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ABSTRACT
In a typical commercial multi-core processor, the last level
cache (LLC) is shared by two or more cores. Existing studies
have shown that the shared LLC is beneficial to concurrent
query processes with commonly shared data sets. However,
the shared LLC can also be a performance bottleneck to con-
current queries, each of which has private data structures,
such as a hash table for the widely used hash join opera-
tor, causing serious cache conflicts. We show that cache con-
flicts on multi-core processors can significantly degrade over-
all database performance. In this paper, we propose a hybrid
system method called MCC-DB for accelerating executions of
warehouse-style queries, which relies on the DBMS knowledge
of data access patterns to minimize LLC conflicts in multi-
core systems through an enhanced OS facility of cache parti-
tioning. MCC-DB consists of three components: (1) a cache-
aware query optimizer carefully selects query plans in order to
balance the numbers of cache-sensitive and cache-insensitive
plans; (2) a query execution scheduler makes decisions to co-
run queries with an objective of minimizing LLC conflicts;
and (3) an enhanced OS kernel facility partitions the shared
LLC according to each query’s cache capacity need and lo-
cality strength. We have implemented MCC-DB by patching
the three components in PostgreSQL and Linux kernel. Our
intensive measurements on an Intel multi-core system with
warehouse-style queries show that MCC-DB can reduce query
execution times by up to 33%.

1. INTRODUCTION
Driven by the Moore’s Law, computer architecture has en-

tered a new era of multi-core structures [1]. Multi-core pro-
cessors are being widely utilized by many applications in-
cluding DBMSs, and are becoming standard computing plat-
forms. On such a processor, there are two or more computing
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cores that share an on-die last level cache (LLC), such as the
Intel Core i7 and the Sun UltraSPARC T2 processors. In the
meanwhile, the low-price of DRAM and new 64-bit memory
address space make it possible to equip computers with very
large main memory. These hardware advancements bring
new challenges to the design and implementation of DBMSs
since the performance bottleneck has been shifted from the
slow I/O access speed to high memory access latency [2] [3].
This performance bottleneck shifting in computer systems for
data-intensive applications, such as a DBMS, makes the LLC
a critical component to improve both memory and overall
performance. In this paper, we investigate several important
issues on effective utilization of LLCs in multi-core processors
for warehouse-style queries that are represented by TPC-H1

and the Star Schema Benchmark (SSB) [23].

1.1 Cache Contention and Its Challenges
The shared LLC in multi-core processors is a double-edged

sword for DBMS transactions. A favorable consequence is
described as follows. When concurrent query execution pro-
cesses access common tuples and index data in a database,
the LLC enables multiple cores for constructive data sharing
to reduce unnecessary memory accesses. In the LLC, a query
execution process can reuse the cache lines loaded by its co-
runners [24]. However, an unfavorable consequence of LLC
creates a barrier for DBMS transactions. For example, pri-
vate data structures during a query execution process, such
as a hash table for the hash join operator, cannot be shared
by multiple processes. Thus, multiple data structures from
different queries can easily cause cache conflicts in the shared
LLC whose capacity is often only several Megabytes. Since
these data structures are frequently accessed during query
execution, they can suffer from a large volume of off-chip
DRAM accesses with long latencies.

A major objective of our work is to make query execution
processes that have different data access patterns and thus
different locality strengths (which is defined, in general, as
the reuse distance of a data object reflecting its access fre-
quency) to adopt to multi-core architecture with a shared
LLC. For example, a hash table during hash join execution
has strong locality, where the data would be reused later.
In contrast, the tuples during a sequential table scan have
weak locality since no data would be reused. Due to the
locality strength difference, the performance impact from al-
located cache space varies across different query execution

1http://www.tpc.org/tpch/.



processes. Therefore, the cache allocation policy for a query
process must be dependent on its locality strength.

To meet our objective, we need to address several criti-
cal issues of understanding and identifying access patterns
and their locality strengths in query operators, which can
be supported by the DBMS domain knowledge. However,
a technical challenge is to enable a DBMS at the applica-
tion layer to effectively utilize the shared LLC on multi-core
processors. This is because the cache is managed by the on-
chip hardware controller that is several layers lower from ap-
plication software. Processors normally use an approxima-
tion mechanism of Least-Recently Used (LRU) algorithm to
make cache replacement decisions. However, a LRU-like al-
gorithm is a demand-based scheme that cannot prevent the
cache space from being polluted by weak-locality data, such
as sequentially scanned tuples or one-time accessed data in
databases [15][25]. Thus, under existing cache management,
data sets with strong locality of concurrent queries can be
replaced by highly demanded but weak-locality data sets. In
other words, the underlying hardware cache management in
multi-core processors is unable to identify weak-locality data
accesses among concurrent query execution processes.

Although the hardware is not able to understand data ac-
cess patterns during a query execution, a DBMS in the ap-
plication software domain has a clear picture about the data
access patterns for a given query execution plan [22]. The
physical operators have fixed and predictable data access pat-
terns, which have already been used in DBMS’s special buffer
cache management to address I/O issues [6][31]. However,
the DBMS running at the user space cannot directly manage
the hardware cache allocation. The critical issue is how to
make effective cache allocations for different queries guided
by data access patterns. In this paper, we propose a hybrid
system framework called MCC-DB (Minimizing Cache Con-
flicts for DataBase), which relies on the DBMS knowledge of
data access patterns to make multi-core-aware plan selection
and query scheduling, and to minimize the cache conflicts in
multi-core systems by an enhanced operating system facility
of cache partitioning.

1.2 A Motivating Example
We illustrate the cache conflict problem by showing per-

formance loss caused by conflict misses between co-running
queries in a multi-core processor. We used two different
queries (a hash join and an index join 2) as workloads, and
executed them independently or together in PostgreSQL on
a dual-core CPU with a shared L2 cache. Figure 1 shows
the L2 miss rates for the two queries and their combinations.
When the hash join was running alone, its L2 miss rate was
only 6.03%. But when it was co-running with another hash
join instance, the miss rate increased to 21.3%; When its co-
runner became index join, its miss rate further increased to
27.7%, and it suffered a 56% performance degradation in wall
clock time. However, index join was not affected too much re-
gardless of its co-runner. This experiment shows that a query
with strong locality can easily be affected by another query
with weak locality. Such cache conflicts for running database
workloads have also been observed in the architecture com-
munity [19]. We summarize three performance issues based
on this motivating example:

1. Different performance behaviors are observed by co-
2In this paper, we use the term “index join” to represent
“index-based nested loop join”.

Figure 1: L2 miss rates when running a single or co-
running various combinations of a hash join (HJ) and
an index join (IJ).

running different query types mainly due to different
locality strengths. This suggests that the query opti-
mizer should be shared LLC-aware when it makes se-
lection from candidate query plans.

2. A query execution scheduler should make shared-LLC-
aware decisions to co-run different types of queries on a
multi-core processor. It should avoid co-running those
queries that cause significant LLC conflicts.

3. To effectively execute multiple queries on a multi-core
processor, partitioning the shared LLC for co-running
processes according to their locality strengths is needed
in order to best utilize the limited LLC space.

We have been motivated by the three issues to design and
implement a multi-core aware DBMS system (MCC-DB) in
order to efficiently run a commonly used DBMS on multi-core
processors with minimal modification to the existing DBMS
implementation.

1.3 MCC-DB: A Framework with Collabora-
tive Efforts from Both DBMS and OS

MCC-DB applies DBMS’s knowledge of query execution
patterns at the application level to guide the system and ar-
chitecture to make actions by effectively utilizing the shared
LLC at runtime. It utilizes an enhanced operating system
capability to partition cache among concurrent processes.

Although an OS cannot directly make on-chip cache alloca-
tion, it can control how to allocate pages in the main memory
through the virtual-physical address mapping. Since the LLC
is physical address indexed, the OS can utilize the page color-
ing technique [30] to make cache partitioning among processes
[18][28]. The foundation of MCC-DB is supported by both
DBMS and OS and is outlined as follows.

1. DBMS Control. Since the DBMS is able to predict
data access patterns during query execution, we rely on
its knowledge to distinguish query locality strengths.
Two key components are the query optimizer and the
execution scheduler. The former selects query plans
to generate a balanced number of strong-locality and
weak-locality query plans, while the latter reduces po-
tential LLC conflicts via co-running query plans with
different locality strengths.

2. OS Support. Once concurrent query execution pro-
cesses are scheduled to run on a multi-core processor,
MCC-DB will use the enhanced OS mechanism to en-
force necessary cache allocation to each process so that
the utilization of the shared LLC is optimized.



1.4 Our Contributions
The contributions of our work are three-fold. First, we

have identified the cache conflict problem of running a DBMS
in multi-core processors. We have also shown that techni-
cal challenges to address this problem are beyond the ability
scope of the DBMS itself. Second, we have made a strong
case for a collaboration between the DBMS and the OS to
achieve the goal of minimizing cache conflicts. We have de-
signed and implemented MCC-DB that effectively breaks the
performance bottleneck in the shared LLC. Finally, we have
evaluated MCC-DB on a modified PostgreSQL and a mod-
ified Linux kernel, and have shown that MCC-DB can re-
duce query execution times by up to 33% for warehouse-style
queries. To our best knowledge, MCC-DB is the first multi-
core cache optimized DBMS system with a well documented
design and performance evaluation. We believe that this hy-
brid system framework can be easily adopted to both com-
mercial and open source databases in practice.

The rest part of this paper is organized as follows. Section
2 discusses the cache conflict problem. Section 3 introduces
our MCC-DB framework. Section 4 presents how to deter-
mine query locality. Section 5 describes MCC-DB without
OS support, while section 6 describes MCC-DB with cache
partitioning support of the OS. Performance evaluation is in
section 7. Section 8 presents related work. We conclude this
paper in the last section.

2. CACHE CONFLICTS ON MULTI-CORES
Increasing the number of processing cores can improve the

inter-query parallelism for DBMS transactions. However,
the limited cache space would be shared by more concur-
rent query executions, which can lead to unnecessary cache
conflicts and cause undesired performance degradations. In
essence, the cache conflict occurs due to three reasons.

1. Different query executions can have very different data
locality strengths, which determine how much a query
can benefit from the allocated cache space.

2. The simple LRU-based cache replacement policy used
in LLC does not consider how a query can really ben-
efit from the cache but only considers how to satisfy a
query’s cache capacity demand.

3. A query execution process has its private data struc-
tures that need to be frequently accessed. However,
such data structures can be replaced by one-time ac-
cessed data structures (weak locality), or by other sim-
ilar data structures due to limited cache capacity.

In order to well understand the problem, we first show the
diverse locality strengths of DBMS queries, then we discuss
the drawback of LRU-based cache replacement in the LLC.

2.1 Diverse Cache Localities of Warehouse-style
Database Queries

In this section, we use TPC-H queries (1GB data set) as
examples of warehouse-style queries to demonstrate the exis-
tence of different locality strengths across various query ex-
ecutions. Our experimental system is a DELL PowerEdge
1900 server, which has two Intel Core2Quad Xeon X5355
2.66GHz CPUs, 16GB FB-DIMM memory, and five 146GB
15,000 RPM SCSI disks. Each Xeon processor has four cores,
and every two cores share a 4MB L2 cache (the LLC). We

Figure 2: The performance of TPC-H queries when
shrinking the L2 cache size.

use RedHat Enterprise Linux Server 5 with the Linux ker-
nel 2.6.20 and EXT3 file system. The DBMS used in our
experiments is the PostgreSQL 8.3.0.

In order to examine how the cache size affects query ex-
ecution performance, we use MCC-DB’s cache partitioning
mechanism (more details in Section 6) to alter the available
L2 cache space allocation for each query execution and ex-
amine the changes of its performance correspondingly. In our
experiments, the allocated L2 cache size is varied from 4MB
to 512KB in the descending order. We measured the perfor-
mance by two metrics, the L2 cache miss rate and the Cycles
Per Instruction (CPI), 3 as shown in Figure 2. The figure
does not show the queries with too short execution times and
Query 9, which has a CPI of 9.66 to 11.83 and a L2 miss rate
of 38.8% to 49.3%.

As shown in Figures 2 (a) and (b), we can find that there
is a strong correlation between the CPI (execution time) of
a query execution and the corresponding L2 cache miss rate.
This indicates that the L2 cache plays a key role in determin-
ing the query execution performance. We can also see that
different query executions show diverse behaviors when we
change the available cache size. We can generally classify the
queries into two groups:

(1) Cache-sensitive queries (Q5, Q8, and Q9) – their
execution times (CPI) are significantly affected by the size
of the allocated L2 cache space. The three queries are all
dominated by multi-way hash joins.

(2) Cache-insensitive queries (Q1, Q18, Q20, and Q21)
– their execution times do not change when we reduce the
cache space. Among them, Q1 is dominated by a sequential
table scan, Q18 is dominated by hash joins, and Q20 and Q21
are dominated by nested sub-query executions.

In essence, cache sensitivity of a query is determined by its
locality strength. Depending on the data access patterns of
operators for evaluating these queries, the queries have the
following three types of locality strengths:

(1) Strong locality – a query has a frequently-reused data
structure whose size is very small compared to the cache size.
Common query types are hash aggregation on a sequential
table scan (e.g. Q1) and hash join with small hash tables (e.g.
Q18). A strong-locality query is cache insensitive as long as
the cache space allocated to it can hold its frequently-reused
data structure. It has the least performance impact on its
co-runners, but it can be affected by the co-runners.

(2) Moderate locality – a query has a frequently-reused

3We use the perfmon tool to examine hardware counters
(available at: http://perfmon2.sourceforge.net/).



data structure whose size is yet comparable to the cache size.
Thus, a small change in cache size would make a percepti-
ble variation in cache misses. This category is mainly hash
join with moderate hash tables (e.g. Q5, Q8, and Q9). A
moderate-locality query is cache sensitive and very vulnera-
ble. It can be easily affected by its co-runners, but it has only
a moderate performance impact on its co-runners.

(3) Weak locality – a query is characterized as follows: (1)
data accesses during its execution are not reused frequently
(e.g., index join or index-scan-based sub-query execution), or
(2) despite the existence of a frequently-reused data structure,
its size is much larger than cache size (e.g. hash join with
large hash tables). A weak-locality query is cache insensitive.
It has the most strong performance impact on its co-runners,
but it is nearly never affected by the co-runners.

2.2 Limitations of the LRU-based Cache Re-
placement in the LLC

Despite the existence of diverse query locality strengths,
the LLC does not make locality-driven cache allocation, due
to the limitations of the LRU-based cache management.

In a typical commercial CPU, the LLC is a set-associative
and physical address indexed cache. It contains multiple sets,
and there are multiple ways in each set. For a data object cor-
responding to a cache line, its physical address in the memory
statically determines which set the object will be loaded into.
The way replacement algorithm in the set determines which
way in the set the object will stay at.

The cache management is done by a LRU-like algorithm,
which only uses the recency information of blocks when se-
lecting a victim to be replaced. In particular, it always selects
the least recently used data for eviction. Though simple, it
cannot prevent the cache space from being polluted by the
highly-demanded blocks with one-time access patterns. As
shown in Figure 1, a large number of rarely reused index-
scan data can easily grab cache space from its co-runner. In
the OS buffer cache or the DBMS buffer pool, more complex
replacement algorithms, such as Clock-Pro [14] (in Linux and
NetBSD), LIRS [15] (in MySQL) or 2Q [16] (in PostgreSQL),
can be used to extend the LRU with the reuse distance in-
formation to address the weak locality issue. However, such
sophisticated algorithms are too complex to be used in hard-
ware to manage the LLC on multi-core processors. Thus,
the current LRU-based replacement in LLC is incapable of
addressing the cache conflict problem.

3. MCC-DB: AN OVERALL FRAMEWORK
FOR MINIMIZING CACHE CONFLICTS

On multi-core platforms, database queries with different
locality strengths contend for shared cache spaces. Conven-
tional DBMSs are designed and optimized for single core plat-
forms, and thus cannot efficiently handle concurrent queries
to minimize cache conflicts on multi-core platforms. In this
section, we first analyze this inability of conventional DBMSs,
and then present MCC-DB’s overall structure, focusing on its
enhancement and extensions over conventional DBMSs.

3.1 Core Components in MCC-DB
To understand the inability of conventional DBMSs in re-

ducing cache conflicts, we summarize the fundamental differ-
ences of query execution between single-core and multi-core
platforms, and analyze the new requirements of query pro-
cessing on multi-core platforms. First, on single-core plat-
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Figure 3: Enhancement and extensions in the MCC-
DB framework over conventional DBMSs.

forms, queries are processed in a batch mode. Thus, a query
plan is made based on performance optimization of itself sub-
ject to the available computing resource to the query. A
query is scheduled to execute in a standard database en-
vironment based on its priority by context switching, and
the cache space is switched among different queries one at
a time. In contrast, multiple queries are processed concur-
rently on multi-core platforms. Query plan optimization is
no longer based on just a single task but attempts to achieve
high performance collaboratively with other queries. An ex-
ample to demonstrate such a case is presented in paper [26]
that examines whether a query plan can benefit from the
data loaded in the buffer pool by previous queries. Second,
after query optimization, queries will be co-scheduled and co-
run on multi-core platforms, and grouping them differently
would have very different performance implications. Finally,
the LLC is shared by multiple cores, inevitably causing cache
conflicts among multiple queries. Such conflicts may signifi-
cantly degrade system performance if the LLC is shared and
competed for in an unmanaged manner.

To respond to the challenges and new requirements of query
processing on multi-core platforms, our MCC-DB framework
enhances the existing query optimizer in DBMSs, and ex-
tends conventional DBMS architectures by introducing two
new components: (1) a query execution scheduler for co-
scheduling queries and (2) a cache partitioner using joint ef-
forts from both DBMS and OS. Figure 3 shows an overview
of enhancement and extensions in MCC-DB, each of which is
responsible for reducing cache conflicts at a stage during the
query processing lifetime.

(1) Query Optimizer determines which plan is to be used
to execute a query. Our enhancement works when there are
multiple candidate plans that are estimated to have similar
execution costs. In such a case, the query optimizer selects a
candidate plan that can balance cache utilization with other
queries when they are co-running on multi-cores.

(2) Query Execution Scheduler is responsible for co-



scheduling a group of queries. In this paper, we assume a
static workload with multiple queries to be executed. The
scheduler selects queries with minimum cache conflict when
they co-run, focusing on reducing query execution times. Cur-
rently, the scheduler does not consider query waiting times.
However, it is not difficult to extend the scheduler to take
waiting times into account to prevent starvation. This exten-
sion is beyond the scope of this paper, and we will consider
it in our future work.

(3) Cache Partitioner, which is different from the above
two components both working in the DBMS domain, requires
support from the OS domain. It controls cache sharing by
partitioning and allocating shared LLC spaces according to
the cache demand of each co-running query.

3.2 Technical Issues and Challenges
In order to well utilize the powerful resources of multi-core

processors with the MCC-DB framework, we must address
the following technical issues and challenges.

First, to understand the indication of different queries and
query plans on cache contention, we need to characterize and
identify the locality strength of each query or query plan.
Locality strength is important information for the query op-
timizer to select a query plan, for the execution scheduler
to group queries, and for the cache partitioner to determine
partition sizes. Query locality detection can be conducted at
runtime by OS or hardware [9, 25, 28]. However, it could in-
cur high overhead and inaccuracy. In MCC-DB, we leverage
the DBMS’s knowledge on query execution patterns to quan-
tify locality strengths and to control query execution. We
address this challenge in Section 4.

Second, each of the three components has its own key tech-
nique issues and challenges. For example, how does the query
optimizer make trade-offs between reducing execution costs
and reducing cache conflicts? How can the scheduler de-
cide which queries can be co-scheduled with minimum perfor-
mance impact from cache conflicts? How can the cache parti-
tioner make cache allocation decisions for co-running queries
according to their locality strengths?

Finally, the three components are not stand-alone. Collab-
orative actions must be made effectively among these com-
ponents in three layers of the underlying computing environ-
ment: DBMS, OS, and multi-core architecture. Our research
shows that plan selection policies (in the query optimizer)
and scheduling policies (in the execution scheduler) can be
greatly affected by cache allocation policies (via the cache
partitioner). In Section 5, we describe the query optimizer
and the scheduler without consideration of cache partitioning.
This represents the best effort made only by the DBMS itself.
Then, in Section 6, we present the policies in all the three
components that work closely to minimize cache conflicts.

4. QUERY LOCALITY ESTIMATION
In this section, we discuss how query locality is estimated

in the query optimizer.

4.1 Execution Patterns of Star Schema Queries
We target star schema based queries as represented by SSB,

which is considered to be more representative than TPC-H in
simulating real warehouse workloads [29]. The query struc-
tures of star schema queries are similar, i.e., aggregations on
equal joins among the fact table and one or more dimension
tables. Their execution plans may have two parts: (1) the

join part that is a join tree including join operators and leaf-
level scan nodes and (2) the aggregation and sorting part over
the joined tuples. The execution patterns of such plans are
as follows:

(1) The join part dominates the query execution. For ex-
ample, when executing SSB queries with GROUP BY (Q2.1
to Q4.3) in PostgreSQL over a 8GB SSB database, 87% to
97% of the execution times are spent on executing multi-way
joins. Thus, join operators and leaf-level scan nodes are the
major contributors to the query locality strength.

(2) The aggregation and sorting part, if it exists, usually
has a very small working set due to the small cardinality of the
aggregation result. For example, with the hash aggregation
operator, only about 100KB hash tables are built in all SSB
queries with GROUP BY for a 8GB database. Thus, the
aggregation and sorting part has only very limited impact on
cache contention and on overall performance.

Based on the patterns, our locality estimation method does
not consider the limited impact of aggregation and sorting,
but only considers the locality strength of the join tree that
is determined by two factors: (1) the locality strength of a
single join operator (discussed in subsection 4.2), and (2) the
shape of the tree that determines how multiple operators are
combined (discussed in subsection 4.3).

4.2 Operator Locality Estimation
We select two operators, hash join and index join, for our

study. There are two reasons. (1) They are the most im-
portant and representative join implementations in major
DBMSs. Sort-merge join is not selected because star-schema-
based queries cannot make cases where sorting-based algo-
rithms outperform hash-based ones [10]. By examining query
plans via an explicit explain command, we confirmed that
PostgreSQL never selects sort-merge join when it processes
any SSB queries. We also found that PostgreSQL never se-
lects the sorting-based GroupAggregate operator. (2) Their
data access patterns, with different data sizes, can represent
all the three types of locality strengths in Section 2.

We analyze data access patterns of the two operators as
follows. For hash join, most of its execution time is spent on
probing the hash table by each tuple in the probing relation.
The probing tuples have one-time access patterns. However,
the hash table, which includes the hash bucket array and cor-
responding temporal tuples 4, is frequently reused. Thus we
expect that the locality strength of hash join is closely related
with its hash table size. For index join, each outer relation
tuple starts an index lookup on the inner relation. Outer
relation tuples have one-time access patterns. Although the
locality strength of index join can also be affected by the size
of index pages and tuples of the inner relation accessed dur-
ing index lookups, index join has weak locality most probably
in practice. The most possible case that the query optimizer
selects index join instead of hash join is that the number of
tuples in the outer relation is very small so that unnecessary
accesses to the tuples in the inner relation can be avoided.
Considering a typical join on a dimension table and the fact
table, due to the huge size of the fact table and the primary
key-foreign key relationship between the two tables, consecu-
tive index lookups on the fact table have difficulty in finding
data reuse opportunities in the LLC with the capacity of sev-
eral megabytes.

4In PostgreSQL, a hash node for hash join holds a private
copy of each tuple in its child node.



4.2.1 Experiments
In order to understand locality strengths and related cache

conflicts of hash join and index join, we use SSB-based syn-
thetic queries to characterize them. These queries involve
only a 2-way join and have no GROUP BY. They have the
following forms:

select sum(LO REVENUE) from PART, LINEORDER
where P PARTKEY = LO PARTKEY
and ((P CATEGORY = ?) or (P CATEGORY = ?) or ...)

We select these queries because a very common pattern
we can see in SSB queries is a join between the PART ta-
ble and the LINEORDER table and then a sum function on
the LO REVENUE column. The selection condition on the
PART table is the logical disjunction of multiple expressions
on the P CATEGORY column. Each expression is a compar-
ison between the column and a constant value, for example
P CATEGORY =′ MGFR#11′. By statistics, this column
has 25 unique values, and each value is corresponding to a
similar number of tuples. Therefore, each expression has an
approximate selectivity of 4%. According to the number of
expressions, we name these queries as PLQ1, ..., and PLQ25.

When using hash join to execute each query, the hash table
is built on the tuples of the PART table. In this experiment,
we use a 2GB and a 4GB SSB data set. For the scale of 2GB,
the hash table size for a single expression is about 392KB. By
increasing the number of expressions in the disjunction clause
from 1 to 25, the hash table size can increase from 392KB to
9.28MB. For the scale of 4GB, the size can further increase
to 18.6MB. When using index join to execute each query, the
PART table is the outer relation that drives index scans on
the LINEORDER table. In this experiment, we examine two
index scan methods: the traditional B+-tree index scan and
the bitmap index scan.

We examine three combinations for the queries: (1) co-
running two hash joins (hash/hash), (2) co-running two index
joins (index/index), and (3) co-running a hash join and an
index join (hash/index). For hash/hash and index/index, we
run two instances of the same query. For hash/index, we first
select query PLQ25, which has the longest execution times for
both hash join and index join, as a common co-runner. Then
for each target query under examination, we run it together
with query PLQ25. In this way, we can ensure that the target
query would not finish earlier than query PLQ25, and the
target query is constantly under the pressure of query PLQ25

during the execution.
We use the execution time of running a target query alone

as the baseline case. Then we run two queries using the afore-
said three combinations to measure the performance degrada-
tions, relative to the baseline cases. Figure 4 shows the results
(we report representative queries considering the graph size).
In this figure, the X-axis values are the hash table sizes of hash
joins for the queries, in the ascending order. For brevity, we
merge experimental results for two data-set configurations in
the same figure. In particular, the queries with hash tables no
larger than 8.9MB are from the 2GB data-set configuration,
and the rest queries are from the 4GB data-set configura-
tion. The Y-axis is the performance degradation relative to
the baseline cases. We made observations as follows. (1)
An index join, using index scan or bitmap index scan, only
has small and stable performance degradations, no matter
whether it co-runs with a hash join or an index join. (2) An
index join can affect its hash join co-runner with a hash ta-
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Figure 4: Performance degradations when co-running
hash join and index join.

ble smaller than 12.3MB more significantly than a hash join.
(3) When the hash table size is no larger than 1.1MB, two
hash joins have slight interference with each other. (4) When
the hash table size is between 1.1MB and 12.3MB, the perfor-
mance degradations of hash joins caused by a co-running hash
join are high (>10%). Even higher performance degradations
(over 50%) can be found when the co-runner is an index join.
(5) When the hash table sizes are larger than 12.3MB, the
performance degradations of hash joins are similar to that of
index joins.

4.2.2 Identifying Operator Locality Strengths
Our experiments provide us with a basis to distinguish lo-

cality strengths of the two operators. First, according to our
analysis, index joins have weak localities. Our results confirm
the observations in paper [33] which shows that index joins
with B+-trees or even cache-conscious CSB+-trees [27] suffer
from significant cache thrashing and miss penalty. Second,
the locality strengths of hash joins are dependent on their
hash table sizes (S) and cache sizes (C). Motivated by the
test results, we adopt the following rules to quantitatively
identify the locality strength of a hash join, and classify hash
joins into three categories:

1. If S < C
3

(1.33MB), the hash join has strong locality.

2. If C
3

6 S < 3C, the hash join has moderate locality.

3. If S > 3C (12MB), the hash join has weak locality.

Although intuitively two co-running hash joins both with a
hash table smaller than C

2
should not cause cache contention,

our experiment shows that their performance degradations
are more than 20%. This is because, in practice, other compo-
nents in the database may consume a small amount of cache
as well. Therefore, we add a small slack and use C

3
and 3C

as boundaries to identify the locality strength of a hash join.
Our experiments show that this setting performs pleasantly
well in practice.

Table 1 summarizes performance degradations due to cache
conflicts. There are mostly two kinds of cache conflict de-
grading performance: (1) capacity contention: two moderate-
locality hash joins suffer cache conflict misses due to lim-
ited cache space. (2) cache pollution: an index join or a
weak-locality hash join pollutes the LLC so that a strong-



Locality Strength Strong Moderate Weak
Strong low moderate high

Moderate moderate high high
Weak low low low

Table 1: Performance degradations of queries with
locality strengths shown in rows caused by co-runners
with locality strengths shown in columns.

or moderate-locality hash join suffers significant performance
degradation. In general, capacity contention is unavoidable
because it is caused by the limited cache space. However,
cache pollution is eliminable via cache partitioning. More
importantly, cache pollution is a much more serious prob-
lem than capacity contention due to faster cache line loading
when accessing data with weak locality. Once cache pollu-
tion occurs, even hash join with strong locality can suffer
high performance degradation (e.g. PLQ2 with 0.8MB hash
table). In contrast, the same hash join is free from capacity
contention. This implies that, without cache partitioning to
remove cache pollution, the DBMS can only attempt to use
scheduling power to address the issue, and the effectiveness
is very limited.

4.3 Locality Estimation of Join Trees
Having presented a quantitative method to identify the

locality strength of hash join and index join at the opera-
tor level, we are now in a position to estimate the locality
strength for a given multi-level join tree. According to the
star schema, a base table join can only occur between a di-
mension table and the fact table. Therefore, for a multi-way
join, a left-deep join tree is the most possible plan. In such a
tree, the first join at the lowest level must be between a di-
mension table and the fact table, and its output tuples drive
next joins with other dimension tables in a pipelined way. A
key feature of a hash join node in the tree is that its hash
table can only be built on a dimension table, but not on the
sub-level join.

For a multi-level join tree, theoretically, each join at a level
may have an impact on the overall locality strength of the join
tree. However, since each join behaves as a filter to discard
those tuples that cannot pass the join predict, the later joins
would not be executed as frequently as the preceding joins
during the pipelined join executions. Without knowing the
actual data, the query optimizer finds it difficult to accurately
estimate the execution frequency of each join. Therefore, we
only consider the first two joins in the join tree. The accumu-
lated hash table size of the two joins, if they exist, determines
the locality strength of the whole join tree, according to the
rules presented in section 4.2.2. If both the joins are index
joins, the whole join tree is estimated to have weak locality.

In MCC-DB, we modified PostgreSQL’s query optimizer
to enable it to estimate the hash table size for a hash join.
Because a hash table can only be built on a dimension ta-
ble, the query optimizer can have an accurate estimation of
the hash table size, which depends on the number of tuples
for building the hash table and the widths of all projected
columns. The number of tuples depends on the cardinality of
the dimension table and the selectivity of the predict on the
table. Because a dimension table is not updated frequently,
the query optimizer can accurately estimate these values with
statistics information.

5. MCC-DB WITHOUT PARTITIONING
In this section, we assume that there is no support from

the OS domain for cache partitioning. Then we describe how
the query optimizer makes plan selection (in subsection 5.1)
and how the execution scheduler co-schedules queries (in sub-
section 5.2). As there is no OS support, this represents the
best efforts made only by the DBMS itself. This is for com-
parisons with MCC-DB with cache partitioner (in Section 6).
With the comparison, we want to show that a solution within
only the DBMS domain is not enough and that OS support
for cache partitioning is critical to minimizing cache conflicts.
This is also supported by our experiments.

5.1 Plan Selection Policy in Optimizer
A conventional query optimizer estimates execution costs

of candidate plans using a cost model and selects the opti-
mal one with the smallest cost. However, this principle does
not fit a multi-core environment because cache conflict is not
considered. An optimal plan may suffer high cache conflict
during execution so that it may be worse than a sub-optimal
candidate that does not raise high cache conflict. Therefore,
a multi-core-aware query optimizer must make the trade-off
between reducing execution cost and reducing cache conflict.
We extend the query optimizer from two aspects as follows.

First, if possible, it generates multiple plans with similar
execution costs by selecting multiple physical join trees for a
given logical join tree. Since we only consider the first two
levels of a join tree to determine its locality strength, the
query optimizer tries to generate all possible sub-trees for
the first two levels, instead of only selecting the one that has
the smallest cost. These sub-trees may have different phys-
ical operators for each join node. If a sub-tree is allowed to
participate the final plan generation, it must satisfy the fol-
lowing condition. Its cost must be no higher than the small-
est cost of these sub-trees by a threshold value. We set it
as 30%, considering that a weak-locality plan can slow down
a strong-locality plan by up to about 30%, as shown in Fig-
ure 4. With this method, multiple candidates (with different
join trees) can be generated.

Second, the query optimizer selects the best one from these
candidates with a selection policy on the basis of two met-
rics: plan locality strength and execution cost. The query
optimizer estimates locality strengths of these candidates us-
ing the method in Section 4. Our plan selection policy works
cooperatively with the scheduling policy. (1) The query opti-
mizer gives the highest priority to strong-locality plans, and
selects the one with the smallest execution cost, considering
that two such plans have low performance degradations if
they co-run. (2) If there is no strong-locality plan, the query
optimizer selects the one with the smallest cost from weak-
locality plans, considering that such a plan will not affect or
be affected by another weak-locality plan if they co-run. (3)
If there is no weak-locality plans, the query optimizer selects
the moderate-locality plan with the smallest execution cost.

5.2 SLS: a Co-scheduling Policy in Scheduler
Motivated by the performance results by co-running queries

with different locality strengths shown in Section 4, we pro-
pose a co-scheduling policy, called SLS (Same Locality Strength),
based on the following observation. A weak-locality query can
affect a query with strong/moderate locality more severely
(due to cache pollution) than a query with strong/moderate
locality does (due to capacity contention). With SLS, the



DBMS maintains two plan queues. One is for strong/moderate-
locality plans and the other is for weak-locality plans. SLS
selects plans from the same queue to co-run, instead of plans
from different queues. Specifically for the first queue for
strong/moderate-locality plans, SLS always co-schedules two
plans with the smallest hash table sizes.

We use an example to demonstrate SLS’s effectiveness.
Four instances of PLQ3 are to be executed. Two of them
are hash joins with strong localities, and the other two are
index joins with weak localities. Each hash join instance uses
a hash table of 1.13MB. In the worst case, each hash join in-
stance co-runs with an index join instance. As we have shown
in Figure 4, the execution times of hash join instances can be
increased by over 30%, compared to the cases in which they
are not co-scheduled with other queries. However, by con-
sidering query locality strengths, SLS will co-schedule two
hash join instances, and co-schedule two index join instances.
Comparing with the cases in which they are not co-scheduled
with other queries, the performance of hash join instances
is degraded by only 5%, and the performance of index join
instances is degraded by only 6%.

The example shows that SLS accelerates query executions
by avoiding performance degradations caused by cache pol-
lution. However, co-scheduled queries can still suffer perfor-
mance degradation caused by capacity contention, especially
when moderate locality queries are executed. To minimize
performance degradation caused by cache conflicts, cache par-
titioning is required, as introduced in the next section.

6. MCC-DB WITH CACHE PARTITIONER
The cache partitioner is the component to reduce cache

conflicts in the query execution phase. Through cache par-
titioning, we can control the allocation of the shared cache
space among queries, and eliminate cache pollution caused by
weak-locality queries. In this section, we will first introduce
the cache partitioning mechanism, and then present how to
re-design the plan selection and the scheduling policy.

6.1 Cache Partitioning Mechanism
Because hardware-based cache partitioning is not available

in any commercial processor, we provide a software mecha-
nism that essentially emulates page-level cache partitioning
based on a well accepted OS technique, page coloring [30].

The basic idea is outlined as follows. A physical memory
address contains several common bits between the cache in-
dex and the physical page number. These bits are referred
to as page color. The last level cache is divided into multi-
ple non-overlapping regions, each of which corresponds to a
page color. The memory pages of the same color are mapped
to the same cache region. Thus, by assigning different page
colors to memory objects and/or threads, we can partition
the cache space among them. For example, we can assign a
subset of colors to an object by placing them in the memory
pages of the selected colors, the available cache space that can
be used by the object would be limited in the corresponding
cache regions. In our platform, the four-core Intel Xeon pro-
cessor has two 4MB, 16-way set associative L2 caches, each of
which is shared by two cores. The memory page size is 4KB,
so we have at most 64 colors ( cache size

page size×cache associativity
).

We implemented the cache partitioning mechanism in the
Linux kernel 2.6.20. In our implementation, we only use five
least significant color bits in a physical address. Therefore, we
have 32 different colors and each color corresponds to a chunk

of 128KB L2 cache space. A page color table is maintained
to guide the virtual-physical page mapping for threads shar-
ing the same virtual memory space. Each entry in the table
specifies a set of colors that the virtual page can be mapped
to. Each thread has a pointer in its task structure pointing to
the page color table. We also modified the buddy system in
the memory management module of the Linux kernel, which
is in charge of mapping virtual pages to physical pages, so
that the physical pages can be allocated as specified in the
page color table. A set of new system calls are added to allow
updating the page color table at the user level. Applications,
such as a DBMS, can use the system calls to enforce cache
partition decisions for its global and heap objects.

6.2 The Interface between DBMS and OS
Essentially, the OS only provides a facility to support cache

partitioning. The DBMS is responsible for deciding how to
allocate cache space among queries. We design a special in-
terface between the DBMS and the OS, which wraps the low-
level system calls for updating the page color table. Each pro-
cess is associated with a color specification file, which specifies
how many colors a global or a heap object is allocated (which
corresponds to the amount of cache space). Non-specified ob-
jects in all processes are assigned with a default number of
page colors. A query execution process is allowed to re-write
its color specification file at any time, but it must invoke the
system call to notify the OS to update its page color table
and re-partition the cache.

The default colors allocated to each query are the colors
reserved for the shared buffer pool. That means, any data
object in each process is mapped to this reserved cache space
that is shared by all processes, unless it is assigned with extra
page colors. Each process can manage color allocation for its
private data structures (e.g. hash tables). For a query plan
with weak locality, its process is not allowed to use more col-
ors than the default ones for the buffer pool. For a query plan
with strong/moderate locality, its hash tables (allocated in a
heap object) can use all 32 colors. After the query optimizer
estimates the locality strength of a query plan, it will invoke
the system call to update the page color table if the plan has
strong/moderate locality.

The buffer pool does not need too much cache space be-
cause data accesses to it (including sequential scans and index
scans) have weak locality from the viewpoint of the LLC. The
minimum number of colors allocated to it is to satisfy its phys-
ical memory need. In our experiment, we use 1600MB buffer
pool, therefore we allocate four colors for it (corresponding to
2GB memory space). Our experiments show that this setting
performs well in practice.

6.3 Query Optimization and Scheduling with
Support of Cache Partitioning

With strong support from the OS kernel, the plan selection
policy and the co-scheduling policy in the DBMS need to be
re-designed to exploit the optimization opportunities brought
by cache partitioning. We first present the co-scheduling pol-
icy and then the plan selection policy, because the latter is
based on the requirements of the former.

Without cache partitioning, the scheduler can only iso-
late strong/moderate-locality plans and weak-locality plans,
so that weak-locality plans would not interfere with plans
with stronger locality. Unfortunately, performance degrada-
tion may still happen due to capacity contention among co-



running moderate-locality plans. Cache partitioning provides
new scheduling opportunities. It makes locality-driven cache
allocation possible and eliminates cache pollution by isolat-
ing cache space used by plans with different localities. With
cache partitioning, a weak-locality plan would not affect a
strong/moderate-locality plan even when they are co-running
(we will show evidence in the next section). Meanwhile, the
weak-locality plan can still retain its performance, since it is
insensitive to cache size.

Here we propose a new scheduling policy, called Mixed Lo-
cality Strength (MLS), to leverage the caching partitioning
mechanism. MLS must work together with the cache parti-
tioner. Similar to SLS, the DBMS still maintains two plan
queues, one for strong/moderate-locality plans, and the other
for weak-locality plans. MLS always co-schedule a pair of
plans from different queues. During execution, cache parti-
tioning is used to protect the executions of strong/moderate-
locality plans. If one of the two queues is empty, MLS does
the same co-scheduling as SLS – two plans from the same
queue are co-scheduled.

To make MLS work well, we propose a new plan selec-
tion policy. As introduced in subsection 5.1, the query op-
timizer still generates multiple candidate plans (their cost
differences are under 30%). The main idea of the new pol-
icy is to let the query optimizer generate the same number
of strong/moderate-locality plans and weak-locality plans as
possible as it can, so that MLS can assign each strong/moderate-
locality plan a weak-locality co-runner. If there are more
weak-locality plans than strong/moderate-locality plans, the
query optimizer selects the plan with the smallest cost from
those strong/moderate-locality candidates, and vice versa. If
there is no required candidate, the query optimizer selects
the one with the smallest cost, as a conventional query opti-
mizer does. In addition, if the two queues are balanced, the
optimizer gives its priority to strong-locality candidates.

Finally, we need to point out that solely applying cache
partitioning is sub-optimal, and must work together with
MLS. If the execution scheduler incorrectly co-schedules two
plans both with moderate locality, then cache partitioning
cannot reduce performance degradation caused by capacity
conflict. Similarly, if two plans both with weak locality are
co-scheduled, cache partitioning can hardly help either, since
such plans are not sensitive to cache size. Only when the
execution scheduler uses MLS to co-schedule plans with dif-
ferent locality strengths, cache partitioning can improve per-
formance by eliminating cache pollution.

7. PERFORMANCE EVALUATION
In this section, we first evaluate how cache partitioning can

reduce cache conflicts. Then, we compare the performance of
the scheduling policies without considering and with consid-
ering cache partitioning. After that, we evaluate the effective-
ness of the query optimizer. Finally, we evaluate our locality
estimation method using standard SSB queries.

7.1 Evaluation of Cache Partitioning
We examine how cache partitioning can improve execu-

tion performance of a moderate-locality query by reducing
cache pollution caused by weak-locality queries. We use the
queries with a 2GB SSB database introduced in subsection
4.2. The moderate-locality query is a hash join for PLQ5

with a 1.86MB hash table, and we denote it as MLHJ (hash
join with moderate locality). We select two different types of

MLHJ WLHJ WLIJ

Execution Time 42.19s 42.44s 62.38s
L2 Miss Rate 6.03% 34.82% 37.47%

Table 2: Query execution times and L2 miss rates

weak-locality queries. One is a hash join for PLQ25 with a
18.6MB hash table (the PART table is from a 4GB database),
and we denote it as WLHJ (hash join with weak locality).
The other is an index join for query PLQ25, and we denote
it as WLIJ (index join with weak locality). We tune the ta-
ble sizes so that MLHJ and WLHJ have similar execution
times when they are running alone, and MLHJ and WLIJ

have similar execution times when they are running together.
Table 2 lists execution times and L2 miss rates of the three
queries when they are running alone. It clearly shows that
MLHJ has a much lower miss rate than WLHJ and WLIJ .

We conduct two tests: co-running MLHJ and WLHJ , and
co-running MLHJ and WLIJ . In each test, we examine
query execution times and L2 miss rates of two co-runners
when shrinking L2 cache space allocated to the weak-locality
queries 5, from 4MB (32 colors) to 512KB (4 colors). Figures
5 (a) - (d) show the curves for the two metrics in the two
tests, respectively. We have the following three major ob-
servations. First, without cache partitioning (i.e. the weak-
locality co-runner uses 32 colors), MLHJ suffers significant
performance degradation. In the first test, MLHJ ’s L2 miss
rate is increased to 19%, and its execution time is increased
to 54s. In the second test, MLHJ ’s performance is degraded
by a larger degree, because WLIJ has a longer execution time
than WLHJ . Its L2 cache miss rate and execution time are
increased to 28% and 66s, respectively. Second, performance
degradation of MLHJ , reflected by both execution times and
L2 miss rates, is reduced if cache partitioning is used. For
example, when WLIJ uses only 4 colors, the execution time
of MLHJ is reduced by 33%, compared with the case with-
out cache partitioning. Third, despite the difference in query
types, both WLHJ and WLIJ are insensitive to the cache
space size allocated to them due to their weak locality na-
ture. They can nearly retain their performance, in terms of
both execution time and L2 miss rate, when the cache space
allocated to them is reduced.

We can draw two conclusions from the experiment. (1) A
weak-locality query can cause significant cache pollution so
that a moderate-locality query suffers significant performance
degradation. (2) Via eliminating cache pollution, cache parti-
tioning can protect the performance of the moderate-locality
query, while the performance of the weak-locality query is
hardly sacrificed.

7.2 Evaluation of Scheduling Policies
We evaluate the effectiveness of the execution scheduler and

compare two scheduling policies: SLS and MLS. Recall that,
SLS co-schedules queries with similar locality strengths with-
out considering cache partitioning, while MLS co-schedules
queries with different types of locality strengths, assisted by
cache partitioning.

We use four queries (PLQ2, PLQ6, PLQ11, and PLQ24)
with a 2GB SSB database. For each query, we execute four
instances (two hash join plans and two index join plans). The
hash table sizes of the four queries are 0.78MB, 2.26MB,

5We are actually shrinking the cache space for the buffer pool.
But the hash table in MLHJ can use all colors.



 0
 0.1
 0.2
 0.3
 0.4
 0.5

 4 8 16 24 32

L2
 M

is
s 

R
at

e

Colors to Weak Locality Query

Hash join (weak locality)
Hash join (moderate locality)

(a) Test 1: Miss Rates

 0
 10
 20
 30
 40
 50
 60

 4 8 16 24 32

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
d)

Colors to Weak Locality Query

Hash join (weak locality)
Hash join (moderate locality)

(b) Test 1: Times

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 4 8 16 24 32

L2
 M

is
s 

R
at

e

Colors to Weak Locality Query

Index join (weak locality)
Hash join (moderate locality)

(c) Test 2: Miss Rates

 0
 10
 20
 30
 40
 50
 60
 70

 4 8 16 24 32

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
d)

Colors to Weak Locality Query

Index join (weak locality)
Hash join (moderate locality)

(d) Test 2: Times

Figure 5: L2 cache miss rates and execution times of co-running queries with different locality strengths
when using cache partitioning to reduce the colors to the queries with weak locality.

Figure 6: Performance degradations of four hash
joins by different scheduling policies.

4.10MB, and 8.92MB, respectively. Based on their locality
strengths, SLS co-schedules two hash join plans and then two
index join plans. However, MLS co-schedules a hash join plan
with an index join plan, while cache partitioning is working
cooperatively to limit the cache space allocated for the index
join plan. For the comparison against a conventional DBMS
system, which does not consider query execution scheduling,
we also co-run a hash join plan and an index join plan without
any support from cache partitioning. We focus on analyzing
the performance degradations of hash join plans caused by
cache contention, and their execution times when running
alone are the baselines. We did not report the test results for
index join plans since they are insensitive to cache conflicts.

Figure 6 shows the performance degradation of the hash
join plan for each query in the above three cases (the first
one is the default case without any scheduling, the second
one is with SLS, and the last one is with MLS). For each
query, it shows much better performance under SLS or MLS
than it does without any scheduling policy. Moreover, the
experiment shows that MLS with consideration of cache par-
titioning can improve query performance at a larger degree
than SLS does, especially when the queries have large hash
tables. For example, when hash table size is 8.92MB, the per-
formance of SLS is only slightly better than the case without
any scheduling. However, MLS can still significantly outper-
form the case without any scheduling.

The performance difference between SLS and MLS can be
explained as follows. SLS improves query performance be-
cause index join plans have no chance to hurt hash join plans.
It works when capacity conflicts between small hash tables do
not exist, or are less significant than cache pollution caused
by index join. However, MLS with cache partitioning can

almost eliminate cache pollution so that the performance of
hash join plans can be guaranteed. The experiment results
show that the DBMS itself can only reduce cache conflicts in
a limited scope. Minimizing cache conflicts must rely on the
cache partitioning support from the OS.

7.3 Evaluation of Query Optimization
We evaluate the effectiveness of the query optimizer. We

execute four instances of query PLQ13. We select this query
because its hash join plan (hash table size is 4.9MB) and
index join plan have similar execution costs estimated by the
query optimizer (the cost of index join is higher than that
of hash join by 17.2%). Since all the instances are from the
same query, a traditional query optimizer only selects the
same plan for them (e.g. hash join plan in PostgreSQL).

When running alone, the execution times of the hash join
plan and the index join plan are 10.27s and 11.39s, respec-
tively. However, due to cache conflicts, the average time of
two concurrent hash join plans is 13.61s, and the average time
of two index join plans is 12.64s. In contrast, the query op-
timizer in MCC-DB generates two index join plans and two
hash join plans. Then, MLS co-schedules a hash join plan
with an index join plan, under the cooperation of cache par-
titioning to protect the hash join execution. With the com-
bined efforts, the average execution time of the four instances
is decreased to 11.36s (reduced by 16.5%), compared with the
default case of using four hash join plans.

This experiment shows that when there are similar execu-
tion costs between candidate plans, the query optimizer plays
a key role of determining whether the execution scheduler and
the cache partitioner can find desirable query combinations.

7.4 Evaluation of Locality Estimation
We have used standard SSB queries with an 8GB database

to evaluate MCC-DB for two goals: (1) to examine the ac-
curacy of our locality estimation method for complex queries
with multi-way joins and (2) to demonstrate the effective-
ness of cache partitioning for these queries. Among all the 13
SSB queries, we studied 7 long-running queries (whose execu-
tion times are all more than 19s), but did not use remaining
queries (whose execution times are all less than 7s). Except
Q1.1, all the 7 queries contain 4-way or 5-way joins, and they
can be classified into two groups. The query optimizer prefers
index join plans for Q1.1, Q2.1, Q3.2, and Q4.3 in the first
group, while it prefers hash join plans for Q3.1, Q4.1 and Q4.2
in the second group. In the first group, the four queries with
index join plans are estimated to have weak locality. In the
second group, determined by the accumulated size of their



first two hash tables in their join trees, Q3.1 and Q4.1 are es-
timated to have moderate locality (the accumulated sizes are
2.5MB and 2.02MB, respectively), while Q4.2 is estimated to
have strong locality (the accumulated size is 1MB).

To evaluate the accuracy of locality estimation, we co-ran
each index join query from the first group with each hash
join query from the second group, and measured performance
degradation compared with them running alone. For each
pair of queries, we examine the effectiveness of cache parti-
tioning to protect the hash join execution. We summarize
4 major observations from the test results. (1) The four in-
dex join queries have low performance degradation (from 7%
to 12%) when each of them is co-running with any of hash
join queries. (2) Both Q3.1 and Q4.1 suffer significant per-
formance degradation (from 29% to 35%) when each of them
is co-running with any of index join queries. (3) Compared
with Q3.1 and Q4.1, Q4.2 has lower performance degradation
(from 16% to 22%). (4) Compared with the cases without
cache partitioning, MCC-DB accelerates the three hash join
queries by 11% (co-running Q4.2 and Q2.1) to 21.5% (co-
running Q3.1 and Q1.1), while the four index join queries are
only slowed down by up to 4% (Q3.2). In addition, in order to
examine the locality difference of the three hash join queries
we co-ran the same two instances of each of them, and found
that (1) Q3.1 and Q4.1 have 14% - 15% performance degra-
dations and (2) Q4.2 has only a 5% performance degradation.
These results, measured by both the performance degradation
and the effectiveness of cache partitioning, show that the es-
timated locality strengths of these queries are consistent with
their runtime behaviors.

By examining executions of the three hash joins, we con-
firmed that estimated hash table sizes by the query optimizer
are very close to their actual sizes. The maximal difference of
hash table size estimations is only 11.8% (Q4.1 and Q4.2),
which does not affect the determination of query locality
strength. The difference is mainly due to the selectivity es-
timation error of a selection condition on the CUSTOMER
table. We should also note that, despite the strong locality
nature of Q4.2, the accumulated size of all hash tables in its
join tree is up to 11.6MB, which is very close to the value for
a weak-locality query. This reflects that our locality estima-
tion method is reasonably accurate by only considering two
level joins. Actually, for all the three queries, only 0.96% -
3.8% of tuples from the fact table can reach the third level
of join, and thus the impact of hash tables after the second-
level join can be negligible. The experiment results show the
effectiveness of the locality estimation in MCC-DB.

8. RELATED WORK
Our work is related to two research areas: (1) database re-

search on optimizing DBMSs for memory hierarchy and (2)
system research on improving the shared cache utilization
on multi-core processors. The two areas are traditionally dis-
tinct, but the gap on common system concerns between them
has been narrowed recently.

8.1 Optimizing DBMS for Memory Hierarchy
Database researchers have proposed many solutions to im-

prove database performance with new hardware trends. In
the single-core era, there is substantial work on analyzing and
solving the problem of the long memory access latency that
is a key performance bottleneck for a DBMS [2][3]. Cache-
optimized index structures were studied in [27][11][33]. Cache-

aware partitioning [3] and prefetching [5] techniques were
proposed to improve hash join implementations. Zhou and
Ross studied how to improve instruction cache utilization
[34]. Manegold, et al. [22] proposed generic models to es-
timate database operation costs according to the memory hi-
erarchy. He and Luo studied cache-oblivious query processing
techniques [13]. These research projects aim to make a sin-
gle query benefit from the cache, which is orthogonal to our
work. We focus on improving the shared cache utilization for
concurrent queries that have different locality strengths.

New research problems emerge when running a DBMS on
the multi-threading and multi-core systems. For simultane-
ous multi-threading processors, Lo, et al. [19] analyzed the
impact of inter-thread cache interference on database perfor-
mance. A work-ahead set strategy was proposed to overlap
computation in the main thread and long memory access la-
tency in a ‘helper’ thread [32]. For multi-core processors,
Hardavellas, et al. [12] found that the L2 hit latency be-
comes the new performance bottleneck. Cieslewicz and Ross
[7] proposed how to optimize the aggregation operation on
multi-cores. Qiao, et al. [24] introduced a scheduling tech-
nique to cooperate multiple memory scans to reduce pressure
on memory bandwidth. None of these research projects focus
on the LLC conflict problem on multicore processors.

8.2 OS Scheduling and Cache Partitioning
In the system research area, various solutions were pro-

posed to improve the shared cache utilization on multi-core
processors. Two topics are related to this work: thread
scheduling and cache partitioning.

Fedorova, et al. [8] extended the OS scheduler to co-schedule
a group of queries with the minimal cache misses. They fur-
ther proposed to adjust threads’ time slices according to their
cache usage [9]. Cache partitioning for applications with dif-
ferent locality strengths can be implemented in hardware or in
OS. A hardware scheme was proposed to use special circuits
to monitor cache accesses and to enforce way-based partition-
ing [25]. OS-based cache partitioning with page coloring were
studied in [28][18]. We have recently made efforts to bridge
program analysis and cache partitioning in the OS to improve
LLC performance for scientific computing applications [20].

9. DISCUSSIONS AND CONCLUSION
MCC-DB presented in this paper makes an effective col-

laborative effort between the DBMS and the OS to minimize
the shared cache conflicts in multi-core processors.

We have demonstrated that there are two types of LLC
conflicts degrading query execution performance in multi-core
processors. First, cache pollution conflicts are mainly caused
by a flooding of weak-locality data accesses. Our study shows
that cache pollution is the most serious performance concern
in LLC. By experiments, we have also shown that MCC-DB
can effectively minimize cache pollution conflicts, which are
the most harmful. Second, under a cache-pollution-free con-
dition, another type of LLC conflict is caused by limited cache
capacity as queries with strong or moderate locality compete
for the shared cache space. Capacity conflict is normally less
harmful than cache pollution. Under the MCC-DB frame-
work, the query scheduler can be naturally extended to dy-
namically assign queries by a cache capacity-aware policy to
minimize cache conflicts for many cores.

Our locality estimation method has been tested on star
schema based warehouse queries. We do not consider bushy



join trees or plans with multiple segments separated by block-
ing operators [21][4]. Such plans could have different locality
strengths at different segments. MCC-DB can be extended
with the granularity of plan segment by adopting dynamic
re-optimization techniques during query executions [17].

We plan to enhance the scheduling capability by first iden-
tifying multiple queries with shared data sets and individual
queries with private data sets, and then making efforts to
to protect the shared data sets for their queries to further
minimize cache misses.
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