
On-the-fly Progress Detection in Iterative Stream Queries
Badrish Chandramouli# Jonathan Goldstein# David Maier*

#
Microsoft Research

Redmond, WA
{badrishc, jongold}@microsoft.com

*Portland State University
Portland, OR

maier@cs.pdx.edu

ABSTRACT

Multiple researchers have proposed cyclic query plans for

evaluating iterative queries over streams or rapidly changing

input. The Declarative Networking community uses cyclic plans

to evaluate Datalog programs that track reachability and other

graph traversals on networks. Cyclic query plans can also evaluate

pattern-matching and other queries based on event sequences.

An issue with cyclic queries over dynamic inputs is knowing

when the query result has progressed to a certain point in the

input, since the number of iterations is data dependent. One option

is a ―strictly staged‖ computation, where the query plan quiesces

between inputs. This option introduces significant latency, and

may also ―underload‖ inter-operator buffers. An alternative is to

settle for soft guarantees, such as ―eventual consistency‖. Such

imprecision can make it difficult, for example, to know when to

purge state from stateful operators.

We propose a third option in which cyclic queries run

continuously, but detect progress ―on the fly‖ by means of a

Flying Fixed-Point (FFP) operator. FFP sits on the cyclic loop and

circulates speculative predictions on forward progress, which it

then validates. FFP is always able to track progress for a class of

queries we term strongly convergent. A key advantage of FFP is

that it works with existing algebra operators, thereby inheriting

their capabilities, such as windowing and dealing with out-of-

order input. Also, for stream systems that explicitly model input-

event lifetimes, we know exactly which values are in the query

result at each point in time.

A key implementation decision is the method for speculating.

Using the high-water mark of data events minimizes the number

of speculative punctuations. Probing operators on the cyclic loop

to determine their external progress circulates many more

speculative messages, but tracks actual output progress more

closely. We show how a hybrid approach limits predictions while

coming close the progress-tracking ability of Probing.

1. INTRODUCTION
We are seeing increased interest in iterative queries over

streaming events or rapidly changing input. The Declarative

Networking [19] community in particular has seen wide

application of such queries for declarative routing [23],

declarative overlays [17] and network monitoring and forensics

[18]. Such queries are sometimes expressed as (recursive) Datalog

programs. For example, the following reachability query is

adapted from Condie et al. [16]. It determines which nodes in a

network are reachable over links from designated source nodes

(which might, for example, represent certificate servers).

reachable(X, [X]) :- source(X).

reachable(X, [X|P]) :- link(Y, X),

 reachable(Y, X), notIn(X, P).

It derives output tuples of the form reachable(X, P),

meaning X is reachable from a source node along path P. The first

rule says that a source X is reachable from itself via the trivial path

[X]. The second rule says that node X is reachable by the path

consisting of P followed by X (denoted [X|P]) if there is a

direct link to X from a node Y that is reachable by path P. (It also

includes a check to see that X does not lie along P, in which case

X was already determined to be reachable.)

Most database techniques for evaluating such a query transform it

into an algebraic expression that represents one application of the

rules, which is then applied repeatedly. For example, one iteration

of reachable can be expressed as

Q(r) = M1(source) M2(C2(link ⋈C1 r))

where M1 adds the unit path to each source item, C1 combines a

link and an input item on a common node, C2 checks for path

membership and M2 augments the path from the input item. Q is

initially called on the empty set, then iteratively called on results:

r0 = Q() ri = Q(ri–1)

until no new outputs are produced. The developers of the P2

system [17][19] and others have noted that it is not necessary to

create each distinct ri. Rather, a cyclic query plan can be created

that simply feeds its output back in to one of its inputs. (See

Figure 1.) Moreover, such a plan will function even in the

presence of updates to the base data (source and link in this

example).

We are interested in adding support for iterative queries in a data-

stream system through similar use of cyclic query plans, to gain

expressiveness. In addition to graph-traversal-type queries as seen

in networking applications, we will show that cyclic plans can be

used for general pattern-matching queries, such as seen in

complex-event detection and temporal causality tracking [14].

One issue in such dynamic situations, however, is that the number

of iterations (that is, the number of times data must circulate

around the graph) is state dependent. In general, it is difficult to

know when all answers have been derived up to a certain point in

the input. One alternative is to ―strictly stage‖ the query

computation, taking one input (or a batch of inputs) and executing

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

the query plan to convergence (no further outputs), temporarily

buffering later input. At convergence, the answer is known to be

complete up to that point in the input. However, this approach is

undesirable because it introduces latency from delaying input. It

can also ―underload‖ inter-operator buffers as the last few results

trickle through, leading to heavy scheduling overhead.

Another possibility is to allow ―free-running‖ evaluation, where

new external inputs (such as source and link) are added to the

evaluation as they arrive. However, the best guarantee on results

in such an approach is usually only eventual consistency: The

evaluation will eventually converge to the correct result if input

stops. But if input never pauses, there can be uncertainty about

what results hold when. This indeterminacy can be a problem if

we are trying to use such a query to monitor for a particular

condition, such as ―Is node k reachable?‖ In the free-running case,

we can get both false negatives and false positives to such a

question. It may appear at the moment that k is not reachable, but

it actually is, it is just that the query computation has not

progressed to that point yet. In the case that inputs can be

retracted or expire (for example, if they are part of ―soft state‖

[16]), it may take the query result some time to reflect such a

change. Thus it may seem k is reachable when it is not. Also, not

knowing the progress of the query interferes with purging state,

for stateful operators on the loop.

This paper presents a third option to progress detection in cyclic

query plans. It still allows queries to be free running, but detects

the point of current progress ―on the fly,‖ using an operator we

term Flying Fixed-Point (FFP). We rely on external streams

providing punctuations that represent input progress. Punctuations

have been demonstrated to effectively track progress in non-cyclic

query plans, even in the presence of disorder [25]. However,

punctuations will not work directly with cyclic query plans. Any

cycle will have at least one binary operator (such as a Union or

Join), and that operator will block on propagating punctuation

until it receives corresponding punctuation on both inputs.

However, since one of its inputs is based on its own output,

punctuation will block forever at the operator.

FFP overcomes this problem by sitting on the cyclic loop in the

query plan and issuing a speculative punctuation, which is

essentially a guess about where computation has progressed to.

FFP monitors the stream contents while the speculative

punctuation circulates through the loop, in order to validate if its

guess was correct. If so, FFP can issue a regular punctuation both

to the query output and to the cyclic loop. (The latter is important

for purging the state of stateful operators on the loop.) It performs

this process without blocking its input or output, hence the

―Flying‖ in the name.

Our initial focus for FFP is queries that are ―strongly convergent‖

– not only do they give finite results on finite inputs, but there are

finite derivations for any result. We prove that we can always

detect progress for such queries. Later, we discuss useful classes

of queries with this property, and also ways the strong

convergence condition might be relaxed, based on recent work of

others.

Cyclic query plans strictly enhance the expressive power of

stream algebras. They can express queries that are not

representable otherwise. Of course, for any particular query or

query class, one could build a specialized algebra operator to

support it. The FFP solution uses existing operators, and inherits

beneficial properties they might have, such as windowing,

disorder tolerance and handling retractions of events. In a stream

engine such as CEDR [2] with operations that explicitly track

event lifetimes, our technique is able to determine exactly what

data is in the query result at any point in time. Also, the FFP

approach supports making certain query parameters, such as a

pattern being matched, a run-time rather than compile-time input,

and hence changeable over the lifetime of a running query.

Our FFP framework admits different approaches to handling

speculative punctuation. We initially devised two approaches:

 In the High-Water-Mark (HWM) approach, the maximum

timestamp seen at the FFP operator is used as the speculation

time. The speculative punctuation temporarily blocks at any

loop operator that has not progressed to that time.

 In the Probing approach, FFP starts speculation with a high

guess, but lets loop operators revise that guess downward, so as

not to block speculative punctuation.

We implemented both methods in Microsoft CEP [27] to compare

them. We saw that HWM does not track progress as closely as

Probing, especially for disordered inputs. However, Probing can

issue excess speculative punctuations in certain cases, which

wastes CPU resources. Both also have issues when there are lulls

(periods of time with punctuations but no data) in the input. Based

on this experience, we developed a third approach – Hybrid – that

attempts to get the ―promptness‖ of Probing but with the more

―stingy‖ behavior of HWM relative to generation of speculative

punctuation. Hybrid requires adding a new non-blocking event

type that communicates progress at query inputs to higher levels

in the query, in particular, FFP. Further evaluation has confirmed

the advantages of this approach.

2. GRAPH REACHABILITY
In this section, we explain how streaming query results are

computed recursively through an example query. More

specifically, we consider the following graph reachability query:

Given a directed graph G = (N, L) with nodes N = {ni | i = 1..k},

and links L = {(n1i, n2i) | i = 1..j}, plus a set of source nodes S

N, compute all pairs (n1, n2), n1 S, n2 N, such that n2 is

reachable from n1 through one or more links in L. We assume that

neither L nor S is known at compile time and that both can change

over time. This aspect is representative of streaming queries over

networks and roads, where both link properties (e.g., traffic

conditions) and graph structure (e.g., links failing and recovering

in a network) are volatile.

In this discussion, we give the reader an intuition for how results

get calculated, and lay the foundation for thinking about cyclic

streaming queries. We therefore assume that once a data item

arrives it is valid forever, that there are no retractions (for

example, revisions to erroneous items) in the input, and that there

are no punctuations to deal with. These assumptions will be

removed later.

The plan for this query is shown in Figure 1. Note that the leaves

of the graph provide the input streams, and that we have one input

stream for new links, and another for new source nodes. Also note

that the plan is a directed graph of streaming versions of relational

operators, where each arrow in the diagram is a stream, and is

labeled with the format of the events traveling along the stream.

We assume that every stream event is tagged with the application

time Vs at which the event becomes valid, which will be shown in

its first field in the discussion.

Links

U

Sources

n,n, bv[n]=1

⋈n1=q

σbv[n2]=0

p,n2, bv[n2]=1

FFP

<n1, n2>

<n>

<p, q, bv>

<p, q, bv>

<p, q, bv>

<n1, n2, p, q, bv>

<n1, n2, p, q, bv>

<p, q, bv>

<p, q, bv>

Figure 1: Reachability Query

We interpret the stream as describing a changing relation. The

contents of the relation at any time t are all the events with Vs ≤ t.

Operators then output event streams that describe the changing

view computed over the changing input according to the relational

semantics of that operator. This interpretation corresponds loosely

to the semantics used elsewhere [1][2][9][10][11][12].

Of note is a new operator called FFP (for Flying Fixed-Point).

This operator is the means by which recursion occurs, and passes

events along its input both to a conventional, non-recursive

output, as well as to one of its descendants in the operator graph.

The result is a form of recursion, that terminates when a fixed-

point is reached (see Ramakrishnan et al. [4]). Another feature of

the query plan is the schema elements labeled ―bv‖. These are, in

fact, bit vectors, each of which is k bits long, and serve the same

purpose as the path field in the reachable example in the

introduction. We use this bit vector to track visited nodes in G and

avoid infinite looping through cycles.

n1

n2:1

n3:1

n4

3 3

2

4

Figure 2: Query Input

In this example, we will feed our query the graph shown in Figure

2 through the Links input. The nodes are labeled with both the

node name as well as the valid time for the Sources insertion

event. Similarly, the links are also labeled with the valid times of

their insertion events.

For the sake of concreteness and clarity, we will follow the

execution of the query plan to completion for each distinct

moment in time. We will also assume that each operator processes

input events in batches such that all input events with the same

valid time are processed at once. We will therefore describe the

behavior of our plan at the four distinct points in time from time 1

to time 4. Since we have four distinct nodes, bv is 4 bits long.

Time 1: We receive two input events on the Sources stream,

which correspond to nodes n2 and n3. The projection above the

Sources stream produces the two events: (1, n2, n2, 0100) and (1,

n3, n3, 0010). These events then travel through the Union and

lodge in the right join synopsis. Since there is no input on the left

side of the Join, we have reached a fixed-point.

Time 2: We receive event (2, n3, n1) on the Links stream, meaning

that starting at time two, our input relation on the left side of the

Join contains a link from n3 to n1. This link travels up to the Join,

and lodges in its left synopsis. Given the join condition, this link

joins to one row on the right side: (1, n3, n3, 0010). The Join then

outputs (2, n3, n1, n3, n3, 0010). The Select operator then checks if

there is a cycle by seeing if the path so far includes the destination

in the new, derived path (by checking the 1st bit, since the path

goes to n1). Since this bit is not set, the event reaches the Project,

which removes unneeded columns and sets the appropriate bit in

bv. The result is (2, n3, n1, 1010), meaning that there exists a path

from n3 to n1, starting at valid time 2. We now reach the FFP

operator, which both outputs the result and inserts it into the

Union below the Join. The Join then lodges the event in the right

synopsis, but is unable to join it to anything in its left synopsis.

We have now reached a fixed-point.

Time 3: We receive the events (3, n1, n2) and (3, n2, n3) in the

Links stream. They travel up to the left synopsis of the Join,

which already contains event (2, n3, n1). By joining the new events

to the right synopsis, the Join produces (3, n1, n2, n3. n1, 1010) and

(3, n2, n3, n2, n2, 0100). Both events get past the Select since the

checked bits are 0, and so there is no cycle yet. After projection,

these two events become (3, n3, n2, 1110) and (3, n2, n3, 0110).

These entries are now output and loop around again to the right

join synopsis. This time, however, we have not yet reached a

fixed-point. By joining the new events to the left join synopsis, we

produce (3, n2, n3, n3, n2, 1110) and (3, n3, n1, n2, n3, 0110).

Continuing our query, we check for cycles using our Select

operator. Unlike previous times, this time we find a cycle. The

first event has already visited n3. We do not pass this event

through to the next round of recursion and only continue with the

second. After projection, it becomes (3, n2, n1, 1110), which is

output and passed back to the Union for another round of

recursion. It lodges in the right join synopsis, and produces a new

event that cannot get past the select since the first three bits are

set. We have again reached a fixed-point. The following output

has been produced so far: (2, n3, n1, 1010), (3, n3, n2, 1110), (3, n2,

n3, 0110), (3, n2, n1, 1110).

Time 4: We receive event (4, n3, n4) in the Links stream that

lodges in the left join synopsis. The join then produces (4, n3, n4,

n3, n3, 0010) and (4, n3, n4, n2, n3, 0110). Both events get through

the Select since neither has its 4th bit set, and become (4, n3, n4,

0011) and (4, n2, n4, 0111). They are then output, and loop around

to lodge in the right join synopsis without joining to anything. We

have again reached a fixed-point.

A few interesting observations one can make from this example:

 For clarity, we presented the example in a way that quiesced the

query between time increments. The same result, although

possibly with a different output order, would be achieved if

new inputs were allowed into the recursive loop before a fixed-

point had been reached. This outcome is possible because of the

order insensitivity of the operators used in this recursive query

plan.

 We assumed each event lives forever, once inserted. We can

relax this assumption in two different ways. In the first, an

event can arrive with an expiration time Ve, in addition to its

start time. In this case, we can calculate the lifetimes of output

reachability events based on the intersection of the lifetimes of

all contributing input events. For example, suppose node n3 was

a source for the interval [1, 6], link (n3, n1) was present in the

interval [2, 8], and link (n1, n2) for interval [3, 10]. Then the

output event (n3, n2, 1110) will be valid for the interval [3, 6].

The appropriate event spans can be computed whenever two

events join.

 The second relaxation is to allow an event to be explicitly

retracted, as long as operators can handle retractions, such as in

CEDR [2]. Such a retraction ripples through the query plan in

the forward direction, removing all events derived from it as it

goes. For example, suppose at time 5, the Links event (n3, n1) is

retracted. This retraction will result in the retraction of the

output event (n3, n1, 1010). The retraction of this event will

travel around the loop, resulting in the event (n3, n2, 1110) also

being retracted.

 The operators have bag semantics. The query can generate

multiple copies of an answer if there are distinct paths using the

same nodes, but the bit vector prevents infinitely many copies

of the same output. This point is covered further in Section 3.

 Traditional notions of punctuations [1][3][5][6] would fail if

used in the context of this query, since operators in the

recursive loop wait on themselves for a punctuation. The

punctuations would therefore become blocked at the Union and

Join, which would receive punctuations from their non-loop

inputs, but never the ones on the loop. This issue is addressed

fully in Section 3.

3. FORMALISM
In this section, we formally define concepts related to streams,

punctuations and queries; describe what is required for an

operator implementation to be speculation friendly; and prove that

FFP functions correctly with appropriate inputs, streams and

operators.

3.1 Streams and Progress
We adopt a formal model of streams that we believe encompasses

most previous stream models. A stream R is a potentially

unbounded sequence e1, e2, … of events. An event e consists of

one or more control parameters c1, c2, …, cn, plus an optional

payload p, which we write as e = < c1, c2, …, cn; p>. A payload

will typically be a relational tuple, but might be something else,

such as a punctuation pattern. All we require is a notion of

conformance of a payload p to a schema R. We say a stream R

conforms to schema R if the payload of every event in R conforms

to R.

The exact nature of control parameters varies from system to

system. Some of the alternatives we have seen are:

A1. A single control parameter that contains a sequence number

assigned at the inputs to a query.

A2. One control parameter that indicates what the event represents

(regular tuple, punctuation, end of stream), and a second control

parameter giving a timestamp supplied by the stream source [6].

A3. A control parameter indicating whether the event represents a

positive tuple (insertion) or negative tuple (deletion) [10].

A4. A pair of control parameters defining a time interval over

which the payload is valid [1].

We do not constrain the details of the control parameters. What

we require is that for stream R(R), any prefix P of R can be

reconstituted [11] into a linear sequence r1, r2, …, rm of snapshots

over R. Each snapshot is just a finite relation over R. It is useful

to consider how each additional event modifies the reconstitution.

For example, with Alternative A1 above, we can treat an event

<sn, p> as adding a new snapshot to the list that adds p to the

previous snapshot. That is, it extends r1, r2, …, rsn-1 to r1, r2, …,

rsn-1, rsn, where rsn = rsn-1 ∪ {p}. For Alternative A4, we can view

snapshots as being indexed by timestamps, and an event <s, e; p>

as inserting p into any snapshot rtk in rt1, rt2, …, rtm where s ≤ tk <

e, plus possibly adding a snapshot re to the end of the list if e > tm.

We would like to treat a stream R as representing a potentially

infinite list r1, r2, … that is the limit for the reconstitution as we

take longer and longer prefixes of R. We term this sequence the

canonical history of R [1], and consider the intent of applying a

function f to R to be a stream S whose canonical history is f(r1),

f(r2), … . However, there is no guarantee that R converges to a

well defined canonical history. New events might continue to

update a particular snapshot indefinitely. Thus, we require that a

stream make progress, meaning that for each snapshot ri, there

comes a point in the stream where ri no longer changes.

For an event e in stream R, let P be the prefix of R up to e, and P:e

be P with the addition of e. Let the reconstitution of P be r1, r2, …,

rm, and the reconstitution of P:e be s1, s2, …, sn. We define the

stabilization point of e relative to R, stable(e), as the maximum i

such that

 r1 = s1, r2 = s2, …, ri = si.

That is, e does not modify any of r1, r2, …, ri. We say that stream

R progresses if for any index j, there is a point after which for any

event e, stable(e) ≥ j. At that point, snapshot rj is stabilized – it

will no longer change. If R progresses, then every snapshot

eventually stabilizes, and the canonical history is well defined. In

this case, we can use R@i to denote snapshot ri in the canonical

history of R. Note that snapshots in a reconstitution or canonical

history need not be indexed by sequential integers. Any strictly

increasing sequence works; we will sometimes use timestamps in

the sequel.

We consider only progressing streams, so that the canonical

history is always defined. However, we must detect progress to

make use of it. For some streams, this task is easy – for example,

in Alternative A1, if events are assumed to be in order of

increasing sequence number. Our approach accommodates

disordered streams (at least in the recursive part of the query), so

we will need a form of punctuation to explicitly mark progress.

An event e in stream R constitutes a punctuation at i if every

event d after e in R has stable(d) > i. We say that stream R

explicitly progresses if for any index j, there is some event e in R

that is punctuation at i, where i > j. In some cases, such as ordered

streams, ―normal‖ events can serve as punctuations. However, to

handle disordered streams, we need specific punctuation events

(flagged as such with a control parameter). We assume that all

stream operators produce explicitly progressing output given

explicitly progressing inputs. Thus, they must propagate

punctuation appropriately.

In our definition of FFP we will also have speculative

punctuation, which is similar to regular punctuation, but does not

actually guarantee stream progress. We will refer to non-

speculative punctuation as definite punctuation when we need to

distinguish the two. In our discussion, we use dp(i) to denote a

definite punctuation event at index i, and sp(i) to denote a

speculative punctuation event at index i.

3.2 Queries and Fixed Points
To accommodate the algebraic representation of queries with FFP,

we view a relational query Q over which we want to compute a

fixed-point as having two relational parameters, r and s,

designated as Q(r, s). Parameter r names an external input (and

can be generalized to a set of relations). Parameter s is the

recursion parameter, which represents data headed around the

recursive loop. We require that schema(Q) = schema(s), and that

Q is monotone on its second argument. That is, we have Q(r, s)

Q(r, s ∪ s1) for any s1.

We now define the fixed point of Q on r. Let

 Q0(r) = Q(r,)

 Qi(r) = Q(r, Qi-1(r)) for i > 0

We say tuple t has level i if it appears in Qi(r). The fixed point of

Q on r is

 Q*(r) = 𝑄0≤𝑖
𝑖 (𝑟).

Our goal for recursive queries over a stream R is to compute the

fixed point of each snapshot in the canonical history of R. That is,

given progressing stream R and Query Q, we want to produce a

progressing stream S such that, for every index i,

 S@i = Q*(R@i).

We call such an S a fixed-point stream for R under Q, and write S

 Q*(R). (We use membership because there could be many

streams with this property.)

As we noted in the introduction, we need to avoid certain kinds of

divergent behavior in computing fixed-points. The need for finite

answers and finite derivations are captured in the following two

definitions.

Definition 2.1: Query Q(r, s) is convergent if for each value of r,

there exists a k such that Qk(r) = Qk+1(r).

If Q(r, s) converges at k, then

 Q*(r) = Q0≤𝑖≤𝑘
𝑖 (𝑟).

and so must be finite.

Definition 2.2: Query Q(r, s) is strongly convergent if for each

value of r, there exists a k such that Qk(r) = .

Note that strongly convergent implies convergent, and that for a

strongly convergent query Q, there is a maximum level (k) that

any tuple t in Q*(r) has, hence the number of derivations is finite.

3.3 Operations
To use FFP with a target query Q(r, s), we will need to express Q

with algebraic operators that behave appropriately, particularly

with regard to speculative punctuation. We say a streaming

operator G is speculation-friendly if the following three conditions

hold.

S1. G speculates correctly.

S2. G does not block on definite punctuation.

S3. G is forward moving.

We explain each of these conditions below.

S1. G speculates correctly if given a speculative punctuation sp(i)

in one input stream, and that every other input stream is explicitly

progressing, G will eventually emit speculative punctuation sp(j)

where j ≤ i. Moreover, if it turns out that sp(i) actually holds (that

is, G receives no later event e with stable(e) ≤ i), then sp(j)

actually holds (G will emit no event d with stable(d) ≤ j). Also, if

G has previously emitted a definite punctuation dp(k), then j ≥

min(i, k). This last condition says that G doesn‘t ―back up‖ from

previously emitted definite punctuation. In practice, it will always

turn out that i > k, so j > k. To speculate correctly, G will typically

need to track definite punctuation on its other inputs.

S2. (G does not block on definite punctuation.) We already

assume that G will produce explicitly progressing output on

explicitly progressing input. Our method further requires

operators to emit output in the absence of any particular definite

punctuation. Such a G must output the same collection of non-

punctuation events on any two input streams with the same non-

punctuation events. Any monotonic operator has a non-blocking

implementation. (Section 6 discusses handling non-monotonic

operators by being able to revise previous outputs.)

S3. (G is forward moving.) We require that if an input event e for

G contributes to output event d, then stable(e) ≤ stable(d). In

practice, it is unlikely that an operator G could arbitrarily shift

events backward in time without violating condition S1.

3.4 The FFP Operator
To use the FFP operator to compute fixed points relative to a

query Q(r, s), we need an algebraic query tree T[O, Ir, Is] for Q. O,

Ir and Is are essentially ―ports‖ of this query tree, where O

connects to an output stream, Ir connects to an external input

stream R, and Is will be for recursive input. We also view the FFP

operator as having ports: FFP[I, OE, OR]. Here I connects to an

input stream, OE connects to the external output stream, and OR

connects to the recursive output stream. When we apply FFP to T

and R, we make the following connections:

R Ir O I OR Is

OE will connect either directly to a client, or to the input of a

downstream operator. We denote this arrangement of operators by

FFP[R, T]. When FFP, T and R are connected in this manner, a

recursive loop is created that passes from OR to Is to O to I. Figure

3 shows the recursive loop in our reachability query as a dashed

line. Note that for this example, Q, and hence T, has two external

input streams, one for sources and one for links. A useful concept

in the sequel is external progress. The external progress of any

binary operator on the loop is the maximum definite punctuation it

has received on its non-loop input. The external progress of the

loop is the minimum over the external progress of its binary

operators. Note that stream progress in the loop may often be less

far along than external progress, because events from an earlier

time are still iterating through the loop.

In defining the FFP operator, we view it as operating in phases,

iterating over segments of its input separated by speculative

punctuations. (These phases in general will be different from the

levels of recursion defined earlier.) We will assume that at startup,

Links

U

Sources

n,n, bv[n]=1

⋈n1=q

σbv[n2]=0

p,n2, bv[n2]=1

FFP

<n1, n2>

<n>

<p, q, bv>

<p, q, bv>

<p, q, bv>

<n1, n2, p, q, bv>

<n1, n2, p, q, bv>

<p, q, bv>

<p, q, bv>

O

Ir Is

OE

OR

I

Ir

Figure 3: Dashed Recursive Loop

FFP emits a speculative punctuation sp(tmin) on OR, where tmin is

known to be before the stable points of all events on all external

input streams.

A segment of input for FFP is a maximal sequence of events

 e1, e2, …, em, sp(t)

received on I, where none of the ei‘s is a speculative punctuation.

By maximality, e1 must either be the first event on I, or be

preceded immediately by a speculative punctuation. We allow that

a segment can have e1, e2, …, em be the empty list

For each segment e1, e2, …, em, sp(t) that FFP receives on I, it

performs the following steps.

F1. Emit e1, e2, …, em on output OE.

F2. Emit those events in e1, e2, …, em that are not definite

punctuations on output OR.

F3.a. If stable(ei) > t for 1 ≤ i ≤ k, then emit dp(t) on output OR,

followed by sp(u) for some u ≥ t + c (for a fixed constant c).

F3.b. Otherwise, emit sp(t) on output OR.

The constant c can be chosen as the minimal possible time

interval, sometimes called a chronon [1]. Note that FFP will only

ever have one speculative punctuation circulating on the recursive

loop at a time. Its strategy is to keep circulating a speculative

punctuation sp(t) until it determines that the punctuation is valid,

then it converts it to a definite punctuation and starts speculating

at a later point. The next section will present conditions under

which such speculation must always eventually succeed.

This definition of FFP might seem to indicate that it needs to

buffer a whole segment in order to examine it. In fact, we will

describe two implementation options that can process segments in

a pipelined, continuous fashion (hence the ―Flying‖ in ―Flying

Fixed-Point‖).

3.5 Specific FFP Algorithms
This general description of FFP admits several specific

implementations. We describe two basic ones here, and a third,

more sophisticated version in Section 5.3.

High-Water Mark In the High-Water Mark (HWM) approach,

we monitor regular events that pass through FFP, and maintain a

high-water mark hwm equal to the maximum value of stable(e)

over all events seen. We then use hwm as the time value whenever

FFP issues a new speculative punctuation (as long as hwm is

greater than the latest definite punctuation issued already). FFP

remembers this value of hwm as cst (current speculation time).

For every regular event e subsequently received, FFP checks if

stable(e) ≤ cst. If so, it sets a flag notConverged. As the

speculative punctuation sp(cst) travels around the loop, it will

―lodge‖ temporarily at any binary operator whose external

progress is before cst. When the speculative punctuation

sp(cst) returns to FFP, and notConverged is set, FFP clears

the flag and recirculates sp(cst). (Step F3.b) If notConverged

is false, then FFP ―promotes‖ sp(cst) to definite punctuation

dp(cst), and issues it according to Step F3.a. It then issues a new

speculative punctuation if hwm has advanced in the mean time.

For illustration, consider the example in Section 2. Suppose FFP

decides to speculate immediately after getting the event (3, n3, n2,

1110). At this point, hwm = 3, so FFP sends out sp(3) and sets

cst = 3. FFP then immediately receives the event (3, n2, n3,

0110), so it sets notConverged to true. Suppose that sp(3)

travels around the loop to the Join operator and lodges, because

the latest punctuation received on the link input is dp(2).

Regular events continue to be propagated through the Join.

Assume immediately after Join receives event (4, n3, n4), it gets

dp(4). At that point, Join releases sp(3), which travels on to FFP.

Since notConverged is set, FFP clears it and sp(3) is

recirculated. This time sp(3) will not lodge at the join, but

immediately propagate back to FFP. The notConverged flag

will still be false, because only events with time = 4 are currently

circulating. Hence sp(3) will be promoted to dp(3) and sent

around the recursive loop. FFP then starts the speculation process

over again with hwm = cst = 4.

Probing The HWM approach, while conceptually simple, has

some limitations. Its estimate for progress (latest event seen)

could be far off from the external progress of the loop as indicated

by definite punctuation. Second, it will not advance progress in

the absence of regular events, even if punctuations are present. To

overcome those issues, we designed an alternative approach,

called Probing. With Probing, a speculative punctuation never

lodges. Rather, an operator is allowed to revise the time value

downward so the punctuation can be forwarded immediately. FFP

starts a new speculative punctuation with a time value of +∞,

which will always be revised downward on the first circulation.

Probing keeps track of the earliest time of subsequent events it

receives as an input (rather than just the notConverged flag).

Upon receiving speculative punctuation sp(s), it compares s to the

earliest event time eet. It outputs a definite punctuation at time d

= min(s, eet), as long as d is later than the previous definite

punctuation produced.

Returning to Example 1, suppose the Probing version of FFP

decides to issue a speculative punctuation at the same point (just

after receiving (3, n3, n2, 1110)). FFP emits sp(+∞) on its loop

output, initializing eet to +∞ as well. FFP then receives (3, n2,

n3, 0110), which resets eet to 3. Assume when sp(+∞) arrives at

the Union, the latest punctuation on its nodes input was dp(5).

Thus Union will emit sp(5), which travels to the Join. If the Join‘s

latest punctuation on its links input is dp(2), then Join will emit

sp(2), which will travel unchanged through the Select and Project

to arrive back at FFP. At this point, FFP can emit dp(2) on the

loop output, since 2 is smaller than eet (assuming any previous

definite punctuation was at a time earlier than 2). At this point,

FFP can speculate again with sp(+∞). Should this speculative

punctuation again return to FFP as sp(2), there will be no definite

punctuation generated, since dp(2) was produced previously.

3.6 Correctness of FFP
We can now state our main result.

Theorem 2.3: Let T[O, Ir, Is] be a query tree for a strongly

convergent query Q(r, s). If T uses speculation-friendly operators

and R is an explicitly progressing stream, then FFP[R, T] outputs

an explicitly progressing stream S Q*(R).

Proof: We sketch a proof in two main parts. The first part

establishes that S is a fixed-point stream for R under Q. The

second part shows that S is explicitly progressing.

That S is a fixed-point stream for R under Q does not rely on the

handling of speculative punctuations at all. Rather, it follows from

the fact that FFP sends all input back around the recursive loop,

that operators on that loop do not block on definite punctuations,

and that R is progressing. The proof of this part is an induction on

the level of recursion. Consider a specific snapshot r = R@t in the

canonical history of R. The general statement is that FFP

eventually receives (hence outputs to OE) all events needed for

Qm(r) for every m.

Basis case. The basis case is that FFP receives Q0(r) = Q(r,) on

I. This case holds since R will eventually progress past t and

stabilize r. Since T will have received all of at this point, it will

output all of Q(r,) to I. (There is no problem if T receives more

data, because Q is assumed monotone on its second input.)

Inductive step. This case follows from the observation that if FFP

has received all of Qk-1(r) on its input I, it will emit it on recursive

output OR. Thus T will eventually produce all tuples in

Q(r, Qk-1(r)) = Qk(r).

Since Q is strongly convergent, there is some j such that Qj(r) =

. Thus once FFP has received all input up through Qj(r), there

will be no more output events for Q*(r), and the output of FFP

will progress past time t.

Demonstrating the explicit progress of S requires two things. (1)

Any dp(t) that FFP emits on OE must be correctly placed. That is,

no later event e will be emitted with stable(e) < t. (2) For any

index u, FFP will eventually emit a definite punctuation tp(t) for

some t ≥ u.

For (1), we note that FFP will always see the end of a segment

(that is, the next speculative punctuation). After FFP emits any

events on OR in step F2, it will necessarily emit a speculative

punctuation on OR in step F3.a or F3.b. Because every operator on

the recursive loop is speculation-friendly, each must eventually

pass on the speculative punctuation until it gets back to I. Now

consider segment e1, e2, …, em, sp(t) that satisfies the If-statement

in step F3.a. When e1, e2, …, em are sent out again on OR, any

event d they will produce in the next segment will have stable(d)

> t, since all operators on the recursive loop are forward moving.

This situation will be true for all subsequent segments, by similar

reasoning. Thus the speculative punctuation sp(t) was actually

valid, and FFP can convert it safely to dp(t). Since R is explicitly

progressing, T will eventually produce a definite punctuation

dp(u) where u ≥ t. That punctuation will be correctly placed in the

output of T by the properties of its operators, and hence will be

correctly placed in the output of FFP.

For (2), we note that a speculative punctuation sp(t) can only be

recirculated a finite number of times by step F3.b before step F3.a

applies. Since the input of FFP progresses, as shown in the first

part of the proof, there must eventually be a segment where e1, e2,

…, em all have stable points after t. Further, each time we use step

F3.a, we increase the index for the speculative punctuation by at

least c. Thus we must eventually speculate at some index v ≥ u.

End of Proof.

The hypotheses in Theorem 2.3 are actually stronger than they

need be. Any operators in T that are not on the recursive loop do

not need to be speculation-friendly. They only need to satisfy the

condition that they emit explicitly progressing output on explicitly

progressing input.

4. PATTERN MATCHING WITH NFAs
This section explains how to use FFP to implement arbitrary

NFAs, a common paradigm for pattern matching. Pattern

matching can be framed as an iterative stream query, where, given

a transition table for a finite automata, and given an input

sequence, we wish to find all reachable automata states [7][8].

This relationship can be formulated as a simple Datalog query:

Reach(B, B-1, start).

Reach(B, T, Q) :- Reach(B, T-1, R),

 Input(T, A), Transition(R,Q,A).

Reach contains all reachable automata states (3rd field), where

the subsequence that matches the pattern starts at the first field

and ends at the second. The first line seeds the automata with a

zero-length pattern at every sequence position. The second line

then combines existing found patterns with sequence elements

that move the pattern to a new state through a transition. This

query is strongly convergent, because we can only follow

transitions along increasing sequence numbers. We are therefore

limited in the number of iterative steps at any given moment by

the number of received symbols, which is finite.

Figure 4 shows the resulting cyclic plan, with sample input and

output. Note that the state machine is given as a streaming input,

and may, in theory, change over time. Thus the plan is actually a

streaming program for executing arbitrary, evolving automata. For

clarity, we again assume that event lifetimes are unbounded, and

explain the role of the various operators with the given input. The

particular automata that we execute here searches for the pattern

AB*A. The query outputs all discovered event sequences that

constitute partial and complete patterns, and their associated states

in the automata. The starting state is S, and the final state is called

F. (Note that we could filter the output for final states if desired.)

The state machine is described using a set of transitions such that

each transition absorbs an accompanying input. The Symbols

input is a description of the sequence in which we attempt to find

patterns. Each event has a sequence number, and a symbol, which

may match a symbol in the automata transition table.

Symbols
State

Machine

Multicast

⋈InSymbol=Symbol

⋈State1=PatState ˄
 SeqNo=PatSeqNo+1

πSeqNo,SeqNo-1,S

<SeqNo, InSymbol> = {

(1, A),

(2, B),

(3, B),

 (4, A) }

<SeqNo, InSymbol>

<SeqNo, InSymbol>

<State1, State2, Symbol> =

{ (S, q1, A),

 (q1, q1, B),

 (q1, F, A) }

<SeqNo, State1, State2, Symbol, InSymboll>

<SeqNo, StartSeqNo, PatSeqNo, State1,

State2, PatState, Symbol, InSymbol>

U

<StartSeqNo, PatSeqNo, PatState>

<StartSeqNo, SeqNo, PatState>

FFP
<StartSeqNo, PatSeqNo, PatState>

<StartSeqNo, PatSeqNo, PatState>

<StartSeqNo, PatSeqNo, PatState> = {

πStartSeqNo,SeqNo,State2

(1, 0, S),

(1, 1, q1),

(2, 1, S),

(1, 2, q1),

(3, 2, S),

(1, 3, q1),

(4, 3, S),

(1, 4, F),

(4, 4, q1) }

Figure 4: Query Plan for NFAs

While we will not describe the execution of this query in the same

level of detail as the query in Section 2, we sketch its behavior.

The state machine is loaded into the right join synopsis of the

lower Join. When input comes along the Symbols stream, this Join

finds all transitions that can be made using this symbol, and

passes these transitions to the Join above, which looks for partial

patterns that end at the starting state of one of the activated

transitions, and which sequentially precede the new symbol. For

all such matches, we have found a new (partial or complete)

pattern, which we output and recursively insert back into the right

side of the upper Join.

Along the left branch of the Multicast above the Symbols input,

we create a seed start state on each input symbol and recursively

insert it into the right join synopsis of the upper Join. In the

example above, the input sequence is ‗ABBA‘. Since our query

returns partial and complete discovered patterns, we should output

the following patterns and their associated end sequence IDs:

‗A‘:1, ‗AB‘:2, ‗ABB‘:3, ‗ABBA‘:4, ‗A‘:4. There are four extra

outputs in Figure 4. These outputs correspond to the four seed

patterns introduced by the left side of the multicast, and are

regarded as patterns of length 0.

We highlight several additional aspects of the FFP approach.

Dynamic Patterns: Note that with support for retraction of

events, we can change all or part of the NFA while the query is

running. Such a capability could be useful in a fraud- or intrusion-

detection scenario where data mining techniques are uncovering

new suspicious patterns, and we want to incorporate them into the

NFA.

Windows: Patterns can be restricted to occur in within a window

of a particular duration d by giving each event an explicit

expiration Ve = Vs + d, and intersecting lifetimes as described in

the discussion of Example 1.

Auxiliary State: This example uses an unadorned NFA, but it is

possible to maintain state associated with each path in the query

that is used regulate transitions and test conditions. Such state is

carried as additional fields in the events that circulate in the cyclic

loop. As an example, consider the ―W‖ query that looks for

patterns of the form UDiUjDkUl, where i + k = j + l. Here we are

looking for two segments of downticks followed by upticks that

bring us back to the starting point. (The initial U is to ensure we

have found the largest such pattern.) We use a basic NFA for

UD*U*D*U* and keep an auxiliary field M in the loop events to

track the number of downticks minus the number of upticks. In

this case, we need a transition restriction going from the second

group of downticks to the final group of upticks that M > 1.

(Otherwise the value of M can never reach zero again.)

5. Evaluation and Improvement
In this section, we evaluate and improve upon the proposed

techniques by examining their efficacy in the context of Microsoft

CEP [27], a streaming product based on the CEDR research

project [2]. This system uses the valid-time-interval approach

mentioned in earlier examples and described in Goldstein et al.

[2], and fully implements speculation with out-of-order input over

an algebra more expressive than standard SQL (SPJ with GB,

aggregation, and union). We have implemented speculation-

friendly versions of Select, Project, Join, Union, Multicast,

Aggregation, and Group-and-Apply (similar to SQL Group-By).

All operators immediately propagate changes to the minimum

punctuation seen on all inputs, and are either speculation friendly,

or conform to the more relaxed notion described in Section 6. As

a result, all operators may be used in the recursive loop except

one. (AlterLifetime, which is used to window data, is not always

forward moving. As a result, windows are applied to data before

entry in the recursive loop.) Handlers were added to operators for

speculative punctuations according to the different approaches,

and a new FFP operator, based on the existing Multicast operator

was added to the system. Overall, the modifications and additions

needed to support FFP were surprisingly few.

5.1 Comparison to Native Pattern Operator
In order to understand the tradeoffs associated with using iterative

queries as opposed to writing specialized operators to implement

the same functionality, we implemented a non-reentrant ATN

(augmented transition network [26]) operator with similar power

to the recursive plan shown in Figure 4. The only difference in

expressiveness is that the cyclic query plan allows modifications

to the automata over time, while the ATN operator must be halted

and restarted if the automata changes. Great care was taken in

implementing this operator, as its use will likely last beyond the

lifetime of this evaluation. It produces exactly the same output as

the cyclic plan, and state was kept to the minimum needed to

provide the right in-memory indices for very high performance.

The amount of time required to build this operator was vastly

more than the time to write the reentrant automata query. As a

proxy to represent the time required to build the operator, we

report lines of code for the combined query (verbose XML) and

operator implementation (C#) for the ATN operator versus lines

of code for the cyclic query in the following figure:

On the other hand, one would expect the ATN operator to perform

significantly better than the solution easily built using a cyclic

query. We implemented a version of the W query described in

Section 4, using a single integer register in our ATN to count the

number of upticks and downticks, ensuring that the second trough

is not above the first trough, and that we end with a zero count.

The resulting ATN has 7 states, 11 transitions, and one final state.

We ran this ATN over an ordered stream of evenly weighted coin

tosses with a window size of 30 events. All data was first read

from disk and parsed into events before timing began. The events

were then processed through the system as quickly as possible

with the standard level of batching. Output was dropped to avoid

including the output cost in the result. The results are shown in the

figure below. Note that we achieve a respectable 30K events/s

with our reentrant implementation, comparable to solutions

proposed by others. In comparison, a carefully tuned and indexed

native implementation in our system achieves approximately

150K events/s, a factor of 5 difference.

To sum up, the iterative query was vastly easier to write (a tenth

the code), did not require source-level access to our system or

knowledge of system internals, is capable of modifying the

automata on the fly (possible for the native operator at increased

development cost), and has respectable performance. In

comparison, however, to our highly optimized pattern-matching

operator, it is 5x slower for this particular query.

5.2 High-Water Mark versus Probing
In this section, we experimentally study the comparative strengths

and weaknesses of the HWM and Probing versions of progress

detection. We begin with a discussion and motivation for our

performance metrics and the various parameters that we vary.

5.2.1 Evaluation of FFP Speculation Alternatives
Our basic FFP framework allows some latitude in selection and

processing of speculative punctuations. Before proceeding to

results, we discuss our main evaluation metrics and the

experimental parameters we vary in performance experiments.

Lag: We want to characterize how closely the punctuations output

by FFP track actual stream progress. Figure 5 illustrates a relevant

metric, called lag. The x-axis represents system time and the y-

axis application time, in arbitrary units. The dots represent output

events from FFP, plotted by the time each is output versus the

timestamp it carries. The solid ―Real Progress‖ line represents the

low-water mark for application time: the minimum application

time of all future events. The crosses are punctuations, and the

dashed ―Explicit Progress‖ line represents the bound on low-

water-mark time provided by the punctuation. The lag at any point

on the x-axis is the distance between the two lines. For example,

at x =18, the lag is 11.1 – 10.0 = 1.1 units. We report lag averaged

across system time. In the figure, the average lag is about 0.64

units.

There are at least two sources of lag in the FFP setting. The first is

high or low estimates of progress in speculative punctuations. For

example, with HWM, if the HWM time of regular events is far

ahead of actual progress, the speculative punctuation will lodge in

some loop operator for an extended period. Conversely, if the

progress estimate is too low, it might result immediately in a

definite punctuation, but will not be as tight of a bound on actual

progress as it could be. The second source of lag is the batching of

events. In most stream engines, an operator tries to process a

batch of events when invoked, to amortize scheduling overheads.

FFP will read at most one speculative punctuation from any batch,

hence will output definite punctuation no more than once per

batch. It is also worth noting that under the assumption that

external punctuations are d time units apart, then average lag can

be no better than d/2, even for non-cyclic stream processing. As a

result, this quantity serves as a useful lower bound on lag.

Figure 5: Lag

Number of Speculative Punctuations: We measure the number

of speculative punctuations emitted by FFP and compare that to

the total number of definite punctuations that it outputs. When

there are no regular events to process, the Probing approach

continues to circulate speculative punctuations, which may waste

CPU resources.

Join-Synopsis Size: We also report the average size (in number

of events) of the synopses maintained by joins on the cyclic loop.

Joins are the major contributor to operator state in our queries, and

are the main beneficiary, memory-wise, when FFP produces a

definite punctuation.

Liveliness: We wish to capture the responsiveness of the system,

so we also measure the maximum system time between

consecutive outputs. If the system becomes unresponsive for long

periods despite a steady incoming stream of events, this situation

indicates a problem with liveliness.

Test Parameters: We examine three main variables when

comparing speculation approaches to FFP. (1) We believe that

HWM will be more sensitive to the amount of disorder in the

input stream than Probing, particularly to events that arrive

―early‖ compared to the rest of the stream. (2) Periods of

inactivity may also expose differences between HWM and

Probing, since Probing is always trying to discover the passage of

0

500

1000

Native ReentrantLi
n

e
s

o
f

C
o

d
e

Implementation

Query(XML)

Operator(C#)

0

1

2

Native Reentrant

Ti
m

e
(s

) t
o

p

ro
ce

ss
 5

0
k

e
ve

n
ts

Implementation
8

9

10

11

12

13

14

15

14 16 18 20 22 24

A
p

p
lic

at
io

n
 T

im
e

System Time

Events

Real Progress

Punctuations

Explicit Progress

Lag

external time. We therefore vary the input rate of the query. (3)

The frequency and duration of lulls in the input affects both

approaches, but in different ways. The HWM approach will not

establish new punctuations in the presence of lulls, while the

Probing approach may over-speculate.

5.2.2 Experimental Results
In all experiments, the query is the same one described at the end

of Section 4 (the ―W‖ query), and the data is generated and query

executed identically to Section 5.1, except where varied as

described in the individual experiments.

Effect of Disorder: The first experiment introduces disorder in

the input stream by shifting every 100th event forward in the input

stream by a varying number of punctuations. The results are

shown in Figure 6, Figure 8, and Figure 10. (The Hybrid results

are described in the next section.)

As expected, the increasing tendency of HWM to choose time

stamps further and further into the future leads to fewer output

punctuations, which both prevents state cleanup and increases lag.

Note the effect seems to be linear with the amount of disorder.

Probing, on the other hand, is constantly looking for opportunities

to issue definite punctuations, which results in no observable

dependency on the type of disorder introduced here. We also

collected results for the number of speculative punctuations

circulated. The graph looks very similar to the graph for the

number of output punctuations. While the number of speculative

punctuations was insensitive to disorder with Probing, the total

varied between 20,000 and 30,000, whereas for HWM, the

numbers were almost the same as the number of output

punctuations.

Varying Input Rate In the next experiment, we vary the rate at

which data enters the query to generate periods of query

inactivity. Specifically, we vary the interval at which we introduce

each 100 events. The results are shown in Figure 7. As expected,

the number of speculative punctuations circulated by Probing

increases very quickly as inactivity increases, and quickly

becomes orders of magnitude higher than HWM. While this

behavior might seem benign, if another query is running in the

system, the speculation can degrade the other query‘s

performance. There were no appreciable differences concerning

join size, so that graph is omitted.

Effect of Lulls In the next experiment, we introduce lulls by

randomly removing all events between successive punctuations if

we lose a coin toss. We vary the weight of the coin to generate

lulls of varying duration in the input. In addition, we introduce

events into the query in such a way the passage of time between

punctuations entering the query closely matches the passage time

reflected by the punctuation timestamps. The results are shown in

Figure 9 and Figure 11.

There are two noteworthy phenomena here. First, because the

system experiences increasing periods of inactivity as we increase

the removal rate, the number of speculative punctuations for

Probing increases dramatically. In addition, Probing, due to its

aggressive polling of external time, produces many more output

punctuations than HWM. But most interesting is the liveliness

graph. During periods where punctuations are received but no

data, HWM is unable to establish a water mark that can move

output time forward. Thus increasingly long periods of time go by

when HWM produces no output punctuations, even though input

punctuations are received. This problem is particularly

bothersome when there are stateful operators downstream of FFP

that are unable to unblock during these periods. In contrast,

Probing does not suffer from this problem at all. While the other

measures are relatively uninteresting, it is of some interest that

Probing maintains a consistent factor of 2 lag advantage over

HWM, and is always close to optimal.

5.3 The Hybrid Approach
The evaluation of our initial implementations of FFP showed that

on the whole, the Probing approach gives lower lag values (and

Figure 6: Disorder vs. State

Figure 7: Inactivity vs. Spec Punc

Figure 8: Disorder vs. Output Puncts

Figure 9: Lull likelihood vs. Spec Punc

Figure 10: Disorder vs. Lag

Figure 11: Lull likelihood vs.

Unresponiveness

0

200

400

600

800

1000

0 5 10 15

A
vg

 #
 J

o
in

 E
n

tr
ie

s

Shift Amount (#CTIs)

Probing

HW

Hybrid

1

10

100

1000

10000

100000

1000000

10 20 30 40 50#
Sp

e
c

P
u

n
c

C
ir

cu
la

te
d

Arrival interval per 100 events (ms)

Probing
HW
Hybrid

0

2000

4000

6000

8000

10000

0 5 10 15

O

u
tp

u
t

P
u

n
c

Shift Amount (#CTIs)

Probing
HW
Hybrid

0

1000000

2000000

3000000

4000000

5000000

6000000

70 85 90 95

Sp

e
c

P
u

n
c

Removal Likelihood

Probing
HW
Hybrid

0
100
200
300
400
500
600
700

0 5 10 15

La
g

Shift Amount (#CTIs)

Probing

HW

Hybrid

0

500

1000

1500

70 85 90 95

M
ax

 W
ai

t
(m

s)

Removal Likelihood

Probing

HW

Hybrid

consequentially less memory use) than the HWM approach,

especially with disorder. However, as we have seen, Probing can

―overgenerate‖ speculative punctuations and waste CPU if input

rates drop. Also, both approaches perform poorly in the presence

of lulls in the input data. This experience led us to a third

alternative – the Hybrid approach – that combines aspects of both,

while adding explicit notification of input progress. Hybrid uses

external progress (EP) events that let binary operators on the loop

communicate progress on their external inputs. FFP can use EP

events to help decide when to speculate on progress. For each

definite punctuation dp(t) on a query input, there is an external

progress event ep(t) with the same time value. An operator

receiving an EP event immediately passes it on to its output.

In the Hybrid approach, speculation is enabled only if the latest

EP event ep(t) is later than latest definite punctuation dp(u)

produced so far. There are two cases where Hybrid initiates a new

speculative punctuation. The first is if it receives an EP event,

speculation is enabled, and there is not a speculative punctuation

already in circulation. The second is on receipt of a speculative

punctuation when enabled. As with Probing, Hybrid initially

speculates at +∞, and lets loop operators adjust this time value

downward, and keeps track of the earliest time eet of subsequent

events it receives as input. Upon receiving sp(s), it outputs a

definite punctuation at time d = min(s, eet), if d is later than the

latest definite punctuation produced so far.

5.3.1 Hybrid Experiments
Figure 6 through Figure 11 also report results for the Hybrid

approach. Of key importance is that in every aspect, Hybrid

assumes the best qualities of both HWM and Probing. Hybrid has

very low lag, and is responsive, similar to Probing, and does not

generate unbounded speculative punctuations during inactivity,

similar to HWM. Also worth mentioning is that Hybrid is actually

easier to implement than HWM, but slightly more difficult than

Probing. Hybrid is therefore an easy choice over either of the

other two approaches.

6. DISCUSSION
We discuss further here two requirements, strong convergence of

queries and the speculation-friendly requirement on operators.

Strong Convergence: Does the requirement for strong

convergence limit the FFP method too much? Not necessarily.

First, there are non-trivial classes of queries that are strongly

convergent. Second, we believe we can extend the method to

work with convergent queries. Considering classes of queries, we

note that many queries from Declarative Networking, such as for

overlays [17] and routing [23] are strongly convergent by virtue of

maintaining the path being explored and avoiding revisiting

nodes. Also, bounded recursive queries fall into the strongly

convergent class. In bounded recursion, the number of iterations is

limited by a function of the input size. Pattern-matching queries

tend to be linearly bounded, because each iteration consumes at

least one input event. Basic finite-automata-based pattern

matching, as in Example 2, is in this class, as are, we believe, the

NFAb automata of Agrawal et al. [14] and non-reentrant

Augmented Transition Networks [26]. We also believe the

―traversal recursions‖ of Rosenthal, et al. [24] fall in this class.

For relaxing strong convergence, when there are no retractions in

the input stream, placing a duplicate-elimination operator between

a convergent query and FFP suffices. If retractions are allowed,

we have observed a problem we term ―historical divergence‖ in

which an event and its retraction may circulate around the loop

endlessly. In this case it seems necessary for duplicate elimination

to track the derivation provenance of tuples it receives, and the

compact representation of provenance for incremental recursive

view maintenance of Liu et al. [22] may be applicable. For

convergent queries that involve a monotone aggregate, such as

MIN for shortest path, the technique of aggregate selection

[19][20] may help. Aggregate selection is a generalized form of

duplicate elimination in which dominated tuples (for example,

paths longer than the minimum so far) can be suppressed.

Speculation-Friendly: Can the definition of ―speculation-

friendly‖ be relaxed to accommodate an operator that blocks on

definite punctuation? Yes, but the operator must have the ability

to issue events for ―speculative‖ tuples—result tuples that may

need to be revised later. However, in most punctuation-based

systems we are aware of (including NiagaraST [6] and Gigascope

[13]), aggregate operators block waiting for punctuation, which

makes them unsuitable for the recursive loop of FFP. Such an

operator will not output tuples in a snapshot from which other

tuples might be derived. CEDR, in contrast, supports speculative

output. Thus, on receiving a speculative punctuation with time t, it

can emit events with speculative values for the MIN, in snapshots

before t. Those events can travel around the recursive loop,

possibly lowering the MIN values for other pairs. However,

eventually each pair will reach its minimum value for a particular

snapshot, and the speculative punctuation will cause no revisions

of previous events. FFP will detect convergence at t, and can issue

a definite punctuation for that time.

7. RELATED WORK
Related work in this area falls into five categories. One is event

streams being defined in terms of changing relational snapshots,

and the associated relational semantics for the operators

[1][2][9][10][11][12]. The work in this paper is based on these

notions of streams and operators, and may therefore be easily

adapted to most implementations based on these designs.

The Declarative Networking community [19], as we have

discussed earlier, use cyclic plans to evaluate Datalog programs

that track reachability and other graph traversals on networks.

They also concentrate on partitioning of data and computation

across nodes, which has not been a focus for us.

Another category of related work is on punctuations [1][3][5][6].

While our approach makes extensive use of punctuations, as

observed in Section 2, traditional punctuation semantics are

insufficient to fully support recursion. We therefore introduced

the idea of speculative punctuation in Section 3.

Previous work on using windowed automata to perform regular

expression matching in a streaming system [7] involves creating a

special-purpose pattern-matching operator, but does not expose

the internal recursion for more general use. Our approach, in

contrast, is a minor addition to the system and is mostly

comprised of pre-existing operators and can automatically make

use of existing features such as incremental evaluation, the ability

to speculate, and the robustness to out-of-order input found in our

previous work [1]. While the native-operator approach can

provide efficiency, FFP may be used for other problems requiring

recursion, such as graph traversal. Also, our approach has the

unusual property that the automata itself is described using an

input stream, and may change over time.

The fourth area of related work is the Cayuga project [8], which

provides an Iteration operator. While that operator is expressive

enough for regular-expression matching, it is not as expressive as

the form of iteration used here. In fact, one can write the Iteration

operator using FFP, Select, Project, Join, and Union. The Iteration

operator adds recursion to an existing, non-recursive engine via a

new, complex operator. In contrast, FFP is just a special case of

Multicast that handles punctuation differently. Finally, the Cayuga

project, while significantly improving the expressiveness of

streaming systems, did not consider out-of-order event arrival.

The last area of related work is the vast literature on recursive

query processing. We leverage the semantics of these approaches

by describing our semantics in terms of recursive queries over

snapshots. We have chosen Ramakrishnan et al. [4] as a

representative survey paper.

ACKNOWLEDGMENTS
We thank Balan Sethu Raman, Beysim Sezgin, and the entire

Microsoft CEP team for suggestions and comments on this work.

This work was supported in part by NSF grant IIS 0612311.

8. CONCLUSIONS AND FUTURE WORK
Through this work, we have come to the surprising conclusion

that cyclic query plans are a simple extension to a stream query

engine, highly expressive, and practical. They benefit from all the

capabilities of existing operators such as incremental window

evaluation and disorder tolerance. They are sufficiently expressive

to attack both graph-walking queries and regular-expression

pattern matching. We believe even further expressiveness is

available in CEDR by speculating when necessary to ensure

disorder tolerance. This ability allows operators such as

aggregation and difference to be used in recursive loops, which

are useful for expressing branch and bound execution strategies.

Our progress-detection mechanisms may also be of use in other

settings with cyclic event processing, such as continuous

workflow systems [28].

Detecting forward time progress is relatively straightforward with

the addition of speculative punctuations, which function similarly

to regular punctuation. Through implementation and

experimentation, we have developed the Hybrid approach to FFP

that tracks progress closely, yet does not speculate unduly.

9. REFERENCES
[1] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali,

Mingsheng Hong: Consistent Streaming Through Time: A
Vision for Event Stream Processing. CIDR 2007: 363-374

[2] Jonathan Goldstein, Mingsheng Hong: Consistency Sensitive
Operators in CEDR. Microsoft Research Technical Report
MSR-TR-2007-158, 2007

[3] Utkarsh Srivastava, Jennifer Widom: Flexible Time
Management in Data Stream Systems. PODS 2004: 263-274

[4] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan:
Efficient Bottom-up Evaluation of Logic Programs. The State
of the Art in Computer Systems and Software Engineering.
Kluwer Academic Publishers, 1992

[5] Peter Tucker, David Maier, Tim Sheard, Leonidas Fegaras:
Exploiting Punctuation Semantics in Continuous Data
Streams. IEEE TKDE 15(3): 555-568 (2003)

[6] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter
Tucker: Semantics and Evaluation Techniques for Window
Aggregates in Data Streams. SIGMOD 2005: 311-322

[7] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, Neil
Immerman: On Supporting Kleene Closure over Event
Streams. ICDE 2008

[8] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek
Riedewald, Varun Sharma, Walker M. White: Cayuga: A
General Purpose Event Monitoring System. CIDR 2007.

[9] Arvind Arasu, Shivnath Babu, Jennifer Widom: CQL: A
Language for Continuous Queries over Streams and
Relations. DBPL 2003: 1-19

[10] Moustafa A. Hammad et al.: Nile: A Query Processing
Engine for Data Streams. ICDE 2004: 851

[11] David Maier, Jin Li, Peter Tucker, Kristin Tufte, Vassilis
Papadimos: Semantics of Data Streams and Operators. ICDT
2005: 37-52

[12] Sankar Subramanian, Srikanth Bellamkonda, Hua-Gang Li,
Vince Liang, Lei Sheng, Wayne Smith, James Terry, Tsae-
Feng Yu, Andrew Witkowski: Continuous Queries in
Oracle. VLDB 2007: 1173-1184

[13] Theodore Johnson, S. Muthukrishnan, Vladislav
Shkapenyuk, Oliver Spatscheck: A Heartbeat Mechanism
and Its Application in Gigascope. VLDB 2005: 1079-1088

[14] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, Neil
Immerman: Efficient Pattern Matching over Event Streams.
SIGMOD Conference 2008: 147-160

[15] Eugene Wu, Yanlei Diao, Shariq Rizvi: High-performance
Complex Event Processing over Streams. SIGMOD
2006:407-418

[16] Tyson Condie, David Chu, Joseph M. Hellerstein, Petros
Maniatis: Evita Raced: Metacompilation for Declarative
Networks. PVLDB 1(1):1153-1165 (2008)

[17] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein,
Petros Maniatis, Timothy Roscoe, Ion Stoica: Implementing
Declarative Overlays. SOSP 2005:75-90

[18] Atul Singh, Petros Maniatis, Timothy Roscoe, Peter
Druschel: Using Queries for Distributed Monitoring and
Forensics. EuroSys 2006:389-402

[19] Boon Thau Loo et al.: Declarative Networking: Language,
Execution and Optimization. SIGMOD 2006:97-108

[20] S. Sudarshan and Raghu Ramakrishnan: Aggregation and
Relevance in Deductive Databases. VLDB 1991:501-511

[21] Atul Singh, Petros Maniatis, Timothy Roscoe, Peter
Druschel: Using Queries for Distributed Monitoring and
Forensics. EuroSys 2006:389-402

[22] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou,
Zachary G. Ives, Boon Thau Loo: Recursive Computation of
Regions and Connectivity in Networks. ICDE 2009

[23] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, Raghu
Ramakrishnan: Declarative Routing: Extensible Routing with
Declarative Queries. SIGCOMM 2005: 289-300

[24] A. Rosenthal, S. Heiler, U. Dayal, F. Manola: Traversal
Recursion: A Practical Approach to Supporting Recursive
Applications. SIGMOD 1986: 166-176

[25] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis
Papadimos, Theodore Johnson, David Maier: Out-of-order
Processing: A New Architecture for High-Performance
Stream Systems. PVLDB 1(1):274-288 (2008)

[26] W. A. Woods: Transition Network Grammars for Natural
Language Analysis. Communications of the ACM 13(10):
591-606 (1970)

[27] M. Ali et al.: Microsoft CEP Server and Online Behavioral
Targeting. VLDB 2009 (demonstration, to appear)

[28] Panayiotis Neophytou, Panos K. Chrysanthis, and

Alexandros Labrinidis: Towards Continuous Workflow

Enactment Systems. International Conference on

Collaborative Computing (CollaborateCom'08), 2008

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Barga:Roger_S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Ali:Mohamed_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hong:Mingsheng.html
http://www.informatik.uni-trier.de/~ley/db/conf/cidr/cidr2007.html#BargaGAH07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Utkarsh.html
http://www.informatik.uni-trier.de/~ley/db/conf/pods/pods2004.html#SrivastavaW04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tucker:Peter_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sheard:Tim.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fegaras:Leonidas.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde15.html#TuckerMSF03
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Jin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tufte:Kristin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Papadimos:Vassilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tucker:Peter_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tucker:Peter_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2005.html#LiMTPT05
http://www.icde2008.org/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gehrke:Johannes.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Panda:Biswanath.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Riedewald:Mirek.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Riedewald:Mirek.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sharma:Varun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/White:Walker_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/cidr/cidr2007.html#DemersGPRSW07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Arasu:Arvind.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Babu:Shivnath.html
http://www.informatik.uni-trier.de/~ley/db/conf/dbpl/dbpl2003.html#ArasuBW03
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hammad:Moustafa_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2004.html#HammadMAACEEEGGIMX04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Jin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tucker:Peter_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tufte:Kristin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Papadimos:Vassilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Papadimos:Vassilis.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2005.html#MaierLTTP05
http://www.informatik.uni-trier.de/~ley/db/conf/icdt/icdt2005.html#MaierLTTP05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Subramanian:Sankar.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bellamkonda:Srikanth.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Hua=Gang.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liang:Vince.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sheng:Lei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Smith:Wayne.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Terry:James.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Tsae=Feng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Tsae=Feng.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#SubramanianBLLSSTYW07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Muthukrishnan:S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shkapenyuk:Vladislav.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shkapenyuk:Vladislav.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Spatscheck:Oliver.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2005.html#JohnsonMSS05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Diao:Yanlei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gyllstrom:Daniel.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Immerman:Neil.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Immerman:Neil.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2008.html#AgrawalDGI08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wu_0002:Eugene.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Diao:Yanlei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rizvi:Shariq.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#WuDR06
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#WuDR06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Condie:Tyson.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chu:David.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hellerstein:Joseph_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maniatis:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maniatis:Petros.html
http://www.informatik.uni-trier.de/~ley/db/journals/pvldb/pvldb1.html#CondieCHM08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Loo:Boon_Thau.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Condie:Tyson.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hellerstein:Joseph_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maniatis:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roscoe:Timothy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stoica:Ion.html
http://www.informatik.uni-trier.de/~ley/db/conf/sosp/sosp2005.html#LooCHMRS05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Singh:Atul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maniatis:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roscoe:Timothy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Druschel:Peter.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Druschel:Peter.html
http://www.informatik.uni-trier.de/~ley/db/conf/eurosys/eurosys2006.html#SinghMRD06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Loo:Boon_Thau.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#LooCGGHMRRS06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ramakrishnan:Raghu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Singh:Atul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maniatis:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roscoe:Timothy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Druschel:Peter.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Druschel:Peter.html
http://www.informatik.uni-trier.de/~ley/db/conf/eurosys/eurosys2006.html#SinghMRD06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Loo:Boon_Thau.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hellerstein:Joseph_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ramakrishnan:Raghu.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ramakrishnan:Raghu.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigcomm/sigcomm2005.html#LooHSR05
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Jin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tufte:Kristin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shkapenyuk:Vladislav.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Papadimos:Vassilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Papadimos:Vassilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Johnson:Theodore.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maier:David.html
http://www.informatik.uni-trier.de/~ley/db/journals/pvldb/pvldb1.html#LiTSPJM08

