z2,y,z1). The
dependency graph of constraint $8t is shown in Figure 4 (left).

propagation graph on the right side. The latter contains only the
affected positionkR? (and no edges). From Definitions 1 and 6 it
follows thatg is safe, but not weakly acyclic. a

As can be seen, there is a cycle going through a special edge, so the The intuition of safety is that we forbid an unrestricted cascading

set is not weakly acyclic. We next study the affected positiorts in

of null values, i.e. with the help of the propagation graph we impose

a partial order on the affected positions such that any newly intro- for the full constraint set can be guaranteed. Ultimately, we show
duced null value can only be created in a position that has a higherthat inductive restriction (like all the classes discussed before) guar-
rank in that partial order in comparison to null values that may oc- antees chase termination in polynomial-time data complexity. This
cur in the body of a TGD. To state this more precisely, assume section also lays the foundations for thehierarchy (cf. Figure 1),
that a TGD of the fornvz(¢(z) — Jyy (T, 7)) is violated. Then, which will be defined subsequently in Section 3.5. We motivate our
I = ¢(a) andI = Jyy(a,y)) must hold. The safety condition study with a constraint set that is neither safe nor stratified.
ensures that any position in the body that contains a newly created))
labeled null fronw and occurs in the head of the TGD has a strictly ~ EXAMPLE 6. Let predicate Ef,y) store graph edges and predi-
lower rank in our partial order than any position in which some Cate S¢) store some nodes. The constraintsiset {1, o2 } with
element fromy occurs. The main difference compared to weak @1 := S(x), E(z,y) — E(y,z) andaz = S(z), E(z,y) —
acyclicity is that, in safety, we look in a refined way (cf. affected 32E(y, 2), E(z, z) assert that all nodes in S have cycles of length
positions) on positions where labeled nulls can be propagated to. 2 and3, respectively. Itholds that &ff) = {£", £} and itis easy

It is easy to see that, if a constraint $etis safe, then every to verify thatX is neither safe nor stratified. In particular, it we
subset off is safe, too. Furthermore, we note that, given a set of observe that < az andas < a. u
constraints, it can be decided in polynomial time if it is safe or not.
In the following theorem we relate safety to the previous termina-
tion condltlor_1§ weak acycI|C|ty_ and stratification. In particular, the null values might be copied to the head of some constraint. To
theorem clarifies the observation from Example 5, where we could _. . L) -)

. . simplify the definition, we introduce the notion of null-pos:

observe that the propagation graph is a subgraph of the dependency

The first task in our formalization is a refinement of relatian
from [9]. This refinement will helps us to detect if during the chase

graph. This is not a mere coincidence: DEFINITION 7. Let S be a set of constraints] be a fixed
] database instance andC A,,,;;. Then, we define null-pdst, 7)
THEOREM 1. LetX be a set of constraints. as{r € pos(X) | a € A, a occurs in positionr in I}. O

e The graph profX) is a subgraph of d€fx).
e If X is weakly acyclic, then it is also safe.
e There is som& that is safe, but not stratified and vice versa.

Informally spoken, null-pos4, I) is the set of positions id in
which the elements (i.e., labeled nulls) frofnoccur. We are now
ready to define the refinement of relatien

Proof Sketch. (a) The set of vertices from proR) is contained DEFINITION 8. LetX: be a set of constraints afdl C pos(%).

in the set of vertices of déf). In order to add an edge to pr@p) Foralla, 8 € &, we definen <p 3 iff there are tuples, b and a
stronger prerequisites must be fulfilled than in the construction of gatabase instandg such that

dep(X). Therefore prof®) is a subgraph of dég). (b) If dep(X)

does not have a cycle through a special edge, then Bjopannot o 10X D,

have. (c) Leto := S(z2,x3), R(z1, %2, 23) — JyR(z2,y,21) e there isn € b N Anuy in the head of3(b) such that
andg := R(z1,x2,23) — S(z1,z3). It can be seen that < null-pog{n}, Ip) C P, and

andg < a. Together with the fact thdio, 8} is not weakly acyclic o Iy = A(b). O

it follows that {c, 8} is not stratified. However{c, 8} is safe.

Lety := T(z1,x2), T(x2,71) — Iy1,92 T(z1,y1), T (y1,y2), The refinement ok forms the basis for the notion of a so-called
T(y2, 1) (see[9]). It was argued in [9] thdty} is stratified. How- restriction system, which is a strict generalization of the chase

ever, it is not safe because bdtth and7? are affected. Therefore graph introduced in [9] and will serve as a central tool in our work.
we have that def{~v}) = prop({~}) and it was argued in [9] that ~ The two definitions below formalize restriction systems.
it is not weakly acyclic.O .

Like stratification and weak acyclicity, safety guarantees the ter- DEFINITION 9. For any set of position# and a TGDa let
mination of the chase in polynomial time data complexity, i.e. the 2ff-Cl(c, P’) be the set of positions from the head of such that
set of constraints is fixed and the number of chase steps is polyno- e for every universally quantified variablein 7: = occurs in the
mial in the number of distinct values in the input database instance: ~ body ofa only in positions fromP or

e 7 contains an existentially quantified variable. a
THEOREM 2. Let Y be a fixed set of safe constraints. Then,
there exists a polynomia) € N[X] such that for any database DEFINITION 10. A 2-restriction systerhis a pair(G' (%), f),
instance!, the length of every chase sequence is bounded by whereG’ (%) := (X, E) is a directed graph anfl : & — 2P°5(®)
Q(|dom(I)]). O is a function such that

o forall TGDs« and forall(a, 8) € E: aff-cl(a, f(a)) C f(B),
e forall EGDs« and forall(a, 3) € E: f(a) C f(83), and
o foralla, B € X: a <0y B = (o, 8) € E.

We omit the proof of the theorem for space limitations, referring
the interested reader to the technical report [16].

3.4 Inductive Restriction A 2-restriction system isminimal if it is obtained from
In this section we generalize the method that lifts weak acyclic- ((X,0),{(«,0) | o € X}) by a repeated application of the con-
ity to stratification from [9] with the help of so-calle@striction straints from bullets one to three (until all constraints hold) s.t., in

systems The chase graph from [9] will be a special case of such case of the first and second bullet, the imagef f) is extended
a restriction system. With the help of restriction systems we then only by those positions that are required to satisfy the condition.
define a new sufficient termination condition calleductive re-
striction, whose main idea is to decompose a given constraint set
into smaller subsets (in a more refined way than stratification). We
then use the safety condition from before to check the termination |n [18, 17, 22] the notion of &-restriction system was simply
of every subset and, whenever all subsets are safe, the terminatiorcalled restriction system and was defined slightly different there.

We illustrate this definition by two examples. The first one also
shows that restriction systems always exist.

part(X: Set of TDGs and EGDs;: not equal tol) { Compared to stratification, inductive restriction does not increase
1: compute the strongly connected components (as the complexity of the recognition problem:
sets of constraintg), . . ., C, of the minimal
k-restriction system 0}3; LEMMA 1. LetX be a set of constraints. The recognition prob-
22 D—0 lem for inductive restriction is in coNP. O
3: if (n==1) then
4: if (Cy1 # X) then . - .
5: returnpart (C1,k); Proc_)f_ Sketch. We start Wl_th an additional cIawn_: Id? be a set
6: endif of positions andy, 3 constraints. Then, the mappif®, «, 3) +—
7: return{X}; a <p (7 can be computed by an NP-algorithm. The proof of this
8 endif claim proceeds like the proof of Theorem 3 in [9]. It is enough
6: for i=1ton do to consider candidate databases fgrof size at mos{«| + ||,
9: D — DU part(C; k): i.e. unions of homomorphic images of the premisesxadind 3
10: endfor s.t. null values occur only in positions frofi. Because of this
11: returnD; } claim, the minimaR-restriction system of a set of constraints can
be computed by an NP-algorithm (only polynomially many steps

must be performed to reach the fixedpoint). Computiagt (%, 2)

can also be done in non-deterministic polynomial time. To prove
that > is not inductively restricted, guess somé € part(3,2)

and verify that it is not safeld

Figure 5: Algorithm to compute subsets of:.

EXAMPLE 7. Let X a set of constraints. TherG(X), f),

where f(a) := pos({a}) for all o € X is a2-restriction system We give an example for an inductively restricted constraint set,
for constraint seE. o which — as argued in Example 9 — is neither safe nor stratified.

ExAMPLE 8. Consider: from Example 6. The minimal- ExAMPLE 10. Referring back to Example 9, we have seen that
restriction system fo2 is G'(X):=(X,{(az2.a1)}) with f(ay) := the minimal restriction system of’ contains the only strongly
{E'E?} and flx2) = 0; in particular,aq Ajf(a,) o1, a1 7<f<a1) connected componeriv, a2}, which by Example 6 is not safe.
a2, @2 <f(ay) 01, ANdaz Af(ay) a2 hold. Therefore we compute the minimal restriction syster{®f a2 }

and see that it does not contain a cycle. This argumentation proves
Restriction systems are useful tools to define new classes of con-that part(>, 2) = 0, so we conclude that constraint $&tis in-

straints that guarantee chase termination. To give an example, ongjyctively restricted. O

can show that the chase with a constraint’séerminates for ev-

ery database instance if every strongly connected component of its

minimal 2-restriction system is safe. We refer the interested reader As depicted in Figure 1, the inductive restriction condition gen-
to [18] for details, where this class was formally introduced under eralizes both safeness and stratification. The following proposition
the namesafe restriction Note that the constraint s& from Ex- formally states these results and shows that the respective inclusion
ample 6 falls into the class of safely restricted constraints, becauserelationships are proper.

its minimal 2-restriction system (given in Example 8) contains no

strongly connected component. In this work, we skip the formal ~ PROPOSITION 1. The following claims hold.

definition of safe restriction, but instead go one step further and de- o |f % s stratified, then it is also inductively restricted.

fine a termln_atlon condltlor_l c_alledductlve re_strlctlomwhlch fur_- o If S is safe, then it is inductively restricted.

ther generalizes safe restriction. The following example provides a . _ . . .

constraint set that is not safely restricted but, as we shall see later, o There |s_§om§ that is inductively restricted, but neither safe
falls into the class of inductively restricted constraints. nor stratified. D

Proof Sketch. We start with bullet one. It follows directly from
the definition that ifc <p 3, thena < 3. Therefore it holds that
everyY € part(Z,2) is contained in some strongly connected
component of the chase graph®f As every such strongly con-
nected component is weakly acyclic, it is also safe. Consequently,
alsoY’ is safe. Bullet two follows from the fact that every subset
of a safe constraint set is safe. Finally, bullet three is proven by the
constraint set from Examples 9 and @0.

ExamMPLE 9. We extend the constraint set from Example 8
to ¥ := ¥ U {as}, whereas := Jz,yS(z), E(z,y). Then
G’(Zl)::(E/,{(a1,0zz),(az,OL1),(O[3,CZ1),(CZ3,0[2)}) with f(Cn) =
f(az) == {E', E?, S} and f(as) := () is the minimal2-restriction
system. It contains the strongly connected comporentas}.

Note thatY’ is neither safe, nor stratified, nor safely restricted.
Hence, using the sufficient termination conditions discussed so far
no chase termination guarantees can be madg’for m|

The next theorem gives the main result concerning inductive re-

Intuitively, in the example above the constraint “infects” po- striction, showing that it guarantees chase termination in polyno-
sition S* in the 2-restriction system. Still, null values cannot be mial time data Comp|exi’[y. We refer the interested reader to our

repeatedly created if': «; fires at most once, so it does not af- technical report [16] for a formal proof of this theorem.
fect chase termination. Our novel termination condition resolves

such situations by recursively computing the minirgakstriction THEOREM 3. LetX be a fixed set of inductively restricted con-
systems of the strongly connected components. We formalize thisstraints. Then, there exists a polynom@l € N[X] such that
computation in Algorithm 1, calledart (3, 2) and define the class ~ for any database instande the length of every chase sequence
of inductively restricted constraint sets by help of this algorithm. is bounded by (|dom(I)|). O

DEFINITION 11. LetX be a set of constraints. We call in- We conclude with the remark that our motivating constraint set
ductively restrictedff every &’ € part(3, 2) is safe. O from Figure 2 is not inductively restricted: the constraintan

cause itself to fire, so its minima&trestriction system contains an
edge froma to «, which forms a strongly connected component;
further,« is not safe. To show that the chase witlherminates, we
need weaker termination conditions than inductive restriction.

3.5 The T-Hierarchy

This section introduces thHE-hierarchy, which is our main re-

We are now in the position to define tiiehierarchy:

DEFINITION 14. Letk > 2 and X be a set of constraints.
ThenX € Tk iff there isk’ € [k]\{1} such that for every
¥ € part’ (X, k) it holds that>’ is safe.]

We call T'[k] the k-th level of theT-hierarchy. As a corollary
from Proposition 3 we obtain that we can decide whether a set of

sult regarding data-independent chase termination. Its lowest level,constraints is irf’[k] by a coNP-algorithm. We next give an exam-

T'[2], corresponds to inductive restriction. Every level in the hier-

archy is decidable and contains all lower levels. As we shall see,
also the constraint from Figure 2 is a member of some level in this
hierarchy. In the course of this section we leave out some proofs

ple for constraints in th&-hierarchy.

ExamPLE 11. We setXyi1 = {art1}, whereagyr =
S(zk+1), Re(x1, ..., Tks1) — JyRr(y, z1, ..., k). It holds that

for space limitations, referring the interested reader to the technical .0 (a, ..., @) butnot=<.1 9 (o, ...,). So the minimalk +1)-

report [16]. We start by defining thee-ary relation<, p which is
a generalization ok p. The definition naturally extends thep
relation to a fixed numbék of constraints.

DEFINITION 12. Letk > 2, 3 a set of constraints anB C
pos(X). Forallay,...,ar € X, we define<y p (au, ..., o) iff
there are tuplegs, ..., ax and a database instankesuch that

o foralli € [k] it holds thatl, , “" T,
e there isn € @, N A,y in the head ofay(ar) such that

null-pog{n}, Iy) C P,

o Iy ': Ozk(ak), and
e for everyi € [k — 1] there isj € [k]\[¢] such that/;_, &

o;(a@;), whereJo = Io, J—1 "' Jyforj > 1 # i and

Ji = Ji—1.]

Note that<s p corresponds exactly ta p introduced in Defini-

tion 8. It can be shown that, for a fixed valueigfmembership in
this relation is decidable in NP:

PrROPOSITION 2. Let k > 2 be fixed. Then, there exists a
NP-algorithm that decides for every set of positiddsand every
at,...,a € X whether<y p (a1, ..., ax) holds. a

The proof of this proposition proceeds like the proof tkat is

restriction system does not contain any cycle, but the minimnal
restriction system does. Therefdte, € T'[k + 1]. On the other
hand, we observe that the constraint is not safe, so it is not con-
tained inT[k]. Also note that the constraint in Figure 2 exactly
corresponds t&;, so it is contained in level’[3]. O

The following proposition relates the levels of tiiehierarchy
to each other and inductive restriction.

PROPOSITION 4. Letk > 2.
e Y isinductively restricted iffS € T'[2]
o Tk] CT[k+1].
e There is som& such that: € T[k + 1)\T'[k]. O

Proof Sketch. (a) To prove bullet one, note that both definitions
coincide exactly. (b) Bullet two follows by definition. (c) For
bullet three we refer back to Example 1.

The next result is our main contribution concerning data-
independent chase termination. It states that, for a fixed valig of
membership ifl'[k] guarantees polynomial time data complexity
for the chase. Again, the technical proof can be found in [16].

THEOREM 4. Letk > 2 andX € T[k] be a fixed set of con-
straints. Then, there exists a polynomé@l € N[X] such that

decidable in NP time (cf. Lemma 1). We refer the interested reader for any database instande the length of every chase sequence

to [16] for more details. We next use the relatien, p to define
k-restriction systems, which naturally generalize Pheestriction
systems defined over relatienp (cf. Definition 10).

DEFINITION 13. Letk € N>1. A k-restriction systen@, ()
is a pair(G’, f), whereG’ = (X, E) isagraph andf : © —
2P°s(¥) s a function such that

e forall TGDs« and forall(a, 3) € E: aff-cl(«, f(a)) C f(8),

o forall EGDsa and forall(a, 8) € E: f(a) C f(5), and

e forall ai,..,ap € 3 (a1, ...,ar) then
(01, a2),..., (-1, 1) € E.

A k-restriction system isminimal if it is obtained from
((Z,0),{(e,0) | « € }) by a repeated application of the con-
straints from bullets one to three (until all constraints hold) such
that, in case of the first and second bullet, the imag¢ (@f) is

=k, f(a1)

is bounded byQ(|dom(I)]). O
3.6 An Algorithmic Approach

This section aims to develop an efficient algorithm to test mem-
bership inT[k]. We have seen before that the computatior-of
restriction systems is costly because we need NP time to compute
the relation<y, p. For this reason, we present an algorithm that
avoids the computation df-restriction systems where possible. It
relies on the idea that (the weaker condition) safety can be checked
in polynomial time (cf. Section 3.3). Before computing the
restriction system, we always check for safety and, whenever safety
holds, we conclude that the chase for the respective constraint set
terminates and omit thie-restriction system computation.

To give a simple example, consider the constraint from Exam-
ple 5, which has been shown to be safe, and assume we want to test
if it falls into some (fixed) levek of the T-hierarchy. Computing

extended only by those positions that are required to satisfy the a g-restriction system is superfluous, because membersHifpkh

condition. In case the third bullet is appliefl,is extended. O

Note that fork = 2 this definition corresponds exactly to the
definition of 2-restriction systems used to define inductive restric-
tion. Like 2-restriction systems, minimal-restriction systems are
unique and can be computed by a coNP-algorithm:

PropPoOSITION 3. Letk > 2 be fixed and_ a set of constraints.
The minimalk-restriction system foE is unique and can be com-
puted by a NP-algorithm. O

trivially follows from the satisfaction of the safety condition.

In general, the situation is, of course, not that simple. Con-
sider for instance the constraint s& from Example 9 ex-
tended by{as,as}, whereas = E(z1,z2) — T(x1,22),
as = T(z1,z2) — T(x2,z1), and call the resulting con-
straint set¥”. Assume we want to show thaf” is in-
ductively restricted (i.e., inT'[2]). It follows from Exam-
ple 6 that” is not safe. In direct correspondence to Ex-
ample 9 it follows that the minimaR-restriction system for

sub(X: Set of TDGs and EGD4;: not equal tal) { Sample Schema: hasAirpor{c.id)
1: if (X issafe)then fly(c.id1, c_id2, dist)
2: return true; rail (c_id1, c_id2, dist)
3: endif Constraint Set: ¥ = { }, where
4: compute the strongly connected components (as i a2 asg,
zertssct)rigggﬁtgagz?nl&f » Cn Of the minimal a :If there is a flight connection between two cities,
5 if- (n==0) thgn ' both of them have an airport:
6 return true: fly(ci, c2, d) — hasAirpor{ci), hasAirpor{cz)
7: endif az :Rail-connections are symmetrical:
8: if (n == 1) then rail (01, c2, d) — rail (027 c, d)
9% if (C #) then . as :Each city that is reachable via plane has at
12: endif returncheckC1,k); least one outgoing flight scheduled:
: fly(ci, ca,d Jes, d'fly(ca, cs, d’
12: return false; yler, e2,d) = Fes ylez, s, d)
13: endif
14: for i=1ton do Figure 7: Sample database schema and constraints.
15: if (not checkC;,k)) then
165 . return false; stores flight (rail) connections between cities, including their dis-
17: endif . . -
) tancedist In addition to the schema, constraints-os have been
18: endfor ified . iaht h b dded h
19' return true} specified. For instancey; might have been added to assert that,
’ ’ for each city reachable via plane, the schedule is integrated in the
check=: Set of TDGs and EGDg;: not equal tol) { local database. Now consider the @Qbelow.
1: for ¢ = k downto 2 do . ;
s rail My(z1, 2,
2: if (sub(X,4)) then return true; qri MMlea) —rail(er, 1, 40), fiy(@r, 22, 2)
3. endfor The query selects all cities that can be reached feorinrough
4: return false} rail-and-fly. Assume that, in the style of semantic query opti-
mization, we want to optimizg; under constraint& using the
Figure 6: Algorithm to decide membership in 7. chase. ‘We then interpret the body @f as o_Iatabase instance
I := {rail(c1, z1,y1), fly(z1, x2, y2) }, wherec, is a constant and
. the x;, y; labeled nulls. We observe that does not hold onl,
7 is G(Z"):=(E" {(an, a2), (o2 1), (a3,00), (@3 ,02) (001 ,ua), since there is a flight to city., but no outgoing flight frome.
(av2,a4),(4,05),(a5,05) }), Where fe) = f(ag) = {EI,EQ,_SI}, Hence, the chase adds a new tuple:= fly(z2,x3,y3) to I,
flas) := 0, f(as) = {E'E’} and fas) := {T',T?}. This 2- wherezs, y3 are fresh labeled null values. In the resulting in-
restriction system contains the strongly connected componentsstancel’ := I U {t1}, a3 is again violated (this time fars) and
{a1,a2} and{as}. For {a1,a2} we must compute its minimal in subsequent steps the chase aititiss, 4, ya), fly(z4, z5,ys5),
2-restriction system because it is not safe, butfag} we can fly(zs, z6,vs), Obviously, it will never terminate.
avoid this complexity because we know tl_mtis safe (i_ndeed itis Arguably, reasonable applications should never risk non-
a full TGD) and therefore the chase terminates. We implement the termination. It is clear, though, that the existence of (even a sin-
scheme described above in algoritoiveck provided in Figure 6. gle) non-terminating chase sequences also means that no data-

independent termination condition holds. Hence, based on data-
independent conditions no query at all could be safely chased with
the constraint set from Figure 7 and the benefit of the chase algo-
rithm would be completely lost. Despite the fact that there is a
Proof Sketch. The algorithm terminates because all recursive non-terminating chase sequence, however, there might be queries
calls are made on constraint sets with size smaller than the inputfor which the chase with the constraint set from Figure 7 termi-
constraint set. What the algorithm does is trying to avoid the nates. Tackling such situations, we propose to investigate data-
computation ofk-restriction systems by testing for safeness. The dependent chase termination, i.e. to study sufficient termination
correctness follows from the proof of Theorem 4 because the only guarantees for fixed instancevhen no general termination guaran-
property we need to show is that for &Il € part(%, k) the chase tees apply. We illustrate the benefits of having such guarantees for
terminates, which is ensured by the additional safety checks. queryg: below, which selects all cities, that can be reached from
c1 via rail-and-fly and the same transport route leads back from
to c1 (wherec; is a constant and the;, y; are variables).

PROPOSITION 5. Algorithm check terminates and correctly
decides membership in tHE-hierarchy, i.e.check(Z, k) returns
true if and only if¥ € T'[k]. O

4. DATA-DEPENDENT TERMINATION . .
g2 1ffr (z2) « rail (c1, z1, 1), fly(z1, 22, y2),

So far, we discussed conditions that guarantee chase termination fly(z2, 21, y2), rail (21, c1, 1)
for every database instance. In this section, we study the problem
of data-dependent termination, i.e. given a constraintsahd a Query g2 violates onlya;. It is easy to verify that the chase
fixedinstancel, does the chase with terminate on/? By the terminates for this query and transformsinto ¢5:

best of our knowledge, tr_us pro_blem_has not 'beefn studied _before. 2Note that, principally, query optimization could also be done with
TherefoTe, we start our discussion with a_mot!vatlng scenario. Let_ a bounded portion of the chase result, but in general we do not find
us consider the travel agency database in Figure 7, where predi-minimal rewritings of the input query in the style of [1]. Therefore,
cate hasAirport contains cities that have an airport afty (rail) itis desirable to guarantee chase termination.

ga: rffr (z2) rail (e, z1, 1), fly(z1, 22, y2),
ﬂy(iﬂg, T1, y2)7 rail ('T17 C1, yl):
hasAirpor{z1), hasAirpor{zz)

Proof Sketch Assume thats is not (I, ¥)-irrelevant. Then,
Q1,a1 2,az

there is a chase sequent8-% 1, “2% ... % 1 B2
ar < 8 we are finished. Otherwise, there must be semec [r]

) o)) such that,,. < g (otherwises could not fire). Ifa; < o, we
The resulting query; satisfies all constraints and is a so-called gre finished. Otherwise, there must be some; [ne — 1]
universal plan[1]: intuitively, it incorporates all possible waysto gych thata,, . < an, (otherwisea,, could not fire). After
answer the query. As discussed in [1], the universal plan forms the gome finite amount of iterations of this process we have that
basis for finding smaller equivalent queries (under the respective ., < Ony = ... < am, < f3. Therefore, the chase graph contains
constraints), by choosing any subquerygbfand testing if it can a directed path fl’OI’ﬂz[TtO 3. O
be chased to a homomorphical copy;bf Using this technique we

can easily show that the following two queries are equivalen to Proposition 6 together with Lemma 2 gives us a sufficient data-

.) dependent condition for chase termination, as illustrated in the fol-

gzt Mfr (z2) < rail (c1, z1,y1), fly(21, 22, 92), lowing example.
ﬂy('r27 Z1, yQ)

rffr (z2) < hasAirpor{z1), rail (c1, 1, 1),

fiy(z1, z2,y2), fly(z2, 21,y2)

s

q2 - EXAMPLE 12. Consider constraint s&tfrom Figure 7 andy,

from the beginning of this section. We set
Instead ofg, we thus could evaluatey or ¢5’, which might
well be more performant: in botlgy and ¢5’ the join with
rail (z1, c1,y1) has been eliminated; moreover, hsAirport is
duplicate-free, the additional join ddil with hasAirportin ¢5’ may and compute the chase graph
serve as a filter that decreases the size of intermediate results and
speeds up query evaluation. This strategy is catledintroduction
in SQO (cf. [14]). Ultimately, the chase fgz made it possible to
detectg’ andgy’, so it would be desirable to have data-dependent
termination guarantees that allow us to chaséandq’, ¢5’). We

will present such conditions in the remainder of this section.

ag = 301,x1,x2,y1,y2 rail(clvxhyl):ﬂy(ajhx27y2)7
ﬂy(‘r27m17y2)v I’ai|(a:1,cl,y1)

GEU{ar}) = (X U{ar}, {(ar, a1), (a3, as)}).

By Proposition 62 andas are (1, X)-irrelevant. It holds that
3\ {a2,a3} = {aa} is inductively restricted, so we know from
Lemma 2 that the chase gf with X terminates. Similar argumen-
tations hold forgy andgs’ from the beginning of Section 4. O
4.1 Static Termination Guarantees

Ouir first approach to data-dependent chase termination is a static 2 IVIOI‘lItOI’Ing Chase Execution
one. Itrelies on the observation that the chase will always terminate If the previous data-dependent termination condition does not
on instancd if the subset of constraints that might fire when chas- apply, we propose to monitor the chase run and abort if tuples are
ing I with is contained in some level of te-hierarchy. We call ~ created that may potentially lead to non-termination, an approach
a constrainty € X (I, X)-irrelevantif and only if there is no chase that is dynamical by nature. We introduce a data structure called
sequence such thatcan eventually fire, i.e. no chase sequence of monitor graph which allows us to track the chase run.

the form7 "%

a,a

DEFINITION 15. A monitor graphis a tuple (V, E), where

posx) posx)
LEMMA 2. Letk > 2andY’ C T st X\ Y is a set of VS Anun x 2 andECV x Ex2 xV. =

(I, X)-irrelevant constraints. [E’ € T'[k], then the chase with

y . A node in a monitor graph is a tupl , Wheren is a
terminates for instanck O grap plen,) n

null value andn the set of positions in which was first cre-
ated (e.g. as null value with the help of some TGD). An edge
(n1, 71, ¢i, I, na, m2) between(ni, 1), (n2, m2) is labeled with

the constraintp; that createch, and the set of positiond from

the body ofp; in which n; occurred whem, was created. The
monitor graph is successively constructed while running the chase,
according to the following definition.

Proof Sketch. It holds thatX:’ contains all constraints that may
fire during the execution of the chase starting witand .. ™is
finite andI™ = I>.0

Hence, the crucial point is to effectively compute the set of
(I, X)-irrelevant constraints. Unfortunately, it turns out that check-

ing (I, X)-irrelevance is an undecidable problem in general: = G, wrt. § =

I. is a monitor graph that is inductively

DEFINITION 16. The monitor graplts

©$0,a0 Pr—1,ar_1
0 — ... —

defined as follows

e Go = (0,0) is the empty chase segment graph.

e If i < randy; is an EGD therG;4+1 := G;.

e lf i < r andy; is a TGD thenG,+; is obtained from
G:; = (E;,V;) as follows. If the chase step; ““%
I;+1 does not introduce any new null values, th@n., :=
G;. Otherwise, F;+1 is set as the union ofZ; and all
pairs (n,m), where n is a newly introduced null value
and 7 the set of positions in whiclm occurs. Viy; =

THEOREM 5. LetX be a set of constraints, € ¥ a constraint,
andI an instance. Itis undecidabledfis (I, X)-irrelevant. O

The proof of this theorem is given in the technical report [16].
This result prevents us from computing the minimal set of con-
straints that may fire when chasitig Still, we can give sufficient
conditions that guaranted, X)-irrelevance for a constraint. For
this purpose, we use the chase graph.

PROPOSITION 6. Let be an instance and be a set of con-

straints. Further lete; = 3T A\pgc; R(T') wherez =
Ur@er 7', If the chase grapt¥(X U {as}) contains no directed
path froma; to 8 € %, theng is (I, X)-irrelevant. |

Vi U { (n1, 71,9, 1, n2,m2) | (n1,m) € Eji,(n2,m) €
E; 11\ F; andll is the set of positions ibody(y;(a;)) where
ny OCCUrs}. O

The size of the monitor graph is polynomial in the length of the

this section we leverage the methods developed in Section 3, show-

chase sequence plus the length of the constraints’ encoding. Weing that they can be used to make the algorithms given in [5, 6]

illustrate the definition of the chase graph by a small example.

ExampLE 13. Consider the constraits = {as}, where
ag = S(z3), Ri(z1,x2,23) — JyRe(y,x1,z2) from Ex-
ample 11. Assume we have an instance of the fdgn:=
{S(a1), S(a2),S(as), E(a1,a2,as)}. Then, the only chase se-
quence iy — Iy — I — I3, wherel; = o U{E(y1, a1,a2)},
I, =1 U {E(yz,yl,al)} Is = I U {E(yg,yz,yl}. As Y1 is
not in relationS the chase terminates. The monitor graph contains

the path(y:, {E'}) “25 (2, {E"}) "5 (ys, {E"}) plus an
additional edgéy:, {E'}) “2Z (ys, {E'}). O

Our next task is to define a necessary criterion for non-
termination on top of the monitor graph. To this end, we introduce
the notion ofk-cyclicity.

DEFINITION 17. LetG = (V, E) be a monitor graph ankl €
N. G is calledk-cyclic if and only if there are pairwise distinct
edgews, ..., vx € E such that

e there is a path iy that sequentially contains to v, and
e foralli e [k — 1]: p2,3,4,6(v¢) = p273,4,6(vi+1).

EXAMPLE 14. Consider the scenario from Example 13. Ac-

applicable to broader classes of constraints.

In [5] the class of so-called weakly guarded TGDs was intro-
duced, which make query answering under constrained databases
decidable. We first review this notion. Later, we will generalize
weakly guarded TGDs with our methods.

DEFINITION 18. LetX be a set of TGDs. We call weakly
guardedif for every a € X there existy, € body(«) such that
foranyw € af f(X) Npos(a) and every variable . that occurs in
« it holds thatz occurs also iry. m|

If ¥ is weakly guarded, we abbreviate this W\GTGO(X). It
was first shown in [5] that iIWGTGOX), then answering Con-
junctive Queries o * is decidable for every database instadice
even though’® may be infinite. Although not stated explicitly, it
follows from the proof of Lemma 27 in [5] that the crucial property
for decidability of query answering of WGTGDs is that in every
chase step there is an atom in the body of the constraint under con-
sideration that contains all labeled nulls. We state this observation
more precisely in the following definition.

DEFINITION 19. LetS be a chase sequence starting with the
instancel. S has the guarded null property if for every chase step

I' 2% 1 in S there is an atom ibody(a) (@) that contains every

cording to the previous definition, the chase graph presented thereelement from(@ N A,,.u)\dom(I) that occurs ithead(a)(a). O

is 2-cyclic, but not3-cyclic. a
We call a chase sequenkeyclicif its monitor graph isk-cyclic.

A chase sequence may potentially be infinite if some finite prefix is

k-cyclic, for anyk > 1:

LEMMA 3. Letk € N. If there is some infinite chase sequence
S when chasindy with X, then there is some finite prefix Sfthat
is k-cyclic. O

To avoid non-termination, an application can fix a cycle-depth

k and stop the chase when this limit is exceeded. For every ter-

minating chase sequence there & such that the sequence is not

With this definition at hand we can generalize Lemma 27 in [5]
to the following version, which follows implicitly from the proof
of Lemma 27 in [5]. We denote byw(I*) the treewidth off>. A
formal definition of treewidth is given in the technical report [16].

LEmMA 4. If all chase sequences w.r.&2 and I have the
guarded null property, theno(I*) < |dom(I)| + maz{ ar(R) |
ReR}. O

Straightforwardly, we obtain the following theorem that is ob-
tained from a result in [7] and the observation that in case that all
chase sequences have the guarded null property, then if Q

k-cyclic, so ifk is chosen large enough the chase will succeed. We andI> A —Q are satisfiable, they have models of finite treewidth

argue thatk-cyclicity is a natural condition that considers situa-

(becausd® has such a model).

tions that may cause non-termination, so this approach is preferable] .

to blindly chasing the instance and stopping after a fixed amount _ THEOREM 6. There is an algorithm that, for every set of TGDs

of chase steps. As justified by the following proposition, applica- > Conjunctive Query; and database instandesuch that every
tions can choosg following a pay-as-you-go principle: for larger chaEse sequence has the guarded null property, correctly computes

k-values the chase succeeds in more cases. I=). O

PROPOSITION 7. Fork € N there isSy, I, such that (a) both Unfortunately, it is not known if it is decidable if all chase se-
%, and the subset of constraints ¥y, that are not(Ix, $x)- qguences have the guarded null property (gi¥eand I as input),

irrelevant are not inductively restricted; (b) every chase sequence Which justifies the research regarding sufficient syntactic restric-
for I, with 3, is (k — 1)-, but notk-cyclic. O tions on the constraint set such that all chase sequences with this

constraint have the guarded null property.
The notion of affected positions is a rough syntactic overestima-
5. AN APPLICATION tion on where labeled nuII)Is may occur in agcor):straint body during
Answering Conjunctive Queries on knowledge bases has re- the execution of the chase. With the helpefestriction systems,
cently gained attraction [5, 6]. Such knowledge bases typically we can improve this overestimation. The following definition states
have a set of constraints associated, which imply additional tuples that every TGDa must have an atom in its body that contains all
that are not materialized in the knowledge base itself. Animpor- variables occurring irf (), wheref is the function from the con-
tant problem is query answering on the implied knowledge base. straint set's minimal restriction system (cf. Definition 10). Intu-

If the chase with these constraints terminates, query answering cantively, f(«) defines the set of positions in which null values may
be done by answering it on the chased knowledge. However, if no gccur during the execution of the chase.

termination guarantees for the chase can be made, more sophisti-
cated techniques for query answering are required. This problem DEFINITION 20. LetY be asetof TGDs and’(2) = (G, f)
was first considered in [13] and then generalized in [5] and [6]. In its minimal 2-restriction system. We calll restrictedly guarded

if for every a € X there existgy, € body(a) such thatforany 7. REFERENCES

™ € f(a) and every variable:, that occurs inr it holds thatz - [1] A. Deutsch, L. Popa and V. Tannen. Query Reformulation
occurs also iya. O with ConstraintsSIGMOD Record35(1):65-73, 2006.
[2] A. Fuxman, P.G. Kolaitis, R.J. Miller and W. Tan. Peer Data

We call g, a restricted guard and writfRGTGOX) to denote ExchangeACM Trans. Database Sys81(4):1454-1498,

that constraint seX is restrictedly guarded.

2006.

EXAMPLE 15. Consider the set of constraints - [3] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimization
{on, 2, s}, whereay := R(x1,22), S(z1,32) — JyS(za,y), of a Class of Relational Expressio#sCM Trans. Database
ar = S(w1,x2),S(xs,w1) — Rl(za,z1) and az = Syst, 4(4):435-454, 1979.

T(x1,m2) — JyS(y,m2). The set of affected positions is [4] C. Beeriand M. Y. Vardi. A Proof Procedure for Data

aff(x) = {S',S% R',R?’} and thereforea, violates the Dependenciesl. ACM 31(4):718-741, 1984.

condition for weak guardedness because there is no atom that [5] A. Cali, G. Gottlob, and M. Kifer. Taming the Infinite Chase:
containszy, z2,x3. However, the constraint set is restrictedly Query Answering under Expressive Relational Constraints.
guarded. The minimak-restriction systen{((3, E), f) contains In Description Logicsvolume 353, 2008.

only an edgeE(a1, a2) (and no other edges) and we have that [6] A. Cali, G. Gottlob, and T. Lukasiewicz. Datalog+-: A

fla1) = f(as) := Dandf(az) := {S?}. The body ofx contains Unified Approach to Ontologies and Integrity Constraints. In
the atomS(x1, z2) which serves as its restricted guard. a ICDT, pages 14-30, 2009.

) [7] B. Courcelle. The Monadic Second-order Logic of Graphs I
Next, we relate restricted guardedness to weak guardedness and™ * |xfinite Graphs of Bounded WidtiMathematical Systems

also show the crucial property that restricted guardedness ensures Theory 21(4):187—221, 1989.

the guarded null property. [8] D. Maier, A. Mendelzon and Y. Sagiv. Testing Implications

of Data Dependencies. BIGMOD, pages 152-152, 1979.
[9] A. Deutsch, A. Nash, and J. Remmel. The Chase Revisited.

LEMMA 5. LetX be a set of TGDs.

e WGTGOY) impliesRGTGOY). In PODS pages 149-158, 2008.
e There is some s.t. RGTGI(X), but notWGTGOX). [10] A. Deutsch and V. Tannen. Reformulation of XML Queries
e For every databasé it holds that ifRGTGOX), then every and Constraints. [iCDT, pages 225-241, 2003.

chase sequence withand/ has the guarded null property [11] G. Gottlob and A. Nash. Efficient Core Computation in Data

o o ExchangeJ. ACM 55(2), 2008.
Proof Sketch. Let (G’ f) be the minimab-restriction system [12] A. Y. Halevy. Answering Queries Using Views: A Survey.
for 3. We can show by induction on the number of steps needed VLDB Journa) 10(4):270-294, 2001.
to compute it that), ., f(a) C aff(¥). This implies bulletone. [13] p. s Johnson and A. Klug. Testing Containment of
Bullet two is proven by Example 15. Bullet three follows from the Conjunctive Queries under Functional and Inclusion
observation that if a constraiptis violated during the execution of Dependencies. IRODS pages 164-169, 1982.
the chase, say = 5(a), then everyan Anuu)\dom(I) @ppears (147 3. 3. King. QUIST: A System for Semantic Query

in some positiong; of some restricted guargs in the body of Optimization in Relational Databases DB, pages
. From the construction of the minimatrestriction system it 510-517. 1981.

follows thatg;; € f(5).0 [15] M. Lenzerini. Data Integration: A Theoretical Perspective. In

PODS pages 233-246, 2002.

As our final result, Lemma 5 and Theorem 6 imply: [16] M. Meier, M. Schmidt, and G. Lausen. On Chase

COROLLARY 1. There is an algorithm that, for every Termination Beyond Stratification, Technical Rep@tRR
RGTGOY), Conjunctive Query, and database instande cor- abs/0906.4228, 20_09-
rectly computes(1*). O [17] M. Meier, M. Schmidt, and G. Lausen. Stop the Chase,
Extended AbstracProc. Alberto Mendelzon International
6. CONCLUSIONS Workshop on Foundations of Data Managem&®09.

[18] M. Meier, M. Schmidt, and G. Lausen. Stop the Chase,
Technical ReportCoRR abs/0901.3984, 2009.

[19] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs.
Eager Query Plans for Tuple-Independent Probabilistic
Databases. IICDE, pages 640-651, 2009.

[20] L. Popa and V. Tannen. An Equational Chase for

We studied the termination of the well-known chase algorithm.
By the best of our knowledge, this was the first study that — in
addition to the constraints — takes the specific instance (respec-
tively query) into account. As another major contribution, we gen-
eralized all sufficient data-independent termination conditions that
were known so far. Our results on chase termination directly carry .) . . .
over to applications that rely on the chase, such as [8, 13, 4, 12, 15, Path-Conjunctive Queries, Constraints, and ViewsODT,
2,21, 1, 19], and also to the so-called core-chase presented in [9]. pages ,39_57’ 1999,‘, .

As a sample application, we applied our novel concepts in the con- [21] R. Fagin, P.G. Kolaitis, R.J. Miller and L. Popa. Data

text of [5], showing that they can be used to identify a larger set of Exchange: Semantics and Query Answerifigeor. Comput.
TGDs for which the methods in that paper apply. Sci, 336(1):89-124, 2005. _

There are some interesting open questions left. First, it is un- [22] M. Schmidt, M. Meier, and G. Lausen. Foundations of
known if the membership test faF[k], which has been shown SPARQL Query Optimization, Technical Repd@®oRR
to be incoNP, is also coNP-complete. Second, it is left open if abs/0812.3788, 2008.

Uw>o T'[K] is still decidable. Finally, it is an interesting question if
the positive results on core computation in data exchange settings
from [11] extend to th& -hierarchy.

