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ABSTRACT
In recent years, data streams have become ubiquitous as
technology is improving and the prices of portable devices
are falling, e.g., sensor networks, location-based services.
Most data streams transmit only data tuples based on which
continuous queries are evaluated. In this paper, we propose
to enrich data streams with a new type of metadata called
streaming tags or short tick-tags1 . The fundamental premise
of tagging is that users can label data using uncontrolled
vocabulary, and these tags can be exploited in a wide va-
riety of applications, such as data exploration, data search,
and to produce “enriched” with additional semantics, thus
more informative query results. In this paper we focus pri-
marily on the problem of continuous query processing with
streaming tags and tagged objects, and address the tick-tag

semantic issues as well as efficiency concerns. Our main
contributions are as follows. First, we specify a general and
flexible Stream Tag Framework (or short STF) that supports
a stream-centric approach to tagging, and where tick-tags,
attached to streaming objects are treated as first-class citi-
zens. Second, under STF, users can query tags explicitly as
well as implicitly by outputting the tags of the base data
together with query results. Finally, we have implemented
STF in a prototype Data Stream Management System, and
through a set of performance experiments, we show that the
cost of stream tagging is small and the approach is scalable
to a large percentage of tagged objects.

1. INTRODUCTION
1.1 Tagging in Data Stream Environments

Data streams are common in applications from location-
based services and traffic management to environmental and
health sensing. Over the past few years, a large amount of
research has been dedicated to the design and development
of Data Stream Management Systems (DSMSs) [1, 8, 15,

1
We chose the name “tick-tags” to capture the transient nature of

attached labels and distinguish them from traditional “tags” (e.g.,
for web pages, images, files) that tend to be static and persistent.
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37]. With the exception of a few systems [21, 25, 30, 34],
most DSMSs assume that data streams transmit exclusively
data tuples (without any additional metadata embedded in-
side streams), and continuous queries are evaluated on these
streaming data tuples.

In this paper, we propose to enrich data stream environ-
ments with a special type of metadata called streaming tags,
or short tick-tags2 . An informal definition of tagging is the
process of adding comments or labels to something. The
problem of stream tagging is important, because high vol-
ume continuous data streams are ubiquitous, and stream
processing applications are becoming vital in our every-day
life ranging from real-time traffic monitoring to emergency
response and health monitoring. Tags on streaming data
can enrich existing appications [24, 36] and can enable and
inspire novel useful services:

• Healthcare. Consider a patient carrying a health mon-
itoring device that measures his heart rate. When a
heart rate becomes abnormal, the doctor gets alerted
about it. The patient, to prevent unnecessary con-
cerns, attaches a tag to his real-time streaming mea-
surements stating “Running”. The doctor or a nurse
knows (based on the tag) what is causing the change in
the health measurements. This helps prevent second-
guessing and avert issuing unnecessary alerts.

• Location-Based Services. In location-based services,
moving objects send their location updates to receive
location-aware responses. Consider a traffic scenario
depicted in Figure 1. An accident occurs on a highway
which causes extensive traffic jams. People stopped
far away from the scene of the accident wonder what
is causing the stopped traffic: an accident, a road con-
struction, or a “curiosity factor”? A driver close to the
accident attaches a tag to his location update describ-
ing what he is observing: “Accident, 2 cars, Near

Exit 12”. Using this tag information, other drivers
may determine how to procede: take the nearest exit,
notify others about their delay, or possibly even help
if medical assistance is needed.

• Scientific Experiments. Tags (or annotations) play an
increasingly crucial role in scientific exploration and
discovery, as the amount of experimental data and the
level of collaboration among scientists increases [17].
Tags can be attached to real-time experimental mea-
surements that researchers can subsequently exploit
in analysis. For instance, a tag “Heat-Then-Measure”

2
The terms “streaming tags” and “tick-tags” represent the same con-

cept in this paper and are used interchangeably.



Tag: Accident 
(2 cars, near 

Exit 12)

(x,y)

5 miles

Query : Retrieve 
all tags within 
a 6 mile radius

Why is the traffic 
stopped?

I wonder if it’s an 
accident or a road 

construction?

Figure 1: Traffic example with real-time tags.

may describe how a procedure was performed, “Magnetic
Field” may specify what other factors were present,
and “Strong Smell” may characterize what else was
observed when a measurement was taken.

The examples above depict a small subset of powerful
applications that streaming tags can enable. Other ways
of leveraging streaming tags may include: (1) Stream data

tracking, where tagged objects can be located and tracked
unambiguously. (2) Creation of rich user profiles, where in-
formation about user’s interests, mood, observations, and
character can be revealed based on the tags employed by
her in real time, and used in privacy preservation or tai-
lored services. (3) Exploration and browsing of data, which
can be achieved by exploiting tags as a navigation mech-
anism allowing users to find related streaming data based
on the tags (see Section 4.1). (4) Social communication,
where by allowing other people to tag a specific subset of
real-time data with their own tags, one can find out what
different people think about the same piece of information.
For instance, one scientist’s opinion (expressed via a tag) on
real-time measurements in an experiment might vary signif-
icantly from the tags attached by other researchers.

In general, we envision stream tagging being useful in al-
most any application in which streams are produced or con-
sumed.

1.2 Challenges
Due to the inherent characteristics of streaming environ-

ments, tagging of streaming objects is a challenging task.
Stream data is typically characterized by large volumes,
high input rates, generated by multiple distributed data
sources. Processing of continuous queries on streaming data
requires near-real response time. Yet contrary to traditional
databases, data is not persistently stored on DSMS, but
rather streamed through it once and then discarded. A
system supporting tagging of streaming data must consider
scalability, output rate, latency and resource utilization. To
be useful in practice, a tagging mechanism must be able to
support a variety of tagging granularities: users should be
able to tag streams, tuples, attributes, or specific data val-
ues. For instance, if a set of data tuples correspond to a
particular physical phenomenon (e.g., a hurricane), then it
is useful to tag all those tuples with a single tag. Alter-
natively, if a particular data value is called into question,
users should be able to attach a tag to an individual data
value as well. Naturally, the more fine-grained the tagging
is, the higher the overhead it may potentially incur. Fur-
thermore, due to the infinite nature of streams and typically

long-running queries, frequent changes in data are likely to
occur, which translates into possibly very frequent changes
in tags’ contents and statistics.

1.3 Alternative Tagging Approaches
To motivate our proposed solution, next we discuss alter-

native approaches for tagging streaming data.
Table Approach. One solution is to build a separate global
table in DSMS, where all tags are maintained. For each tag,
the “links” to the appropriate streaming data elements in
the form of query predicates are stored, as illustrated below:

Tag Link To Data

“Running” SELECT measurement FROM HeartRate

WHERE time > 9:00AM and time < 9:30AM

Using this method, the tags are maintained separately from
the streaming data. As a result, this method may poten-
tially incur significant overheads. All tags arriving to DSMS
(separately from the data) must be processed, and for ev-
ery tag an entry in the central tag table must be created or
updated. To identify the data, to which the tags are appli-
cable to, a separate continuous query must be instantiated
(in the worst case, one-per-tag) to find the corresponding
streaming data elements. If there are many tags, this may
severely impact the performance of the system, as signif-
icant amount of resources would be taken away from the
regular continuous query processing. Furthermore, after the
steaming data passes through the DSMS, their respective
tags must be deleted from the global tag table, thus further
increasing the tag-related maintenance overhead.
Extended Data Tuples. An alternative approach to tag-
ging is to extend the schema of streaming data tuples by
adding an additional attribute, where tag information could
be stored. Here, tags are strongly coupled with data tu-
ples. Although attractive, this approach has several limita-
tions. First, by increasing tuples’ sizes, more memory and
processing resources are consumed. Second, tags may ap-
ply to a collection of tuples or data values, but using this
method, tags would have to be duplicated, even if several
tuples share the same tag. Furthermore and more impor-
tantly, when searching for tags or tagged data, every tuple
must be looked at to see if the tag content matches the search
predicate. This approach suffers from the same problem as
the “non-normalized” representation of data in relational
databases, which calls for optimization of design [22].
Streaming XML. Another possible solution for tagging is
to exploit streaming XML [5, 35]. XML is human-legible and
is designed to be self-describing. This enables the capability
to define self-describing data elements by users. However,
XML technology is complex and XML query processing (us-
ing either XQuery or XPath languages) was not intended to
be evaluated over bursty streams. Even with the extensions
supporting XML data streams such as [31, 42], continuous
processing of frequent XML-based tags is likely to be expen-
sive and can seriously limit the performance of DSMS.
Streaming Tags. Our proposed solution is to introduce a
special type of streaming metadata called the streaming tags

or tick-tags. Tick-tags are embedded inside data streams
and uniquely identify the streaming data objects (e.g., tu-
ples, tuple attributes or data values) to which additional
semantic labels are attached. The advantage of the tick-tag

approach is three-fold. First, tick-tags can be shared by sev-
eral streaming objects, thus reducing memory and process-
ing overheads. Second, tick-tags, interleaved with streaming



data, facilitate a faster search for the objects they are ap-
plicable to. Furthermore, tick-tags can be just as dynamic
as the streaming data and can be exploited in continuous
query optimization in a similar fashion as data tuples. The
query optimizer can determine the best order of operators
by considering both the data statistics as well as the stream-
ing tags’ statistics. Finally, if users decide not to tag their
data, then the data streams are identical to traditional data
streams, and the existing query processing solutions for reg-
ular streaming environments are applicable as before.

1.4 Our Proposed Solution: STF
In this paper, we present a Stream Tag Framework (or

short STF) that provides full-fledged support for tagging of
streaming data. In our endeavor, we strive to achieve the
following goals:
Stream-centric tags. Tags applicable to streaming objects
are not transmitted and stored separately from the actual
data, but rather interleaved with data tuples inside data
streams. Streaming tags have a transient nature – they are
not stored permanently on the server, but rather “make a
one pass” through the system and then may get discarded.
User-centric tags. Different users may have unique under-
standings and explanations for the same piece of informa-
tion, thus it is essential for a tagging framework to support
“personalized” tags with respect to data. Users may also
want to customize the time setting of their tags – whether
they should be attached and be applicable only once or for
some time in the near future. We refer to this feature – a
user-centric tag semantics.
Explicit Querying of Tags. Users or applications should
be able to query streaming tags explicitly, in an ad-hoc or
in a continuous manner. We call this feature – tag-oriented

query processing (see Figure 2). For example, a location-
based application may specify a range query Q: Contin-

uously retrieve all streaming tags specified by users in the

downtown of City X3. Here the results of the query Q are
characterized by a continuous stream of tick-tags that ap-
pear in the specified geographic region.
Enriched Query Results. Regular continuous queries can
also produce more superior (“tag-enriched”) results [9, 29].
This functionaliy is enabled by tag-aware query processing

(Figure 2). The goal here is to preserve the tags attached to
the original data based on which the query results are com-
puted. For example, if a tag calls into question the veracity
of some data value, one would like this information to be
available to anyone who sees the results of the query based
on this information. The main challenge in this context
is to correctly propagate streaming tags through the query
plan, while the tags’ corresponding data is being filtered,
projected out or joined with other data tuples.
Tag Query Language. Finally, a comprehensive tagging
system must provide a high-level language to attach tags to
streaming data, to query them or to specify that enriched re-
sults should be produced for a given continuous query. For
this purpose, we introduce a declarative Tag Query Lan-

guage (or short TAG-QL), which provides an intuitive in-
terface for users to perform the above-mentioned actions.

1.5 Our Contributions
The contributions of our Stream Tag Framework (STF )

can be summarized as follows:
3
Here, we assume that tick-tags are attached to streaming data with

location attribute.

• Tag Model. We describe the tick-tag metadata model
for tagging various streaming objects, e.g., tuples, data
values, etc. Tick-tags are embedded inside streams
and support a wide variety of user-based semantics.

• Tag Query Language. We introduce a Tag Query

Language (or short TAG-QL) that enables declarative
specification and querying of streaming tags.

• Tag-Oriented Query Processing. Users can attach
and explicitly query tick-tags. We describe the tag-
oriented query algebra that enables this functionality.

• Tag-Aware Query Processing. We also support
implicit querying of tags, where query results are en-
riched with the tags of the base data. We describe the
extensions to the continuous query algebra to support
the correct propagation of tags in a query pipeline.

• Implementation and Experiments. To illustrate
the feasibility, STF has been implemented in a pro-
totype DSMS called CAPE [15]. Our experimental
analysis shows scalability and benefits of the tick-tag

approach, and the costs associated with tag-awareness.

The rest of the paper is organized as follows: We give an
overview of STF, data model and assumptions in Section 2.
Section 3 presents the design of streaming tick-tags. In Sec-
tion 4, we describe the tag-oriented and the tag-aware query
processing. Physical implementation of core tag-oriented
operators is in Section 5. Our experimental evaluation of
STF is presented in Section 6. Section 7 reviews the related
work, and Section 8 concludes the paper.

2. STREAM TAG FRAMEWORK OVERVIEW
Figure 2 illustrates a data stream environment with the

STF (integrated inside DSMS) and the streaming tick-tags

embedded inside data streams.

Enriched tuple 
results

Data 
stream

Data 
tuples

Tick-tag

DSMS
Users/Taggers

(client side)

Tick-tag results

STF

Tag-oriented queries

Tag-aware queries

TAG-QL

TAG-QL

TAG-QL

TAG-QL

User/Tagger
(server side)

Tuple results 
(based on semantics 

of tick-tags)

Figure 2: STF overview.

Data Model: We consider a centralized DSMS processing
long-running queries on a set of data streams. A continuous
data stream s is a potentially unbounded sequence of tuples
that arrive over time. Tuples in the stream are of the form
tuple = [sid, tpid, A, ts], where sid is the stream identifier,
tpid is the tuple identifier, A is a set of attributes in a tuple,
and ts is the timestamp of the tuple.

Users u ∈ U can attach tags t ∈ T to streaming objects
o ∈ O that can be of any granularity. A taggable streaming

object o can be a (sub-)stream, a tuple, an attribute of a
tuple, or a data value. An object is a piece of data to which
additional information (via a tag) can be attached. An ob-
ject o can have multiple tags at any given time and can be
tagged in two ways: by a user providing the streaming data
(on the client side) or by a user of the DSMS querying the
streaming data (on the server side). Tagging itself can be



performed in an ad-hoc manner, or it can also be contin-
uously executed using a special type of continuous query
called the continuous tagging query (see Section 3.5).

3. STREAMING TAGS (TICK-TAGS)
3.1 What is a Tick-Tag?

Tick-tags are meta-data tuples that attach additional in-
formation (a keyword, a label or a desciption) to streaming
data objects, e.g., tuples, values or attributes. Tick-tags pre-
cede the streaming objects they are applicable to, and the
tuples in the stream are completely unaware of embedded
into stream tick-tags. In comparison to traditional keyword
metadata, tags are not chosen from a controlled vocabulary
defined by a single user, by an organization or by a third
party [2]. Instead (as also commonly done on the web),
users in their role as taggers can create tags of any content
and attach them to streaming objects at any time. As a re-
sult, tick-tags contribute to a development of a real-time and
continuously evolving folksonomy [6] – a rich way to char-
acterize and means to discover interesting things about the
real-time data based on exploiting the collective knowledge
of possibly many users.

Tick-tags have several distinguishing characteristics com-
pared to traditional (static) tags used for tagging web pages,
images, files, or relational data. Table 1 gives a brief com-
parison of dynamic tick-tags against traditional static tags.

Property Traditional Tags Streaming Tick-Tags

Persistence Permanent Transient
Locality (Most likely) stored

separately from data
Interleaved with data

Access Random access Sequential access
Input Rate Low High
Size Finite Potentially infinite
Tag
Processing

One-time Continuous

Table 1: Traditional tags versus streaming tags.

As one can observe from Table 1, tick-tags inherit many
characteristics of the dynamic streaming data they are ap-
plicable to. Namely, they are infinite, arrive online, stay in
DSMS only for a limited time and eventually get discarded
by the system.

3.2 Tick-Tag Physical Design
The physical schema of a tick-tag is shown in Figure 34.

Tagger Identifier (TID) depicts the source of the tick-tag

– the id of a tagger is globally unique and is determined by
the system.
Applicability describes the stream objects to which the tag
is applicable to, e.g., a data value, an attribute or a collection
of tuples. To keep the objects’ description compact, regular

expressions [23], similar to the approaches in [30, 34], are
used in this field.
Content is a string datatype and stores the actual tag value.
Given that STF supports an uncontrolled vocabulary, this
could be anything: a keyword “Accident”, a description
“Nice Weather” or an emotional expression “Happy”, “Sad”.
Type is used by the framework to classify streaming tags.
There are a number of taxonomies for tags in the literature,
e.g., [26, 38]. Although not the primary focus of this paper,
we have added this field in the tick-tag schema to support fu-
ture applications, such as reality mining [13] and tag-based

4
The fields not specified by users are shaded in grey.

Applicability Content

Stream(s), Tuple(s), 
Attribute(s) ...

Blah ...TID

Tagger 
Identifier Type

Time
stamp 

explicitly specified by tagger

Lifespan Mode

O
C

Sign

+
-

Figure 3: Tick-tag schema.

data classification [33]. Our current implementation consid-
ers the following five types of tags, while the other types and
classification algorithms will be a part of our future work:

• Objective: Objective means a description, that does
not depend on a particular user. For example, “Bad
Smell” is not an objective tag (because one needs
to know who thought it was bad), whereas “3 Car

Accident” or “Thunderstorm” are objective tags.

• Subjective: Subjective tag implies a personal opinion.
For example, “Nice”, “Awful”, “Interesting”.

• Physical : This type of tag describes something physi-
cally, e.g., “Broken Light” or “Icy Road”.

• Acronym: This type of tag is an acronym or a lingo
that might mean various things. For example, “ZZZ”
might mean going to sleep, “GFC” – going for coffee,
and “911” – emergency or danger.

• Junk : The tag is meaningless or indecipherable. For
example, “J” or “FJKDSLAD”.

Sign . Since taggers use diversified vocabulary, often it may
be difficult to generate an overall opinion or characteriza-
tion based on the tags’ contents [38]. Therefore, we have
added a sign field to serve as a qualitative description of a
tick-tag. Sign allows users’ tags to rate and express opin-
ions in a more shareable vocabulary than conventional tag
content. Plus(+) or minus(-) values in the sign field easily
characterize whether a tag has a positive(+) or a negative(-)
context. By counting the numbers of positive and negative
tags, a representation of the overall opinion (or a “reputa-
tion”) or an assessment of the tagged information can be
known. Tags without any value in the sign are considered
as neutral and serve as regular content tags.

For example, consider an online auction system such as
eBay [14]. This system monitors bids over items avail-
able for auction. An Auction stream contains items to sell
and has a schema: Auction(seller, product, product features,
start price, time). A collection of tags with different signs
applicable to the objects in the stream Auction can give
various interpretations as shown in Figure 4.

seller product product_features start_price timeAuction 
Schema

145
Cell Phone

G12
Motorolla, 

Touch screen
$100.00 3:00:00AM

+ -
8 2

+
3 0

- +
16 4

- +
1

-
39

+
0

-
5

tuple

10 tags 3 tags 20 tags 40 tags 5 tags

signs

Figure 4: Interpretations based on tag signs.

The system could interpret the collection of positive and
negative tags for objects here as:

• “Most people like the seller.”5

• “Most people like the features of the product.”

• “Most people don’t like the start price of the product.”
5
This could be based on the services or the quality of the products

users might have purchased from the seller before.



The more tags there are, the more diverse interpretations
can be made. A sign feature, thus, serves as a “bridge” for
many diverse tags making them more shareable and enabling
richer tag semantics.
Lifespan . The lifespan of a tick-tag is the time interval
during which the tag is active. A user specifies for how
long (in the near future) the tag should be applicable to
a streaming object. After the tag’s lifespan expires, the
tag becomes inactive and the system garbage collects it. If
only a single instance’s applicability is wanted (i.e., one pass
through the system), the keyword “I” (meaning “Instant”)
is specified in the field.
Mode. The tag mode indicates a user’s preference regard-
ing the combination of the tag with the earlier tags (those
tags that are in the system and whose lifespans have not
yet expired). “O” indicates “Overwrite”, and “C” means
“Combine”6 respectively. Taggers can specify the mode with
respect to their tags only, i.e., a user’s tag cannot overwrite
the tags generated by other users (taggers) applicable to
the same streaming objects. We use TID field to track the
sources of tags (i.e., the taggers) for this purpose. This field
enables users to retract their earlier tags or to add more
elaborate descriptions via multiple tags.
Timestamp. Timestamp describes the time when the tag
was generated by a user, i.e., the tagger.

3.3 Tag Query Language
To enable attachment and querying of streaming tags,

STF is equipped with a declarative language called Tag

Query Language (or TAG-QL for short). The syntax for
attaching a tick-tag to a streaming object is shown below7:

ATTACH TAG <tag_content>

TO <object_description>
(WHERE <condition_description>)

(WITH
TAG_SIGN = < + | - >

TAG_LIFESPAN = <lifespan_value>
TAG_MODE = <mode_value>)

The <object description> specifies the applicability of the tag,
namely the object(s) to which the tag is being attached to.
The WHERE <condition description> clause is used to describe
the conditions that the tagged data must satisfy. Implicitly,
the WHERE clause also conveys the “location” in the stream,
where the tick-tag will be inserted. Since tick-tags always
come before the data they are applicable to, the WHERE clause
states which data the tag should precede in the stream. The
<condition description> can be a simple condition or a nested
sub-query. Other TAG-QL statements are depicted in Table
2. We will describe them in detail in the rest of the paper
and give the corresponding query examples.

Syntax Meaning

ATTACH TAG ... Attaches a tag to a streaming object
SELECT TAGS ... Selects tags satisfying a search predicate
SELECT TAGGED OBJECTS... Selects tagged objects
SELECT ... WITH TAGS Returns tag-enriched query results

Table 2: Overview of key TAG-QL statements.

3.4 Tick-Tag Examples
Here, we present several tick-tag examples to illustrate

the syntax and the semantics of tick-tags. Consider a data
stream Patients(sid, tpid, measure, loc, time) transmitting
real-time health measurements and locations of patients.

6
Different semantics can be used here to combine tick-tags.

7
The WHERE... and the WITH... clauses are optional here.

The following tick-tags may be generated8:
t1: �|*,*,{loc.value}|Panic Attack|�|-|1 min|O|�

represents a tag attached to the current location value of
the user, and indicates that the user is having a panic attack
at her current location. The user feels negative about this
experience (- sign), which may also explain the changes in
the health measurements (e.g., increase in the heart rate
of the patient). The lifespan of the tag is 1 min, and it
overwrites any other tags associated with this location value
previously sent by the user. This is an example of a tag
attached to a specific data value9.
t2: �|*,*,{measure}|Running|�|+|30 min|O|�

is a tag attached to the heart rate measure attribute in
the stream, and indicates that the user is currently running,
which is something the user likes to do (as described by
the negative ‘+’ sign). The lifespan of the tag is 30 min
(possibly indicating how long the user intends to exercise),
and it overwrites any other tags associated with the heart
rate measure attribute specified by the user. This is an
example of a tag attached to a tuple attribute. Using TAG-
QL, the above tags are expressed as follows:

t1 ATTACH TAG ‘Panic attack’
TO Patients.loc.value

WITH

t2 ATTACH TAG ‘Running’
TO Patients.measure

WITH

TAG SIGN = ‘-’ AND

TAG LIFESPAN = 1 min AND

TAG MODE = OVERWRITE

TAG SIGN = ‘+’ AND

TAG LIFESPAN = 30 min AND

TAG MODE = OVERWRITE

The absence of the WHERE... clause in the TAG-QL state-
ments above indicates that there are no constraints regard-
ing which data values the tick-tags must precede. Thus, the
tick-tags will be inserted into the stream interleaved with
whatever the tuples happen to be transmitted at the time.

3.5 Tick-Tag Generation
Users can create tick-tags manually (in an ad-hoc man-

ner) as described above. Alternatively, users can perform
continuous tagging by instantiating a special type of query,
called the Continuous Tagging Query. A novel operator,
called the Tagger operator (described in detail in Section
4.1) always exists in such a query. This operator consumes
an input data stream, continuously evaluates the tagging
condition, and produces the corresponding tick-tags that get
inserted into the output stream and represent the tags being
attached to the following after them data. We describe the
physical implementation of the Tagger operator in Section
5. The processing of a tagging query is almost identical to
an ordinary continuous query, except that the data tuples in
the output stream are now interleaved with generated tick-

tags. An example of a continuous tagging query expressed
in TAG-QL is shown below:

ATTACH TAG ‘Dangerous’
CONTINUOUSLY
TO Patients.pid.value

WHERE (SELECT pid
FROM Patients

WHERE measure > 80)
WITH
TAG_SIGN = ‘-’

The keyword CONTINUOUSLY in the TAG-QL statement above
indicates that the tagging is continuous, that is, a tag will be

8
We only illustrate the fields specified by users. The system fields

(that are not exposed to users) are denoted by �.
9
To attach a tag to an attribute value “<attribute name>.value”

syntax is used, where <attribute name> is replaced with an actual
attribute name.



attached to every patient id (pid) value with the heart rate
above the specified threshold. Specifically, a tick-tag (with
the value “Dangerous”) will be created and inserted into the
stream ahead of every tuple with heart rate measure > 80.

4. TAG-BASED QUERY PROCESSING
We distinguish between two types of tag-based query pro-

cessing in STF, namely the tag-oriented query processing
and the tag-aware query processing.

4.1 Tag-Oriented Query Processing
Expressing Tag-Oriented Queries in TAG-QL
In tag-oriented query processing, users or applications query
tick-tags explicitly. Explict tag querying is useful for the fol-
lowing two purposes: (1) to locate tags where the tag values
themselves are of interest, e.g., Show me all tags which have

a sign = ‘-’ ; and (2) to locate tags where the associated base
data values are of interest, e.g., Show me all data tuples that

are tagged with tags that have a value = ‘dangerous’. Such
explicit querying gives the ability to see what other stream-
ing objects have been tagged with the same keyword or a
sign, as well as browse through the tags related to the same
streaming objects. For specifying such queries, TAG-QL
provides “SELECT TAGS” and “SELECT TAGGED OBJECTS” statements.
Queries Q1 and Q2 shown below are examples of such tag-
oriented queries.

Syntax Meaning

Q1:SELECT TAGS
FROM Patients

WHERE OBJECT =
Patients.measure AND
TAG SIGN = ‘-’

Finds all negative tags at-
tached to the heart rate mea-
sure attribute in the Pa-
tients stream

Q2:SELECT TAGGED OBJECTS

FROM Patients
WHERE TAG = ‘Emergency’

Returns tuples that contain
objects tagged with word
‘Emergency’ in the stream Pa-
tients

Table 3: Examples of tag-oriented queries.

Tag-Oriented Query Algebra
Here, we describe several tag-oriented operators introduced
into the continuous query algebra. Let t denote a tag, o – a
streaming data object, T – a stream of tags, O – a stream of
data objects, and p – a search predicate, which can be either
on data objects (denoted as po) or tags (denoted as pt). The
following tag-oriented operations are defined in STF10:

Tagger Operator [TO(O, po, t) →

T ′

︷︸︸︷

O , where ∀ ti ∈ T ′,
ti = t]. Tagger operator is a unary operator that processes
tuples on-the-fly, by attaching a tag t to an object o ∈ O, if
o satisfies the condition po. As a result, the tagger operator
inserts a tag t into the output stream preceding the object
o. Figure 5(a) shows an example where the object o2 gets
tagged with the tag t.

Tag Selection [TS(

T
︷︸︸︷

O , pt) → T ′]. Tag selection is a unary
operator that returns tags T ′ (T ′ ⊆ T ) (without their re-
spective objects) that satisfy the tag search predicate pt.
Figure 5(c) illustrates an example, where tags t1 and t2 get
returned as results by the tag selection operator based on
the search predicate pt.

10
We denote an object o tagged with a tag t as

t
︷︸︸︷

o , and a stream

with embedded inside it tick-tags as

T
︷︸︸︷

O .

(a) Tagging

(c) Tag Selection (d) Tagged Object Selection

(e) Tag-Based Aggregation

(b) Tag Join
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Figure 5: Tag-oriented algebra (examples).

Tagged Object Selection [TOS(

T
︷︸︸︷

O , pt) → O′]. Tagged
object selection is similar to tag selection operator (TS),
except that instead of tags it returns the tagged objects
O′ ⊆ O, whose tags satisfy the selection predicate pt (for
example, objects o1 and o2 in Figure 5(d) based on their
respective tags t1 and t2). A variant of this operator returns
the tagged objects together with their respective tags.

Tag Join [TJ (

T1

︷︸︸︷

O1 ,

T2

︷︸︸︷

O2 , E) →

T ′

︷︸︸︷

O
′ , where T ′ = E(T1,T2) 6=

∅]. Tag join is a binary operator that joins two streams
of objects, interleaved with tick-tags, based on the tag join

condition E. The join condition E can be a tag equiva-
lence, or a tag similarity, or some other tag join criteria.
For example, a tag equivalence function TE(t1,t2) checks
for the content equivalence of two tags, which can be word-
based “Accident” = “Accident”, or semantics-based (e.g.,
when words mean the same thing) using the system’s dictio-
nary11, e.g., “Accident” = “Disaster”, or by co-occurrence,
if both tags contain the same objects. One of the simplest
co-occurrence methods is using absolute co-occurrence, that
is counting the number of times two tags are assigned to
the same object. The similarity can also be estimated based
on relative co-occurrence, also called “tag overlapping”, and
can be measured by Jaccard coefficient [41]. If A and B are
the collections of stream objects described by two tags, rel-

ative co-occurrence is then defined as: JC(A, B) = |A∩B|
|A∪B|

.

That is, relative co-occurrence is equal to the division be-
tween the number of objects in which tags co-occur, and the
number of objects in which appear any one of two tags. For
example, by this definition, the tag “Fireworks” could be
equivalent to the tag “Cool”, if users had tagged all objects
annotated with the term “Fireworks” with the tag “Cool.”

The result of the tag join operator is a single stream of
tagged objects whose tags join based on the join function E.
Figure 5(b) shows an example of a tag join operator output.
Here, tags t1 and t2 from the two input streams join based
on function E, and are sent to the output stream followed by
their respective tagged objects o1-o4. Note, that although
the tags join, physically they are not combined into a single

11
STF maintains the internal dictionary to support tag classification,

tag equivalence and tag similarity function.



tick-tag tuple. The reason for such design is the need to
preserve the correct base tags’ semantics. Since the tag join
is based on only the tick-tag ’s content field, we maintain
the original tick-tags with their values (for attributes like
lifespan, sign, mode, etc.,) to ensure that the user-specified
tag semantics is enforced correctly even after the tags join.
After tag join, an additional streaming element is inserted
into the stream – the so-called “streaming tag index” tuple
(or short “stix”). The purpose of the stix is to store the
references of the joined tags (which are placed consecutively
together in the output stream) to their respective base data
tuples. In the tag join example in Figure 5(b), the stix

contains the following information: 42|11
12. The subscripts

(1 and 2) are the indicies to the subsequent after the stix

tick-tags, i.e., “1” refers to the first tick-tag and “2” to the
second tick-tag, respectively. The values in each index refer
to the offsets of the data tuples to which that tick-tag applies
to. Thus, the above stix means the following: the first tick-

tag applies to the tuples 1-3 (o1-o3) and the second tick-tag

applies to the tuple 4 (i.e., o4).
The main idea of the tag join operator is to combine two

streams of tagged data based on the similarity of their em-
bedded tags’. This operation can be useful for applications
searching for related (based on the tags) streaming data that
may arrive from various sources.

Tag-Based Aggregation [TG(

T
︷︸︸︷

O , E, G
agg
T )→

T
︷︸︸︷

O
′

G
agg

T

]. This

operator groups objects in a stream by their tags (the groups
are based on the tag function E) and incrementally updates
the value of a given aggregate for each tag-based group (see
Figure 5(e)). For every arrived tuple, the operator first adds
it to the state buffer, and determines which group it belongs
to (based on its tag’s content and the tag similarity func-
tion E), and then returns an updated result for this group
(preceded by the subgroup’s corresponding tags), which is
understood to replace a previously reported answer for this
group. It may happen that a data tuple may belong to sev-
eral groups based on the attached tag to it. In this case, the
operator picks the “closest” (again based on the function E)
tag group for the streaming object and updates the answer
for that group. Objects without any attached tags can be
either completely ignored by the operator or can be placed
into a separate “non-tagged” objects group, for which the
result is maintained similar to the tag-based groups. In the
second case, a dummy tick-tag (with an empty content) is
inserted prior to sending the answer to preserve correct se-
mantics – to ensure that the earlier outputted tags are not
applied to this aggregate answer.

4.2 Tag-Aware Query Processing
Expressing Tag-Aware Queries in TAG-QL
In addition to explicit querying of tags, users and applica-
tions may find it useful to receive continuous query results
that are “enriched” with the tags attached to the original
data, based on which the query results were produced. We
call this functionality “implicit tag querying” and achieve it
by performing tag-aware query processing. To indicate that
enriched results should be outputted for a given query, a
user simply adds a “WITH TAGS” statement when specifying a
continuous query to the system as depicted in Table 4.

12
The stix illustration should be read from right to left.

Syntax Meaning

Q3: SELECT pid, loc, time
FROM Patients

WHERE measure > 80
WITH TAGS

Select-project query
that will produce re-
sults with interleaved
tags of the base data.

Q4: SELECT A.pid, B.pid
FROM Patients A [1 min], Animals

B [3 min]
WHERE Dist(A.loc, B.loc) < 0.2

WITH TAGS

Join query that will
produce results with in-
terleaved tags of the
base data.

Table 4: Examples of tag-aware queries.

One of the immediate challenges in tag-aware query pro-
cessing is the support for correct propagation of streaming
tags through the continuous query pipeline, as data objects
are being filtered, joined, or projected out. If one thinks of
a tag as a form of mark-up on a streaming object, the key
question here is how should that mark-up be transferred
into the results of a query. We enable this functionality by
adding tag-awareness to continuous query operators.

Tag-Aware Query Algebra
Projection is an unary operator that processes tuples by
discarding unwanted attributes. This operator simply prop-
agates tick-tags and thereafter the projected tuples. If a
tick-tag applies only to the projected attributes, it is dis-
carded by the project operator as well.
Selection is a unary operator that drops tuples that do not
satisfy the selection condition. A select operator delays a
tick-tag propagation until at least one of the tagged tuples
that follow it satisfies the selection predicate. If all tagged
tuples are filtered, their corresponding tick-tag is discarded
then as well.
Join is a binary operator that joins the tuples of its input
streams. If a tuple joins with another tuple, before being
sent to the output stream the tags of the base tuples are
physically arranged in a similar fashion as in the tag-oriented
join (discussed in Section 4.1), with the following two main
differences:

1. Since the data tuples (after the join) are physically
combined into a single physical tuple, the tick-tags at-
tached to the base data tuples will now refer to this
(new) joined tuple. This reference is stored in the stix

metadata tuple (described in Section 4.1) that gets in-
serted prior to the tick-tags.

2. In addition to maintaining the tuple-level granularity
reference in stix, we now also store the references to the
joined tuple attributes (that correspond to the base
tuples’ attributes) that the tick-tags apply to.

Figure 6 illustrates an example of a tag-aware join output.

TAJ

stix

t1

t2

t1t2

tuples x and y join

(1:1,4-5)2 (1:1-3)1

x

y

c1b1a1

f2e2a1

c1b1a1 f2e2

1      2      3      4      5

A

B

tuple

tuple

Figure 6: Tag-aware join example.

Here tuples x and y from streams A and B join based on
the equality of the first attribute value a1. Their respec-
tive base tuples’ tags t1 and t2 precede the join tuple, and
the stix stores the following information (1:1,4-5)2|(1:1-3)1 ,

where “(1:1-3)1” means the first (after the stix) tick-tag t1
applies to the first tuple and to the attributes 1-3 in the join
tuple. Similarly, “(1:1,4-5)2” means that the second tick-tag



t2 applies to the first tuple and to the attributes 1, 4 and 5
in the join tuple, respectively.
Aggregation. In a tag-aware aggregation operator, each
attribute domain is partitioned into attribute sub-groups,
where each sub-group contains tuples with the same at-
tribute value. A result is calculated for each sub-group and
then sent to the output stream preceded by the collection
of tags that have arrived and have not yet expired from the
window and are applicable to any object in that sub-group.
The motivation for such comprehensive tag propagation is to
make all tags associated with the base data (used to compute
the outputted aggregate value) available with the aggregate
query result.

5. PHYSICAL IMPLEMENTATION
Here, we describe the physical implementation of two key

operators in the tag-oriented algebra, namely the tagger
operator and the tag join operator. Due to space limita-
tions, we reserve the description of implementation details
for other operators to our technical report.
Tagger Operator : This operator is designed to continu-
ously attach tags to streaming objects that satisfy tagging
predicate po. Conceptually, the tagger operator is similar
to a selection operator, except that it doesn’t discard the
tuples that don’t satisfy the predicate po, but instead for-
wards them to the output stream without inserting a tick-tag

ahead of them. Figure 7 shows the pseudocode for the tagger
operator execution.

TaggerOperator (po tagging predicate, c tag content,
s tag sign, l tag lifetime, m tag mode)
01 for (every new element e received from input stream)
02 if (e is a tuple) // input is a tuple
03 if (e satisfies po)
04 ts = geTime(now)
05 tid = getCurrentQueryId()
06 t = CreateNewTickTag(tid,P,c,s,l,m,ts)
07 send t to output
08 send e to output
09 else send e to output
10 else // input is a tick-tag
11 send e to output // propagate tick-tag

Figure 7: Tagger operator algorithm.

For every arrived data tuple, the tagger operator evaluates
the tagging predicate to determine whether the streaming
object should be tagged (Line 3). If yes, then a new tick-tag

is created with the tag properties specified as parameters
to the operator (Line 6). The operator assigns the current
query id as the tagger identifier (tid) in the tick-tag (Line 5),
and the time the tick-tag was created is stored in its times-
tamp field. The newly created tick-tag is then forwarded to
the output stream followed by the data tuple (Lines 7-8). If
the tagger operator receives a tick-tag as its input, it simply
propagates it to the output stream (Line 11). One of the
optimizations that can be employed by the tagger operator
(the pseudocode is not shown), is to cache the last outputted
tick-tag. If the next tuple satisfies the same tagging condi-
tion, and the regular expression in the applicability field of
the already outputted tick-tag is suitable for the new tuple,
then no additional tick-tag needs to be created and sent to
the output stream. The tuple will simply be forwarded to
the output stream. The understanding here is that several
tuples share the same tick-tag and follow it consecutively in
the output data stream.

Tag Join : The TagJoin algorithm is shown in Figure 8.
We present the TagJoin as a sliding window E-based join
algorithm, where E is a tag join function (which can be a
tag similarity, a tag equivalence function or any other tag
join criteria as described in Section 4.1). In our pseudocode
we describe the nested-loop version of the TagJoin. The
optimized version of the operator employing an index on
tuples and tick-tags in the window is a part of our future
work. The TagJoin maintains a time-based sliding window.
We employ a list structure to link all tuples and their tick-

tags in a chronological order (most recent at the tail). Tick-

tags are interleaved with tuples in the window, and, thus,
the tuple list is “partitioned” by the tick-tags into segments,
where the tuples in each segment may be tagged by the
preceding them tick-tags. A collection of tuples between any
two non-adjacent collections of tick-tags is called a tagged

segment. We discuss the processing of tuples and tick-tags

from the input stream A. The processing for input stream
B is similar due to the symmetric execution logic.

TagJoin (A stream, B stream)
01 WA ← join time window for stream A
02 WB ← join time window for stream B
03 if (a new element eA is received from stream A)
04 if (eA is a tick-tag) // input is a tick-tag
05 TagCollection(eA, A, WA)
06 else if (eA is a tuple) // input is a tuple
07 Invalidate(eA, B, WB)

// retrieve tags that have arrived prior to tuple eA

08 TA ← GetTags(eA)
09 Probe(TA, A, WA, B, WB, E)
10 if (a new element eB is received from stream B)

// Similar to above

Probe (TA - set of tick-tags from the current stream,
A - current stream, WA - current stream window,
B - opposite stream, WB - opposite stream window,
E - join condition)
11 TB ← GetTags(B[WB])
12 for (every tick-tag tA ∈ TA)
13 for (every tick-tag tB ∈ TB)
14 if (Join(tA,tB,E) // tags join based on E
15 SA ← A[WA,tA] // objects tagged by tA
16 SB ← B[WB,tB] // objects tagged by tB
17 stix ← CreateNewStix()
18 send stix to output
19 send tA, tB, SA, SB tuples to output

Figure 8: Tag join operator algorithm.

Tag Collection. As tick-tags arrive, they are stored in the
sliding window. They represent the labels (annotations) for
the upcoming data tuples (Lines 3-4).
Invalidation. When a new data tuple eA is retrieved from
the input stream A, it is used to invalidate the expired tu-
ples from the head of the window of the stream B (Line 7).
If all tuples from a tagged segment have been invalidated,
their corresponding tick-tags are purged from the head of
the window as well.
Probe. After the invalidation is done, the tick-tag(s) preced-
ing the tuple eA are used to probe the window of the stream
B. For concreteness of discussion, let’s consider there is a
single tag tA in the window of stream A that precedes tuple
eA and represents the tag attached to eA. If tA joins with
tick-tag tB from stream B based on the tag join function E,
the tick-tags are placed consecutively together followed by
their corresponding base tuples (see Section 4.1 for detailed



(a) Query 1

Tagger 
Operator

(b) Query 2

Tag 
Selection

(c) Query 3

Tag Join

(d) Query 4

Tag-Aware 
Join

Figure 9: Experimental Queries.

explanation and an example of this step). The stix meta-
data tuple is then created (Line 17) to store the reference to
the base tuples and is inserted into the output stream ahead
of the “joined” tick-tags. The stix, the tick-tags, and their
respective tuples are then forwarded to the output stream
(Lines 18-19). If the tag join is empty (i.e., the tags do
not join based on E), then neither the tick-tags nor their
respective tuples are forwarded to the output stream.

6. EXPERIMENTAL ANALYSIS

6.1 Experimental Setup
We have implemented our proposed Stream Tag Frame-

work in a DSMS prototype called CAPE [15]. We execute
CAPE on Intel Pentium IV CPU 2.4GHz with 2GB RAM
running Windows Vista and 1.6.0.0 Java SDK. For data,
we use the Network-based Moving Objects Generator [4] to
generate a moving objects dataset on which we evaluate our
experimental queries. The input to the generator is the road
map of Worcester county, MA, USA. The output of the gen-
erator is a set of objects that move on the given road network
and continuously send their location updates. We generate
100K of moving objects, which represent cars, cyclists, and
pedestrians. Each tuple in the stream consists of the fol-
lowing fields: update type, object id, report number, object
type, timestamp, current location, speed, and the location
of the next destination node (see [4] for more details on the
generator’s output). We break the moving objects stream
up into several streams based on the ids of objects. Such
setup simulates objects sending updates to different service
providers or base stations and allows us to test join queries.
Tuples’ arrival distribution is modeled using a Poisson dis-
tribution with a mean tuple inter-arrival rate equal to 10
milliseconds.

Unless mentioned otherwise, the tagging is done at the
tuple granularity and the tick-tags arrive to the DSMS al-
ready interleaved with the streaming data. We chose the
tuple level, because it is likely to be the most common gran-
ularity of tagging in mobile environments. For comparison,
we have implemented alternative tagging solutions described
in Section 1.3, namely the table approach, the extended data
tuple approach, and the streaming XML approach. In this
section, we refer to them as TABLE, TUPLE, and XML

respectively. Our technique is abbreviated as TICK-TAG.
For tag content, we employ the “emotion tags” dataset

from the ManyEyes application [28] supported by IBM. Fig-
ure 10(a) shows the “tag cloud” for the emotion tags used in
our experiments (with more frequent tags depicted in larger
fonts). Figure 10(b) illustrates the overall tag distribution,
and Table 5 lists some of the examples of tag values.

Four types of queries are used in our experiments which
are depicted in Figure 9. Query 1 attaches tags (with values
chosen at random) to streaming data tuples, with the tag-
ging predicate being on the current location of a moving ob-
ject. We use Query 1 to test the performance of our proposed
tagger operator. Query 2 selects the tags satisfying the tag
search predicate (the predicate is based on two types of emo-

(a) Tag cloud ( emotion tags)

(b) Tag distribution (emotion tags)

Figure 10: Tag properties.

tions: “sad” and “angry” in a specific geographic area13) on
the incoming stream with already interleaved tags. It is
used to test the tag selection operation. Query 3 joins two
streams of tagged tuples based on the tag equality function
E, which is defined as semantics-based equivalence. Specifi-
cally, we have partitioned the emotion tags from the dataset
[28] into 5 separate groups based on the type of the emo-
tion, e.g., “happy”, “sad”, “neutral”, “angry”, etc., and in
the tag-based join, we perform the join based on whether
the tags belong to the same emotion group. For example,
if tags “Joyful” and “Excited” belong to the same group
“happy emotions”, then the two tags join, if they happen
to arrive at the same time and are in the windows of the
streams being joined. This type of query may be useful to
find people who experience similar emotions at the same
time, and can possibly help correlate it to their location or
a nearby event. Finally, Query 4 performs a tag-aware join
on two incoming streams of location updates based on the
mutual proximity of the moving objects, e.g., two objects
join, if they are within 0.1 miles from each other. Query 4
is used to test the cost of tag-awareness in the continuous
join operator.

The real-life application (based on the data, tag values
and queries described above) that we consider in our exper-
imental setting is a geo-social networking application, e.g.,
[3, 19]. Here, users may want to tag their location updates
with their emotions to update their friends on their well-
being, or possibly look for someone to meet and socialize
with in a given geographic area.

6.2 Experimental Results
Cost of Tagger Operator
Figure 11 compares the cost of our proposed Tagger operator
to the cost of a regular Selection operator. In the case of se-
lection operator, we process a regular data stream (without
any tick-tags interleaved). We use Query 1 (from Figure 9)
in this experiment. The selection predicate here is equivalent
to the tagging predicate. The percentage of tagged objects

13
A query of the form: “Continuously monitor all emotional tags

(attached by people to their real-time information) that fall into
‘angry’ and ‘sad’ categories in downtown” may be executed by the
law enforcement authorities to prevent potential violence or accidents
in the city.



Most frequent emotions tags
– ManyEyes dataset [28]

happy, sad, jealous, self-loathing, angry, elated, content, lonely, depressed, frustrated, aggravated, ex-
hausted, grateful, sleepy, anxious, sorry, excited, anxious, loved, peaceful, joyful, tipsy, affectionate, cool,
alright, stressed, lost, confused, outraged, despaired, hopeful, sympathetic, relaxed, unimpressed, ...

Table 5: Emotion tags examples used in the experiments.

is varied from 0% – none of the tuples are tagged to 100%
– meaning all tuples are tagged (the same selectivity is for
the selection operator). We use the selection operator here
as the cost baseline to which we compare the tagger’s cost
while varying the tagging frequency. The difference between
the selection and the tagger is as follows: (1) the selection
operator discards the tuples that don’t satisfy its predicate,
whereas the tagger operator simply propagates them to the
output stream (without tagging); (2) if the predicate is sat-
isfied, the tagger inserts a tick-tag prior to the data tuple
being tagged, whereas the selection simply propagates this
tuple to the output stream. The cost for the selection op-
erator increases, as the selectivity of the operator increases,
largely due to more work being done by the operator when
more tuples have to be propagated up-stream. Similarly, for
tagger operator, as the percentage of objects being tagged
increases, the tagger operator’s cost increases. This is due
to a larger number of tick-tags being generated (in the case
of 100% tagging - twice as many streaming elements are
enqueued to the output stream. The cost of the tagger is
larger than of the selection (which is expected), on average,
by 1.08x for 0% tagging14 (when no tick-tags are inserted) by
1.8x for 100% tagging (where for every data tuple a tick-tag

is inserted).
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Figure 11: Cost of tagging operator.

Comparison of Tick-Tag Approach Against Alternatives
The goal in this section is to compare the TICK-TAG ap-
proach against the alternative tagging solutions (described
in Section 1.3), namely, the TABLE, the TUPLE, and the
streaming XML methods. All these solutions were imple-
mented in CAPE and re-use as much of the same code as
possible for fair comparison. We use Query 2 (Figure 9)
in this experiment, and present the average output rate and
memory utilization results when performing tag selection us-
ing these methods. The query is a square region inside which
we continuously monitor moving objects’ tags. For the focal
point of the tag selection query, we choose a random loca-
tion on the road network (the same for all four cases) and
consider it as the center of the query. The focal point the
query is static, hence both the tick-tags as well as the mov-
ing objects that appear in the query region are the same for
all four cases. The space is represented as the unit square,
the query size is a square region of side length 2.

14
There are minor execution overheads in the tagger operator that are

not present in the selection – e.g., propagation of (un-tagged) data
elements upstream.

For TABLE tagging approach, we have a separate stream
transmitting tick-tags that continuously arrive to the sys-
tem. For every arrived tick-tag, we process it by inserting
it into the global tag table and initiating an evaluation on
the streaming data tuples to determine if the newly arrived
tag is applicable to them. For the TUPLE approach, we
have added an additional attribute in the stream’s schema
to store the tag value (in addition to all other tag param-
eters, e.g., mode, lifetime, to be fair in comparison with
other approaches). For XML approach, we have embedded
“xml tags” inside streaming tuples that are interleaved with
regular data tuples, and process them when they arrive to
the system15. Figures 12 and 13 compare the alternative
approaches when varying the percentage of moving objects
tagged from 0% to 100% in terms of average output rate and
memory usage, respectively.
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Figure 12: Comparison of alternatives (output rate)

Figure 12 shows the average output rate results for the four
different alternatives. In the figure, we measure the average
number of result tuples produced per time unit. In Figure
13 we measure the memory usage by these different solu-
tions over time. We can see from both Figures 12 and 13
that the TICK-TAG approach results in higher output rate
and smaller memory usage compared to the alternatives.
The relative performance of TICK-TAG over the other tag-
ging approaches increases with the increase of the number of
streaming objects that can share their tags. The main rea-
son is that the search cost of TICK-TAG is much lower than
updating in search costs (to find the tagged objects) in the
TABLE approach. Although XML and TUPLE approaches
also take a “stream-centric” approach for tag implementa-
tion, they do not exploit the commonalities between the
different tuples, and thus result in more memory being used
and higher processing cost.

Cost of Tag Join Operator
In this section we evaluate the cost of the tag join opera-
tor again with varying percentage of tagged data in both
streams (from 0% to 100%). We use Query 3 in this experi-
ment (Figure 9). Sliding windows are time-based and state
buffers are implemented as linked lists. The tag join condi-
tion is described in Section 6.1. Figure 14 shows the average
cost (computed after several runs) of the TagJoin. As can
be expected, the cost of tag join increases as the percentage

15
In the implementation, one XML tag is represented by two physical

tuples – one storing the start xml tag and the other – the end tag.
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Figure 14: Cost of tag join.

of tagged objects increases by about 65% when 100% of ob-
jects are tagged. The more tags are embedded inside data
streams, the more overhead is incurred by the tag join. Also,
in order to preserve the correct base tag semantics, e.g., tag
lifetime, the operator continuously creates stix tuples that
are used to maintain the references to the original data after
the tick-tags and their respective data tuples get physically
re-arranged in the stream as a result of the tag join. The
more tags are interleaved in the streams, the more the join
function E has to be invoked, the more stix elements will
be created and the more elements will need to be enqueued
into the output stream.
Cost of Tag-Aware Join Operator
In this section we compare the cost of the Tag-Aware Join

operator (described in Section 4.2) to a regular join opera-
tor using Query 4 from Figure 9. The goal of this experi-
ment is to measure the overhead of tag-awareness in a join
operator. Figure 15 shows the cost of the tag-aware join
with respect to the regular join, when varying the percent-
age of tagged objects. We see that, the larger the number
of tagged objects, the higher the cost of the tag-awareness.
For 0%, the tag-aware join cost is nearly idenitical to the
regular join operator cost, since there are no tick-tags in the
streams, and the operator executes just like a regular join.
Whereas for 100% of tagged objects, the tag-awareness in-
curs a “penalty” of processing a larger quantity of streaming
tick-tags, incurring about 43% of additional cost for 100% of
tagging. However, we believe, the case when 100% of data
is tagged is highly unlikely in real-life applications. And
the average overhead case, between 14%-33% for 20%-80%
of tagged data seems to be a reasonable overhead for the
added tag-awareness functionality and correct tag propaga-
tion through the query pipeline.

Summary of Experimental Conclusions
1. The tick-tag approach is scalable in the number of

tagged objects.

2. The tick-tag approach outperforms alternative tagging
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Figure 15: Cost of tag-aware join.

methods in terms of output rate and processing time.

3. The tick-tag approach consumes less memory, espe-
cially if many objects share the same tick-tag.

4. The average overhead of tag-awareness in a continuous
join operator is small.

7. RELATED WORK
The works related to our paper span a number of research

areas. Here, we highlight a few.
Tagging Systems. There are several ongoing projects that
deal with annotation propagation and management for sci-
entific databases, e.g., DBNotes [9], Mondrian [16], bdbms
[27], and MMS [10]. Social bookmarking systems, such as
Flickr [18], Delicious [11] and Technorati [40] support anno-
tations of web resources and images with free-text keywords.
For more examples of tagging systems and their taxonomy,
we refer the reader to [6]. To the best of our knowledge,
none of these existing works address the problem of tagging
in the context of dynamic data stream environments.

Chi et al. [12] looked at the entropy of tagging systems, in
an effort to understand how tags grow, and how the group-
ings of tags change over time and affect browsing. Halpin et
al.’s work [20] looks at the nature of tag distributions with
information theoretic tools. There has been some work on
association rules in tagging systems, including [7] and [32].
[32] primarily focuses on prediction of tags. Oldenburg et
al. [39] look at how to integrate tags across tagging systems
by using Jaccard measure and discuss different types of tag-
ging systems: social bookmarking, research paper tagging
systems, but not Data Stream Management Systems.
Streaming XML. Research on self-describing streaming
XML which can be viewed as “data tags” has received a lot
of attention in recent years [31, 42]. However, as we have
pointed out in Section 1.3, XML processing is typically more
expensive compared to traditional stream data processing,
and requires a special XML stream management functional-
ity (in addition to the XML-aware optimizer and executor).
Our proposed tagging approach is simpler in design and is
more light-weight compared to streaming XML, while it still
provides support for rich user-based tag semantics.
Annotations in Relational Databases. Relational data-
bases have had an extraordinarily successful history of com-
mercial success and fertile research. It is not surprising,
therefore, that database researchers have attempted to un-
derstand annotations and “tagging” in the context of rela-
tional databases [9].

One of the biggest challenges in relational databases is the
correct propagation of annotations through queries’ pipelines.
This is similar to the problem we’ve discussed in the con-
text of tag-aware query processing in Section 4.2. In [9], a
practical approach is taken to handling annotation in which



an extension of SQL is developed, which allows for explicit
user control over the propagation of annotations. The idea
in [9] is to allow the user to control the flow of annotations by
adding propagation instructions to the SQL query language.
In our case, the STF performs (by default) the system-driven
propagation, when processing tag-aware continuous queries.
Adding support for user preferences regarding tag propaga-
tion in tag-aware queries is a subject of our future work.

Most of the work on annotations of relational data focuses
on annotating individual values in a table. Geerts et al. [16]
have taken a more sophisticated approach and provide sup-
port for annotating associations between values in a tuple.
For example, in a query one might want to annotate fields A

and B in the output with information that they came from
input table R, and the B and C fields with information that
they came from table S. The authors introduce the concept
of a “block” – a set of fields in a tuple to which one attaches
an annotation and a “colour” which is essentially the con-
tent or some property of the annotation. They investigate
both the theoretical aspects and the overhead needed to im-
plement the system. Our approach supports various tagging
granularity by using regular expressions in the Applicability

field in the tick-tags, and to maintain the tags’ “lineage” we
employ the streaming stix concept.

We are unaware of any work that addresses the problem of
real-time data tagging in the context of Data Stream Man-
agement Systems and provides support for both explicit and
implicit tag querying. Furthermore, our proposed approach
is unique in that it is stream-centric, where tags are inter-
leaved with data tuples in data streams, and the process-
ing of these streaming tags is encapsulated inside tag-based
query operators that can be combined with regular contin-
uous query operators.

8. CONCLUSION
In this paper we have proposed a technique for tagging

streaming data using a special type of metadata called the
tick-tags. Tick-tags can serve a variety of purposes, includ-
ing labelling or describing some underlying real-time infor-
mation, and serving as means of disseminating useful knowl-
edge in addition to what is captured by the content of data
tuples. Our experimental results showed the scalability and
performance benefits of the tick-tag approach compared to
alternative solutions. We have also evaluated the costs of
executing tag-aware and tag-oriented continuous queries.

We intend to pursue two directions as a part of our future
work. First, we want to extend the support for real-time
mining and data classification using tags. Furthermore, we
intend to explore continuous query optimization using the
knowledge of tick-tags. An interesting problem to investigate
is whether the tick-tag awareness can also be used in query
optimization at compile-time when determining a query ex-
ecution plan, as well as at runtime (similar to punctuations

[30]) to adapt the query execution strategy based on the
observed streaming tick-tags.
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