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ABSTRACT
Database systems have a large number of configuration parame-
ters that control memory distribution, I/O optimization, costing of
query plans, parallelism, many aspects of logging, recovery, and
other behavior. Regular users and even expert database administra-
tors struggle to tune these parameters for good performance. The
wave of research on improving database manageability has largely
overlooked this problem which turns out to be hard to solve. We
describe iTuned, a tool that automates the task of identifying good
settings for database configuration parameters. iTuned has three
novel features: (i) a technique called Adaptive Sampling that proac-
tively brings in appropriate data through planned experiments to
find high-impact parameters and high-performance parameter set-
tings, (ii) an executor that supports online experiments in produc-
tion database environments through a cycle-stealing paradigm that
places near-zero overhead on the production workload; and (iii)
portability across different database systems. We show the effec-
tiveness of iTuned through an extensive evaluation based on differ-
ent types of workloads, database systems, and usage scenarios.

1. INTRODUCTION
Consider the following real-life scenario from a small to medium

business (SMB) enterprise. Amy, a Web-server administrator, main-
tains the Web-site of a ticket brokering company that employs eight
people. Over the past few days, the Web-site has been sluggish.
Amy collects monitoring data, and tracks the problem down to
poor performance of queries issued by the Web server to a backend
database. Realizing that the database needs tuning, Amy runs the
database tuning advisor. (SMBs often lack the financial resources
to hire full-time database administrators, or DBAs.) She uses sys-
tem logs to identify the workload W of queries and updates to the
database. With W as input, the advisor recommends a database
design (e.g., which indexes to build, which materialized views to
maintain, how to partition the data). However, this recommenda-
tion fails to solve the current problem: Amy had already designed
the database this way based on a previous invocation of the advisor.
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Amy recalls that the database has configuration parameters. For
lack of better understanding, she had set them to default values
during installation. The parameters may need tuning, so Amy pulls
out the 1000+ page database tuning manual. She finds many dozens
of configuration parameters like buffer pool sizes, number of con-
current I/O daemons, parameters to tune the query optimizer’s cost
model, and others. Being unfamiliar with most of these parameters,
Amy has no choice but to follow the tuning guidelines given. One
of the guidelines looks promising: if the I/O rate is high, then in-
crease the database buffer pool size. However, on following this ad-
vice, the database performance drops even further. (We will show
an example of such behavior shortly.) Amy is puzzled, frustrated,
and undoubtedly displeased with the database vendor.

Many of us would have faced similar situations before. Tuning
database configuration parameters is hard but critical: bad settings
can be orders of magnitude worse in performance than good ones.
Changes to some parameters cause local and incremental effects
on resource usage, while others cause drastic effects like changing
query plans or shifting bottlenecks from one resource to another.
These effects vary depending on hardware platforms, workload,
and data properties. Groups of parameters can have nonindepen-
dent effects, e.g., the performance impact of changing one parame-
ter may vary based on different settings of another parameter.

iTuned: Our core contribution in this paper is iTuned, a tool that
automates parameter tuning. iTuned can provide a very different
experience to Amy. She starts iTuned in the background with the
database workload W as input, and resumes her other work. She
checks back after half an hour, but iTuned has nothing to report
yet. When Amy checks back an hour later, iTuned shows her an in-
tuitive visualization of the performance impact each database con-
figuration parameter has on W . iTuned also reports a setting of
parameters that is 18% better in performance than the current one.
Another hour later, iTuned has a 35% better configuration, but Amy
wants more improvement. Three hours into its invocation, iTuned
reports a 52% better configuration. Now, Amy asks for the config-
uration to be applied to the database. Within minutes, the actual
database performance improves by 52%.

We now present a real example to motivate the technical inno-
vations in iTuned. Figure 1 is a response surface that shows how
the performance of a complex TPC-H query [19] in a PostgreSQL
database depends on the shared buffers and effective cache size pa-
rameters. shared buffers is the size of PostgreSQL’s main buffer
pool for caching disk blocks. The value of effective cache size is
used to determine the chances of an I/O hitting in the OS file cache,
so its recommended setting is the size of the OS file cache. The
following observations can be made from Figure 1 (detailed expla-
nations are given later in Section 7):
• The surface is complex and nonmonotonic.
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Figure 1: 2D projection of a response surface for TPC-H Query
18; Total database size = 4GB, Physical memory = 1GB

• Performance drops sharply as shared buffers is increased be-
yond 20% (200MB) of available memory. This effect will cause
an “increase the buffer pool size” rule of thumb to degrade per-
formance for configuration settings in this region.

• The effect of changing effective cache size is different for dif-
ferent settings of shared buffers. Surprisingly, the best perfor-
mance comes when both parameters are set low.

Typical database systems contain few tens of parameters whose set-
tings can impact workload performance significantly [13].1 There
are few automated tools for holistic tuning of these parameters. The
majority of tuning tools focus on the logical or physical design of
the database. For example, index tuning tools are relatively mature
(e.g., [4]). These tools use the query optimizer’s cost model to an-
swer what-if questions of the form: how will performance change
if index I were to be created? Unfortunately, such tools do not ap-
ply to parameter tuning because the settings of many high-impact
parameters are not accounted for by these models.

Many tools (e.g., [17, 20]) are limited to specific classes of pa-
rameters like buffer pool sizes. IBM DB2’s Configuration Advi-
sor recommends default parameter settings based on answers pro-
vided by users to some high-level questions (e.g., is the environ-
ment OLTP or OLAP?) [12]. All these tools are based on prede-
fined models of how parameter settings affect performance. De-
veloping such models is nontrivial [21] or downright impossible
because response surfaces can differ markedly across database sys-
tems (e.g., DB2 Vs. PostgreSQL), platforms (e.g., Linux Vs. So-
laris, databases run in virtual machines [16]), workloads, and data
properties.2 Furthermore, DB2’s Configuration Advisor offers no
further help if the recommended defaults are still unsatisfactory.

In the absence of holistic parameter-tuning tools, users are forced
to rely on trial-and-error or rules-of-thumb from manuals and ex-
perts. How do expert DBAs overcome this hurdle? They usually
run experiments to perform what-if analysis during parameter tun-
ing. In a typical experiment, the DBA would:
• Create a replica of the production database on a test system.
• Initialize database parameters on the test system to a chosen

setting. Run the workload that needs tuning, and observe the
resulting performance.

Taking a leaf from the book of expert DBAs, iTuned implements
an experiment-driven approach to parameter tuning. Each exper-
iment gives a point on a response surface like Figure 1. Reliable
techniques for parameter tuning have to be aware of the underlying
response surface. Therefore, a series of carefully-planned experi-

1The total number of database configuration parameters may be
more than a hundred, but most have reasonable defaults.
2Section 7 provides empirical evidence.

ments is a natural approach to parameter tuning. However, running
experiments can be a time-consuming process.

Users don’t always expect instantaneous results from parameter
tuning. They would rather get recommendations that work as de-
scribed. (Configuring large database systems typically takes on the
order of 1-2 weeks [12].) Nevertheless, to be practical, an auto-
mated parameter tuning tool has to produce good results within a
few hours. In addition, several questions need to be answered like:
(i) which experiments to run? (ii) where to run experiments? and
(iii) what if the SMB does not have a test database platform?

1.1 Our Contributions
To our knowledge, iTuned is the first practical tool that uses

planned experiments to tune database configuration parameters. We
make the following contributions.

Planner: iTuned’s experiment planner uses a novel technique, called
Adaptive Sampling, to select which experiments to conduct. Adap-
tive Sampling uses the information from experiments done so far to
estimate the utility of new candidate experiments. No assumptions
are made about the shape of the underlying response surface, so
iTuned can deal with simple to complex surfaces.

Executor: iTuned’s experiment executor can conduct online ex-
periments in a production environment while ensuring near-zero
overhead on the production workload. The executor is controlled
through high-level policies. It hunts proactively for idle capac-
ity on the production database, hot-standby databases, as well as
databases for testing and staging of software updates. The execu-
tor’s design is particularly attractive for databases that run in cloud
computing environments providing pay-as-you-go resources.

Representation of uncertain response surfaces: iTuned intro-
duces GRS, for Gaussian process Representation of a response Sur-
face, to represent an approximate response surface derived from
a set of experiments. GRS enables: (i) visualization of response
surfaces with confidence intervals on estimated performance; (ii)
visualization and ranking of parameter effects and inter-parameter
interactions; and (iii) recommendation of good parameter settings.

Scalability: iTuned incorporates a number of features to reduce
tuning time and to scale to many parameters: (i) a sensitivity-analysis
algorithm that quickly eliminates parameters with insignificant ef-
fect; (ii) planning and conducting parallel experiments; (iii) abort-
ing low-utility experiments early, and (iv) workload compression.

Evaluation: We demonstrate the advantages of iTuned through an
empirical evaluation along a number of dimensions: multiple work-
load types, data sizes, database systems (PostgreSQL and MySQL),
and number of parameters. We compare iTuned with recent tech-
niques proposed for parameter tuning both in the database [5] as
well as other literature [18, 23]. We consider how good the results
are and the time taken to produce them.

2. ABSTRACTION OF THE PROBLEM
Response Surfaces: Consider a database system with workload
W and d parameters x1, . . . , xd that a user wants to tune. The
values of parameter xi, 1 ≤ i ≤ d, come from a known domain
dom(xi). Let DOM, where DOM ⊆ Πd

i=1dom(xi), represent the
space of possible settings of x1, . . . , xd that the database can have.
Let y denote the performance metric of interest. Then, there exists
a response surface, denoted SW , that determines the value of y
for workload W for each setting of x1, . . . , xd in DOM. That is,
y = SW (x1, . . . , xd). SW is unknown to iTuned to begin with.
The core task of iTuned is to find settings of x1, . . . , xd in DOM
that give close-to-optimal values of y. In iTuned:

• Parameter xi can be one of three types: (i) database or system



configuration parameters (e.g., buffer pool size); (ii) knobs for
physical resource allocation (e.g., % of CPU); or (iii) knobs for
workload admission control (e.g., multi-programming level).

• y is any performance metric of interest, e.g., y in Figure 1 is the
time to completion of the workload. In OLTP settings, y could
be, e.g., average transaction response time or throughput.

• Because iTuned runs experiments, it is very flexible in how the
database workload W is specified. iTuned supports the whole
spectrum from the conventional format where W is a set of
queries with individual query frequencies [4], to mixes of con-
current queries at some multi-programming level, as well as
real-time workload generation by an application.

Experiments and Samples: Parameter tuning is performed through
experiments planned by iTuned’s planner, which are conducted by
iTuned’s executor. An experiment involves the following actions
that leverage mechanisms provided by the executor (Section 5):
1. Setting each xi in the database to a chosen setting vi ∈ dom(xi).
2. Running the database workload W .
3. Measuring the performance metric y = p for the run.

The above experiment is represented by the setting X = 〈x1 =
v1,. . .,xd = vd〉. The outcome of this experiment is a sample
from the response surface y = SW (x1, . . . , xd). The sample in
the above experiment is 〈X, y〉 = 〈x1 = v1, . . . , xd = vd, y = p〉.

As iTuned collects such samples through experiments, it learns
more about the underlying response surface. However, experiments
cost time and resources. Thus, iTuned aims to minimize the number
of experiments required to find good parameter settings.

3. OVERVIEW OF ITUNED
Gridding: Gridding is a straightforward technique to decide which
experiments to conduct. Gridding works as follows. The domain
dom(xi) of each parameter xi is discretized into k values li1,. . .,lik.
(A different value of k could be used per xi.) Thus, the space of
possible experiments, DOM ⊆ Πd

i=1dom(xi), is discretized into a
grid of size kd. Gridding conducts experiments at each of these kd

settings. Gridding is reasonable for a small number of parameters.
This technique was used in [18] while tuning four parameters in
the Berkeley DB database. However, the exponential complexity
makes gridding infeasible (curse of dimensionality) as the number
of parameters increase. For example, it takes 22 days to run exper-
iments via gridding for d = 5 parameters, k = 5 distinct settings
per parameter, and average run-time of 10 minutes per experiment.

SARD: The authors of [5] proposed SARD (Statistical Approach
for Ranking Database Parameters) to address a subset of the param-
eter tuning problem, namely, ranking x1, . . . , xd in order of their
effect on y. SARD decides which experiments to conduct using a
technique known as the Plackett Burman (PB) Design [11]. This
technique considers only two settings per parameter—giving a 2d

grid of possible experiments—and picks a predefined 2d number
of experiments from this grid. Typically, the two settings consid-
ered for xi are the lowest and highest values in dom(xi). Since
SARD only considers a linear number of corner points of the re-
sponse surface, it can be inaccurate for surfaces where parameters
have nonmonotonic effects (Figure 1). The corner points alone can
paint a misleading picture of the shape of the full surface.3

Adaptive Sampling: The problem of choosing which experiments

3The authors of SARD mentioned this problem [5]. They recom-
mended that, before invoking SARD, the DBA should split each
parameter xi with nonmonotonic effect into distinct artificial pa-
rameters corresponding to each monotonic range of xi. This task is
nontrivial since the true surface is unknown to begin with. Ideally,
the DBA, who may be a naive user, should not face this burden.

to conduct is related to the sampling problem in databases. We can
consider the information about the full response surface SW to be
stored as records in a (large) table TW with attributes x1, . . . , xd, y.
An example record 〈x1 = v1, . . . , xd = vd, y = p〉 in TW says
that the performance at the setting 〈x1 = v1,. . .,xd = vd〉 is p
for the workload W under consideration. Experiment selection is
the problem of sampling from this table. However, the difference
with respect to conventional sampling is that the table TW is never
fully available. Instead, we have to pay a cost—namely, the cost of
running an experiment—in order to sample a record from TW .

The gridding and SARD approaches collect a predetermined set
of samples from TW . A major deficiency of these techniques is
that they are not feedback-driven. That is, these techniques do not
use the information in the samples collected so far in order to deter-
mine which samples to collect next. (Note that conventional ran-
dom sampling in databases is also not feedback-driven.) Conse-
quently, these techniques either bring in too many samples or too
few samples to address the parameter tuning problem.

iTuned uses a novel feedback-driven algorithm, called Adaptive
Sampling, for experiment selection. Adaptive Sampling analyzes
the samples collected so far to understand how the surface looks
like (approximately), and where the good settings are likely to be.
Based on this analysis, more experiments are done to collect new
samples that add maximum utility to the current samples.

Suppose n experiments have been run at settings X(i), 1 ≤ i ≤
n, so far. Let the corresponding performance values observed be
y(i) = y(X(i)). Thus, the samples collected so far are 〈X(i), y(i)〉.
Let X? denote the best-performing setting found so far. Without
loss of generality, we assume that the tuning goal is to minimize y.

X
? = arg min

1≤i≤n
y(X(i))

Which sample should Adaptive Sampling collect next? Suppose
the next experiment is done at setting X , and the performance ob-
served is y(X). Then, the improvement IP(X) achieved by the new
experiment X over the current best-performing setting X? is:

IP(X) =



y(X?) − y(X) if y(X) < y(X?)
0 otherwise

(1)

Ideally, we want to pick the next experiment X so that the improve-
ment IP(X) is maximized. However, a proverbial chicken-and-egg
problem arises here: the improvement depends on the unknown
value of y(X) which will be known only after the experiment is
done at X . We instead compute EIP(X), the expected improvement
when the next experiment is done at X . Then, the experiment that
gives the maximum expected improvement is selected.

The n samples from experiments done so far can be utilized to
compute EIP(X). We can estimate y(X) based on these samples,
but our estimate will be uncertain. Let ŷ(X) be a random variable
representing our estimate of y(X) based on the collected samples.
The distribution of ŷ(X) captures our current uncertainty in the
actual value of performance at setting X . Let pdfŷ(X)(p) denote
the probability density function of ŷ(X). Then:

Xnext = arg max
X∈DOM

EIP(X) (2)

EIP(X) =

Z p=+∞

p=−∞

IP(X)pdfŷ(X)(p)dp (3)

EIP(X) =

Z p=y(X?)

p=−∞

(y(X?) − p)pdfŷ(X)(p)dp (4)

The challenge in Adaptive Sampling is to compute EIP(X) based on
the 〈X(i), y(i)〉 samples collected so far. The crux of this challenge
is the generation of the probability density function of the estimated
value of performance y(X) at any setting X .



Adaptive Sampling: Algorithm run by iTuned’s Planner
1. Initialization: Conduct experiments based on Latin Hypercube Sampling,

and initialize GRS and X?=arg min
i

y(X(i)) with collected samples;

2. Until the stopping condition is reached, do
3. Find Xnext = arg max

X∈DOM
EIP(X);

4. Executor conducts the next experiment at Xnext to get a new sample;
5. Update the GRS and X? with the new sample; Go to Line 2;

Figure 2: Steps in iTuned’s Adaptive Sampling algorithm

iTuned’s Workflow: Figure 2 shows iTuned’s workflow for pa-
rameter tuning. Once invoked, iTuned starts with an initialization
phase where some experiments are conducted for bootstrapping.
Adaptive Sampling starts with the initial set of samples, and con-
tinues to bring in new samples through experiments selected based
on EIP(X). Experiments are conducted seamlessly in the produc-
tion environment using mechanisms provided by the executor.

Roadmap: Section 4 describes Adaptive Sampling in more de-
tail. Details of the executor are presented in Section 5. iTuned’s
scalability-oriented features are described in Section 6.

4. ADAPTIVE SAMPLING
4.1 Initialization

As the name suggests, this phase bootstraps Adaptive Sampling
by bringing in samples from an initial set of experiments. A straight-
forward technique is random sampling which will pick the ini-
tial experiments randomly from the space of possible experiments.
However, random sampling is often ineffective when only a few
samples are collected from a fairly high-dimensional space. More
effective sampling techniques come from the family of space-filling
designs [14]. iTuned uses one such sampling technique, called
Latin Hypercube Sampling (LHS) [11], for initialization.

LHS collects m samples from a space of dimension d (i.e., pa-
rameters x1, . . . , xd) as follows: (1) the domain dom(xi) of each
parameter is partitioned into m equal subdomains; and (2) m sam-
ples are chosen from the space such that each subdomain of any
parameter has one and only one sample in it. The set of “*” sym-
bols in Figure 3 is an example of m=5 samples selected from a
d=2 dimensional space by LHS. Notice that no two samples hit the
same subdomain in any dimension.

LHS samples are very efficient to generate because of their sim-
ilarity to permutation matrices from matrix theory. Generating m

LHS samples involves generating d independent permutations of
1,. . .,m, and joining the permutations on a position-by-position ba-
sis. For example, the d=2 permutations {1,2,3,4,5} and {4,5,2,1,3}
were combined to generate the m=5 LHS samples in Figure 3,
namely, (1,4), (2,5), (3,2), (4,1), and (5,3).

However, LHS by itself does not rule out bad spreads (e.g., all
samples spread along the diagonal). iTuned addresses this prob-
lem by generating multiple sets of LHS samples, and finally choos-
ing the one that maximizes the minimum distance between any
pair of samples. That is, suppose l different sets of LHS samples
L1, . . . , Ll were generated. iTuned will select the set L? such that:

L
? = arg max

1≤i≤l
min

X(j),X(k)∈Li,j 6=k

dist(X(j)
, X

(k))

Here, dist is a common distance metric like Euclidean distance.
This technique avoids bad spreads.

4.2 Picking the Next Experiment
As discussed in Section 3 and Equation 4, iTuned has to compute

the expected improvement EIP(X) that will come from doing the

x
2

x
1

*
*

*
*

*

Figure 3: Example set of five LHS samples

next experiment at any setting X . In turn, EIP(X) needs the prob-
ability density function pdfŷ(X)(p) of the current estimate of per-
formance ŷ(X) at X . We use a model-driven approach—similar in
spirit to [6]—to obtain the probability density function.

The model used in iTuned is called the Gaussian process Rep-
resentation of a response Surface (GRS). GRS models ŷ(X) as a
Gaussian random variable whose mean u(X) and variance v2(X)
are determined based on the samples available so far. Starting from
a conservative estimate based on the bootstrap samples, GRS im-
proves the precision in estimating y(X) as more experiments are
done. In this paper, we will show the following attractive features
of GRS:

• GRS is powerful enough to capture the response surfaces that
arise in parameter tuning.

• GRS enables us to derive a closed form for EIP(X).
• GRS enables iTuned to balance the conflicting tasks of explo-

ration (understanding the surface) and exploitation (going after
known high-performance regions) that arise in parameter tun-
ing. It is nontrivial to achieve this balance, and many previous
techniques [5, 18] lack it.

Definition 1. Gaussian process Representation of a response
Surface (GRS): GRS models the estimated performance ŷ(X), X

∈ DOM, as: ŷ(X) = ~f t(X)~β + Z(X). Here, ~f t(X)~β is a regres-
sion model. Z(X) is a Gaussian process that captures the residual
of the regression model. We describe each of these in turn. 2

~f(X) = [f1(X), f2(X), . . . , fh(X)]t in the regression model
~f t(X)~β is a vector of basis functions for regression [22]. ~β is
the corresponding h × 1 vector of regression coefficients. The t
notation is used to represent the matrix transpose operation. For
example, some response surface may be represented well by the
regression model: ŷ = 0.1 + 3x1 − 2x1x2 + x2

2. In this case,
~f (X) = [1, x1, x2, x1x2, x

2
1, x

2
2]

t, and ~β = [0.1, 3, 0,−2, 0, 1]t.
iTuned currently uses linear basis functions.

Definition 2. Gaussian process: Z(X) is a Gaussian process
if for any l ≥ 1 and any choice of settings X(1),. . .,X(l), where
each X(i) ∈ DOM, the joint distribution of the l random variables
Z(X(1)), . . ., Z(X(l)) is a multivariate Gaussian. 2

A multivariate Gaussian is a natural extension of the familiar uni-
dimensional normal probability density function (the “bell curve”)
to a fixed number of random variables [6]. A Gaussian process is a
generalization of the multivariate Gaussian to any arbitrary number
l ≥ 1 of random variables [14]. A Gaussian process is appropri-
ate for iTuned since experiments are conducted at more and more
settings over time.

A multivariate Gaussian of l variables is fully specified by a vec-
tor of l means and an l × l matrix of pairwise covariances [6]. As
a natural extension, a Gaussian process Z(X) is fully specified by
a mean function and a pairwise covariance function. GRS uses a
zero-mean Gaussian process, i.e., the mean value of any Z(X (i)) is
zero. The covariance function used is Cov(Z(X (i)), Z(X(j))) =

α2corr(X(i), X(j)). Here, corr is a pairwise correlation func-
tion defined as corr(X(i), X(j)) = Πd

k=1exp(−θk|x(i)
k −x

(j)
k |γk ).

α, θk ≥ 0, γk > 0, for 1 ≤ k ≤ d, are constants.



Figure 4: GRS from five samples (from Example 1)

Figure 5: Example of EIP computation (from Example 2)

GRS’s covariance function Cov(Z(X(i)), Z(X(j))) represents
the predominant phenomenon in response surfaces that if settings
X(i) and X(j) are close to each other, then their respective resid-
uals are correlated. As the distance between X(i) and X(j) in-
creases, the correlation decreases. The parameter-specific constants
θk and γk capture the fact that each parameter may have its own rate
at which the residuals become uncorrelated. Section 4.3 describes
how these constants are set.

Lemma 1. Probability density functions generated by GRS:
Suppose the n samples 〈X(i), y(i)〉, 1 ≤ i ≤ n, have been col-
lected through experiments so far. Given these n samples and a
setting X , GRS models ŷ(X) as a univariate Gaussian with mean
u(X) and variance v2(X) given by:

u(X) = ~f
t(X)~β + ~c

t(X)C−1(~y − F~β) (5)

v
2(X) = α

2(1 − ~c
t(X)C−1

~c(X)) (6)

~c(X) = [corr(X, X(1)), . . . , corr(X, X(n))]t, C is an n×n ma-
trix with element i, j equal to corr(X(i), X(j)), 1 ≤ i, j ≤ n,
~y = [y(1), . . . , y(n)]t, and F is an n×h matrix with the ith row
composed of ~f t(X(i)).

Proof: Given in the technical report [7]. 2

The intuition behind Lemma 1 is that the joint distribution of the
n+1 variables ŷ(X(1)), . . ., ŷ(X(n)), ŷ(X) is a multivariate Gaus-
sian (follows from Definitions 1 and 2). Conditional distributions
of a multivariate Gaussian are also Gaussian. Thus, the conditional
distribution of ŷ(X) given ŷ(X(1)), . . ., ŷ(X(n)) is a univariate
Gaussian with mean and variance as per Equations 5 and 6.

GRS will return u(X) from Equation 5 if a single predicted value
is asked for ŷ(X) based on the n samples collected. Note that
~f t(X)~β in Equation 5 is a plug in of X into the regression model
from Definition 1. The second term in Equation 5 is an adjust-
ment of the prediction based on the errors (residuals) seen at the
sampled settings, i.e., y(i) − ~f t(X(i))~β, 1 ≤ i ≤ n. Intuitively,
the predicted value at setting X can be seen as the prediction from
the regression model combined with a correction term computed
as a weighted sum of the residuals at the sampled settings; where
the weights are determined by the correlation function. Since the
correlation function weighs nearby settings more than distant ones,
the prediction at X is affected more by actual performance values
observed at nearby settings.

Also note that the variance v2(X) at setting X—which is the un-
certainty in GRS’s predicted value at X—depends on the distance
between X and the settings X(i) where experiments were done to
collect samples. Intuitively, if X is close to one or more settings
X(i) where we have collected samples, then we will have more
confidence in the prediction than the case when X is far away from
all settings where experiments were done. Thus, GRS captures the
uncertainty in predicted values in an intuitive fashion.

Example 1. The solid (red) line near the top of Figure 4 is a
true one-dimensional response surface. Suppose five experiments
are done, and the collected samples are shown as circles in Figure
4. iTuned generates a GRS from these samples. The (green) line
marked with “+” symbols represents the predicted values u(X)
generated by the GRS as per Lemma 1. The two (black) dotted
lines around this line denote the 95% confidence interval, namely,
(u(X) − 2v(X), u(X) + 2v(X)). For example, at x1 = 8, the
predicted value is 7.2 with confidence interval (6.4, 7.9). Note that,
at all points, the true value (solid line) is within the confidence
interval; meaning that the GRS generated from the five samples is a
good approximation of the true response surface. Also, note that at
points close to the collected samples, the uncertainty in prediction
is low. The uncertainty increases as we move further away from the
collected samples. 2

Lemma 1 gives the necessary building block to compute expected
improvements from experiments that have not been done yet. Re-
call from Lemma 1 that, based on the collected samples 〈X(i),y(i)〉,
1 ≤ i ≤ n, ŷ(X) is a Gaussian with mean u(X) and variance
v2(X). Hence the probability density function of ŷ(X) is:

pdfŷ(X)(p) =
1√

2πv(X)
exp(

−(p − u(X))2

2v2(X)
) (7)

Theorem 1. Closed form for EIP(X): The expected improve-
ment from conducting an experiment at setting X has the following
closed form:

EIP(X) = v(X)(µ(X)Φ(µ(X)) + φ(µ(X))) (8)

Here, µ(X) = y(X?)−u(X)
v(X)

. Φ and φ are N(0, 1) Gaussian cumu-
lative distribution and density functions respectively.

Proof: Given in the technical report [7]. 2

Intuitively, the next experiment to run should be picked either from
regions where uncertainty is large, which is captured by v(X) in
Equation 8, or where the predicted performance values can im-
prove over the current best setting, which is captured by µ(X) in
Equation 8. In regions where the current GRS from the observed
samples is uncertain about its prediction, i.e., where v(X) is high,
exploration is preferred to reduce the model’s uncertainty. At the
same time, in regions where the current GRS predicts that perfor-
mance is good, i.e., µ(X)Φ(µ(X)) + φ(µ(X)) is high, exploita-
tion is preferred to potentially improve the current best setting X?.
Thus, Equation 8 captures the tradeoff between exploration (global
search) and exploitation (local search).

Example 2. The dotted line at the bottom of Figure 4 shows
EIP(X) along the x1 dimension. (All EIP values have been scaled
uniformly to make the plot fit in this figure.) There are two peaks in
the EIP plot. (I) EIP values are high around the current best sample
(X∗ with x1=10.3), encouraging local search (exploitation) in this
region. (II) EIP values are also high in the region between x1=4
and x1=6 because no samples have been collected near this region;
the higher uncertainty motivates exploring this region. Adaptive
Sampling with conduct the next experiment at the highest EIP point,
namely, x1=10.9. Figure 5 shows the new set of samples as well as



the new EIP(X) after the GRS is updated with the new sample. As
expected, the EIP around x1=10.9 has reduced. EIP(X) now has a
maximum value at x1=4.7 because the uncertainty in this region is
still high. Adaptive Sampling will experiment here next, bringing
in a sample close to the global optimum at x1=4.4.

4.3 Overall Algorithm and Implementation
Figure 2 shows the overall structure of iTuned’s Adaptive Sam-

pling algorithm. So far we described how the initialization is done
and how EIP(X) is derived. We now discuss how iTuned imple-
ments the other steps in Figure 2.

Finding the setting that maximizes EIP: Line 3 in Figure 2 re-
quires us to find the setting X ∈ DOM that has the maximum EIP.
Since we have a closed form for EIP, it is efficient to evaluate EIP
at a given setting X . In our implementation, we pick k = 1000
settings (using LHS sampling) from the space of feasible settings,
compute their EIP values, and pick the one that has the maximum
value to run the next experiment.

Initializing the GRS and updating it with new samples: Initial-
izing the GRS with a set of 〈X(i), y(i)〉 samples, or updating the
GRS with a newly collected sample, involves deriving the best val-
ues of the constants α, θk, and γk, for 1 ≤ k ≤ d, based on the
current samples. This step can be implemented in different ways.
Our current implementation uses the well-known and efficient sta-
tistical technique of maximum likelihood estimation [9, 22].

When to stop: Adaptive Sampling can stop (Line 2 in Figure 2) un-
der one of two conditions: (i) when the user issues an explicit stop
command once she is satisfied with the performance improvement
achieved so far; and (ii) when the maximum expected improvement
over all settings X ∈ DOM falls below a threshold.

5. ITUNED’S EXECUTOR: A PLATFORM
FOR RUNNING ONLINE EXPERIMENTS

We now consider where and when iTuned will run experiments.
There are some simple answers. If parameter tuning is done before
the database goes into production use, then the experiments can be
done on the production platform itself. If the database is already
in production use and serving real users and applications, then ex-
periments could be done on an offline test platform. Previous work
on parameter tuning (e.g., [5, 18]) assumes that experiments are
conducted in one of these settings.

While the two settings above—preproduction database and test
database—are practical solutions, they are not sufficient because:
• The workload may change while the database is in production

use, necessitating retuning.
• A test database platform may not exist (e.g., in an SMB).
• It can be nontrivial or downright infeasible to replicate the pro-

duction resources, data, and workload on the test platform.

iTuned’s executor provides a comprehensive solution that addresses
concerns like these. The guiding principle behind the solution is:
exploit underutilized resources in the production environment for
experiments, but never harm the production workload. The two
salient features of the solution are:

• Designated resources: iTuned provides an interface for users
to designate which resources can be used for running experi-
ments. Candidate resources include (i) the production database
(the default for running experiments), (ii) standby databases
backing up the production database, (iii) test database(s) used
by DBAs and developers, and (iv) staging database(s) used for
end-to-end testing of changes (e.g., bug fixes) before they are
applied to the production database. Resources designated for
experiments are collectively called the workbench.

Figure 6: The executor in action for standby databases

• Policies: A policy is specified with each resource that dictates
when the resource can be used for experiments. The default pol-
icy associated with each of the above resources is: “if the CPU,
memory, and disk utilization of the resource for its home use
is below 10% (threshold t1) for the past 10 minutes (threshold
t2), then the resource can be used for experiments.” Home use
denotes the regular (i.e., nonexperimental) use of the resource.
The two thresholds are customizable. Only the default policy is
implemented currently, but we are exploring other policies.

iTuned’s implementation consists of: (i) a front-end that interacts
with users, and (ii) a back-end comprising the planner, which plans
experiments using Adaptive Sampling, and the executor, which runs
planned experiments on the workbench as per user-specified (or
default) policies. Monitoring data needed to enforce policies is ob-
tained through system monitoring tools.

The design of the workbench is based on splitting the function-
ality of each resource into two: (i) home use, where the resource is
used directly or indirectly to support the production workload, and
(ii) garage use, where the resource is used to run experiments. We
will describe the home/garage design using the standby database as
an example, and then generalize to other resources.

All database systems support one or more hot standby databases
whose home use is to keep up to date with the (primary) produc-
tion database by applying redo logs shipped from the primary. If
the primary fails, a standby will quickly take over as the new pri-
mary. Hence, the standby databases run the same hardware and
software as the production database. It has been observed that
standby databases usually have very low utilization since they only
have to apply redo log records. In fact, [8] mentions that enterprises
that have 99.999% (five nines) availability typically have standby
databases that are idle 99.999% of the time.

Thus, the standby databases are a valuable and underutilized as-
set that can be used for online experiments without impacting user-
facing queries. However, their home use should not be affected,
i.e., the recovery time on failure should not have any noticeable
increase. iTuned achieves this property using two resource con-
tainers: the home container for home use, and the garage container
for running experiments. iTuned’s current implementation of re-
source containers uses the zones feature in the Solaris OS [15].
CPU, memory, and disk resources can be allocated dynamically to
a zone, and the OS provides isolation between resources allocated
to different zones. Resource containers can also be implemented
using virtual machine technology which is becoming popular [16].

The home container on the standby machine is responsible for



Feature Description and Use
Sensitivity analysis Identify and eliminate low-effect parameters
Parallel experiments Use multiple resources to run expts in parallel
Early abort Identify and stop low-utility expts quickly
Workload compression Reduce per-experiment running time without

reducing overall tuning quality

Table 1: Features that improve iTuned’s efficiency

applying the redo log records. When the standby machine is not
running experiments, the home container runs on it using all avail-
able resources; the garage lies idle. The garage container is booted—
similar to a machine booting, but much faster—only when a policy
fires and allows experiments to be scheduled on the standby ma-
chine. During an experiment, both the home and the garage con-
tainers will be active, with a partitioning of resources as determined
by the executor. Figure 6 provides an illustration. For example, as
per the default policy stated earlier, home and garage will get 10%
and 90%, respectively, of the resources on the machine.

Both the home and the garage containers run a full and exactly
the same copy of the database software. However, on booting, the
garage is given a snapshot of the current data (including physical
design) in the database. The garage’s snapshot is logically separate
from the snapshot used by the home container, but it is physically
the same except for copy-on-write semantics. Thus, both home and
garage have logically-separate copies of the data, but only a single
physical copy of the data exists on the standby system when the
garage boots. When either container makes an update to the data,
a separate copy of the changed part is made that is visible to the
updating container only (hence the term copy-on-write). The redos
applied by the home container do not affect the garage’s snapshot.
iTuned’s implementation of snapshots and copy-on-write semantics
leverages the Zettabyte File System [15], and is extremely efficient
(as we will show in the empirical evaluation).

The garage is halted immediately under three conditions: when
experiments are completed or the primary fails or there is a policy
violation. All resources are then released to the home container
which will continue functioning as a pure standby or take over as
the primary as needed. Setting up the garage (including snapshots
and resource allocation) takes less than a minute, and tear-down
takes even less time. The whole process is so efficient that recovery
time is not increased by more than a few seconds.

While the above description focused on the standby resource,
iTuned applies the same home/garage design to all other resources
in the workbench (including the production database). The only
difference is that each resource has its own distinct type of home
use which is encapsulated cleanly into the corresponding home
container. Thus, iTuned works even in settings where there are no
standby or test databases.

6. IMPROVING ITUNED’S EFFICIENCY
Experiments take time to run. This section describes features that

can reduce the time iTuned takes to return good results as well as
make iTuned scale to large numbers of parameters. Table 1 gives
a short summary. The first three features in Table 1 are fully in-
tegrated into iTuned, while workload compression is currently a
simple standalone tool.

6.1 Eliminating Unimportant Parameters Us-
ing Sensitivity Analysis

Suppose we have generated a GRS using n samples 〈X(i), y(i)〉.
Using the GRS, we can compute E(y|x1=v), the expected value
of y when x1=v as:

E(y|x1=v)=

R

dom(x2)
· · ·

R

dom(xd)
ŷ(v, x2, . . . , xd)dx2 · · · dxd

R

dom(x2)
· · ·

R

dom(xd)
dx2 · · · dxd

(9)
Equation 9 averages out the effects of all parameters other than x1.
If we consider l equally-spaced values vi ∈ dom(x1), 1 ≤ i ≤ l,
then we can use Equation 9 to compute the expected value of y at
each of these l points. A plot of these values, e.g., as shown in
Figure 4, gives a visual feel of the overall effect of parameter x1

on y. We term such plots effect plots. In addition, we can consider
the variance of these values, denoted V1 = Var(E(y|x1)). If V1 is
low, then y does not vary much as x1 is changed; hence, the effect
of x1 on y is low. On the other hand, a large value of V1 means that
y is sensitive to x1’s setting.

Therefore, we define the main effect of x1 as V1
Var(y)

which repre-
sents the fraction of the overall variance in y that is explained by the
variance seen in E(y|x1). The main effects of the other parameters
x2, . . . , xd are defined in a similar fashion. Any parameter with
low main effect can be set to its default value with little negative
impact on performance, and need not be considered for tuning.

6.2 Running Multiple Experiments in Parallel
If the executor can find enough resources on the workbench, then

iTuned can run k > 1 experiments in parallel. The batch of ex-
periments from LHS during initialization can be run in parallel.
Running k experiments from Adaptive Sampling in parallel is non-
trivial because of its sequential nature. A naive approach is to pick
the top k settings that maximize EIP. However, the pitfall is that
these k settings may be from the same region (around the current
minimum or with high uncertainty), and hence redundant.

We set two criteria for selecting k parallel experiments: (I) Each
experiment should improve the current best value (in expectation);
(II) The selected experiments should complement each other in im-
proving the GRS’s quality (i.e., in reducing uncertainty). iTuned
determines the next k experiments to run in parallel as follows:

1. Select the experiment X(i) that maximizes the current EIP.

2. An important feature of GRS is that the uncertainty in predic-
tion (Equation 6) depends only on the X values of collected
samples. Thus, after X(i) is selected, we update the uncertainty
estimate at each remaining candidate setting. (The predicted
value, from Equation 5, at each candidate remains unchanged.)

3. We compute the new EIP values with the updated uncertainty
term v(X), and pick the next sample X(i+1) that maximizes
EIP. The nice property is that X(i+1) will not be clustered with
X(i): after X(i) is picked, the uncertainty in the region around
X(i) will reduce, therefore EIP will decrease in that region.

4. The above steps are repeated until k experiments are selected.

6.3 Early Abort of Low-Utility Experiments
While the exploration aspect of Adaptive Sampling has its ad-

vantages, it can cause experiments to be run at poorly-performing
settings. Such experiments take a long time to run, and contribute
little towards finding good parameter settings. To address this prob-
lem, we added a feature to iTuned where an experiment at X (i) is
aborted after ∆ × tmin time if the workload running time at X(i)

is greater than ∆× tmin. Here, tmin is the workload running time
at the best setting found so far. By default, ∆ = 2.

6.4 Workload Compression
Work on physical design tuning has shown that there is a lot

of redundancy in real workloads which can be exploited through
workload compression to give 1-2 orders of magnitude reduction in



tuning time [3]. The workload compression technique from [3] first
partitions the given workload based on distinct query templates,
and then picks a representative subset per partition via clustering.
To demonstrate the utility of workload compression in iTuned, we
came up with a modified approach. We treat a workload as a series
of executions of query mixes, where a query mix is a set of queries
that run concurrently. An example could be 〈3Q1, 6Q18〉 which
denotes three instances of TPC-H query Q1 running concurrently
with six instances of Q18. We partition the given workload into
distinct query mixes, and pick the top-k mixes based on the overall
time for which each mix ran in the workload.

7. EMPIRICAL EVALUATION
Our evaluation setup involves a local cluster of machines, each

with four 2GHz processors and 3GB memory, running PostgreSQL
8.2 on Solaris 10. One machine runs the production database while
the other machines are used as hot standbys, test platforms, or
workload generators as needed. Recall from Section 5 that iTuned’s
policy-based executor can conduct experiments on the production
database, standbys, and test platforms. By default, we use one
standby database for experiments. Our implementation of GPR
uses the tgp package [9].

7.1 Methodology and Result Summary
We first summarize the different types of empirical evaluation

conducted and the results obtained.
• Section 7.2 breaks down the overhead of various operations in

the API provided by iTuned’s executor, and shows that the ex-
ecutor is noninvasive and efficient.

• Section 7.3 shows real response surfaces that highlight the is-
sues motivating our work, e.g., (i) why database parameter tun-
ing is not easy for the average user; (ii) how parameter effects
are highly sensitive to workloads, data properties, and resource
allocations; and (iii) why optimizer cost models are insufficient
for effective parameter tuning, but it is important to keep the
optimizer in the tuning loop.

• Section 7.4 presents tuning results for OLAP and OLTP work-
loads of increasing complexity that show iTuned’s ease of use
and up to 10x improvements in performance compared to de-
fault parameter settings, rule-based tuning based on popular
heuristics, and a state-of-the-art automated parameter tuning
technique. We show how iTuned can leverage parallelism, early
aborts, and workload compression to cut down tuning times
drastically with negligible degradation in tuning quality.

• iTuned’s performance is consistently good with both PostgreSQL
and MySQL databases, demonstrating iTuned’s portability.

• Section 7.5 shows how iTuned can be useful in other ways apart
from recommending good parameter settings, namely, visualiz-
ing parameter impact as well as approximate response surfaces.
This information can guide further manual tuning.

Tuning tasks in our evaluation consider up to 30 configuration pa-
rameters. By default, we consider the following 11 PostgreSQL
parameters for OLAP workloads: (P1) shared buffers, (P2) effec-
tive cache size, (P3) work mem, (P4) maintenance work mem, (P5)
default statistics target, (P6) random page cost, (P7) cpu tuple cost,
(P8) cpu index tuple cost, (P9) cpu operator cost, (P10) memory
allocation, and (P11) CPU allocation. Descriptions of parameters
P1-P9 can be found in [13]. Parameters P10 and P11 respectively
control the memory and CPU allocation to the database.

7.2 Performance of iTuned’s Executor
We first analyze the overhead of the executor for running exper-

iments. Recall its implementation from Section 5. Table 2 shows
the various operations in the interface provided by the executor,

Operation by Ex-
ecutor

Time
(sec)

Description

Create Container 610 Create a new garage (one time process)
Clone Container 17 Clone a garage from already existing one
Boot Container 19 Boot garage from halt state
Halt Container 2 Stop garage and release resources
Reboot Container 2 Reboot the garage (required for adding

additional resources to a container)
Snapshot-R DB 7 Create read-only snapshot of database
Snapshot-RW DB 29 Create read-write snapshot of database

Table 2: Overheads of operations in iTuned’s executor

and the overhead of each operation. The Create Container oper-
ation is done once to set up the OS environment for a particular
tuning task; so its 10-minute cost is amortized over an entire tun-
ing session. This overhead can be cut down to 17 seconds if the
required type of container has already been created for some previ-
ous tuning task. Note that all the other operations take on the order
of a few seconds. For starting a new experiment, the cost is at most
48 seconds to boot the container and to create a read-write snapshot
of the database (for workloads with updates). A container can be
halted within 2 seconds, which adds no noticeable overhead if, say,
the standby has to take over on a failure of the primary database.

7.3 Why Parameter Tuning is Nontrivial
The OLAP (Business Intelligence) workloads used in our evalu-

ation were derived from TPC-H running at scale factors (SF) of 1
and 10 on PostgreSQL [19]. The physical design of the databases
are well tuned, with indexes approximately tripling and doubling
the database sizes for SF=1 and SF=10 respectively. Statistics are
always up to date. The heavyweight TPC-H queries in our setting
include Q1, Q7, Q9, Q13, and Q18.

Figure 1 shows a 2D projection of a response surface that we
generated by running Q18 on a TPC-H SF=1 database for a num-
ber of different settings of the eleven parameters from Section 7.1.
The database size with indexes is around 4GB. The physical mem-
ory (RAM) given to the database is 1GB to create a realistic sce-
nario where the database is 4x the amount of RAM. This complex
response surface is the net effect of a number of individual effects:

• Q18 (Large Volume Customer Query) is a complex query that
joins the Lineitem, Customer, and Order tables. It also has a
subquery over Lineitem (which gets rewritten as a join), so Q18
accesses Lineitem—the biggest table in TPC-H—twice.

• Different execution plans get picked for Q18 in different re-
gions of the response surface because changes in parameter set-
tings lead to changes in estimated plan costs. These plans differ
in operators used, join order, and whether the same or different
access paths are used for the two accesses to the Lineitem table.

• Operator behavior can change as we move through the surface.
For example, hash joins in PostgreSQL change from one pass to
two passes if the work mem parameter is lower than the mem-
ory required for the hash join’s build phase.

• The most significant effect comes from hash joins present in
some of the plans. Hash partitions that spill to disk are written
directly to temporary disk files in PostgreSQL; not to temporary
buffers in the database or to shared buffers. As shared buffers
is increased, memory for the OS file cache (which buffers reads
and writes to disk files) decreases. Thus, disk I/O to the spilled
partitions increases, causing performance degradation.

Surfaces like Figure 1 show how critical experiments are to un-
derstand which of many different effects dominate in a particular
setting. It took us several days of effort, more than a hundred ex-
periments, as well as fine-grained monitoring using DTrace [15] to
understand the unexpected nature of Figure 1. It is unlikely that a
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Figure 7: Impact of shared buffers Vs. effective cache size for
workload W4 (TPC-H SF=10)

non-expert who wants to use a database for some application will
have the knowledge (or patience) to tune the database like we did.

The average running time of a query can change drastically de-
pending on whether it is running alone in the database or it is run-
ning in a concurrent mix of queries of the same or different types.
For example, consider Q18 running alone or in a mix of six concur-
rent instances of Q18 (each instance has distinct parameter values).
At the default parameter setting of PostgreSQL for TPC-H SF=1,
we have observed the average running time of Q18 to change from
46 seconds (when running alone) to 1443 seconds (when running in
the mix). For TPC-H SF=10, there was a change from 158 seconds
(when running alone) to 578 seconds (when running in the mix).

Two insights come out from the results presented so far. First,
query optimizers compute the cost of a plan independent of other
plans running concurrently. Thus, optimizer cost models cannot
capture the true performance of real workloads which consist of
query mixes. Second, it is important to keep the optimizer in the
loop while tuning parameter settings because the optimizer can
change the plan for a query when we change parameter settings.
While keeping the optimizer in the loop is accepted practice for
physical design tuning (e.g., [4]), to our knowledge, we are the first
to bring out its importance and enable its use in configuration pa-
rameter tuning.

Figure 7 shows a 2D projection of the response surface for Q18
when run in the 6-way mix in PostgreSQL for TPC-H SF=10. The
key difference between Figures 1 (Q18 alone, TPC-H SF=1) and 7
(Q18 in 6-way mix, TPC-H SF=10) is that increasing shared buffers
has an overall negative effect in the former case, while the over-
all effect is positive in the latter. We attribute the marked effect of
shared buffers in Figure 7 to the increased cache hits across concur-
rent Q18 instances. Figures 8 and 9 show the response surface for a
workload where shared buffers has limited impact. The highest im-
pact parameter is work mem. This workload has three instances of
Q7 and 3 instances of Q13 running in a 6-way mix in PostgreSQL
for TPC-H SF=10. All these results show why users can have a
hard time setting database parameters, and why experiments that
can bring out the underlying response surfaces are inevitable.

7.4 Tuning Results
We now present an evaluation of iTuned’s effectiveness on differ-

ent workloads and environments. iTuned should be judged both on
its quality—how good are the recommended parameter settings?—
and efficiency—how soon can iTuned generate good recommenda-
tions? Our evaluation compares iTuned against:
• Default parameter settings that come with the database.
• Manual rule-based tuning based on heuristics from database

administrators and performance tuning experts. We use an au-
thoritative source for PostgreSQL tuning [13].

• Smart Hill Climbing (SHC) is a state-of-art automated param-
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load W5 (TPC-H SF=10)
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Figure 9: Impact of shared buffers Vs. effective cache size for
workload W5 (TPC-H SF=10)

eter tuning technique [23]. It belongs to the hill-climbing fam-
ily of optimization techniques for complex response surfaces.
Like iTuned, SHC plans experiments while balancing explo-
ration and exploitation (Section 4.2). But, SHC lacks key fea-
tures of iTuned like GRS representation of response surfaces,
executor, and efficiency-oriented features like parallelism, early
aborts, sensitivity analysis, and workload compression.

• Approximation to the optimal setting: Since we do not know
the optimal performance in any tuning scenario, we run a large
number of experiments offline for each tuning task. We have
done at least 100 (often 1000+) experiments per tuning task
over the course of six months. The best performance found
is used as an approximation of the optimal. This technique is
labeled Brute Force.

iTuned and SHC do 20 experiments each by default. iTuned uses
the first 10 experiments for initialization. Strictly for the purposes
of evaluation, by default iTuned uses only early abort among the
efficiency-oriented techniques from Section 6.

Figure 10 compares the tuning quality of iTuned (I) with Default
(D), manual rule-based (M), SHC (S), and Brute Force (B) on a
range of TPC-H workloads at SF=1 and SF=10. The performance
metric of interest is workload running time; lower is better. The
workload running time for D is always shown as 100%, and the
times for others are relative. To further judge tuning quality, these
figures show the rank of the performance value that each technique
finds. Ranks are reported with the prefix R, and are based on a
best-to-worst ordering of the performance values observed by Brute
Force; lower rank is always better. Figure 10 also shows (above I’s
bar) the total time that iTuned took since invocation to give the
recommended setting. Detailed analysis of tuning times is done
later in this section.

11 distinct workloads are used in Figure 10, all of which are
nontrivial to tune. Workloads W1, W2, and W3 consist of indi-



Figure 10: Comparison of tuning quality. iTuned’s tuning times are shown in minutes (m) or hours (h). Ri denotes Rank i

Figure 11: Comparison of iTuned’s tuning times in the presence of various efficiency-oriented features
vidual TPC-H queries Q1, Q9, and Q18 respectively running at a
Multi-Programming Level (MPL) of 1. MPL is the maximum num-
ber of concurrent queries. TPC-H queries have input parameters.
Throughout our evaluation, we generate each query instance ran-
domly using the TPC-H query generator qgen. Different instances
of the same query are distinct with high probability.

Workloads W4, W5, and W6 go one step higher in tuning com-
plexity because they consist of mixes of concurrent queries. W4
(MPL=6) consists of six concurrent (and distinct) instances of Q18.
W5 (MPL=6) consists of three concurrent instances of Q7 and three
concurrent instances of Q13. W6 (MPL=10) consists of five con-
current instances of Q5 and five concurrent instances of Q9.

Workloads W7 and higher in Figure 10 go the final step in tun-
ing complexity by bringing in many more complex query types,
much larger numbers of query instances, and different MPLs. W7
(MPL=9) contains 200 query instances comprising queries Q1 and
Q18, in the ratio 1:2. W8 (MPL=24) contains 200 query instances
comprising TPC-H queries Q2, Q3, Q4, and Q5, in the ratio 3:1:1:1.

W9 (MPL=10), W10 (MPL=20), and W11 (MPL=5) contain 100
query instances each with 10, 10, and 15 distinct TPC-H query
types respectively in equal ratios. The results for W7-N shown in
Figure 10 are from tuning 30 parameters.

Figure 10 shows that the parameter settings recommended by
iTuned consistently outperform the default settings, and is usually
significantly better than the settings found by SHC and common
tuning rules. iTuned gives 2x-5x improvement in performance in
many cases. iTuned’s recommendation is usually close in perfor-
mance to the approximate optimal setting found (exhaustively) by
Brute Force. It is interesting to note that expert tuning rules are
more geared towards complex workloads (compare the M bars be-
tween the top and bottom halves of Figure 10).

As an example, consider the workload W7-SF10 in Figure 10.
The default settings give a workload running time of 1085 seconds.
Settings based on tuning rules and SHC give running times of 386
and 421 seconds respectively. In comparison, iTuned’s best set-
ting after initialization gave a performance of 318 seconds, which



Workload Perf.
Metric

#Params Quality
(Rank)

Tuning time
(Hours)

TPC-W
(MySQL)

Response
time

7 R1 3.2

TPC-W
(MySQL)

Throughput 7 R4 7.6

TPC-W
(PostgreSQL)

Response
time

20 R23 2.5

TPC-W
(PostgreSQL)

Throughput 20 R8 2.5

RUBiS
(MySQL)

Response
time

6 R1 6.1

RUBiS
(MySQL)

Throughput 6 R2 6.6

Table 3: Sample of iTuned’s results for OLTP workloads

was improved to 246 seconds by Adaptive Sampling (77% im-
provement over default). iTuned’s sensitivity analysis found the
shared buffers parameter to have the most impact on performance.
The default setting of 32 MB for shared buffers is poor. The rule-
based setting of 200 MB is better, but iTuned found a setting close
to 400 MB where the performance is far better.

Figure 10 shows that iTuned takes on the order of tens of hours
to find good settings for complex workloads. Configuring large
database management systems takes on the order of one to two
weeks [12]. Thus, one to two days of time spent parameter tun-
ing is acceptable, especially considering that iTuned gives 2x-5x
improvement in performance in many cases. More importantly,
Figure 11 shows that iTuned’s tuning time can be reduced by or-
ders of magnitude using the techniques we proposed in Section 6.
Early Abort uses ∆ = 2 and workload compression picks the top
mix in the workload.

For each of the complex workloads from Figure 10, we show
iTuned’s tuning time with and without different techniques. It is
clear that these techniques can reduce iTuned’s tuning time to at
most a few hours. The drop in tuning quality across all these scenar-
ios was never more than 1%. In general, we have found workload
compression to be even more effective in parameter tuning than in
physical design tuning. We speculate that parameter settings are
less sensitive to which queries get picked in the compressed work-
load compared to, say, index selection.

Because of space constraints, we have only given representative
results in this paper. Table 3 gives a brief summary of other empir-
ical results—including results for OLTP workloads, MySQL, and
different performance metrics—that show iTuned’s consistent good
performance. TPC-W is an e-Commerce benchmark that simulates
the activities of a retail website. Our experiments with TPC-W are
based on a 48000-transaction workload on a 6GB database. RUBiS
[1] is Web service benchmark that implements the core functional-
ity of an auction site like eBay.

7.5 Sensitivity Analysis
This section evaluates two important features of iTuned: sensi-

tivity analysis of database parameters and effect plots for visual-
ization (recall Section 6.1). We use both real workloads and com-
plex synthetic response surfaces in our evaluation. We compare
iTuned’s performance against SARD [5] which is described in Sec-
tion 3. Recall that, unlike iTuned, SARD is not an end-to-end tun-
ing tool, and can be misled by nonmonotonic effects of parameters.

Our concerns about SARD were validated by a simple evalua-
tion. We chose three popular and hard benchmark functions from
the optimization literature: Griewank, Rastrigin, and Rosenbrock
[23]. All three functions have a global optimum of 0. We used the
functions to generate response surfaces with 20 parameters each.
Of these 20 parameters, 5 are important—i.e., they impact the shape
of the surface significantly—while the remaining 15 are unimpor-

Workload Optimal SARD+AS SHC iTuned

Griewank 0 28.6 28.7 2.0
Rastrigin 0 200.8 209.1 26.1

Rosenbrock 0 40.2 160.5 7.9
W2-SF1 95 240 (R29) 231 (R24) 95 (R1)
W3-SF1 11 43 (R20) 67 (R24) 12 (R4)
W6-SF1 390 450 (R63) 417 (R20) 403 (R5)
W8-SF1 208 208 (R1) 289 (R4) 208 (R1)

Table 4: Sensitivity analysis. For W2, W3, W6, W8, rank and
performance of best setting (secs) are shown. Lower is better
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Figure 12: Effect plot for workload W5 (TPC-H SF=10)

tant. On the Griewank and Rastrigin surfaces—which have signifi-
cant nonmonotonic behavior—SARD completely failed to identify
the unimportant parameters. As iTuned did experiments progres-
sively, it never classified any important parameter as unimportant.
By the time fifty experiments were done, iTuned was able to clearly
separate the five important parameters from the unimportant ones.

Tables 4 gives end-to-end tuning results for three techniques: (i)
SARD+AS, where SARD is used to identify the important param-
eters, and then Adaptive Sampling is started with the samples col-
lected by SARD used for initialization; (ii) SHC (does not do sensi-
tivity analysis), and (iii) iTuned. Note that lower numbers are better
in all cases. iTuned clearly outperforms the alternatives.

A very useful feature of iTuned is that it can provide intuitive
visualizations of its current results. Figure 12 shows an effect plot
(recall Section 6.1) generated by iTuned based on 10 experiments
for the workload whose surface is shown in Figures 8 and 9. The
parameters P1-P9 correspond to the first nine PostgreSQL param-
eters listed in Section 7.1. Without knowing the actual response
surface, a user can quickly grasp the main trends in parameter im-
pact based on the effect plot. Note how the plot mirrors the trends
in Figures 8 and 9.

In summary, as few as twenty experiments chosen smartly by
iTuned can produce a wealth of information in a reasonable amount
of time to aid both naive users and expert DBAs in tuning database
configuration parameters.

8. RELATED WORK
Databases have fairly mature tools for physical design tuning

(e.g., index selection [4]). However, these tools do not address
configuration parameter tuning. Furthermore, these tools depend
on the query optimizer’s cost models which do not capture the ef-
fects of many important parameters.

Surprisingly, very little work has been done on tools for holistic
tuning of the many configuration parameters in modern database
systems. Most work in this area has either focused on specific
classes of parameters (e.g., [17]) or on restricted subproblems of
the overall parameter tuning problem (e.g., [5]). IBM DB2 pro-
vides an advisor for setting default values for a large number of pa-
rameters [12]. DB2’s advisor does not generate response surfaces,
instead it relies on built-in models of how various parameters affect
performance [5]. As we show in this paper, predetermined mod-



els may not be accurate in a given setting. SARD (discussed in
Section 3) and [18] are also related to iTuned. SARD focuses on
ranking parameters in order of impact, and is not an end-to-end tun-
ing tool. Techniques to learn a probabilistic model using samples
generated from gridding were proposed in [18]. The model was
then applied to tune four parameters in Berkeley DB. Gridding be-
comes very inefficient as the number of parameters increases. Sec-
tion 7 also compared iTuned with a technique based on hill climb-
ing (e.g., [23]) that has been used for parameter tuning. None of
the above techniques have an equivalent of iTuned’s executor or
the efficiency-oriented features from Section 6.

Techniques for tuning specific classes of parameters include solv-
ing analytical models [20], using simulations of database perfor-
mance (e.g., in Oracle database), and control-theoretic approaches
for online tuning [17]. These techniques are all based on predefined
models of how changes in parameter settings affect performance.
Techniques to tune the CPU and memory allocations to databases
running inside virtual machines were proposed in [16]. However,
the focus was not on planning experiments to learn the underly-
ing response surfaces. All the above techniques can benefit from
Adaptive Sampling and iTuned’s executor.

Traditional database sampling deals with the problem of sam-
pling from a large dataset, while our approach of Adaptive Sam-
pling is about drawing samples from a response surface that is
never materialized fully. Adaptive Sampling shares goals, but not
techniques, with conventional database problems like online aggre-
gation [10], model-driven acquisitional query processing [6], and
sampling for statistics estimation [2]. A two-phase adaptive method
is given in [2] where the sample size required to reach a desired ac-
curacy is decided based on a first phase of sampling. In contrast,
Adaptive Sampling can adapt after each sample is collected.

Oracle 11g introduced the SQL Performance Analyzer (SPA)
to help DBAs measure the impact of database changes like up-
grades, parameter changes, schema changes, and gathering opti-
mizer statistics [24]. (Quoting from [24], “it is almost impossi-
ble to predict the impact of such changes on SQL performance be-
fore actually trying them.”) SPA conducts experiments where SQL
statements in the workload are executed with and without apply-
ing a change. However, Oracle 11g does not provide an experi-
ment planner that can automatically handle complex tuning tasks
like parameter tuning. Finally, experiments are used to collect data
in many domains like chemical and mechanical engineering, so-
cial science, and computer simulation. While iTuned shares overall
guiding principles with experiment planning in these domains, the
requirements and algorithms differ.

9. CONCLUSION
We described iTuned, a tool to automate the task of recommend-

ing good settings for database configuration parameters. iTuned
has three novel features: (i) Adaptive Sampling to bring in appro-
priate data proactively through planned experiments to find high-
impact parameters and high-performance parameter settings, (ii) an
executor to support online experiments in production database en-
vironments through a cycle-stealing paradigm that places near-zero
overhead on the production workload; and (iii) portability across
different database systems. We showed the effectiveness of iTuned
through an extensive evaluation based on different types of work-
loads, database systems, and usage scenarios.
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