
Adaptively Parallelizing Distributed Range Queries

Ymir Vigfusson Adam Silberstein Brian F. Cooper Rodrigo Fonseca
Cornell University Yahoo! Research
ymir@cs.cornell.edu {silberst,cooperb,rfonseca}@yahoo-inc.com

ABSTRACT
We consider the problem of how to best parallelize range
queries in a massive scale distributed database. In tradi-
tional systems the focus has been on maximizing paral-
lelism, for example by laying out data to achieve the highest
throughput. However, in a massive scale database such as
our PNUTS system [11] or BigTable [10], maximizing par-
allelism is not necessarily the best strategy: the system has
more than enough servers to saturate a single client by re-
turning results faster than the client can consume them, and
when there are multiple concurrent queries, maximizing par-
allelism for all of them will cause disk contention, reducing
everybody’s performance. How can we find the right par-
allelism level for each query in order to achieve high, con-
sistent throughput for all queries? We propose an adaptive
approach with two aspects. First, we adaptively determine
the ideal parallelism for a single query execution, which is
the minimum number of parallel scanning servers needed to
satisfy the client, depending on query selectivity, client load,
client-server bandwidth, and so on. Second, we adaptively
schedule which servers will be assigned to different query
executions, to minimize disk contention on servers and en-
sure that all queries receive good performance. Our sched-
uler can be tuned based on different policies, such as favoring
short versus long queries or high versus low priority queries.
An experimental study demonstrates the effectiveness of our
techniques in the PNUTS system.

1. INTRODUCTION
Database tasks that are relatively well understood in tra-

ditional settings become significantly challenging again at
web scale. The need to provide access to terabytes of data
for millions of users a day with very low latency requires re-
thinking many aspects of a database system’s architecture
and algorithms. This challenge has led companies and re-
searchers to develop new database systems that can scale to
the level required by web workloads: Google’s BigTable [10],
Amazon’s Dynamo [13], Microsoft’s Azure SDS [4], Face-

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

book’s Cassandra [20], our own PNUTS [11], and others.
These systems are all shared-nothing databases, so that scal-
ability can be achieved by adding more servers with local-
attached disk.

One task that is important in web workloads, but difficult
to execute efficiently at scale, is answering range queries
over ordered data. Range queries are important in a variety
of web workloads; some examples include:

• Time-ordered data - We might have a table of items
for sale, sorted by listing date, and users query for the
most recent items or items that are new since the last
time they queried.

• Secondary indexes - We can create an ordered table
that is an index over a secondary attribute like price or
average customer rating. Then, users can ask queries for
specific price ranges or for items above a certain rating.

• Hierarchical clustering - We can create a table for a
Craig’s List-style posting site, where keys are a compos-
ite of location, description, and item id (e.g.,
CA.southbay.sanjose.autos.id654), and other fields list
attributes, such as brand. A user searching for a common
brand, such as “Toyota,” can scan a small range of the
table (i.e., CA.southbay.sanjose.autos.*) with a pred-
icate on brand and retrieve a large number of results. A
user searching for a rarer brand, such as “Porsche,” must
scan a larger range (i.e., CA.*), to find enough results.

In each case, there could potentially be a large number
of results: hundreds of thousands of listings in the last 24
hours, products under $10, or items in CA. Moreover, we
might specify a predicate over the range (such as “find prod-
ucts under $10 where category=’toys’ and quantity>0”). If
the predicate is selective, we might have to scan a large
range just to find a few results. For these reasons, a range
scan might have to scan a significant fraction of the table.
However, many of these queries support online applications
where there is a user waiting for (at least some) results to
appear in a web page. Thus, not only do we want to return
some results quickly, but we want to complete the entire
range query quickly.

In a massive scale web database such as those mentioned
above, a database table is partitioned over many servers.
To meet our response time requirements, it makes sense to
execute a range query by sending the query in parallel to
several servers, and returning results to the user as soon as
they return. This approach raises a fundamental question:
how parallel should the query be? If we send the query to
too many servers, results will be returned faster than the

client (typically an application server) can consume them,
wasting server and network resources that could be allocated
to other, concurrent queries. If we send the query to too few
servers, the client will be waiting for results that trickle in,
especially if the predicate is very selective.

We have built PNUTS, a massive scale shared nothing
database that is in production serving web traffic for some
of Yahoo!’s applications. In this paper, we describe extend-
ing PNUTS to provide parallel range queries. Our approach
to the question of parallelism is to adaptively tune the paral-
lelism for each query during query execution, depending on
the sustainable data transfer rate and number of competing
concurrent queries. The first aspect of our solution is adap-
tive server allocation, to find the ideal parallelism for a
particular query. Our system stores an ordered table using
range partitioning, storing multiple (e.g., a few hundred)
partitions per storage server. For a given query q submitted
by a client, our range query engine chooses an initial paral-
lelism level (called Kq), and contacts Kq servers in parallel
to scan one partition per server. As the scanning proceeds,
the range engine adjusts Kq upwards or downwards to match
the aggregate rate at which servers are sending data to the
rate at which the client can consume data.

Even after we know the ideal parallelism level Kq for a
query, we have to be careful about assigning the same server
simultaneously to too many queries, as this will lead to disk
contention, slowing down all of the queries. We validate ex-
perimentally the intuition that limiting the number of con-
current scans on a server to avoid random I/O can result
in faster execution for all queries. Thus, the second aspect
of our solution is multi-query scheduling, to determine
which servers to allocate to each query at a given point in
time. Our scheduler assigns no more than Ls concurrent
queries to a server s, where Ls is a parameter we can set
depending on the server’s capacity. Then, when a query fin-
ishes scanning a partition on a given server, we allocate that
server to the same or a different query. The scheduler allows
us to tune our preference for different kinds of queries, for
example to prefer short versus long (to prioritize interactive
queries) or to prefer high priority queries versus best-effort
queries. Our scheduler must be adaptive as new queries con-
stantly enter the system.

Although parallel database systems have supported par-
allel scans for years [3, 5, 8, 9, 14, 15], the focus of previous
work has typically been on laying out data to allow maxi-
mum parallelism [7, 17, 21, 18]. In a massive scale database
such as PNUTS, achieving maximum parallelism is not de-
sirable; there are so many storage servers that scanning them
all in parallel can easily overload any client. Moreover, mas-
sive scale web databases typically have very many concur-
rent clients querying the database. For these two reasons,
we must throttle the parallelism level to get good perfor-
mance for everybody, and finding the best way to throttle
parallelism is the focus of this paper.

Our approach does not require us to maintain data statis-
tics (such as value histograms) or system statistics (such
as the peak bandwidth available to servers.) Although such
statistics could be used to improve our adaptivity (and in
particular, can help us choose a good initial Kq), accurate
statistics are difficult to maintain, especially in a large scale
distributed system. Moreover, we cannot rely on statistics
alone to choose the optimal parallelism level. In particu-
lar, statistics are a blunt instrument that may not correctly

predict conditions at query time. For example, the rates at
which servers can send or receive data depend on transient
conditions such as the number of concurrent range queries,
the length of the ranges, the load of concurrent non-range
queries (such as single record reads and writes), network
cross-traffic, and so on. Similarly, data parameters such as
predicate selectivity or the number of tuples in a range de-
pend on data distributions which might change as certain
items become more numerous or popular. In this paper, we
focus on a “statistics-free” implementation of an adaptive
range engine, and demonstrate that it provides good perfor-
mance. In the future, we can examine whether the benefits
of maintaining statistics are worth the cost.

In this paper we describe techniques for adaptively op-
timizing the execution of range queries in a large scale dis-
tributed database. We make the following contributions:

• We present an architecture for adaptive execution of
range queries in a massively parallel database.

• We describe an adaptive server allocation algorithm that
matches parallel server sending rates with client con-
sumption rates to optimize a given query, and demon-
strate its effectiveness experimentally.

• We develop a scheduler and scheduling metric with a
tunable parameter to favor certain queries over others.
Theory and experiments show that the scheduler effec-
tively optimizes multiple queries.

The rest of this paper is organized as follows. In Section 2,
we describe our system and our range query requirements.
Then, in Section 3, we present our algorithm for adaptive
server allocation. In Section 4, we describe a scheduling algo-
rithm for handling multiple concurrent queries. We present
experimental results in Section 5. In Section 6 we examine
related work, and we discuss our conclusions in Section 7.

2. SYSTEM AND PROBLEM OVERVIEW
In this section, we discuss the design of PNUTS as it

relates to range queries. First, we describe the data and
query model supported by the system, and then present
an overview of the distributed architecture. Finally, we fo-
cus on the execution of range queries in this architecture.
A more complete description of PNUTS itself is presented
elsewhere [11], and focuses on issues such as fault tolerance,
the transaction model, data replication, operational issues,
etc. While we discussed range query support in this previous
work, we did not examine range query optimization.

2.1 Data and query model
PNUTS manages tabular data, where each table is a col-

lection of records each identified by a unique primary key.
The system is designed primarily to support web serving
workloads, where the primary operations are reads and writes
of individual records and scans of subsets of the table. While
we support scans of the entire table (for example, to support
MapReduce [12] computations), PNUTS is not optimized for
this workload, and does not in general support complex an-
alytical queries. Instead, the system is focused on providing
low latency for a few operation types:

• get - retrieve a single record by primary key

• set - insert or update a single record by primary key

• delete - delete a single record by primary key

Clients

broker
Message

Partition
controller

Query
router

Storage server
Query routers

Partition map

Scan engine

Scheduler

Storage

Query router

Storage servers

Query
Processor

Update
Processor

Figure 1: System architecture

• getrange - retrieve all records whose primary key falls
in the specified interval and which pass an (optional)
predicate

Of course, a getrange query that scans a non-trivial subset
of the table will take some time to return all results. Thus,
“low latency” in the context of getrange really means that
the client should not have to wait too long for results: the
first results should return quickly; we should avoid signifi-
cant wait times for subsequent results; and the whole scan
should complete relatively quickly. In order to get first re-
sults fast, we do not guarantee that records are returned in
key order. It is possible to add additional constraints to our
scheduler to ensure ordering or provide a top-K abstraction,
although we have not yet implemented this.

Range and table scans do not guarantee a consistent snap-
shot of the data. PNUTS provides only per-record consis-
tency guarantees, such that updates to a given record are
transactional but no ACID-style guarantees are offered across
records. This decision improves scalability, as we need not
manage locks or transaction state across servers. As a result,
a scan may return different records with states representing
different points in time, may not return some records in-
serted after the scan began, and may return some records
deleted before the scan ended. While we may add multi-
record transactional guarantees in the future, per-record con-
sistency is sufficient for many web applications.

2.2 System architecture
A key goal of PNUTS is elastic scalability, which means

that we can add capacity easily by adding more servers.
This means that every component on the data path of a
request must be horizontally scalable. For the specific case
of range scans, we can improve the performance of single and
multiple range scans by increasing the number of servers and
thus degree of parallelism that can be brought to bear.

Figure 1 shows the architecture of the system. A data ta-
ble is horizontally partitioned and stored on multiple stor-
age servers; a storage server typically holds many partitions
(e.g., a few hundred 1 GB partitions). The partition con-
troller holds the authoritative mapping of partitions to stor-
age servers (the “partition map”). In our implementation,
this mapping is stored using a B+tree in MySQL. How-
ever, the partition controller is not part of the data path
of requests. Instead, the query router accepts requests from
clients and uses a cached copy of the partition map to for-
ward single record requests to the storage server which cur-

rently holds the appropriate partition. If a query router re-
ceives a getrange request, it is forwarded to the scan en-
gine for processing. The level of indirection provided by the
query router lets us move partitions between storage servers
for load balancing or recovery without impacting the client’s
operation. On a storage server, read requests (e.g., get or
getrange) are handled by the query processor, which re-
trieves data from cache or disk. Write requests (e.g., set or
delete) are handled by the update processor, which trans-
mits the update to the message broker for propagation to
other replicas before writing to local storage.

The scan engine of the router receives getrange requests;
uses the partition map to determine which partitions over-
lap the range and thus which storage servers need to be
contacted to answer the query; makes parallel connections
to each of the storage servers; collects the results; and re-
turns them to the client. The scan engine uses the scheduler
to determine which and how many storage servers are to
be contacted in parallel. In this paper, we will focus on the
operation of the scan engine and the scheduler.

2.2.1 Requirements for supporting clients
The clients of the system are typically application servers,

usually with multiple application servers per application.
The system is also multi-tenant, supporting multiple appli-
cations and workloads on the same set of PNUTS servers.
These client characteristics result in several requirements
that are relevant to range scans:

• We must cope with many concurrent clients executing
both single-record (e.g., get) and multi-record (e.g., ge-
trange) requests.

• We must deal with a variety of request characteristics.
For example, with range scans we must handle short and
long ranges, selective and un-selective predicates, and so
on.

• We must handle clients with varying capabilities; in par-
ticular, some clients can handle a high rate of results
while others cannot. This variation results from differ-
ences in client hardware, client machines that are more
or less overloaded, client machines that do a lot or little
processing of each result, etc.

These requirements make it difficult to optimize a priori for
a particular workload and help motivate our adaptive ap-
proach to optimizing range scans. In particular, our adap-
tive techniques must not only optimize the performance of a

single client or class of clients, but must also provide good,
fair service to a variety of clients.

2.3 Executing range queries
A straightforward mechanism for executing range queries

is to scan one partition at a time, returning results to the
client during or after the scan of each partition. While this
mechanism is relatively easy to implement, it does not take
advantage of the inherent parallelism of the system to reduce
total query execution time. Moreover, if a client specifies a
selective predicate, we may have to scan multiple partitions
before finding any results, and the client will experience a
long response time before the first result.

Instead, our scan engine sends scan requests to multiple
storage servers in parallel. We define Ls as the limit on the
number of concurrent queries that can be handled by a given
storage server s, depending on its disk and processing band-
width1. The flow of a range query is:

1. The query router receives a query q, which is a ge-
trange request, and passes q to the scan engine.

2. The scan engine looks up the endpoints of the range
of q in the partition map to find the startq and endq

partitions. The set of partitions Pq in the key range
between startq and endq (inclusive) are the partitions
that must be scanned for q.

3. The scan engine chooses an initial parallelism level Kq .

4. The scan engine asks the scheduler for Kq partitions to
scan from the set Pq . The scheduler returns SPq, a set
of (storage server, partition) pairs, using our schedul-
ing algorithm (Section 4). A storage server may appear
in multiple pairs in SPq if there are multiple parti-
tions to be scanned on the same server. A server s
may appear no more than Ls times in the union of SP
sets currently assigned to all queries. It may be that
|SPq| < Kq if we cannot satisfy the requested K par-
allelism level for all queries given the Ls limits. Then,
Kq is the desired parallelism and |SPq| is the actual
parallelism.

5. The scan engine forwards a getrange request to the
storage servers in SPq , specifying for each the parti-
tion to be scanned and the predicate to be applied to
records.

6. Each storage server begins scanning the specified par-
tition, streaming results that pass the predicate back
to the scan engine and on to the client.

7. When a storage server completes scanning a partition
the (server,partition) pair is removed from SPq. If this
reduces the parallelism of the query below its current
desired Kq, the scheduler may choose another partition
from Pq and add the (server, partition) pair to SPq . If
so, a new getrange request is sent to this new server,
which begins scanning and returning results.

8. Concurrently, we adapt Kq, the desired parallelism
level for q, based on the adaptive server allocation al-
gorithm of Section 3. If a new Kq is chosen, the sched-
uler will try to add or remove (server, partition) pairs

1In practice, we use the same Ls value for similar servers.
We evaluate appropriate Ls values in Section 5.

and selectivity

Server 1 Server 2 Server 3 Server 4

Servers can

a certain rate
scan disk at

Network

Client

Three servers might
be enough to saturate
the client; adding a
a fourth is unnecessary

Client can consume
at a certain rate

d)

c)

b)

a)

But may send at
a slower rate
depending on load

Figure 2: Adaptive server allocation assigns the min-
imum number of servers needed to saturate the
client.

to/from SPq so that |SPq| = Kq, again subject to the
constraints of other queries and the Ls limits. This new
|SPq| does not cause any current partition scans to be
terminated; instead, the scheduler will try to increase
or decrease (as appropriate) the number of range scan-
ning servers as soon as feasible.

9. When all the partitions in the interval [startq ,endq]
have been scanned, the query q terminates.

Our adaptive algorithms determine how many and which
storage servers to contact in parallel; these algorithms are
described in the next sections.

3. ADAPTIVE SERVER ALLOCATION
We now describe the mechanism for determining the ideal

parallelism level for a query execution. Note that the same
query, executed at different times or by different clients,
might result in a different ideal parallelism level. Therefore,
during every execution of a given query we adaptively com-
pute how many servers to allocate. However, when there are
multiple concurrent range queries executing, we may not
be able to give every query execution its ideal number of
servers. In this section we describe how to determine the
ideal allocation of servers for a single query execution, and
in Section 4 we examine how to balance the allocation across
multiple executing queries. In this section, for clarity, we as-
sume only a single partition is scanned on a server at a time,
but our algorithm directly generalizes to support multiple
(up to Ls) concurrent scans per server.

3.1 Overview
The goal of adaptive server allocation is to choose, for a

given execution of a query, Kq: the number of servers at
a time that should answer query q in parallel. Consider a
query with a (possibly empty) predicate. Each server that is
scanning a partition to answer part of the query will return
data at a particular rate that depends both on the server
hardware and on the selectivity of the predicate; a highly
selective predicate will cause even a fast server to return
data slowly. Similarly, the client can consume data at a given
rate; this rate depends on the bandwidth capacity to the
client as well as its own processing capacity and current load.

Time

A
llo

ca
te

d
se

rv
er

s

C
lie

nt
co

ns
um

pt
io

n
ra

te

1
2
3
4
5

Figure 3: Idealized example of adaptive server allo-
cation. The number of allocated servers increases
until the client is saturated, and periodically in-
creases or decreases thereafter to see if conditions
have changed.

Figure 2 shows an example. Our goal is to assign enough
servers to saturate the client’s consumption capacity, but
no more. Assigning more servers wastes resources without
improving performance.

How do we choose the parallelism level Kq? Initially, our
approach was to divide the client’s maximum potential con-
sumption rate by the average server sending rate. In prac-
tice, however, this approach did not work well. While we can
measure the current client consumption rate, it is hard to
measure the maximum rate at which the client could con-
sume data. Because of burstiness caused by TCP window-
ing, packet queueing effects, and other factors, it is difficult
to accurately measure how much throughput a client’s net-
work link can tolerate. Moreover, network capacity may not
be the only bottleneck. A client machine may be overloaded
processing business logic, rendering web pages or writing to
its own disk. This load is highly variable, making it difficult
to determine at a given point in time how much available
capacity the client has. For these reasons, after repeated im-
plementations we abandoned the rate-matching approach.

Instead, we adopted a simpler adaptive approach. We set
Kq initially by increasing the allocation of servers until we
observe that the client’s consumption rate stops increas-
ing. Of course, variations in load on the client, network and
server, burstiness in the data distribution, and other factors
mean that the ideal number of servers can change after we
choose the initial Kq. Therefore, we must continually try to
adapt Kq to current conditions. Periodically we flip a coin
and decide to increase the number of servers allocated from
Kq to Kq + 1. If increasing the number of servers results
in an increase in the client consumption rate, we leave the
allocation at Kq +1 servers and perhaps allocate even more;
otherwise we decrease it back to Kq. Similarly, we occasion-
ally randomly decide to decrease the number of allocated
servers to see if doing so negatively impacts the client’s
throughput. An idealized adaptation example is shown in
Figure 3. In this way the system continually adjusts server
allocation according to current system conditions.

Our adaptive approach is similar in spirit to the adaptive
sizing of TCP windows for determining how much data can
be in flight without causing network congestion. One differ-
ence in our method compared to the TCP algorithm is that
TCP windows shrink by a multiplicative factor to quickly
relieve congestion, while we only decrease Kq by one when
deciding to revoke servers. In networks, congestion causes se-
vere performance degradation since packets get dropped and

Algorithm 1 Adaptive server allocation
Setting Kq initially:

1. Choose an initial number of servers Kq(0)

2. Assign Kq(0) servers and begin scanning

3. Measure client consumption rate Cq(0) for TC seconds

4. Repeat

(a) Set Kq(i + 1) = Kq(i) + 1

(b) Assign another server and begin scanning

(c) Measure client consumption rate Cq(i+1) for TC seconds

While Cq(i + 1) > Cq(i)

Adapting Kq :

5. Every Tflip seconds, flip a coin:

(a) With probability P↑, set Kq(i + 1) = Kq(i) + 1

i. Allocate another server

ii. Measure client consumption rate Cq(i + 1) for TC

seconds

iii. If Cq(i + 1) > Cq(i), set Kq(i + 2) = Kq(i + 1) + 1
and return to step 5.a.i to allocate another server;
otherwise, set Kq(i + 2) = Kq(i + 1) − 1 (revoke a
server)

(b) With probability P↓, set Kq(i + 1) = Kq(i) − 1

i. Revoke a server

ii. Measure client consumption rate Cq(i + 1) for TC

seconds

iii. If Cq(i + 1) ≥ Cq(i), set Kq(i + 2) = Kq(i + 1) − 1
and return to step 5.b.i to revoke another server;
otherwise set Kq(i +2) = Kq(i + 1)+ 1 (give back a
server)

must be retransmitted, making a sharp shrinkage in window
sizes necessary despite performance impacts on the affected
client. In our system, assigning too many servers slows per-
formance for other queries, but the impact is not as severe,
nor does it cause re-sending of data. However, revoking too
many servers will cause a serious performance degradation
for the client, and it will be hard to re-acquire those servers
if there are other concurrent queries. Thus, we can afford to
be less draconian when we have assigned too many servers.
Note that the TCP approach is already used in our sys-
tem for individual flows, since results are sent over TCP
connections. ASA attempts to further improve the adaptive
allocation of servers to queries, beyond the flow control and
buffering benefits TCP provides.

3.2 Allocation algorithm
More formally, our system allocates servers to a particular

query execution as shown in Algorithm 1. In this algorithm,
TC is the interval over which we measure the client con-
sumption rate. TC should be long enough to allow the client
to begin noticing the effects of the new allocation and to
smooth out noise, but not so long as to hinder adaptivity.
The interval between coin flips, Tflip, and the probabilities
of re-allocation, P↑ and P↓, (P↑ + P↓ ≤ 1) determine how
aggressively we try to re-adapt after reaching client satura-
tion. In practice, TC and Tflip set to one second, Kq(0) set
to one, and P↑ = P↓ = 1/3 work well.

In our implementation when we revoke a server (steps
5.a.iii and 5.b.i), we do not immediately interrupt a parti-
tion scan on a server. This simplifies our implementation.
Instead, we wait for a partition scan to complete; but when

we are done with a server we do not assign another server
to the query. This effectively revokes a server. Additionally,
we wait to measure the new client consumption rate in step
5.a.ii until after the newly allocated server from 5.a.i actually
begins scanning; similarly, after revoking a server in 5.b.i, we
wait until a server finishes and is effectively revoked before
measuring the new client consumption rate in step 5.b.ii.

4. SERVER SCHEDULING
While adaptive server allocation caps the number of stor-

age servers concurrently granted to each query, the sched-
uler coordinates which servers are given to a query. When
a server becomes free, the scheduler grants that server to a
query that wants it, ensuring that no server s has more than
Ls concurrent scan requests. When server demand is high,
and it is impossible for each query to get its Kq servers, the
scheduler additionally must prioritize queries, giving more
servers to some queries and fewer to others.

In this section we first describe our scheduling mecha-
nism. We then show that a greedy scheduler will bound the
makespan (time to complete all queries). Given this foun-
dation, we describe how our Priority Biased Round Robin
(PBRR) metric lets us prioritize queries based on different,
pluggable criteria, and we provide a greedy heuristic for op-
timizing this metric.

4.1 Scheduler Component
The scheduler runs alongside the scan engine and main-

tains state on the set of current queries Q and storage servers
S. When a query is submitted, its scan engine process ini-
tially contacts the scheduler with a list of requested servers
and partitions. All further communication is through two
message types. The scheduler sends a grant message to a
scan process to notify it to scan a server on behalf of its
query. A scan process sends a relinquish message to the
scheduler when it has finished with a server. Although our
scheduler can deal with multiple replicas of data partitions
(choosing which replica to use based on concurrent load) for
clarity in the discussion below we assume that there is only
a single copy of each data partition.

4.2 Greedy Scheduling Algorithms
Makespan measures the time to complete an entire query

workload. We evaluate a scheduling policy by the upper
bound on its makespan, or maximum makespan, as a mul-
tiple of the optimal achievable makespan for the workload.
A policy with a bounded worst-case makespan ensures that
we complete the workload in a reasonable amount of time
and thus do not starve any queries. Of course, in a real de-
ployment new queries will constantly enter the system and
the workload will never complete. However, a makespan-
minimizing scheduler will ensure whatever queries are in the
system at a given point in time are making good progress.

Greedy algorithms are an effective approach for minimiz-
ing makespan for many scheduling problems [19], and are
typically efficient to execute online. For these reasons, we
implemented our scheduler using a greedy scheduling pol-
icy. Whenever a server becomes free, our scheduler grants it
to some query that (a) requests it and (b) is below its Kq .
If multiple queries fulfill these criteria, the scheduler greed-
ily chooses the “highest priority” query. The definition of
“highest priority” determines our scheduling policy. For ex-
ample, if priority is equal to query start time, the scheduler

is FIFO; if priority is equal to our PBRR metric (defined in
Section 4.3), the result is our priority-based scheduler.

We now present our system model and prove that any
greedy algorithm bounds maximum makespan.

4.2.1 Model
Let Q be a set of queries and S be the set of storage

servers. A query q ∈ Q consists of a set of unit-size partition
scan jobs j ∈ q, each of which should be executed on a
designated server sj ∈ S. Jobs may be executed out of order,
i.e., there are no precedence constraints (though in future
work we may add ordering constraints). Each query q has
an associated parallelism level Kq, the maximum number
of jobs from that query that may be executed concurrently
on the servers in S. Kq is determined using adaptive server
allocation (Section 3.2). For modeling purposes, we assume
Kq remains constant through the execution of the query.
Each server s has an associated number Ls that denotes the
number of jobs that can be concurrently executed on s.

Let qj ∈ Q denote the query containing job j, and js

denote the set of jobs s must execute, i.e.,

js =
n

j ∈
S

q∈Q
q : sj = s

o

.

4.2.2 Greedy Maximum Makespan
Let Opt denote the minimum makespan for a problem

instance. Define q̂ = max
q∈Q

‰

|q|

Kq

ı

as the maximal time to exe-

cute any one query at full parallelism. Define ̂ = max
s∈S

‰

|js|

Ls

ı

as the maximal time for any one server to complete all of
its jobs at full concurrency. We first prove a tight bound on
Opt.

Theorem 1. Opt = max{q̂, ̂}.

Proof. We first show that Opt ≥ max{q̂, ̂}. It suffices
to separately prove Opt ≥ q̂ and Opt ≥ ̂. To prove Opt ≥
q̂, consider a query q that has a full parallel completion
time of q̂. At any given time slot, there can be at most Kq

servers executing jobs from q. Thus to complete q, at least
⌈|q|/Kq⌉ = q̂ time slots are required in a schedule.

To prove Opt ≥ ̂, consider a server s with ̂ jobs to be run
on it. Since s can execute at most Ls jobs at a time, it will
not complete the workload until after at least ⌈|js|/Ls⌉ = ̂
time slots.

We now prove that Opt ≤ max{q̂, ̂}. Consider the bipar-
tite undirected multigraph (without self-loops) G = (Q,S,E),
where E ⊆ Q × S contains edges of the form (q, s) if and
only if sj = s for some j ∈ q. Note that if multiple j ∈ q
satisfy sj = s, there will be multiple (q, s) edges in E. Define
f : Q∪S → N such that f(q) = Kq for q ∈ Q and f(s) = Ls

for s ∈ S. An f-edge coloring assigns an integer (color) to
each edge in E such that no more than f(v) edges incident
with v ∈ Q ∪ S have the same color. Let d(v) for v ∈ Q ∪ S
denote the degree of v. By Theorem 5 in Zhou et al. [25], an
f -edge coloring for G can be found that uses at most

max
v∈Q∪S

‰

d(v)

f(v)

ı

= max

max
q∈Q

‰

d(q)

Kq

ı

, max
s∈S

‰

d(s)

Ls

ıff

= max {q̂, ̂} colors.

Each edge in G corresponds to an assignment of job to a
server, so edges with the same color in the f -edge color-
ing can be scheduled simultaneously. By the construction

of f , no more than Kq jobs from the same query q will be
scheduled concurrently, nor will any server s run more than
Ls jobs in parallel. Combining both proven inequalities, the
makespan of this schedule is thus equal to the total number
of colors, max {q̂, ̂}, which proves the theorem.

We next prove an upper bound on the maximum makespan
of greedy algorithms in our model.

Theorem 2. The makespan of any possible greedy algo-
rithm is no more than twice the makespan of Opt.

Proof. Let server s have the highest makespan r among
all servers in the schedule produced by a greedy algorithm,
such that r > ̂. We will show that r ≤ 2 max{q̂, ̂}. Let ℓ
be a job scheduled on s at the final time r, and assume ℓ
belongs to query q. Recall that js is the set of jobs that must
be executed on s. There are at least r − ⌈|js|/Ls⌉ gaps, or
times during which s did not fill all Ls slots with jobs. The
only reason for ℓ not to have been scheduled in one of these
gaps before r is that for each gap, there must have been Kq

other jobs from q simultaneously scheduled in the system.
Otherwise, any greedy algorithm would have scheduled ℓ in
one of these gaps.

Because during each such gap there must be Kq jobs being
executed for q, the number of gaps can be at most |q|/Kq ≤
q̂. Thus, r − ⌈|js|/Ls⌉ ≤ q̂ so r ≤ q̂ + ̂. By Theorem 1,
Opt = max{q̂, ̂}. We conclude that

Greedy = r ≤ q̂ + ̂ ≤ 2max{q̂, ̂} = 2 · Opt.

4.3 Priority-Biased Round Robin
Theorem 2 ensures that any greedy algorithm makes good

progress on all queries in a workload (e.g., maximum makespan
is bounded.) We now present a greedy scheduling algorithm
that additionally allows us to prioritize certain classes of
queries. Two of the many possible criteria are:

• Gold vs. best-effort clients: Some clients are consid-
ered more important than others. Gold clients, for ex-
ample, have paid extra to guarantee fast response time,
even when the system is loaded.

• Short/fast vs. long/slow queries: Short queries scan-
ning one or a few partitions from a fast client typically
are a customer-facing request, where a fast response is
important. Long queries scanning many or all partitions
from a slow client may be a batch process, where re-
sponse time is less urgent (but still important).

The scheduler will prioritize queries based on our chosen cri-
teria. At the same time, it will ensure that all queries make
progress, and we prefer steady progress to bursty progress
with intermittent gaps of no results. The reason is that the
client must process the query results in some way, either dis-
playing them to an end user, or doing further computation.
Bursty results make processing or presenting results uneven
and wastes client resources.

Our Priority Biased Round Robin (PBRR) metric, which
the scheduler minimizes, trades off between the goals of pri-
oritization and minimizing idle times between results. For
the purposes of the metric, each query q has a priority value,
P (q) > 0, with a lower value indicating higher priority. The
priority term encapsulates our scheduling preference (e.g.,
favoring short versus long queries or gold versus best-effort
clients) and we discuss setting this shortly. Each q also has
a set of idle times, I(q), which is the set of durations over

which q was not scheduled on any server. Finally, we have a
scheduler-wide parameter α that controls the relative impor-
tance of priority versus idle periods when choosing between
queries. To compute PBRR for a set of queries Q, for each q
we sum the squares of the idle times and divide by priority
raised to the α power. Then, we sum over all q’s:

PBRR =
X

q∈Q

C +
P

i∈I(q) length(i)2

P (q)α
(1)

We square the idle time term length(i) to favor many short
idle periods over a few long ones. C is a small constant (e.g.,
C = 1) that ensures the numerator is non-zero when there
are no queries with idle times; in that scenario, the priorities
in the denominator determine which queries get scheduled.

The parameter α is key to tuning the behavior of our
scheduler. It is the knob that controls the weight given to
P (q) relative to the idle times. An α setting greater than 1
magnifies P (q)’s impact and diminishes the impact of idle
times. α = 0 essentially sets all priorities to 1. A negative α
actually reverses the priorities.

Minimizing this metric captures our scheduling prefer-
ences. The higher priority a query has, the more penalty
we pay when it is idle; since additions to the numerator are
magnified by the relatively smaller denominator of high pri-
ority queries. At the same time, no query will starve: as an
idle duration for any query grows linearly, the penalty to-
ward the metric grows quadratically, rapidly increasing the
likelihood that the query is scheduled.

4.3.1 Setting Priority
We now discuss how to set the priority P (q) variable in

Equation 1. Consider the scenario where we want to sup-
port gold and best-effort priority levels, where queries come
tagged with some externally bestowed priority value. We
simply set P (q) to this value. Then, the relative priorities
of other queries and α impact the level of preferential treat-
ment a particular priority setting gives.

Next consider a scenario where we want to favor short or
long queries. We set P (q) to the query’s minimum comple-
tion time, MC(q). This value denotes the time in which q
can complete, if given top priority for all servers. The fol-
lowing lemma tells us how to compute this time.

Lemma 1. The minimum completion time MC(q) for query
q equals max{q̂, ̂}.

Proof. We observe that MC(q) is a special case of find-
ing Opt where q is the only query to be scheduled. Theo-
rem 1 proves the tight bound on Opt, and therefore proves
a tight bound on MC(q).

4.3.2 Implementing the PBRR Scheduler
Our priority-based scheduler, which schedules queries to

minimize the PBRR metric, periodically runs Algorithm 2.
The scheduler stores priority function P and tracks the cur-
rent idle duration for each query. Assume query q has been
idle for iq time units. We utilize a priority queue, Π, and in-

sert a query into it with value
C+i2q

P (q)α , the penalty to PBRR

if the query is not scheduled.
We call attention to two special cases. Consider the case

where all queries are non-idle. When we schedule a query q,
P (q) does not change. Therefore, the highest priority query

Algorithm 2 PBRR scheduling

1. For each q, insert q into Π with value
C+i2q
P(q)α

.

2. While servers are idle or Π non-empty

(a) Pop highest priority query q∗ from Π.

(b) If q∗ has Kq∗ servers, set q∗ aside.

(c) If q∗ cannot use any idle servers, set q∗ aside. Else

i. Grant q∗ one idle server.

ii. Set iq∗ = 0.

iii. Insert q∗ into Π with value
C+i2

q∗

P(q∗)α
.

at the start of the scheduling instance remains highest prior-
ity throughout; a lower priority query can only be scheduled
once all queries above it reach Kq or do not need any of the
idle servers. This is, in fact, the behavior of a priority sched-
uler. The second case is when α = 0; then P (q)α = 1 and
the highest priority query is that with maximum current idle
time. The scheduler reduces to a round-robin scheduler.

5. EVALUATION
We now examine the impact of parallelism in a distributed

data store, and evaluate our techniques for adaptive server
allocation and scheduling. We have run experiments using
both synthetic data and a data set from Flickr’s database of
photo metadata. At a high level:

• Our results verify the intuition that a query benefits
more from parallelism when it is longer, more selective,
or coming from a client with faster consumption rate
(server speed is also a factor but tends not to vary from
query to query). For example, two of our storage servers
provided enough parallelism to saturate a slow (500 KB/
second) client, while eight servers were needed to satu-
rate a faster (2,000 KB/second) client.

• Adaptive server allocation (ASA) tunes a query’s Kq

value to get good throughput, and outperforms policies
that assign all queries a fixed Kq. For example, in a multi-
query setting with slow clients, ASA beats allowing all
clients to request all servers by a factor of 2 to 3.

• Our PBRR scheduler gives us the ability to prioritize
queries. PBRR does much better than FIFO in terms
of time until each query receives its first results, as well
as delivering steady results. By tuning α we are able to
clearly prefer short queries over long and gold queries
over best-effort.

We also examine the effect of range queries on concurrent
point lookups.

5.1 Experimental Setup
We augmented the production PNUTS code by imple-

menting our range processing components (the scan engine
and scheduler). We set up a cluster with 10 storage servers,
four client machines, a router and a partition controller. Our
load generation application used the PNUTS client library,
which we augmented with instrumentation to measure its
consumption rate (KB/second) and periodically report this
value to the scan engine to support ASA. All machines run
Red Hat Enterprise Linux 4.3 and have a single disk. We
use the Trickle utility [16] to precisely control clients’ con-

sumption speeds for our experiments.
The experiments reported in this paper used synthetic

data so that we could have precise control over key distri-
bution and query selectivity. We created a table of 1024
partitions, and loaded 20,000,000 5KB records distributed
evenly among the partitions. This places roughly 100 100MB
partitions on each server, for roughly 10 GB total on each
server. Each record also has an integer pred field whose value
is chosen randomly and uniformly from the range 1-1,000.
Our range queries have an inequality selection predicate on
pred that we use to control query selectivity. The storage
servers filter out records not passing the predicate. In the
rest of this section we refer to selectivity by the percentage
of records passing the predicate.

To validate our results, we also ran experiments using a
data set from Flickr representing metadata for 10 million
Flickr photos, ordered by date. The average record size was
214 bytes. Our range queries represented a workload of find-
ing photos from specified time intervals which matched a
predicate over the photo’s ranking. This workload is similar
to a common user activity of trying to find highly ranked
photos. Time intervals in our queries were randomly dis-
tributed across the range of time represented by the records.
The rankings displayed no apparent correlation to date. Since
we did not have a trace of prioritized Flickr queries (Flickr
does not have queries with varying priorities) we did not run
scheduling experiments using this data. Results from these
experiments are not reported here, but were consistent with
the reported results. See [2] for full results.

5.1.1 Setting the per-server concurrency limit (Ls)
We ran experiments to determine how many concurrent

range scans we could assign to each storage server. Our
results are as expected: limiting contention improves scan
time, because sequential I/O can be used. On a server with
one disk, limiting scans to one at a time allowed all scans to
complete 14 percent faster than allowing two at a time, and
50 percent faster than allowing 32 at a time. Similarly, with
two disks, two concurrent scans allowed all queries to com-
plete 50 percent faster than only scan at a time, and 23 per-
cent faster than allowing three scans. For the rest of our ex-
periments, we use single-disk servers and Ls = 1. Note that
Ls represents a tradeoff between throughput and latency:
higher values can reduce latency to returning the first result
by allowing more outstanding concurrent requests, at the
cost for poorer overall throughput due to head contention.

5.2 Parallelism Impact
We now examine the variables we have identified as key

to determining the best parallelism: query length, query se-
lectivity, and client speed. In these experiments, we run a
single query at a time, vary the parallelism level, and mea-
sure the time to complete the query. With Ls = 1 and ten
servers, maximum parallelism is ten.

Varying query length - Figure 4 shows the effects on
query completion time of varying query length from 0.5% to
4% of the table, with selectivity fixed at returning 10% of tu-
ples scanned, and client speed fixed at 10,000 KB/sec (mak-
ing queries server-bound). The results show that as query
length grows, high parallelism is increasingly important for
achieving a fast completion time. In addition, while increas-
ing parallelism causes a drop in response times, the benefits
diminish as Kq continues to grow. Diminishing returns are

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e
(s

ec
)

Range Size (% of Table)

K=1
K=2
K=4
K=8

Figure 4: Range size vs. completion
time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.5 1 1.5 2

T
im

e
(s

ec
)

Selectivity (% of Data Returned)

K=1
K=2
K=4
K=8

Figure 5: Query selectivity vs. com-
pletion time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000

T
im

e
(s

ec
)

Client Rate (KB/s)

K=2

K=3

K=5
K=8

K=1
K=2
K=4
K=8

K=10
ASA

Figure 6: Client speed vs. comple-
tion time.

common in parallel systems; in our case they are caused by
varying performance among the servers, and the query not
being completely evenly distributed across the servers. Our
key observation is that as query length increases, the greater
parallelism’s impact is on overall running time.

Varying query selectivity - Figure 5 shows the effect of
varying query selectivity from returning 2% to 0% of tuples
scanned. Length is fixed at 1% of the table and speed fixed
at 250 KB/sec, so the experiment is client-bound. At lower
selectivities, we see no distinction between different parallel
levels. Kq = 1 returns tuples quickly enough to saturate
the client, and higher parallelism results in no gain. At 1%
we see Kq = 1 peel away from the other plots; this is the
point where it takes 2 servers to saturate the client. We see a
similar effect at 0.5%, where it takes 4 servers. In general, the
fewer results a server generates, the more a client benefits
from parallelism, even if the client is slow.

Varying client speed - Figure 6 varies client speed from
250 to 2,000 KB/sec. Length is fixed at 1% of the table
and selectivity is fixed at returning 10% of tuples scanned.
We again plot different parallel levels. For now, ignore the
ASA adaptive server allocation plot and its associated Kq

labels; we will return to this shortly. We again see a peeling
away pattern. At 250 KB/sec, one server is sufficient to sat-
urate the client; at higher parallel levels, results are buffered
between the range processor and client. At 500 KB/sec,
Kq = 1 peels away and 2 servers are required for satura-
tion. Likewise, 4 servers are needed at 1,000 KB/sec, and
8 are required at 2,000 KB/sec. We conclude that (a) fast
clients benefit more from parallelism than slow clients, and
(b) there is no benefit to granting a client servers beyond
the amount necessary to saturate it.

5.3 Adaptive Server Allocation
We now examine the effectiveness of adaptive server al-

location (ASA). Recall from Section 3.2 that our adaptive
algorithm works by increasing Kq until the client stops in-
creasing its consumption. Then, the algorithm periodically
adjusts Kq up or down, based on probabilities P↑ and P↓.
From experimentation, we found that the probability values
did not have a major influence on the algorithm’s ability to
find a good Kq; thus, we will use P↑ = P↓ = 1/3.

5.3.1 ASA – Single Query
We return to Figure 6 and consider the ASA plot. ASA

achieves roughly the same performance as Kq = 10, without
allocating all ten servers to the query. The Kq annotations

on the graph show the actual number of servers allocated to
the query. Although ASA performs well, it does not quite
achieve the optimal result in two ways. First, the perfor-
mance is slightly slower (up to 31% in some cases) than Kq =
10. Second, in some cases one less server could have been
assigned without losing performance; e.g., at 1,000 KB/sec,
Kq = 4 would have worked and ASA chooses Kq = 5. Both
effects result from adaptively allocating or revoking servers,
and the non-zero time necessary to measure the effects of a
new allocation or wait for a server to finish scanning so it
can be revoked. We argue that some sub-optimality as the
result of using an adaptive heuristic is an acceptable price
for not having to hand-tune the system.

We can see the behavior of ASA in Figure 7 which plots,
for the case of client rate of 1,000 KB/sec, a snapshot of
experiment time vs. requested and actual Kq taken from the
first 60 seconds of the experiment. Early on, ASA requests
Kq = 5 and the scheduler quickly grants the request. The
client consumption rate does not increase from having the
fifth server, however, and ASA lowers its request to Kq = 4.
The fifth server continues scanning, and approximately 45
seconds into the query, actual Kq finally drops to 4. Shortly
after, we see another test by ASA of Kq = 5. In this case,
thanks to another of the original 5 granted servers finishing,
actual Kq quickly drops back to 4. This graph illustrates the
effect discussed above; although we may decide to change
server allocation, the allocation itself may not immediately
change. We could interrupt server scans to deal with this
issue, but we must examine in ongoing work whether the
performance benefit is worth the added complexity.

Overall, we conclude ASA is effective for automatically
finding an appropriate Kq setting for different client speeds.

5.3.2 ASA – Multi Query
When there are multiple queries, ASA is key to ensure we

do not allocate too few or too many servers to one query.
The scheduler also becomes important to mediate between
queries. In this section, we focus on ASA; we use a FIFO
scheduler and return to the scheduler itself in Section 5.4.

Multiple queries, same client speeds - First, we ex-
amine whether a fixed policy, or our adaptive ASA, is the
best way to set Kq when all clients have the same speed.
Figure 8 depicts an experiment identical to our previous one
(query scans 1% of table range, returning 10% of scanned
tuples), but now with 4 such queries each requesting a differ-
ent random range. Each query is issued by a different client
machine. Clients share the same consumption rate.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

K

Time (sec)

Actual K
Desired K

Figure 7: Time vs. Kq, client speed
1,000 KB/sec.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000

T
im

e
(s

ec
)

Client Speed (KB/sec)

K=1
K=2
K=4
K=8

K=10
ASA

Figure 8: Client speed vs. workload
completion time, 4 query workload.

 0

 200

 400

 600

 800

 1000

 1200

K=5 ASA

T
im

e
(s

ec
)

Parallel Policy

Slow Client
Fast Client

Figure 9: Query completion times
for Kq = 5 and ASA.

As the figure shows, allocating many or all of the servers to
each query (e.g., Kq = 10) hurts performance when clients
are slow, since one query grabs lots of servers, starving the
other queries. In contrast, allocating just one server (Kq =
1) causes poor performance when clients are fast, since each
client could benefit from more parallelism. The best poli-
cies across all client ranges are ASA and Kq = 2. It makes
sense that Kq = 2 performs well; if we divide the 10 servers
roughly equally among all queries, each would receive 2
servers. Thus we might ask whether a static policy that sets

Kq = (num servers)
(num clients)

is sufficient. There are two problems

with this approach. First, the number of clients changes as
queries are submitted or completed, making it difficult to
choose the right Kq. Second, even if the number of clients
remained fixed, when clients have different speeds, evenly
dividing the servers results in poor performance. We exam-
ine this effect in the next section. Thus, we conclude that
ASA is more effective compared to fixed Kq policies.

Multiple queries, different speeds - We examine per-
formance when clients have different speeds. We ran an ex-
periment with two clients, one which could consume 100
KB/sec (the slow client) and another which could consume
2,000 KB/sec (the fast client). Each client submitted one
range query; both queries scanned a different 1% of the ta-
ble with a predicate that returned 10% of scanned tuples.
Figure 9 shows a static policy of dividing the 10 servers
equally between the two clients (Kq = 5) and our ASA pol-
icy. As the figure shows, the slow client is client-bound, and
completes in the same time in both cases. In contrast, for
the fast client, ASA is faster than Kq = 5. Under the Kq = 5
policy, we grant 5 servers to a slow client that cannot make
use of more than 1 or 2. ASA grants only 1 or 2 servers
to the slow client, and therefore has more servers available
to grant to the fast client. In theory we could have a fixed
policy that manually set a query’s Kq based on measured
client speed; this is in fact what ASA does automatically.

The fast client does not perform as well as it could if
it were the only query executing, since it occasionally must
wait for a server currently allocated to the slow client. Again,
interrupting server scans may be useful to further improve
performance, and this is a topic of future work. Overall, ASA
works better than dividing servers evenly among queries
when queries have different consumption rates.

5.4 Scheduling
We now focus on scheduling in the multi-query environ-

ment and specifically consider cases where it is impossible

to grant all queries their ASA-requested Kq. The problem
is to prioritize which queries are scheduled. As discussed in
Section 4 our scheduler lets us prioritize on various criteria,
while also attempting to provide a steady stream of results
to all clients. We compare the following schedulers:

• FIFO - earliest query gets top priority.

• Random - free server is assigned to a random query.

• Round Robin (RR) - longest idle query gets top priority.

• PBRR - our scheduler described in Section 4.3.2.

ASA is used in all experiments in this section.
Priority based on length - We first base priority on

query length. We construct queries that are random ranges
with lengths 1,2,4 and 8% of the table, all returning 10% of
tuples scanned. There are 4 clients and each generates one
query of each length, for a total workload of 16 queries. All
queries are issued immediately. To avoid biasing FIFO, each
client issues its queries in different orders.

Figure 10 plots results for different scheduler settings. For
each setting, we show a cluster of four bars, where each bar
shows aggregate results for a particular length query; per
cluster, the bars are ordered from smallest to longest length.
For example, the first bar of the first cluster depicts FIFO
scheduler with length 1% queries. Each bar shows average
time until first results are returned, average completion time,
and maximum completion time.

The major weaknesses of FIFO are clear. Most queries
wait a long time before getting any results. Prioritization is
completely at the mercy of when the queries hit the sched-
uler; time to first result is independent of query length. Av-
erage completion time trends with query length, but the
differences are small. Finally, maximum completion time is
independent of query length.

Contrast this with the other schedulers, which all look
similar to round-robin. Every query gets some results rela-
tively quickly, and shorter queries tend to finish faster. With
our PBRR scheduler, we bias these trends. With positive α
values, we favor shorter queries, and they get their first re-
sults earlier. With negative α values, we do the opposite.
Round-robin, which is in fact α = 0, is oblivious to length.

To visualize the pace at which different length queries get
results, we plot in Figure 11, for the α = 2 case, time ver-
sus KB received for one length 1% query and one length 8%
query. This plot covers the beginning portion of the experi-
ment. We see that length 1% gets results more quickly and
with shorter periods of no results. Likely the shorter query
is client-facing, while the longer is a batch process, and this

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

FIFO Rand α -10 α -2 RR α 2 α 10

T
im

e
(s

ec
)

Scheduler

Figure 10: Workload performance
by scheduler, length-based priority.
A cluster shows aggregate results
for length 1,2,4,8% queries. A bar
shows first result, average comple-
tion, max completion times.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 50 100 150 200 250 300 350 400 450 500

K
B

 R
ec

ei
ve

d

Time (sec)

Length 8%
Length 1%

Figure 11: Time vs. KBs for 2
queries of lengths 1% and 8% from
Figure 10, α = 2 setting.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

RR α 5 α 10 α 20

T
im

e
(s

ec
)

Scheduler

Bronze
Silver
Gold

Figure 12: Workload performance
for different schedulers, priority
defined externally. Each bar clus-
ter shows completion time for each
query.

is an appropriate scheduler setting. We see that using the
PBRR scheduler, we can effectively favor short queries over
long, but deliver all clients a steady stream of results.

Externally bestowed client priorities - We ran a sim-
ilar experiment with priority based on client service level. In
this setting, there are 8 queries and three priority levels. Two
queries have a “gold” level of priority 1, two have “silver”
priority 2, and four have “bronze” priority 4. All queries are
length 4% and return 10% of tuples scanned. The queries are
issued slightly staggered such that they arrive at the sched-
uler in inverse-priority order. This allows us to see if we can
tune our scheduler such that a high priority query performs
well despite an earlier arriving low priority query. Figure 12
shows the completion time for each of the 8 queries for dif-
ferent scheduler settings. Each cluster of bars is ordered by
query arrival time at the scheduler. With α ≥ 10 the gold
queries clearly get top priority. We note two interesting fea-
tures. First, the very first query gets a significant advantage
from its head start on acquiring servers; even at α = 20,
its completion time is only slightly higher than the slow-
est silver query. Second, the workload completion times in
this experiment and in Figure 10 are both unaffected by α
setting, as we would expect from Theorem 2.

5.4.1 Scheduler at Scale
In order to test our scheduler at larger scales, we built a

stand-alone discrete time-based simulator. It generates syn-
thetic workloads, maps queries to servers by using one of
the scheduling heuristics, simulates network and disk scan
delays when retrieving results, and measures the makespan
for the given schedule. For simplicity, we assume that the
level of parallelism of a query is fully known at the time it
is dispatched, and that the results are uniformly distributed
over the partitions requested. We assume that each server
can execute at most one query at a time.

We ran a simulation to repeat the experiment from Fig-
ure 12, α = 10 case and proportionally scale up the number
of servers and queries from 10 servers and 8 queries (as in the
actual experiment) up to 200 servers and 160 queries (ratio
of gold/silver/bronze queries remains constant). The result
is straightforward, and we omit the plot. At 10 servers and 8
queries, the bronze queries finish in average of 1,200 seconds,
the silver queries in 700 seconds, and the gold queries in 400

seconds. As we increase the number of server and queries,
these average completion times stay constant, verifying that
our scheduler results hold at larger scales.

5.5 Impact on Normal Traffic
In practice range queries are not the only type of queries

in the system. In fact, the majority of queries are likely point
queries, each requesting a single record. We investigated the
impact on point query performance by running a point query
workload by itself, and then by running the same workload
concurrent with range queries. In the latter case, we ran four
range queries, each at Kq = 10, and made sure that every
server was processing range requests throughout the point
query workload. Any slowdown caused by the range queries
affected all point queries equally. In the absence of range
queries, median point query latency was 5 ms, with 22% of
queries taking longer than 10 ms. With range queries, me-
dian latency held at 5 ms, but 28% of queries took longer
than 10 ms. We see then that range queries have little ad-
verse effect on most point traffic, but do increase the number
of queries that experience longer latency.

6. RELATED WORK
Shared nothing databases - Shared nothing databases

that can scale out by adding hardware have existed for
decades [15]. Our system builds on many of the concepts
presented in this earlier work, including range partitioning
and intra-operator parallelism. Our approach of limiting the
number of servers for a query is complementary to the per-
operator flow control of [15].

Previous work assumed maximum parallelism would be
given to queries, and focused on maximizing throughput by
placing [7, 17], moving [18] or copying [21] partitions. Our
approach of determining how many partitions to scan in
parallel is complementary to partition placement techniques.

Massive scale systems - Several massive-scale database
systems have been built recently [1, 4, 10, 13, 20]. While
some of these support executing range queries in parallel [10,
20], their published works do not describe mechanisms to
optimize parallelism level, and they could possibly benefit
from our techniques. Other systems are hash tables and do
not support range queries (such as Dynamo [13]).

Column-stores are optimized specifically for scan tasks, es-

pecially over read-mostly data [23]. Our adaptive parallelism
techniques could be adapted to work on a parallel column
store. Moreover, our techniques work well even for frequently
updated data. MapReduce [12] also focuses on scanning for
analysis queries, and carefully exploits parallelism. However,
adaptivity is not typically needed because the number of
concurrent scans for a MapReduce job is statically set to
the number of map tasks that have been spawned.

An earlier approach to building scale-out systems was
to build networks of workstations [6]. Work on such sys-
tems focused on how to achieve maximum parallelism, rather
than throttling or scheduling parallelism to satisfy multiple
clients and their constraints. The Condor scheduling sys-
tem [24] allocated servers to parallel jobs to minimize CPU
contention. Our problem is more constrained, since data is
harder to move than computation.

Other work in parallel databases - Earlier work in
parallel databases [14, 9] describes maximizing the amount
of parallelism for queries, and does not focus on isolating the
performance of concurrent queries or limiting the amount
of parallelism. Commercial systems provide parallel scan-
ning as well as mechanisms for tuning [3, 5, 8]. For ex-
ample Oracle provides parameters to manually limit the
amount of parallelism, and implements a fixed allocation

policy (K = (num servers)
(num clients)

). Our evaluation results show the

benefit of more adaptive techniques.
Scheduling - The scheduling problem in Section 4 to

minimize makespan is similar to the open shop environ-
ment with identical processing lengths, particularly O|pij =
1|Cmax (in scheduling notation) [19]. Determining the mini-
mum makespan in that setting can be done in almost linear
time in the number of jobs using a bipartite edge-coloring
algorithm [22], where jobs with the same color can be sched-
uled concurrently. There is a key difference, however, be-
tween our problem and the standard open shop environment.
In ours, each job (query) i can have up to Ki concurrent op-
erations, and each processor (storage server) j can execute
up to Lj parallel operations. In this more general case, as
described in Theorem 1, a schedule with minimal makespan
can be found in polynomial time using [25]. It is unclear
how this algorithm works on weighted graphs, where edge
weights correspond to PBRR cost.

7. CONCLUSIONS
Web applications need database systems to provide high

performance range scans for a variety of tasks. Parallel exe-
cution of range queries is key to achieving this high perfor-
mance. However, if we assign too many servers to a query,
we will waste resources and reduce the performance of other
queries. We have described techniques for determining how
many, and which, servers should be used in parallel to exe-
cute range queries in a massive scale shared nothing database.
Our experimental results show that our adaptive server allo-
cation algorithm can effectively determine how many servers
are needed to satisfy a given client, even without prior knowl-
edge of the data distribution or server and client character-
istics. We have also shown that our adaptive scheduler can
effectively assign servers to query executions to ensure good
performance for all queries. Furthermore, our scheduler al-
lows us to prioritize certain queries over others, based on
our applications and policies. These techniques are key to
making the best use of a large number of parallel resources
when executing range queries.

8. REFERENCES
[1] Amazon SimpleDB. aws.amazon.com/simpledb/.

[2] Extended version. Yahoo! Labs Technical Report
YL-2009-003, research.yahoo.com/Technical Reports.

[3] Oracle Database Data Warehousing Guide, 10g release
2. download-west.oracle.com/docs/cd/B19306 01/-
server.102/b14223/usingpe.htm.

[4] SQL Data Services/Azure Services Platform.
www.microsoft.com/azure/data.mspx.

[5] Teradata. www.teradata.com.

[6] A. C. Arpaci-Dusseau et al. High-performance sorting
on networks of workstations. In SIGMOD, 1997.

[7] M. J. Atallah and S. Prabhakar. (Almost) optimal
parallel block access for range queries. In PODS, 2000.

[8] C. Baru et al. An overview of DB2 Parallel Edition. In
SIGMOD, 1995.

[9] H. Boral et al. Prototyping Bubba, a highly parallel
database system. IEEE TKDE, 2(1), March 1990.

[10] F. Chang et al. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[11] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data
serving platform. In VLDB, 2008.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[13] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

[14] D. J. DeWitt et al. The Gamma database machine
project. IEEE TKDE, 2(1):44–63, 1990.

[15] D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database processing.
CACM, 36(6), June 1992.

[16] M. A. Eriksen. Trickle: A userland bandwidth shaper
for Unix-like systems. In Proc. USENIX Annual
Technical Conference, 2005.

[17] H. Ferhatosmanoglu, D. Agrawal, and A. E. Abbadi.
Concentric hyperspaces and disk allocation for fast
parallel range searching. In ICDE, 1999.

[18] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range-partitioned data with applications
to peer-to-peer systems. In VLDB, 2004.

[19] D. Karger, C. Stein, and J. Wein. Handbook of
Algorithms and Theory of Computation, chapter
Scheduling Algorithms. CRC Press, 1998.

[20] A. Lakshman, P. Malik, and K. Ranganathan.
Cassandra: A structured storage system on a P2P
network. In SIGMOD, 2008.

[21] P. Sanders, S. Egner, and J. Korst. Fast concurrent
access to parallel disks. In SODA, 2000.

[22] A. Schrijver. Bipartite edge-colouring in O(∆m) time.
SIAM Journal on Computing, 28(3):323–356, 1999.

[23] M. Stonebraker et al. C-Store: A column-oriented
DBMS. In VLDB, 2005.

[24] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The Condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, February-April 2005.

[25] X. Zhou and T. Nishizeki. Edge-coloring and
f -coloring for various classes of graphs. Journal of
Graph Algorithms and Applications, 3(1):1–18, 1999.

